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Introduction.

Let $A_{k},$ $D_{k}$ and $E_{k}$ denote the types of the singularities of function germs
studied in [4]. Let $N$ and $P$ denote smooth manifolds. When a $C^{\infty}$ stable map
germ $f$ : $(N, x)arrow(P, y)$ is $C^{\infty}$ equivalent to a versal unfolding of a function
germ with singularity $A_{k},$ $D_{k}$ or $E_{k}$ , we say that $f$ has a singularity of type
$A_{k}$ , $D_{k}$ or $E_{k}$ at $x$ respectively (see, for example, their normal forms of [2,

Section 1]). When every singularity of a smooth map $f$ is of type $A_{k}$ or $D_{k}$

(resp. $A_{k},$ $D_{k}$ or $E_{k}$ ) with any number $k$ , we say that $f$ is $AD$-regular (resp.

$ADE$-regular) in this paper.
Let $X_{k}$ be one of $A_{k},$ $D_{k}$ or $E_{k}$ . We define $S_{\overline{X}_{k}}(f)$ to be the topological

closure of the subset $S_{x_{k}}(f)$ consisting of all singular points of type $X_{k}$ of $f$.
We can consider the fundamental class of $S_{\overline{x}_{k}}(f)$ in $H_{*}(N;Z/2Z)$ and define
the Thom polynomial of $X_{k}$ for $f$ as its Poincar\’e dual class denoted by
$P(X_{k}, f)$ . AS usual we expect that it is represented by Stiefel-Whitney classes
$w_{j}(TN-f^{*}(TP))$ (cf. [6]).

The purpose of this paper is to give formula calculating $P(D_{k}, f)$ for
$AD$-regular maps and $P(E_{h}, f)$ for $ADE$-regular maps in a finite process
([Theorems 4.1 and 4.2]). This kind of formulas first appeared in [9] and [10]

to calculate Thom polynomials of the singularities of type $\Sigma^{i}$ and $\Sigma^{i,j}$ . Their
results are reviewed in Section 1. In our case of $X_{k}=D_{k}$ or $E_{k}$ , we have the
submanifolds $\sum X_{k}$ constructed in the infinite jet space $J^{\infty}(N, P)$ in [2] such
that if the jet extension $j^{\infty}f$ of $f$ is transverse to $\sum X_{k}$ , then we have $S_{X_{k}}(f)$

$=(j^{\infty}f)^{-1}( \sum X_{k})$ . Using the properties of $\Sigma X_{k}$ in $J^{\infty}(N, P)$ reviewed in Section
2, we lift $S_{\overline{X}_{k}}(f)$ up to a submanifold $S$ of the total space of a certain flag
bundle over $N$ in Sections 5 and 6 so that the Poincar\’e dual class of $S$ is the
Euler class of some vector bundle over this total space related to the normal
bundle of $\sum X_{k}$ . This means that $P(X_{k}, f)$ is the image of this Euler class by

the Gysin homomorphism of this flag bundle. For singularities $A_{k}$ , see the
similar result of [1].

In Section 7 we see that Theorems 4.1 and 4.2 are generalized to the situ-
ations of smooth maps into foliated manifolds or of smooth sections of fibre
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bundles with naturality conditions.
In the category of complex manifolds and holomorphic maps the arguments

of this paper go through word for word witb the exception of approximating
smooth maps by transversal maps.

\S 1. Thom-Boardman manifolds and higher intrinsic derivatives.

In this section we review the necessary results about the higher intrinsic
derivatives $d_{t}$ and the Thom-Boardman submanifolds in [5] (see also [8 and 11])

to explain the definition and properties of $\sum D_{k}$ and $\sum E_{k}$ studied in [2].

Let $n$ and $P$ be the dimensions of manifolds $N$ and $P$ respectively.
Throughout the paper let $n>p$ and $i$ always denotes the number $n-p+1$ . The
projections of $J^{\infty}(N, P)$ onto $N$ and $P$ mapping a jet onto its source and target

are written by $\pi_{N}$ and $\pi_{P}$ respectively. The total tangent bundle over $J^{\infty}(N, P)$

introduced in [5, Definition 1.9] is denoted by $D$ which is isomorphic to
$(\pi_{N})^{*}(TN)$ . Let $P$ denote $(\pi_{P})^{*}(TP)$ . Then we have the homomorphism

$d_{1}$ : $Darrow P$ over $J^{\infty}(N, P)$ .

The submanifold $\Sigma^{i}$ is the subspace of $J^{\infty}(N, P)$ consisting of all jets $z$ with
$\dim(Ker(d_{1,z}))=i$ , where $d_{1}$ . , : $D.arrow P_{z}$ is the restriction of $d_{1}$ to the fibres over
$z$ (throughout the paper we use this kind of notations for fibres and restricted
homomorphisms).

The symmetric product of subbundles $V_{1},$
$\cdots,$

$V_{t}$ of a vector bundle $V$ in
the t-th symmetric product $S^{t}V$ is denoted by $V_{1}O$ $OV_{t}$ as in [5]. Let $K=$

$Ker(d_{1})$ and $Q=Cok(d_{1})$ over $\Sigma^{i}$ . Notice $\dim Q=1$ . Then tbe second intrinsic
derivative

$d_{2}$ : $K_{1}arrow Hom(K_{1}, Q)$ over $\Sigma^{i}$

defines $\Sigma^{i,8}$ as the subset of all $z\in\Sigma^{i}$ with $\dim(Ker(d_{2.z}))=2$ . Note that $d_{2}$ is
induced from the symmetric homomorphism of $0^{2}K_{2}$ into $Q$ denoted by $d_{2}’$ . Set
$K_{2}=Ker(d_{2})$ over $\Sigma^{i,8}$ . The third intrinsic derivative

$d_{3}$ : $K_{2}arrow Hom(O^{2}K_{2}, Q)$ over $\Sigma^{i}2$

induced from the symmetric homomorphism $d_{3}’$ : $O^{3}K_{2}arrow Q$ defines $\Sigma^{i,2,j}$ as the
set of all jets $z\in\Sigma^{i.8}$ with $\dim(Ker(d_{3,z}))=]$ . Set $K_{3}=Ker(d_{3}|\Sigma^{i2,j})$ . If $j=1$ ,

then $Cok(d_{3})$ is isomorphic to $Hom(0^{2}K_{3}, Q)$ over $\Sigma^{i,2,1}$ . The 4-th intrinsic
derivative

$d_{4}$ : $K_{3}arrow Hom(O^{2}K_{3}OK_{2}, Q)$ over $\Sigma^{i.2,1}$

coming from the homomorphism $d_{4}’$ : $O^{3}K_{3}OK_{2}arrow Q$ defines $\Sigma^{i.2}11$ as the set of
all jets $Z\in\Sigma\ell 2,1$ such that $d_{4.*}$ vanishes. Over $\Sigma^{i.2,1,1}$ , $Ker(d_{4})$ is $K_{3}$ and
$Cok(d_{4})$ is isomorphic to $Hom(O^{3}K_{3}OK_{2}, Q)$ . Finally we have the 5-th intrinsic
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derivative
$d_{\epsilon}$ : $K_{3}arrow Hom(O^{3}K_{3}OK_{2}, Q)$ over $\Sigma^{t,t.1}$ . 1

coming from $d_{5}’$ : $O^{4}K_{3}OK_{2}arrow Q$ . We set $\Sigma^{i,8,1,0}=\Sigma^{i.2,1}\backslash \Sigma^{i,2.1.1}$ and $\Sigma^{i.2,1.1,0}$ as
the set of all jets $z\in\Sigma^{i.,1,1}$ such that $d_{\iota,\iota}$ is injective.

\S 2. Manifolds $\sum D_{k}$ and $\sum E_{k}$ .
We will briefly review the definition of $\sum D_{k}$ . As usual $Hom(O^{3}R^{2}, R)$ is

identified with the set of all cubic forms with variables $u$ and $v$ on $R^{2}$ . By
[4, Lemma 5.1] it is decomposed into five orbit manifolds of the action by
$GL(2)$ through $u^{2}v\pm v^{3},$ $u^{2}v$ , $u^{3}$ and $0$ . This decomposition yields that of
$Hom(O^{3}K_{2}, Q)$ over $\Sigma^{i.2.0}$ into five submanifolds. Let $S_{4}^{\pm}$ and $S_{6}$ denote the
corresponding submanifolds of $Hom(O^{3}K_{2}, Q)$ determined by $u^{2}v\pm v^{s}$ and $u^{2}v$

respectively. By identifying $d_{3}’$ in Section 1 with the smooth section of
$Hom(O^{3}K_{2}, Q)$ over $\Sigma^{i.g.0}$, we define the submanifolds $\sum D_{4}^{\pm}$ and $\sum\overline{D}_{6}$ of $\Sigma^{i,S0}$

to be $(d_{3}’)^{-1}(S_{4}^{\pm})$ and $(d_{3}’)^{-1}(S_{5})$ respectively ([2, Definition 3.1]). On a certain
neighbourhood $U$ of $\sum\overline{D}_{6}$ in $\Sigma^{i,t,0}$, there exists the line subbundle $L$ of $K_{2}$

such that for any $z \in\sum\overline{D}_{5},$ $L_{z}$ coincides with $d_{3,z}^{-1}(H)$ where $H$ is the set of all
quadratic forms of rank 1 or $0$ in $Hom(O^{2}K_{z}, Q_{z})$ and that for any $z\in U,$ $z$ lies
in $\Sigma_{5}^{-}$ if and only if the restriction $d_{3,z}’|O^{3}L_{z}$ is a null homomorphism.
Starting from $d_{3}’|O^{3}L$“over’ $U_{-}^{*}$ and $\sum\overline{D}_{6}$ , we can successively construct the
submanifolds $\sum\overline{D}_{t+1}$ and the homomorphism $r_{t}$ : $O^{t}Larrow Q$ over $\sum\overline{D}_{t+1}$ . In fact,
by [2, Theorem 3.10] there exists aseries of manifolds $U \supset\sum\overline{D}_{5}\supset\cdots\supset\sum\overline{D}_{f+1}\supset\cdots$

with the properties
(2.1) $\sum\overline{D}_{t+1}$ is of codimension $n-p+t+1$ in $J^{\infty}(N, P)$ ,
(2.2) For $t\geqq 3$ , there exists a homomorphism $r_{t}:O^{t}Larrow Q$ defined over

$\sum\overline{D}_{t+1}$ where $r_{3}$ means $d_{3}’|O^{3}L$ defined on $U$ ,
(2.3) An element $z$ of $\sum\overline{D}_{t+1}$ belongs to $\sum\overline{D}_{t+2}$ if and only if $r_{t,z}$ vanishes,
(2.4) The intrinsic derivative of $r_{t}$

$d(r_{t}):T(\Sigma\overline{D}_{t+1})|\Sigma\overline{D}_{t+2}arrow Hom(O^{t}L, Q)|\Sigma\overline{D}_{t+2}$

is surjective, that is, $r_{t}$ is transverse to the zero sectlon when considered as
the section of $Hom(O^{t}L, Q)|\sum\overline{D}_{t+1}$ and

(2.5) Let $\sum D_{t}=\sum\overline{D}_{t}\backslash \sum\overline{D}_{t+1}$ . If a jet extension $J^{\infty}f$ of a smooth map
germ $f:(N, x)arrow(P, y)$ is transverse to $\sum D_{t}$ and $J^{\infty}f(x) \in\sum D_{t}$ , then $f$ has a
singularity $D_{t}$ at $x$ .

Next we review the definition of $\Sigma E_{t}$ . We define $\sum E_{6}$ as the set of all
jets $z\in\Sigma^{i.2,1.0}$ such that $d_{4.z}’|O^{4}K_{3.\iota}$ does not vanish and set $\sum E_{7}=\Sigma^{i}$ ” $0 \backslash \sum E_{6}$ .
We can show that the restriction $d_{4}’|O^{4}K_{3}$ is transverse to the zero section
as the section of the bundle $Hom(O^{4}K_{3}, Q)$ over $\Sigma^{i,2,1}0$ Hence $\sum E_{7}$ is a
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submanifold. We define $\sum E_{8}$ as the set of all jets $z\in\Sigma^{\iota}2,1,1,0$ such that
$d_{5,z}’|O^{5}K_{4,z}$ does not vanish. When we deal with only $ADE$ -regular maps, it
will be reasonable to set $\sum\overline{E}_{6}=\Sigma^{i.2,1},$ $\sum\overline{E}_{7}=\sum E_{7}\cup\Sigma^{i}2,1$ 1 and $\sum\overline{E}_{8}=\Sigma^{i,2}1,1$

It follows that the analogous statement of (2.5) also holds for singularities $E_{t}$ .

\S 3. Grassmann bundles and flag bundles.

For an $n$ -dimensional vector space (simply $n$ -space) $V$ , let $G_{k,n-k}(V)$ be the
grassmann manifold of all $k$ -subspaces of $V$ . For a vector bundle $E$ over a
space $M$ of dimension $n$ , let $G_{k,n-k}(E)$ over $M$ be the grassmann bundle associ-
ated to $G_{k.n-k}(R^{n})$ whose total space consists of all pairs $(m, a)$ where $m\in M$

and $a$ is a $k$ -subspace of the fibre $E_{m}$ of $E$ over $m$ . Let $F_{i.2}(E)$ over $M$

denote the space consisting of all triples $(m, a, b)$ where $a$ is an $i$-subspace of
$E_{m}$ and $b$ is a 2-subspace of $a$ . Similarly $F_{i,8,1}(E)$ denotes the space consisting
of all quadruples $(m, a, b, c)$ where $(m, a, b)\in F_{i,2}(E)$ and $c$ is 1 subspace of $b$ .
Let $E_{1}arrow G_{i,p-1}(E),$ $E_{2}arrow F_{i,2}(E)$ and $E_{3}arrow F_{i,2,1}(E)$ denote the canonical bundles
of dimensions $i,$ $2$ and 1 having fibres $a,$

$b$ and $c$ respectively.
In the following commutative diagram we are applying these notations to

the total tangent bundle $D$ and $P$ over $J^{\infty}(N, P)$ .

(3.1)

where (i) $\pi$ and $\pi_{i}$ $(i=1,2,3)$ are the canonical projections, (ii) $G_{i}(D, P)$

$(i=1,2,3)$ denote the fibre products of $\pi_{i}$ and $\pi$ and (iii) $\rho_{i}$ and $\ell)_{i}$ are also the
canonical projections respectively. In the following sections we use the nota-
tions $D’=(\pi_{3}\circ\rho_{3})^{*}D,$ $P’=(\pi_{3}\circ\rho_{3})^{*}P$, $D_{1}’=(\rho_{1}\circ\phi_{2}\circ\phi_{3})^{*}D_{1}$ , $D_{2}’=(\rho_{2^{O}}\varphi_{3})^{*}D_{2}$ , $D_{3}’=$

$(p_{3})^{*}D_{3}$ and $P_{1}’=(\phi_{1}\circ\phi_{2}\circ\phi_{3})^{*}P_{1}$ .

\S 4. Results.

We can pull back the diagram (3.1) by the jet-extension $J^{\infty}f$ : $Narrow J^{\infty}(N, P)$

of an $AD$ or $ADE$-regular map and obtain the similar one replacing $D,$ $P$ and
$J^{\infty}(N, P)$ by $TN,$ $f^{*}(TP)$ and $N$ . All of the projections in this new diagram
are denoted by the same notation such as $\phi_{i},$

$\rho_{i}$ and $\pi_{i}$ . Let $c:G_{3}(TN, f^{*}(TP))$

$arrow G_{3}(D, P)$ denote the associated map over $j^{\infty}f$ determined by the fact $TN=$

$(J^{\infty}f)^{*}D$ and $f^{*}(TP)=(J^{\infty}f)^{*}P$. Then let $K_{0}=c^{*}(D’),$ $K_{j}=c^{*}(D_{j}’)$ and $Q_{1}=c^{*}(P_{1}’)$ .
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NOW we can state the formulas to calculate the Thom polynomials $P(D_{k+1}, f)$

and $P(E_{k+1}, f)$ .

THEOREM 4.1. If $f$ : $Narrow P$ is an $AD$-regular map, then we have the fol-
lowing formulas $(k\geqq 4)$ .

$P(D_{k+l}, f)=(\pi_{3}\circ\rho_{3})!\{\chi(Hom(K_{1}, f^{*}(TP))$

$\oplus Hom(K_{0}/K_{1}\oplus K_{2}OK_{1}\oplus O^{2}K_{3}OK_{2}\oplus\sum_{j=4}^{k-1}O^{j}K_{3},$ $Q_{1}))\}$ .

THEOREM 4.2. If $f$ : $Narrow P$ is an $ADE$-regular map, then we have the
following formulas.

$P(E_{6}, f)=(\pi_{3}\circ\rho_{3})!\{\chi(Hom(K_{1}, f^{*}(TP))$

$\oplus Hom(K_{0}/K_{1}\oplus K_{2}OK_{1}\oplus K_{3}O^{2}K_{2}, Q_{1}))\}$

$P(E_{7}, f)=(\pi_{3}\circ\rho_{3})!\{\chi(Hom(K_{1}, f^{*}(TP))$

$\oplus Hom(K_{0}/K_{1}\oplus K_{2}OK_{1}\oplus K_{3}O^{2}K_{2}\oplus O^{4}K_{3}, Q_{1}))\}$

$P(E_{8}, f)=(\pi_{3}\circ\rho_{3})!\{\chi(Hom(K_{1}, f^{*}(TP))$

$\oplus Hom(K_{0}/K_{1}\oplus K_{2}OK_{1}\oplus K_{3}O^{2}K_{2}\oplus O^{3}K_{3}OK_{2}, Q_{1}))\}$ .

REMARK 4.3. Let $\nu$ be a bundle of dimension greater than $P$ such that
$TP\oplus\nu$ is trivial. By the analogous arguments in [1, Section 4] we can reduce
the calculation of $P(X_{k}, f)$ using the above formulas to that in the simpler case
where $f^{*}(TP),$ $TN$ and $K_{j}$ are replaced by $f^{*}(TP\oplus\nu)$ , $TN\oplus f^{*}(\nu)$ and the
corresponding bundles $K_{j}$ . However it is not necessarily easy to represent
them by Stiefel-Whitney classes.

Here we give their precise formulas in the simple real case of $n=p+1$ .
See further calculations in complex case in Section 8. Let $W=1+W_{1}+\cdots+$

$W_{j}+\cdots$ be the Stiefel-Whitney class of $TN-$ f*(TP) and $1+\overline{W}_{1}+\cdots+\overline{W}_{j}+\cdots$

be its formal inverse. For $AD$-regular maps $P(D_{k+1}, f)$ is equal to the part of
degree $k+2$ of the polynomial

$W( \overline{W}_{1}+\overline{W}_{2})\{\sum_{j=0}^{[k/z-2]}(\begin{array}{l}[k/2-2]j\end{array})\overline{W}_{j}\}+W\{\sum_{j=0}^{[k/2-1]}(\begin{array}{l}[k/2-1]j\end{array})\overline{W}_{j+1\}}$

where $[]$ means the Gauss bracket. In particular, $P(D_{k}, f)=0$ for $k=5,6$ or
7. For $ADE$ -regular maps, $P(E_{k+1}, f)=W_{k}W_{2}+W_{k-1}(W_{3}+W_{1}W_{2})$ .

REMARK 4.4. The referee kindly informed the author the following. It
follows from [12] that the Thom polynomial of $D_{k}$ of $ADE$-regular maps vanish
for $k=5$ and 7.
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\S 5. Lift of the manifolds $\sum D_{k}$ and $\Sigma E_{k}$ .
First we lift the submanifolds $\Sigma^{i}$ and $\Sigma^{i,I}$ of $J^{\infty}(N, P)$ up to the diffeo-

morphic ones
$(\Sigma^{i})’=\{(z, Klz)|z\in\Sigma^{i}\}$

$(\Sigma^{i.2})’=\{(z, K_{1.8}, K_{2.*}, Q_{z})|z\in\Sigma^{i,2}\}$

of $G_{i,p-1}(D)$ and $G_{2}(D, P)$ . Note that $D_{1}’|(\Sigma^{i})’=(\pi_{1}|(\Sigma^{i})’)^{*}K_{1}$ and $D_{2}’|(\Sigma^{i.2})’=$

$(\pi_{2}\circ\rho_{2}|(\Sigma^{i,2})’)^{*}K_{2}$ . We define

$s_{1}$ : $G_{t,p-1}(D)arrow Hom(D_{1}, \pi_{1}^{*}(P))$

and
$s_{2}$ : $(\rho_{1}\circ\phi_{2})^{-1}((\Sigma^{i})’)arrow Hom((\pi_{2}\circ\rho_{2})^{*}D/(\rho_{1}\circ\phi_{2})^{*}D_{1}$

$\oplus(\rho_{2})^{*}D_{2}O(\rho_{1}\circ\phi_{2})^{*}D_{1},$ $(\phi_{1}\circ\phi_{2})^{*}P_{1})$

to be the smooth sections of the given bundles as follows. For an element
$z’=(z, a)$ of $G_{i.p-1}(D)$ , set $s_{1}(z’)=d_{1,z}|a$ . For an element $z‘=(z, K_{1.*}, b, Q_{z})$ of
$(\rho_{1}\circ\phi_{2})^{-1}((\Sigma^{i})’)$ , define $d_{1,z}’=D_{z}/K_{1,z}arrow Q_{z}$ to be the homomorphism induced from
$d_{1,g}$ by $K_{1.z}=Ker(d_{1.z})$ . Then set $s_{2}(z’)=d_{1.z}’\oplus d_{2.z}’|(bOK_{1.z})$ . The following
proposition states the results of [9 and 10, Proposition 2.1] while Ronga’s
result is written in the other form due to [1, Lemma 3.1].

PROPOSITION 5.1. The sections $s_{1}$ and $s_{2}$ are transverse to the zero sections
and their inverse images of the zero-sections are equal to $(\Sigma^{i})’$ and $(\Sigma\ell 2)’$ as sets
respectively.

We now deal with the lift of $\Sigma D_{k}$ . Let $(\Sigma^{i,2,0})’$ and $U(S_{6})’$ denote the
subsets of $(\Sigma^{i.2})’$ such tbat $z$ belongs to $\Sigma^{t,s,0}$ and $U(S_{6})$ respectively.

Let $z’=(z, K_{1.\iota}, K_{2}. ,, c, Q_{z})$ be an element of $(\varphi_{3}’)^{-1}((\Sigma^{i.8.0})’)$ . Define the
smooth section

$s_{3}$ : $(\phi_{3})^{-1}((\Sigma^{i.8.0})’)arrow Hom(O^{2}D_{s}’OD_{2}’, P_{1}’)$

by $s_{3}(z’)=d_{3.z}’|O^{2}cOK_{2,*}$ . Let $(\Sigma\overline{D}_{k+1})’$ denote the subset of $(\phi_{3})^{-1}(U(S_{6})’)$ con-
sisting of all elements $z’$ with $c=L_{z}$ and $z\in\Sigma\overline{D}_{k+1}(k\geqq 4)$ . Note that $D_{3}’$

coincides with $(\pi_{3}\circ p_{3})^{*}L$ over $(\Sigma\overline{D}_{6})’$ . Then the smooth sections

$r_{k}’$ : $(\Sigma\overline{D}_{k+1})’arrow Hom(O^{t}D_{3}’, P_{1}’)|(\Sigma\overline{D}_{k+1})’$

is defined by $r_{k}’(z’)$ being the homomorphism $r_{k}$ , , : $O^{k}L_{z}arrow Q_{z}$ .
We can prove the analogous result as in Proposition 5.1.

PROPOSITION 5.2. The sectims $s_{3}$ and $r_{k}’(k\geqq 4)$ are transverse to the zero
sectims and their inverse images of the zero sections $c$ecncrde with $( \sum\overline{D}_{6})’$ and
$( \sum\overline{D}_{k+2})’$ respecti $ely$ .
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PROOF. First we prove the latter statement for $s_{8}$ . Let $z’$ be any element
of $(\phi_{s})^{-1}((\Sigma^{i,g,0})’)$ such that $d_{3.*}’$ vanishes on $O^{2}cOK_{2}$ . ,. Take a metric of $K_{2}$ . .
and let $e$ be a unit vector of $c$ and $f$ be its orthogonal unit vector. Let $u$ and
$v$ be the dual vectors of $f$ and $e$ respectively. That is, $u(f)=1,$ $u(e)=0$ ,
$v(f)=0$ and $v(e)=1$ . With this notation we can write as $d_{3.z}’=a_{1}u^{3}+a_{2}u^{2}v+$

$a_{3}uv^{2}+a_{4}v^{3}$ . Then we obtain $d_{3,z}’(eOeOe)=6a_{4}$ and $d_{3.z}’(eOeOf)=2a_{3}$ by easy
calculations. Since it vanishes on $O^{2}cOK_{2.*}$ , we have $a_{3}=a_{4}=0$ . That is,
$d_{3,z}’=a_{1}u^{3}+a_{2}u^{2}v=u^{2}(a_{1}u+a_{2}v)$ . It is easy to see that $c=L_{z}$ which is the sPace
annihilated by $u$ . This means $z\in S_{6}$ . On the other hand if $z’$ belongs to
$( \sum\overline{D}_{6})’$ , then $z\in S_{6}$ and $c=K_{3.\iota}$ . So $d_{3,\iota}’$ vanishes on $O^{2}cOK_{2.z}$ .

Next we show the transversality of $s_{3}$ . Let $z_{0}$ be any element of $( \sum\overline{D}_{6})_{x.y}$

such that $d_{3,\iota_{0}}’$ is written as $u^{2}v$ under suitable coordinate systems near $x$ and
$y$ (see [4, Propositions 3.5 and 3.10]). As above let $e$ and $f$ be the dual basis
of $u$ and $v$ in $K_{z.\iota_{0}}$ for the case $c=L_{z_{0}}$ . Then for any element $z’$ of
$(\phi_{3})^{-1}(U(S_{6})’)$ near $( \sum\overline{D}_{6})’,$ $c$ is generated by $te+f$ and $d_{3.z}’=u^{2}v+\epsilon v^{3}$ for some
real numbers $t$ and $\epsilon$ by Section 2. It follows that the normal coordinates of
$( \sum\overline{D}_{5})’$ in $(\phi_{3})^{-1}(U(S_{5})’)$ is given by $t$ and $\epsilon$ near $z_{0}$ . On the other hand the
normal coordinates of the zero-section of $Hom(O^{2}cOD_{2.*}’, P_{1}’. ,)$ are given by two
numbers $d_{3.z}’((te+f)O(te+f)Of)$ and $d_{3.z}’((te+f)O(te+f)Oe)$ . By easy calcu-
lations we have that they are equal to $4t$ and $2t^{2}+6\epsilon$ respectively. Since the
mapping of $(t, \epsilon)$ to $(4t, 2t^{2}+6\epsilon)$ is regular at $t=\epsilon=0,$ $s_{3}$ is transverse to the
zero-section.

The proposition for $r_{k}’$ is almost an immediate consequence of the definition
of $( \sum D_{k+1})’$ using $r_{k}$ in Section 2 since $D_{3}’|( \sum D_{k+1})’=(\pi_{3}\circ\rho_{3}|(\sum D_{k+1})’)^{*}L$

$(k\geqq 4)$ . Q. E. D.

We consider the lift of :Ii $\overline{E}_{k}$ . Let $z’=(z, K_{1,i}, K_{2,*}, c, Q_{z})$ be any element
of $(\phi_{3})^{-1}((\Sigma^{i,2})’)$ . We define $( \sum\overline{E}_{\epsilon})’$ as the set $(\Sigma^{i,2,1})’$ consisting of all elements
$z’$ with $c=K_{3,*}$ and $z\in\Sigma^{i,2}$ in $(\phi_{3})^{-1}((\Sigma^{i.2})’)$ . We have the section

$s_{6}$ : $(\phi_{s})^{-1}((\Sigma^{i.2})’)arrow Hom(D_{3}’O^{2}D_{2}’, P_{1}’)$

defined by $s_{6}’(z’)=d_{3}’$ , . $|cO^{2}K_{2,z}$ .
The set $( \sum\overline{E}_{7})’$ in $(\Sigma^{i,8.1})’$ is defined as the set consisting of all elements

2’ with $z\in\Sigma^{i.8,1}$ such that $d_{4.z}’|O^{4}K_{3.*}$ vanishes. The set $(\Sigma\overline{E}_{8})’$ is $(\Sigma^{i.,1.1})’$

consisting of all elements $z’$ with $c=K_{3.*}$ and $z\in\Sigma^{i.2.1,1}$ . We have the sections

$s_{7}’$ : $(\Sigma^{i.2,1})’arrow Hom(O^{4}D_{3}’, P_{1}’)$

$s_{8}’$ : $( \sum^{i.2.1})’arrow Hom(O^{3}D_{3}’OD_{2}’, P_{1}’)$

defined by $s_{7}’(z’)=d_{4}’$ . , $|O^{4}K_{3.*}$ and $s_{8}’(z’)=d_{4.z}’|O^{3}K_{3.z}OK_{2,z}$ .
Then we have the following proposition for $s_{k}’$ .
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PROPOSITION 5.3. The section $s_{k}’$ is transverse to the zero-sectim and its
inverse image of the zero-section is $\sum\overline{E}_{k}$ ( $k=6,7$ or 8).

PROOF. The latter half is almost an immediate consequence of the defini-
tion of $s_{t}$ . The transversality of $s_{7}’$ and $s_{8}’$ also follows from that of $s_{7}$ and $s_{8}$

reviewed in Section 2. So we prove that of $s_{6}$ . Let $z_{0}$ be any jet of $\Sigma^{i,2,1}$

such that $d_{3,*}’$ is written as $u^{3}$ under suitable coordinate systems near $x$ and $y$ .
Let $e$ and $f$ be the dual basis of $u$ and $v$ in $K_{2,\iota_{0}}$ such that $K_{3.z_{0}}=Ker(u)=\{f\}$ .
Then for any element $z’$ of $(\phi_{3})^{-1}((\Sigma^{i,2})’)$ near $z_{0},$ $c$ is generated by $te+f$ and
that $d_{3.z}’=u^{3}+auv^{2}+bv^{3}$ for some real numbers $t,$ $a$ and $b$ . Then the normal
coordinates of $(\Sigma^{i.2,1})’$ in $(\phi_{3})^{-1}((\Sigma^{i.2})’)$ is given by $t,$ $a$ and $b$ near $z_{0}$ . On the
other hand the normal coordinates of the zero-section of $Hom(cO^{2}D_{2}’, ,, P_{1.z}’)$

over $z$ are given by the three numbers $d_{3,z}’((te+f)OeOe),$ $d_{3,z}’((te+f)OeOf)$

and $d_{3,z}’((te+f)OfOf)$ . By easy calculations we know that they are equal to
$6t,$ $2a$ and $2at+6b$ respectively. Since the mapping of $(t, a, b)$ to $(6t, 2a, 2at+6b)$

is regular at the origin, we obtain the transversality of $s_{3}$ at $z_{0}$ . Q. E. D.

\S 6. Proof of Theorems.

In this section we prove Theorems 4.1 and 4.2 using the results in the
previous section together with the following well known facts about algebraic
topology.

(6.1) Let $s$ be a smooth section of a vector bundle $E$ over $M$ transverse
to the zero-section. Then the Poincar\’e dual class of its inverse image of the
zero-section is congruent modulo 2 to the Euler class $\chi(E)$ .

(6.2) Let $M_{1}$ and $M_{2}$ be locally closed submanifolds of $M$ with $M_{1}\supset M_{2}$ .
Let $m_{1}$ be the Poincar\’e dual of $[M_{1}]$ in $M$ and $m_{2}$ be that of $[M_{2}]$ in $M_{I}$

where brackets mean fundamental classes. If there exists a class $m_{2}’$ of
$H^{*}(M;Z/2Z)$ such that $i^{*}(m_{2}’)=m_{2}$ where $i$ is an inclusion of $M_{1}$ into $M$, then
the Poincar\’e dual class of $M_{2}$ in $M$ is equal to $m_{1}m_{2}’$ .

PROOF OF THEOREM 4.1. We use the notations in Section 4. Let $S$ be the
submanifold $c^{-1}(( \sum\overline{D}_{k+1})’)$ of $G_{3}(TN, f^{*}(TP))$ . Since $f$ is $AD$-regular and $j^{\infty}f$

is transverse to $\sum\overline{D}_{k+1},$ $S$ is mapped diffeomorphically onto $S_{\overline{D}_{k+1}}(f)$ by $\pi_{3}\circ p_{3}$ .
Hence by definition of the Gysin homomorphism, $(\pi_{3}\circ\rho_{3})$ ! maps the Poincar\’e
dual class $[S]^{c}$ in $G_{3}(TN, f^{*}(TP))$ onto $[S_{\overline{D}_{k+1}}(f)]^{c}$ . Therefore we need to
show that $[S]^{c}$ is equal to the Euler class of the given vector bundle in the
formula of Theorem 4.1. If necessary, we slightly deform $f$ by homotopy and
obtain a series of submanifolds of $G_{3}(TN, f^{*}(TP))$ ; $c^{-1}((p_{1}\circ\phi_{2^{o}}\phi_{3})^{-1}((\Sigma^{i})’))\supset$

$c^{-1}( \phi_{3}^{-1}((\Sigma^{i}z)’))\supset c^{-1}((\sum\overline{D}_{5})’)\supset..$ $\supset c^{-1}((\sum\overline{D}_{k+1})’)$ . It follows from the definition
of $c$ that every submanifold coincides with $c^{*}(s_{t})s$ or $c^{*}(r_{k}’)s$ inverse image of
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the zero-section of some vector bundle induced from one appeared in Propositions
5.1 and 5.2 by $c$ . These bundles are extended to ones over $G_{3}(TN, f^{*}(TP))$ .

First we prove Theorem 4.1 for $P(D_{6}, f)$ . The manifold $c^{-1}(( \sum\overline{D}_{6})’)$ is
$c^{*}(s_{3})s$ inverse image of the zero-section of $Hom(O^{2}K_{3}OK_{2}, Q_{1})$ by Proposition
5.2. Therefore $[c^{-1}((\Sigma\overline{D}_{6})’)]^{c}$ is equal to $[c^{-1}\circ\phi_{3}^{-1}((\Sigma^{i.2})’)]^{c}\chi(Hom(O^{2}K_{3}OK_{2}, Q_{1}))$

by (6.1) and (6.2). By [1, Proposition 3.1] or the similar arguments above using
Proposition 5.1 and the naturality of Gysin homomorphisms we know that
$[c^{-1}\circ\phi_{\theta}^{-1}((\Sigma^{i.2})’)]^{c}$ is equal to the Euler class of $Hom(K_{1}, f^{*}(TP))\oplus Hom(K_{0}/K_{1}\oplus$

$K_{2}OK_{1},$ $Q_{1})$ . This shows the formula of $P(D_{6}, f)$ .
By combining the arguments above and Proposition 5.2 we can prove the

general case. Q. E. D.

We can also prove Theorem 4.2 by applying the analogous discussion using
Propositions 5.1, 5.2, (6.1) and (6.2) to the case of $E_{t}$ . So the details are left
to the readers.

\S 7. Foliated manifolds and bundles with naturality.

In this section we explain that the results about Thom polynomials for
smooth maps in the previous sections also hold in more general settings of
smooth maps into foliated manifolds (cf. [3]) or sections of smooth bundles
with naturality (cf. [7]) where $J^{\infty}(N, P)$ and $P$ in the diagram (3.1) and also
$f^{*}(TP)$ and $Q_{1}$ in Theorems 4.1 and 4.2 should be replaced by appropriate other
jet spaces and bundles respectively. Their proofs are very like that of the case
of smooth maps and so are left to the readers.

Let $\mathscr{F}$ be a nonsingular foliation of codimension $P$ on a smooth manifold $E$ .
For $\mathscr{F}$ we take a local coordinate system $\{U_{\lambda}, \psi_{\lambda}\}$ of $E$ with submersion
$\psi_{\lambda}$ : $Uarrow R^{p}$ having the well known required properties of foliations. For a
smooth map $f$ : $Narrow E$ and $\mathscr{F}$ , a point $x$ of $N$ is called a singular point of type
$A_{k},$ $D_{k}$ or $E_{k}$ with respect to $\mathscr{F}$ when $x$ is that of a smooth map $\psi_{\lambda}\circ(f|U_{\lambda})$

for some $\lambda$ respectively. We also define an $AD$ (resp. $ADE$)-regular smooth
map $f$ : $Narrow E$ with respect to $\mathscr{F}$ similarly. Let $S_{X_{k}}(f, \mathscr{F})$ denote the set of all
singular points of type $X_{k}$ with respect to $\mathscr{F}$ of $f$ and $S_{\overline{x}_{k}}(f, \mathscr{F})$ denote its
topological closure. Our purpose is to see that $[S_{\overline{X}_{k}}(f, \mathscr{F})]^{c}$ is calculated by

the similar formulas in Theorems 4.1 and 4.2.
Let $\psi_{\lambda}’$ : $J^{\infty}(N, U_{\lambda})arrow J^{\infty}(N, R^{p})$ be the induced submersion of $\psi_{\lambda}$ mapping a

jet $j_{x}^{\infty}f$ onto $J_{x}^{\infty}(\psi_{\lambda}\circ f)$ and identify $J^{\infty}(N, U)$ canonically with a subspace of
$J^{\infty}(N, E)$ by the inclusion of $U$ into $E$ . Then we can define the submanifold
$\sum X_{k}(\mathscr{F})$ in $J^{\infty}(N, E)$ as the union of all submanifolds $( \psi_{\lambda}’)^{-1}(\sum X_{k}(N, R^{p}))$ for all
$\lambda$ . Since $\sum X_{k}$ is defined by using the kernel ranks of the higher intrinsic
derivatives and related homomorphisms such as $r_{k}$ , it follows that $\Sigma X_{k}(\mathscr{F})$ does
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not depend on a choice of $\{U_{\lambda}, \psi_{\lambda}\}$ . It will be easy to see that $S_{X_{k}}(f, \mathscr{F})=$

$(J^{\infty}f)^{-1}(\Sigma\overline{X}_{k}(\mathscr{F}))$ . AS in Section 4 we write its Poincar\’e dual class as
$P(X_{k}, f;\mathscr{F})$ . In this situation we must replace $J^{\infty}(N, P)$ and $P$ by $J^{\infty}(N, E)$

and the induced bundle from the normal bundle $n(\mathscr{F})$ of $\mathscr{F}$ by the projection of
$J^{\infty}(N, E)$ onto $E$ in (3.1) respectively. Then $P(D_{k}, f;\mathscr{F})$ and $P(E_{k}, f;\mathscr{F})$ are
calculated by the same formula of Theorems 4.1 and 4.2 resPectively, while
$f^{*}(TP)$ must be changed by $f^{*}(n(\mathscr{F}))$ together with its associated bundles $K_{i}$

and $Q_{1}$ . For $A$-regular maps, $P(A_{k}, f ; \mathscr{F})$ is also dealt with similarly (cf. [1,

Theorem 3.2]).

For example consider an immersion $f$ of $N$ into $E$ with $\dim N=n,$ $\dim E$

$=n+1$ and $co\dim \mathscr{F}=n-1$ for $n=7$ or 8. Since $co\dim\Sigma^{2,2,2}(n, n-1)=9$ , $f$

becomes an $ADE$-regular map with respect to $\mathscr{F}$ . It follows from Remark 4.3
that $P(E_{k+1}, f;\mathscr{F})=W_{k}W_{2}+W_{k-1}(W_{3}+W_{1}W_{2})$ for $k=5$ or 6 and $P(E_{8}, f;\mathscr{F})=0$

where $W_{j}=W_{J}(TN-f^{*}(n(\mathscr{F})))$ .
Let $\pi$ : $Earrow N$ be a smooth fibre bundle having a fibre $P$ with naturality

condition (see [7]). Let $\{U_{\lambda}\}$ be its covering of $N$ with trivialization
$\psi_{\lambda}$ : $E|U_{\lambda}arrow P$. For a section $s$ of $E$ , we define its $A_{h},$ $D_{k}$ or $E_{k}$ singular
point by considering tbat of $\psi_{\lambda}\circ(s|U_{\lambda})$ and $AD$ (resp. $ADE$)-regular sections
similarly as above. Let $J^{\infty}E$ be its infinite jet space consisting of all jets of
local sections of $E$ . Then we have the identification gbl : $J^{\infty}(E|U_{\lambda})arrow J^{\infty}(U_{\lambda}, P)$ .
Let $\sum X_{k}(E)$ denote the union of all spaces $( \psi_{\lambda}’)^{-1}(\sum X_{k}(U_{\lambda}, P))$ for all $\lambda$ in
$J^{\infty}(E)$ . Again $\sum X_{k}(E)$ is well defined. Thus we can define the Thom poly-
nomial $P(X_{k}, s ; \pi)$ similarly. If we replace $J^{\infty}(N, P)$ by $J^{\infty}(E)$ and $P$ by the
induced bundle of the tangent bundle along the fibre $T(P_{E})$ of $E$ by the
projection of $J^{\infty}(E)$ onto $E$ in (3.1), then we can calculate $P(X_{k}, s;\pi)$ by the
same formulas of Theorems 4.1 and 4.2 for $D_{k}$ and $E_{k}$ and of [1, Theorem 3.2]

for $A_{k}$ , while $f^{*}(TP)$ must be replaced by $f^{*}(T(P_{E}))$ together with its associ-
ated bundles $K_{i}$ and $Q_{1}$ .

The homotopy principle for $AD$ or $ADE$-regular maps is valid (see [3])

and therefore their existence problem is reduced to a homotopy theoretic prob-
lem. The primary obstructions of this problem modulo two become the Thom
polynomials studied in this paper.

\S 8. Calculation.

We sketch a method to calculate the polynomial $P(D_{k+1}, f)$ for the case
$n=p+1$ stated in Section 4 (the case of $P(E_{k+1},$ $f)$ is similar and omitted).

The calculation of the Tbom polynomials in [1, Section 4] will be helpful to
understand its details. By the analogous argument to that in [1] we may
reduce its calculation to the situation of $P(D_{k+1}, f’)$ for $f’$ : $N’arrow P’$ where $TN’$

is stably equivalent to $TN-$ f*(TP), $TP’$ is trivial and $\dim N’-\dim P’=n-p$ .
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For slmplicity we may set $\dim N’=n,$ $\dim P’=p$ and use the same notation for
bundles which are induced from one bundle over any space in the pull-backed
diagram of (3.1) by $c$ in the following.

In the right hand term of the formulas of Theorems 4.1 and 4.2, let $V$

denote the vector bundle whose Euler class is considered and $V’$ denote the
vector bundle so tbat $V$ is written as $Hom(K_{1}, f^{*}(TP’))\oplus Hom(V’, Q_{1})$ over
$G_{3}(TN’, f^{*}(TP’))$ . For $D_{k+1}$ , as an example, $V’$ is $K_{0}/K_{1}\oplus K_{2}OK_{1}\oplus K_{3}OK_{3}OK_{2}$

$\oplus\Sigma_{j=4}^{-}O^{j}K_{3}$ . Let $C(V’)$ be written as $\Pi_{i=1}^{n+k-1}(1-u_{i})$ and $C(Q_{1})=1+y$ . Then
we have

$C(V)=C(Kf)^{p} \prod_{i=1}^{n+h-1}(1+u_{i}+y)$ .

Note that $\chi(V)=C_{2p+n+k-1}(V)$ and that its coefficient of $y^{n-1}$ turns out to be
$(-1)^{k+1}C_{2}(K_{1}^{*})^{p}C_{k+1}(V’)$ . Since $TP$ is trivial, we have $(\rho_{3})!(y^{n-2})=1$ and
$(\rho_{3})!(y^{j})=0$ when $j\neq n-2$ (see, for example, [1, Proposition $4.1(b)]$ ). Therefore

$(p_{3})!(\chi(V))=(-1)^{k+1}C_{2}(K_{1}^{*})^{p}C_{k+1}(V’)$ .

Consider the following decomposition of $\pi_{3}$ to compute $(\pi_{3})!$ .
$F_{2,S.1}(TN’)=G_{1,n-2}(\tau^{*}(TN’)/(TN’)_{1})arrow G_{1.n-1}(TN’)arrow N’\tau_{1}\tau$ .

Let $C(K_{1}/K_{2})=1+d$ and $C(K_{3})=1+l$ . Then we have

$C(K_{1})=(1+d)(1+l)$ , $C(K_{1}^{*})=(1-d)(1-1)$

$C(K_{0}/K_{1})=C(K_{0})(1+d)^{-1}(1+l)^{-1}$

$C(K_{2}OK_{1})=(1+2d)(1+d+l)(1+2l)$

$C(K_{3}OK_{3}OK_{2})=(1+3l)(1+d+2l)$

$C(O^{j}K_{3})=(1+Jl)$

$C(K_{3}OK_{2}OK_{2})=(1+d+2l)(1+3l)(1+2d+l)$

and
$C(O^{3}K_{3}OK_{2})=(1+4l)(1+d+3l)$ .

So $C_{2}(K^{*})=dl$ and we can represent $C_{k+1}(V’)$ as a polynomial with respect to
$C_{i}(K_{0}),$ $d$ and $l$ . Suppose that $C_{2}(K_{1}^{*})C_{k+1}(V’)$ is written as a polynomial

$d^{p}l^{p}( \sum_{i=0}^{k+1}C_{t}(K_{0})(\sum_{s+t=k+1-t}a_{St}d^{s}l^{t))}$

where $a_{st}$ are integers. We note bere that by [1, Proposition $4.1(b)$]

$(\tau_{1})!(d^{n+s-1})=(-1)^{s+1}\overline{C}_{S+1}(K_{0}/K_{3})$

$=(-1)^{s+1}(\overline{C}_{S+1}(K_{0})+\overline{C}_{s}(K_{0})l)$
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and
$(\tau)!(l^{n+s-1})=(-1)^{s}\overline{C}_{s}(K_{0})$ .

By applying these formulas to the polynomial above we obtain the following by
Theorems 4.1 and 4.2.

$P(X_{k+1}, f)=(-1)^{k+1} \sum_{i=0}^{k+1}(-1)^{k-i+1}C_{i}(\sum_{s+t=k-i+1}a_{st}(-\overline{C}_{S+1}\overline{C}_{t}+\overline{C}{}_{s}\overline{C}_{t+1}))$

$= \sum_{i=0}^{k+1}(-1)^{i}C_{i}(\sum_{s+t=k-i+1}a_{st}(-\overline{C}_{S+1}\overline{C}_{t}+\overline{C}{}_{s}\overline{C}_{t+1}))$

where $C_{i}=C_{i}(K_{0})=C_{i}(TN-f^{*}(TP))$ . Hence $P(X_{k+1}, f)$ can be written as
follows.

$\sum_{i=1}^{k+1}(-1)^{i}C_{i}(\sum_{s=0}^{k+2-i}(a_{s.k+1-i-s^{-a_{S-1.k+2-i-s})\overline{C}{}_{s}\overline{C}_{h+2-i-s)}}}$

where $a_{-1,k+2-i}=a_{k+2-i,-1}=0$ .
Let $p(d, l)$ be the polynomial

$C(K_{0})d^{p}I^{p}(1+d)^{-1}(1+l)^{-1}(1+2d)(1+2l)(1+3l)(1+d+l)(1+2l+d)$ .

For $D_{k+1},$ $C_{2}(k_{1}^{*})^{P}C_{k+1}(V’)$ becomes the part of the degree $2p+k+1$ of the
polynomial

$p(d, 1)\prod_{j=4}^{k-1}(1+f0\cdot$

Similarly for $E_{k+1}$ ( $k=5,6$ or 7), $C_{2}(K_{1}^{*})C_{k+1}(V’)$ is the part of degree $2p+k+1$

of the polynomial
$p(d, l)(1+2d+l)$ ,

$p(d, l)(1+2d+l)(1+4l)$

or
$p(d, 1)(1+2d+l)(1+4l)(1+3d+3l)$

respectively and we give two tables of $a_{st}$ for $D_{6}$ and $E_{6}$ .

$t$

5 $|$

$0$

$43|120$ $-214-12$

$a_{st}$ for $D_{6}$

$\underline{210}|_{\frac{163222718800132000}{012345}}$
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$t$

$a_{\iota t}$ for $E_{6}$

The precise formula of $P(D_{6}, f)$ for $n=p+1$ is as follows.

$-2\overline{C}_{1}\overline{C}_{6}-12\overline{C}{}_{z}\overline{C}_{4}+14\overline{C}_{3}^{2}$

$-C_{1}(14\overline{C}_{1}\overline{C}_{4}-14\overline{C}_{2}\overline{C}_{3})$

$+C_{2}(12\overline{C}_{4}+12\overline{C}_{1}\overline{C}_{3}-24\overline{C}_{2}^{2})$

$-C_{3}(14\overline{C}_{s}-14\overline{C}_{1}\overline{C}_{2})$

$+C_{4}(4\overline{C}_{2}-4\overline{C}_{1}^{2})$ .

The real version of the arguments above shows the formulas stated in
Section 4.
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