On Thom polynomials of the singularities D_{k} and E_{k}

By Yoshifumi Ando

(Received Apr. 1, 1993)
(Revised Jan. 16, 1996)

Introduction.

Let A_{k}, D_{k} and E_{k} denote the types of the singularities of function germs studied in [4]. Let N and P denote smooth manifolds. When a C^{∞} stable map germ $f:(N, x) \rightarrow(P, y)$ is C^{∞} equivalent to a versal unfolding of a function germ with singularity A_{k}, D_{k} or E_{k}, we say that f has a singularity of type A_{k}, D_{k} or E_{k} at x respectively (see, for example, their normal forms of [2, Section 1]). When every singularity of a smooth map f is of type A_{k} or D_{k} (resp. A_{k}, D_{k} or E_{k}) with any number k, we say that f is $A D$-regular (resp. $A D E$-regular) in this paper.

Let X_{k} be one of A_{k}, D_{k} or E_{k}. We define $S_{\bar{X}_{k}}(f)$ to be the topological closure of the subset $S_{X_{k}}(f)$ consisting of all singular points of type X_{k} of f. We can consider the fundamental class of $S_{\bar{x}_{k}}(f)$ in $H_{*}(N ; Z / 2 Z)$ and define the Thom polynomial of X_{k} for f as its Poincaré dual class denoted by $P\left(X_{k}, f\right)$. As usual we expect that it is represented by Stiefel-Whitney classes $w_{j}(T N-f *(T P))$ (cf. [6]).

The purpose of this paper is to give formula calculating $P\left(D_{k}, f\right)$ for $A D$-regular maps and $P\left(E_{k}, f\right)$ for $A D E$-regular maps in a finite process ([Theorems 4.1 and 4.2]). This kind of formulas first appeared in [9] and [10] to calculate Thom polynomials of the singularities of type Σ^{i} and $\Sigma^{i, j}$. Their results are reviewed in Section 1. In our case of $X_{k}=D_{k}$ or E_{k}, we have the submanifolds ΣX_{k} constructed in the infinite jet space $J^{\infty}(N, P)$ in [2] such that if the jet extension $j^{\infty} f$ of f is transverse to ΣX_{k}, then we have $S_{X_{k}}(f)$ $=\left(j^{\infty} f\right)^{-1}\left(\Sigma X_{k}\right)$. Using the properties of ΣX_{k} in $J^{\infty}(N, P)$ reviewed in Section 2, we lift $S_{\bar{x}_{k}}(f)$ up to a submanifold S of the total space of a certain flag bundle over N in Sections 5 and 6 so that the Poincaré dual class of S is the Euler class of some vector bundle over this total space related to the normal bundle of ΣX_{k}. This means that $P\left(X_{k}, f\right)$ is the image of this Euler class by the Gysin homomorphism of this flag bundle. For singularities A_{k}, see the similar result of [1].

In Section 7 we see that Theorems 4.1 and 4.2 are generalized to the situations of smooth maps into foliated manifolds or of smooth sections of fibre
bundles with naturality conditions.
In the category of complex manifolds and holomorphic maps the arguments of this paper go through word for word with the exception of approximating smooth maps by transversal maps.

§ 1. Thom-Boardman manifolds and higher intrinsic derivatives.

In this section we review the necessary results about the higher intrinsic derivatives d_{t} and the Thom-Boardman submanifolds in [5] (see also [8 and 11]) to explain the definition and properties of ΣD_{k} and ΣE_{k} studied in [2].

Let n and p be the dimensions of manifolds N and P respectively. Throughout the paper let $n>p$ and i always denotes the number $n-p+1$. The projections of $J^{\infty}(N, P)$ onto N and P mapping a jet onto its source and target are written by π_{N} and π_{P} respectively. The total tangent bundle over $J^{\infty}(N, P)$ introduced in [5, Definition 1.9] is denoted by \boldsymbol{D} which is isomorphic to $\left(\pi_{s}\right)^{*}(T N)$. Let \boldsymbol{P} denote $\left(\pi_{P}\right)^{*}(T P)$. Then we have the homomorphism

$$
d_{1}: \boldsymbol{D} \longrightarrow \boldsymbol{P} \text { over } J^{\infty}(N, P) .
$$

The submanifold Σ^{i} is the subspace of $J^{\infty}(N, P)$ consisting of all jets z with $\operatorname{dim}\left(\operatorname{Ker}\left(d_{1, z}\right)\right)=i$, where $d_{1, z}: D_{z} \rightarrow P_{z}$ is the restriction of d_{1} to the fibres over z (throughout the paper we use this kind of notations for fibres and restricted homomorphisms).

The symmetric product of subbundles V_{1}, \cdots, V_{t} of a vector bundle V in the t-th symmetric product $S^{t} V$ is denoted by $V_{1} \bigcirc \cdots \bigcirc V_{t}$ as in [5]. Let $K=$ $\operatorname{Ker}\left(d_{1}\right)$ and $\boldsymbol{Q}=\operatorname{Cok}\left(d_{1}\right)$ over Σ^{i}. Notice $\operatorname{dim} \boldsymbol{Q}=1$. Then the second intrinsic derivative

$$
d_{2}: \boldsymbol{K}_{1} \longrightarrow \operatorname{Hom}\left(\boldsymbol{K}_{1}, \boldsymbol{Q}\right) \text { over } \Sigma^{i}
$$

defines $\sum^{i, 2}$ as the subset of all $z \in \Sigma^{i}$ with $\operatorname{dim}\left(\operatorname{Ker}\left(d_{2, z}\right)\right)=2$. Note that d_{2} is induced from the symmetric homomorphism of $\bigcirc^{2} \boldsymbol{K}_{2}$ into \boldsymbol{Q} denoted by d_{2}^{\prime}. Set $\boldsymbol{K}_{2}=\operatorname{Ker}\left(d_{2}\right)$ over $\Sigma^{i, 2}$. The third intrinsic derivative

$$
d_{3}: \boldsymbol{K}_{2} \longrightarrow \operatorname{Hom}\left(\bigcirc^{2} \boldsymbol{K}_{2}, \boldsymbol{Q}\right) \text { over } \Sigma^{i, 2}
$$

induced from the symmetric homomorphism $d_{3}^{\prime}: \bigcirc^{3} \boldsymbol{K}_{2} \rightarrow \boldsymbol{Q}$ defines $\sum^{i, 2, j}$ as the set of all jets $z \in \sum^{i, 2}$ with $\operatorname{dim}\left(\operatorname{Ker}\left(d_{3,2}\right)\right)=j$. Set $\boldsymbol{K}_{3}=\operatorname{Ker}\left(d_{3} \mid \sum^{i, 2, j}\right)$. If $j=1$, then $\operatorname{Cok}\left(d_{3}\right)$ is isomorphic to $\operatorname{Hom}\left(\bigcirc^{2} \boldsymbol{K}_{3}, \boldsymbol{Q}\right)$ over $\sum^{i, 2,1}$. The 4-th intrinsic derivative

$$
d_{4}: \boldsymbol{K}_{3} \longrightarrow \operatorname{Hom}\left(\bigcirc^{2} \boldsymbol{K}_{3} \bigcirc \boldsymbol{K}_{2}, \boldsymbol{Q}\right) \text { over } \sum^{i, 2,1}
$$

coming from the homomorphism $d_{4}^{\prime}: \bigcirc^{3} \boldsymbol{K}_{3} \bigcirc \boldsymbol{K}_{2} \rightarrow \boldsymbol{Q}$ defines $\Sigma^{i, 2,1,1}$ as the set of all jets $z \in \sum^{i, 2,1}$ such that $d_{4, z}$ vanishes. Over $\sum^{i, 2,1,1}, \operatorname{Ker}\left(d_{4}\right)$ is \boldsymbol{K}_{3} and $\operatorname{Cok}\left(d_{4}\right)$ is isomorphic to $\operatorname{Hom}\left(\bigcirc^{3} \boldsymbol{K}_{3} \bigcirc \boldsymbol{K}_{2}, \boldsymbol{Q}\right)$. Finally we have the 5-th intrinsic
derivative

$$
d_{5}: \boldsymbol{K}_{3} \longrightarrow \operatorname{Hom}\left(\bigcirc^{3} \boldsymbol{K}_{3} \bigcirc \boldsymbol{K}_{2}, \boldsymbol{Q}\right) \text { over } \Sigma^{i, 2,1,1}
$$

coming from $d_{5}^{\prime}: \bigcirc^{4} \boldsymbol{K}_{3} \bigcirc \boldsymbol{K}_{2} \rightarrow \boldsymbol{Q}$. We set $\Sigma^{i, 2,1,0}=\Sigma^{i, 2,1} \backslash \Sigma^{i, 2,1,1}$ and $\Sigma^{i, 2,1,1,0}$ as the set of all jets $z \in \sum^{i, 2,1,1}$ such that $d_{5, z}$ is injective.

§ 2. Manifolds ΣD_{k} and ΣE_{k}.

We will briefly review the definition of ΣD_{k}. As usual $\operatorname{Hom}\left(\bigcirc^{3} \boldsymbol{R}^{2}, \boldsymbol{R}\right)$ is identified with the set of all cubic forms with variables u and v on \boldsymbol{R}^{2}. By [4, Lemma 5.1] it is decomposed into five orbit manifolds of the action by $G L(2)$ through $u^{2} v \pm v^{3}, u^{2} v, u^{3}$ and 0 . This decomposition yields that of $\operatorname{Hom}\left(\bigcirc^{3} \boldsymbol{K}_{2}, \boldsymbol{Q}\right)$ over $\Sigma^{i, 2,0}$ into five submanifolds. Let $S_{4}^{ \pm}$and S_{5} denote the corresponding submanifolds of $\operatorname{Hom}\left(\bigcirc^{3} \boldsymbol{K}_{2}, \boldsymbol{Q}\right)$ determined by $u^{2} v \pm v^{3}$ and $u^{2} v$ respectively. By identifying d_{3}^{\prime} in Section 1 with the smooth section of $\operatorname{Hom}\left(\bigcirc^{3} \boldsymbol{K}_{2}, \boldsymbol{Q}\right)$ over $\Sigma^{i, 2,0}$, we define the submanifolds ΣD_{4}^{\ddagger} and $\Sigma \bar{D}_{5}$ of $\Sigma^{i, 2,0}$ to be $\left(d_{3}^{\prime}\right)^{-1}\left(S_{4}^{ \pm}\right)$and $\left(d_{3}^{\prime}\right)^{-1}\left(S_{5}\right)$ respectively ($[\mathbf{2}$, Definition 3.1]). On a certain neighbourhood U of $\Sigma \bar{D}_{5}$ in $\Sigma^{i, 2,0}$, there exists the line subbundle \boldsymbol{L} of \boldsymbol{K}_{2} such that for any $z \in \Sigma \bar{D}_{5}, L_{z}$ coincides with $d_{3,2}^{-1}(H)$ where H is the set of all quadratic forms of rank 1 or 0 in $\operatorname{Hom}\left(\bigcirc^{2} K_{z}, Q_{z}\right)$ and that for any $z \in U, z$ lies in $\Sigma \bar{D}_{5}$ if and only if the restriction $d_{3, z}^{\prime} \mid \bigcirc^{3} L_{z}$ is a null homomorphism. Starting from $d_{3}^{\prime} \mid \bigcirc^{3} L^{* \prime}$ over ${ }^{`} U^{\Downarrow}$ and $\Sigma \bar{D}_{5}$, we can successively construct the submanifolds $\Sigma \bar{D}_{t+1}$ and the homomorphism $r_{t}: \bigcirc^{t} \boldsymbol{L} \rightarrow \boldsymbol{Q}$ over $\Sigma \bar{D}_{t+1}$. In fact, by [2, Theorem 3.10] there exists a series of manifolds $U \supset \Sigma \bar{D}_{5} \supset \cdots \supset \Sigma \bar{D}_{t+1} \supset \cdots$ with the properties
(2.1) $\Sigma \bar{D}_{t+1}$ is of codimension $n-p+t+1$ in $J^{\infty}(N, P)$,
(2.2) For $t \geqq 3$, there exists a homomorphism $r_{t}: \bigcirc^{t} \boldsymbol{L} \rightarrow \boldsymbol{Q}$ defined over $\Sigma \bar{D}_{t+1}$ where r_{3} means $d_{3}^{\prime} \mid \bigcirc^{3} \boldsymbol{L}$ defined on U,
(2.3) An element z of $\Sigma \bar{D}_{t+1}$ belongs to $\Sigma \bar{D}_{t+2}$ if and only if $r_{t, 2}$ vanishes,
(2.4) The intrinsic derivative of r_{t}

$$
d\left(r_{t}\right): T\left(\Sigma \bar{D}_{t+1}\right)\left|\Sigma \bar{D}_{t+2} \longrightarrow \operatorname{Hom}\left(\bigcirc^{t} \boldsymbol{L}, \boldsymbol{Q}\right)\right| \Sigma \bar{D}_{t+2}
$$

is surjective, that is, r_{t} is transverse to the zero section when considered as the section of $\operatorname{Hom}\left(\bigcirc^{t} \boldsymbol{L}, \boldsymbol{Q}\right) \mid \Sigma \bar{D}_{t+1}$ and
(2.5) Let $\Sigma D_{t}=\Sigma \bar{D}_{t} \backslash \Sigma \bar{D}_{t+1}$. If a jet extension $j^{\infty} f$ of a smooth map germ $f:(N, x) \rightarrow(P, y)$ is transverse to ΣD_{t} and $j^{\infty} f(x) \in \Sigma D_{t}$, then f has a singularity D_{t} at x.

Next we review the definition of ΣE_{t}. We define ΣE_{6} as the set of all jets $z \in \Sigma^{i, 2,1,0}$ such that $d_{4, z}^{\prime} \mid \bigcirc^{4} K_{3,2}$ does not vanish and set $\Sigma E_{7}=\sum^{i, 2,1,0} \backslash \Sigma E_{6}$. We can show that the restriction $d_{4}^{\prime} \mid \bigcirc^{4} \boldsymbol{K}_{3}$ is transverse to the zero section as the section of the bundle $\operatorname{Hom}\left(O^{4} \boldsymbol{K}_{3}, \boldsymbol{Q}\right)$ over $\sum^{i, 2,1,0}$. Hence ΣE_{7} is a
submanifold. We define ΣE_{8} as the set of all jets $z \in \sum^{i, 2,1,1,0}$ such that $d_{5,2}^{\prime} \mid O^{5} K_{4,2}$ does not vanish. When we deal with only $A D E$-regular maps, it will be reasonable to set $\Sigma \bar{E}_{6}=\Sigma^{i, 2,1}, \Sigma \bar{E}_{7}=\Sigma E_{7} \cup \Sigma^{i, 2,1,1}$ and $\Sigma \bar{E}_{8}=\sum^{i, 2,1,1}$. It follows that the analogous statement of (2.5) also holds for singularities E_{t}.

§ 3. Grassmann bundles and flag bundles.

For an n-dimensional vector space (simply n-space) V, let $G_{k, n-k}(V)$ be the grassmann manifold of all k-subspaces of V. For a vector bundle E over a space M of dimension n, let $G_{k, n-k}(E)$ over M be the grassmann bundle associated to $G_{k, n-k}\left(\boldsymbol{R}^{n}\right)$ whose total space consists of all pairs (m, a) where $m \in M$ and a is a k-subspace of the fibre E_{m} of E over m. Let $F_{i, 2}(E)$ over M denote the space consisting of all triples (m, a, b) where a is an i-subspace of E_{m} and b is a 2-subspace of a. Similarly $F_{i, 2,1}(E)$ denotes the space consisting of all quadruples (m, a, b, c) where $(m, a, b) \in F_{i, 2}(E)$ and c is 1 subspace of b. Let $E_{1} \rightarrow G_{i, p-1}(E), E_{2} \rightarrow F_{i, 2}(E)$ and $E_{3} \rightarrow F_{i, 2,1}(E)$ denote the canonical bundles of dimensions $i, 2$ and 1 having fibres a, b and c respectively.

In the following commutative diagram we are applying these notations to the total tangent bundle \boldsymbol{D} and \boldsymbol{P} over $J^{\infty}(N, P)$.

where (i) π and $\pi_{i}(i=1,2,3)$ are the canonical projections, (ii) $G_{i}(\boldsymbol{D}, \boldsymbol{P})$ ($i=1,2,3$) denote the fibre products of π_{i} and π and (iii) ρ_{i} and ϕ_{i} are also the canonical projections respectively. In the following sections we use the notations $\boldsymbol{D}^{\prime}=\left(\pi_{3} \circ \rho_{3}\right) * \boldsymbol{D}, \quad \boldsymbol{P}^{\prime}=\left(\pi_{3} \circ \rho_{3}\right) * \boldsymbol{P}, \quad \boldsymbol{D}_{1}^{\prime}=\left(\rho_{1} \circ \phi_{2} \circ \boldsymbol{\phi}_{3}\right) * \boldsymbol{D}_{1}, \quad \boldsymbol{D}_{2}^{\prime}=\left(\rho_{2} \circ \boldsymbol{\phi}_{3}\right) * \boldsymbol{D}_{2}, \quad \boldsymbol{D}_{3}^{\prime}=$ $\left(\rho_{3}\right) * \boldsymbol{D}_{3}$ and $\boldsymbol{P}_{1}^{\prime}=\left(\boldsymbol{\phi}_{1} \circ \boldsymbol{\phi}_{2} \circ \phi_{3}\right) * \boldsymbol{P}_{1}$.

§4. Results.

We can pull back the diagram (3.1) by the jet-extension $j^{\infty} f: N \rightarrow J^{\infty}(N, P)$ of an $A D$ or $A D E$-regular map and obtain the similar one replacing $\boldsymbol{D}, \boldsymbol{P}$ and $J^{\infty}(N, P)$ by $T N, f^{*}(T P)$ and N. All of the projections in this new diagram are denoted by the same notation such as ϕ_{i}, ρ_{i} and π_{i}. Let $c: G_{3}(T N, f *(T P))$ $\rightarrow G_{3}(\boldsymbol{D}, \boldsymbol{P})$ denote the associated map over $j^{\infty} f$ determined by the fact $T N=$ $\left(j^{\infty} f\right)^{*} \boldsymbol{D}$ and $f^{*}(T P)=\left(j^{\infty} f\right) * \boldsymbol{P}$. Then let $K_{0}=c^{*}\left(\boldsymbol{D}^{\prime}\right), K_{j}=c^{*}\left(\boldsymbol{D}_{j}^{\prime}\right)$ and $Q_{1}=c^{*}\left(\boldsymbol{P}_{1}^{\prime}\right)$.

Now we can state the formulas to calculate the Thom polynomials $P\left(D_{k+1}, f\right)$ and $P\left(E_{k+1}, f\right)$.

THEOREM 4.1. If $f: N \rightarrow P$ is an AD-regular map, then we have the following formulas $(k \geqq 4)$.

$$
\begin{aligned}
P\left(D_{k+1}, f\right)=\left(\pi_{3} \circ \rho_{3}\right)! & \{ \\
& \chi\left(\operatorname{Hom}\left(K_{1}, f^{*}(T P)\right)\right. \\
& \left.\left.\oplus \operatorname{Hom}\left(K_{0} / K_{1} \oplus K_{2} \bigcirc K_{1} \oplus \bigcirc^{2} K_{3} \bigcirc K_{2} \oplus \sum_{j=4}^{k-1} \bigcirc^{j} K_{3}, Q_{1}\right)\right)\right\}
\end{aligned}
$$

THEOREM 4.2. If $f: N \rightarrow P$ is an ADE-regular map, then we have the following formulas.

$$
\begin{aligned}
P\left(E_{6}, f\right)=\left(\pi_{3} \circ \rho_{3}\right)! & \left\{\chi \left(\operatorname{Hom}\left(K_{1}, f *(T P)\right)\right.\right. \\
& \left.\left.\oplus \operatorname{Hom}\left(K_{0} / K_{1} \oplus K_{2} \bigcirc K_{1} \oplus K_{3} \bigcirc^{2} K_{2}, Q_{1}\right)\right)\right\} \\
P\left(E_{7}, f\right)=\left(\pi_{3} \circ \rho_{3}\right)! & \left\{\chi \left(\operatorname{Hom}\left(K_{1}, f^{*}(T P)\right)\right.\right. \\
& \left.\left.\oplus \operatorname{Hom}\left(K_{0} / K_{1} \oplus K_{2} \bigcirc K_{1} \oplus K_{3} \bigcirc^{2} K_{2} \oplus \bigcirc^{4} K_{3}, Q_{1}\right)\right)\right\} \\
P\left(E_{8}, f\right)=\left(\pi_{3} \circ \rho_{3}\right)! & \left\{\chi \left(\operatorname{Hom}\left(K_{1}, f^{*}(T P)\right)\right.\right. \\
& \left.\left.\oplus \operatorname{Hom}\left(K_{0} / K_{1} \oplus K_{2} \bigcirc K_{1} \oplus K_{3} \bigcirc^{2} K_{2} \oplus \bigcirc^{3} K_{3} \bigcirc K_{2}, Q_{1}\right)\right)\right\}
\end{aligned}
$$

REMARK 4.3. Let ν be a bundle of dimension greater than p such that $T P \oplus \nu$ is trivial. By the analogous arguments in [1, Section 4] we can reduce the calculation of $P\left(X_{k}, f\right)$ using the above formulas to that in the simpler case where $f^{*}(T P), T N$ and K_{j} are replaced by $f^{*}(T P \oplus \nu), T N \oplus f^{*}(\nu)$ and the corresponding bundles K_{j}. However it is not necessarily easy to represent them by Stiefel-Whitney classes.

Here we give their precise formulas in the simple real case of $n=p+1$. See further calculations in complex case in Section 8. Let $W=1+W_{1}+\cdots+$ $W_{j}+\cdots$ be the Stiefel-Whitney class of $T N-f *(T P)$ and $1+\bar{W}_{1}+\cdots+\bar{W}_{j}+\cdots$ be its formal inverse. For $A D$-regular maps $P\left(D_{k+1}, f\right)$ is equal to the part of degree $k+2$ of the polynomial

$$
\left.W\left(\bar{W}_{1}+\bar{W}_{2}\right)\left\{\sum_{j=0}^{[k / 2-2]}\binom{[k / 2-2]}{j} \bar{W}_{j}\right\}+W\left\{\begin{array}{c}
{[k / 2-1]} \\
\sum_{j=0}^{[k / 2-1]} \\
j
\end{array}\right) \bar{W}_{j+1}\right\}
$$

where [] means the Gauss bracket. In particular, $P\left(D_{k}, f\right)=0$ for $k=5,6$ or 7. For $A D E$-regular maps, $P\left(E_{k+1}, f\right)=W_{k} W_{2}+W_{k-1}\left(W_{3}+W_{1} W_{2}\right)$.

REMARK 4.4. The referee kindly informed the author the following. It follows from [12] that the Thom polynomial of D_{k} of $A D E$-regular maps vanish for $k=5$ and 7 .
§5. Lift of the manifolds ΣD_{k} and ΣE_{k}.
First we lift the submanifolds Σ^{i} and $\Sigma^{i, 2}$ of $J^{\infty}(N, P)$ up to the diffeomorphic ones

$$
\begin{aligned}
& \left(\Sigma^{i}\right)^{\prime}=\left\{\left(z, K_{1, z}\right) \mid z \in \Sigma^{i}\right\} \\
& \left(\Sigma^{i, 2}\right)^{\prime}=\left\{\left(z, K_{1,2}, K_{2,2}, Q_{z}\right) \mid z \in \Sigma^{i, 2}\right\}
\end{aligned}
$$

of $G_{i, p-1}(\boldsymbol{D})$ and $G_{2}(\boldsymbol{D}, \boldsymbol{P})$. Note that $\boldsymbol{D}_{1}^{\prime} \mid\left(\Sigma^{i}\right)^{\prime}=\left(\pi_{1} \mid\left(\Sigma^{i}\right)^{\prime}\right)^{*} \boldsymbol{K}_{1}$ and $\boldsymbol{D}_{2}^{\prime} \mid\left(\Sigma^{i, 2}\right)^{\prime}=$ $\left(\pi_{2}{ }^{\circ} \rho_{2} \mid\left(\Sigma^{i, 2}\right)^{\prime}\right) * \boldsymbol{K}_{2}$. We define

$$
s_{1}: G_{i, p-1}(\boldsymbol{D}) \longrightarrow \operatorname{Hom}\left(\boldsymbol{D}_{1}, \pi_{1}^{*}(\boldsymbol{P})\right)
$$

and

$$
\begin{aligned}
s_{2}:\left(\rho_{1} \circ \boldsymbol{\phi}_{2}\right)^{-1}\left(\left(\Sigma^{i}\right)^{\prime}\right) \longrightarrow & \operatorname{Hom}\left(\left(\pi_{2} \circ \rho_{2}\right) * \boldsymbol{D} /\left(\rho_{1} \circ \phi_{2}\right) * \boldsymbol{D}_{1}\right. \\
& \left.\oplus\left(\rho_{2}\right) * \boldsymbol{D}_{2} \bigcirc\left(\rho_{1} \circ \boldsymbol{\phi}_{2}\right) * \boldsymbol{D}_{1},\left(\boldsymbol{\phi}_{1} \circ \boldsymbol{\phi}_{2}\right) * \boldsymbol{P}_{1}\right)
\end{aligned}
$$

to be the smooth sections of the given bundles as follows. For an element $z^{\prime}=(z, a)$ of $G_{i, p-1}(\boldsymbol{D})$, set $s_{1}\left(z^{\prime}\right)=d_{1, z} \mid a$. For an element $z^{\prime}=\left(z, K_{1,2}, b, Q_{z}\right)$ of $\left(\rho_{1} \circ \phi_{2}\right)^{-1}\left(\left(\Sigma^{i}\right)^{\prime}\right)$, define $d_{1, z}^{\prime}=D_{z} / K_{1, z} \rightarrow Q_{z}$ to be the homomorphism induced from $d_{1,2}$ by $K_{1,2}=\operatorname{Ker}\left(d_{1,2}\right)$. Then set $s_{2}\left(z^{\prime}\right)=d_{1,2}^{\prime} \oplus d_{2, z}^{\prime} \mid\left(b \bigcirc K_{1,2}\right)$. The following proposition states the results of [9 and 10, Proposition 2.1] while Ronga's result is written in the other form due to [1, Lemma 3.1].

Proposition 5.1. The sections s_{1} and s_{2} are transverse to the zero sections and their inverse images of the zero-sections are equal to $\left(\Sigma^{i}\right)^{\prime}$ and $\left(\Sigma^{i, 2}\right)^{\prime}$ as sets respectively.

We now deal with the lift of ΣD_{k}. Let $\left(\Sigma^{i, 2,0}\right)^{\prime}$ and $U\left(S_{5}\right)^{\prime}$ denote the subsets of $\left(\Sigma^{i, 2}\right)^{\prime}$ such that z belongs to $\Sigma^{i, 2,0}$ and $U\left(S_{5}\right)$ respectively.

Let $z^{\prime}=\left(z, K_{1,2}, K_{2,2}, c, Q_{z}\right)$ be an element of $\left(\phi_{3}\right)^{-1}\left(\left(\Sigma^{i, 2,0}\right)^{\prime}\right)$. Define the smooth section

$$
s_{3}:\left(\boldsymbol{\phi}_{3}\right)^{-1}\left(\left(\Sigma^{i, 2,0}\right)^{\prime}\right) \longrightarrow \operatorname{Hom}\left(\bigcirc^{2} \boldsymbol{D}_{3}^{\prime} \bigcirc \boldsymbol{D}_{2}^{\prime}, \boldsymbol{P}_{1}^{\prime}\right)
$$

by $s_{3}\left(z^{\prime}\right)=d_{3, z}^{\prime} \mid \bigcirc^{2} c \bigcirc K_{2, z}$. Let $\left(\Sigma \bar{D}_{k+1}\right)^{\prime}$ denote the subset of $\left(\phi_{3}\right)^{-1}\left(U\left(S_{5}\right)^{\prime}\right)$ consisting of all elements z^{\prime} with $c=L_{z}$ and $z \in \Sigma \bar{D}_{k+1}(k \geqq 4)$. Note that $\boldsymbol{D}_{3}^{\prime}$ coincides with $\left(\pi_{3} \circ \rho_{3}\right)^{*}$ L over $\left(\Sigma \bar{D}_{5}\right)^{\prime}$. Then the smooth sections

$$
r_{k}^{\prime}:\left(\Sigma \bar{D}_{k+1}\right)^{\prime} \longrightarrow \operatorname{Hom}\left(\bigcirc^{t} \boldsymbol{D}_{3}^{\prime}, \boldsymbol{P}_{1}^{\prime}\right) \mid\left(\Sigma \bar{D}_{k+1}\right)^{\prime}
$$

is defined by $r_{k}^{\prime}\left(z^{\prime}\right)$ being the homomorphism $r_{k, z}: \bigcirc^{k} L_{z} \rightarrow Q_{z}$.
We can prove the analogous result as in Proposition 5.1.
PROPOSITION 5.2. The sections s_{3} and $r_{k}^{\prime}(k \geqq 4)$ are transverse to the zero sections and their inverse images of the zero sections coincide with $\left(\Sigma \bar{D}_{5}\right)^{\prime}$ and $\left(\Sigma \bar{D}_{k+2}\right)^{\prime}$ respectively.

Proof. First we prove the latter statement for s_{3}. Let z^{\prime} be any element of $\left(\phi_{3}\right)^{-1}\left(\left(\Sigma^{i, 2,0}\right)^{\prime}\right)$ such that $d_{3, z}^{\prime}$ vanishes on $\bigcirc^{2} c \bigcirc K_{2,2}$. Take a metric of $K_{2, z}$ and let e be a unit vector of c and f be its orthogonal unit vector. Let u and v be the dual vectors of f and e respectively. That is, $u(f)=1, u(e)=0$, $v(f)=0$ and $v(e)=1$. With this notation we can write as $d_{3,2}^{\prime}=a_{1} u^{3}+a_{2} u^{2} v+$ $a_{3} u v^{2}+a_{4} v^{3}$. Then we obtain $d_{3,2}^{\prime}(e \bigcirc e \bigcirc e)=6 a_{4}$ and $d_{3,2}^{\prime}(e \bigcirc e \bigcirc f)=2 a_{3}$ by easy calculations. Since it vanishes on $\bigcirc^{2} c \bigcirc K_{2,2}$, we have $a_{3}=a_{4}=0$. That is, $d_{3,2}^{\prime}=a_{1} u^{3}+a_{2} u^{2} v=u^{2}\left(a_{1} u+a_{2} v\right)$. It is easy to see that $c=L_{2}$ which is the space annihilated by u. This means $z \in S_{5}$. On the other hand if z^{\prime} belongs to $\left(\Sigma \bar{D}_{5}\right)^{\prime}$, then $z \in S_{5}$ and $c=K_{3,2}$. So $d_{3, z}^{\prime}$ vanishes on $\bigcirc^{2} c \bigcirc K_{2, z}$.

Next we show the transversality of s_{3}. Let z_{0} be any element of $\left(\Sigma \bar{D}_{5}\right)_{x, y}$ such that $d_{3, z_{0}}^{\prime}$ is written as $u^{2} v$ under suitable coordinate systems near x and y (see [4, Propositions 3.5 and 3.10]). As above let e and f be the dual basis of u and v in $K_{2, z_{0}}$ for the case $c=L_{z_{0}}$. Then for any element z^{\prime} of $\left(\phi_{3}\right)^{-1}\left(U\left(S_{5}\right)^{\prime}\right)$ near $\left(\Sigma \bar{D}_{5}\right)^{\prime}, c$ is generated by te $+f$ and $d_{3,2}^{\prime}=u^{2} v+\varepsilon v^{3}$ for some real numbers t and ε by Section 2. It follows that the normal coordinates of $\left(\Sigma \bar{D}_{5}\right)^{\prime}$ in $\left(\phi_{3}\right)^{-1}\left(U\left(S_{5}\right)^{\prime}\right)$ is given by t and ε near z_{0}. On the other hand the normal coordinates of the zero-section of $\operatorname{Hom}\left(\bigcirc^{2} c \bigcirc D_{2,2}^{\prime}, P_{1,2}^{\prime}\right)$ are given by two numbers $d_{3,2}^{\prime}((t e+f) \bigcirc(t e+f) \bigcirc f)$ and $d_{3,2}^{\prime}((t e+f) \bigcirc(t e+f) \bigcirc e)$. By easy calculations we have that they are equal to $4 t$ and $2 t^{2}+6 \varepsilon$ respectively. Since the mapping of (t, ε) to $\left(4 t, 2 t^{2}+6 \varepsilon\right)$ is regular at $t=\varepsilon=0, s_{3}$ is transverse to the zero-section.

The proposition for r_{k}^{\prime} is almost an immediate consequence of the definition of $\left(\Sigma D_{k+1}\right)^{\prime}$ using r_{k} in Section 2 since $\boldsymbol{D}_{3}^{\prime} \mid\left(\Sigma D_{k+1}\right)^{\prime}=\left(\pi_{3} \circ \rho_{3} \mid\left(\Sigma D_{k+1}\right)^{\prime}\right)^{*} \boldsymbol{L}$ ($k \geqq 4$).
Q.E.D.

We consider the lift of $\Sigma \bar{E}_{k}$. Let $z^{\prime}=\left(z, K_{1, z}, K_{2, z}, c, Q_{z}\right)$ be any element of $\left(\phi_{3}\right)^{-1}\left(\left(\Sigma^{i, 2}\right)^{\prime}\right)$. We define $\left(\Sigma \bar{E}_{6}\right)^{\prime}$ as the set $\left(\Sigma^{i, 2,1}\right)^{\prime}$ consisting of all elements z^{\prime} with $c=K_{3,2}$ and $z \in \Sigma^{i, 2}$ in $\left(\phi_{3}\right)^{-1}\left(\left(\sum^{i, 2}\right)^{\prime}\right)$. We have the section

$$
s_{6}:\left(\boldsymbol{\phi}_{3}\right)^{-1}\left(\left(\Sigma^{i, 2}\right)^{\prime}\right) \longrightarrow \operatorname{Hom}\left(\boldsymbol{D}_{3}^{\prime} \bigcirc^{2} \boldsymbol{D}_{2}^{\prime}, \boldsymbol{P}_{1}^{\prime}\right)
$$

defined by $s_{6}^{\prime}\left(z^{\prime}\right)=d_{3,2}^{\prime} \mid c \bigcirc^{2} K_{2,2}$.
The set $\left(\Sigma \bar{E}_{7}\right)^{\prime}$ in $\left(\Sigma^{i, 2,1}\right)^{\prime}$ is defined as the set consisting of all elements z^{\prime} with $z \in \sum^{i, 2,1}$ such that $d_{4,2}^{\prime} \mid \bigcirc^{4} K_{3,2}$ vanishes. The set $\left(\Sigma \bar{E}_{8}\right)^{\prime}$ is $\left(\sum^{i, 2,1,1}\right)^{\prime}$ consisting of all elements z^{\prime} with $c=K_{3, z}$ and $z \in \sum^{i, 2,1,1}$. We have the sections

$$
\begin{aligned}
& s_{7}^{\prime}:\left(\Sigma^{i, 2,1}\right)^{\prime} \longrightarrow \operatorname{Hom}\left(\bigcirc^{4} \boldsymbol{D}_{3}^{\prime}, \boldsymbol{P}_{1}^{\prime}\right) \\
& s_{8}^{\prime}:\left(\Sigma^{i, 2,1}\right)^{\prime} \longrightarrow \operatorname{Hom}\left(\bigcirc^{3} \boldsymbol{D}_{3}^{\prime} \bigcirc \boldsymbol{D}_{2}^{\prime}, \boldsymbol{P}_{1}^{\prime}\right)
\end{aligned}
$$

defined by $s_{7}^{\prime}\left(z^{\prime}\right)=d_{4,2}^{\prime} \mid \bigcirc^{4} K_{3,2}$ and $s_{8}^{\prime}\left(z^{\prime}\right)=d_{4, z}^{\prime} \mid \bigcirc^{3} K_{3,2} \bigcirc K_{2,2}$.
Then we have the following proposition for s_{k}^{\prime}.

Proposition 5.3. The section s_{k}^{\prime} is transverse to the zero-section and its inverse image of the zero-section is $\sum \bar{E}_{k}(k=6,7$ or 8$)$.

Proof. The latter half is almost an immediate consequence of the definition of s_{t}. The transversality of s_{7}^{\prime} and s_{8}^{\prime} also follows from that of s_{7} and s_{8} reviewed in Section 2. So we prove that of s_{6}. Let z_{0} be any jet of $\sum^{i, 2,1}$ such that $d_{3, z}^{\prime}$ is written as u^{3} under suitable coordinate systems near x and y. Let e and f be the dual basis of u and v in $K_{2, z_{0}}$ such that $K_{3, z_{0}}=\operatorname{Ker}(u)=\{f\}$. Then for any element z^{\prime} of $\left(\phi_{3}\right)^{-1}\left(\left(\sum^{i, 2}\right)^{\prime}\right)$ near z_{0}, c is generated by $t e+f$ and that $d_{3,2}^{\prime}=u^{3}+a u v^{2}+b v^{3}$ for some real numbers t, a and b. Then the normal coordinates of $\left(\sum^{i, 2,1}\right)^{\prime}$ in $\left(\phi_{3}\right)^{-1}\left(\left(\sum^{i, 2}\right)^{\prime}\right)$ is given by t, a and b near z_{0}. On the other hand the normal coordinates of the zero-section of $\operatorname{Hom}\left(c \bigcirc^{2} D_{2,2}^{\prime}, P_{1,2}^{\prime}\right)$ over z are given by the three numbers $d_{3,2}^{\prime}((t e+f) \bigcirc e \bigcirc e), d_{3,2}^{\prime}((t e+f) \bigcirc e \bigcirc f)$ and $d_{3, z}^{\prime}((t e+f) \bigcirc f \bigcirc f)$. By easy calculations we know that they are equal to $6 t, 2 a$ and $2 a t+6 b$ respectively. Since the mapping of (t, a, b) to $(6 t, 2 a, 2 a t+6 b)$ is regular at the origin, we obtain the transversality of s_{3} at z_{0}. Q.E.D.

§ 6. Proof of Theorems.

In this section we prove Theorems 4.1 and 4.2 using the results in the previous section together with the following well known facts about algebraic topology.
(6.1) Let s be a smooth section of a vector bundle E over M transverse to the zero-section. Then the Poincare dual class of its inverse image of the zero-section is congruent modulo 2 to the Euler class $\chi(E)$.
(6.2) Let M_{1} and M_{2} be locally closed submanifolds of M with $M_{1} \supset M_{2}$. Let m_{1} be the Poincaré dual of $\left[M_{1}\right]$ in M and m_{2} be that of $\left[M_{2}\right]$ in M_{1} where brackets mean fundamental classes. If there exists a class m_{2}^{\prime} of $H^{*}(M ; \boldsymbol{Z} / 2 \boldsymbol{Z})$ such that $i^{*}\left(m_{2}^{\prime}\right)=m_{2}$ where i is an inclusion of M_{1} into M, then the Poincaré dual class of M_{2} in M is equal to $m_{1} m_{2}^{\prime}$.

Proof of Theorem 4.1. We use the notations in Section 4. Let S be the submanifold $c^{-1}\left(\left(\Sigma \bar{D}_{k+1}\right)^{\prime}\right)$ of $G_{3}\left(T N, f^{*}(T P)\right)$. Since f is $A D$-regular and $j^{\infty} f$ is transverse to $\sum \bar{D}_{k+1}, S$ is mapped diffeomorphically onto $S_{\bar{D}_{k+1}}(f)$ by $\pi_{3} \circ \rho_{3}$. Hence by definition of the Gysin homomorphism, $\left(\pi_{3} \circ \rho_{3}\right)$! maps the Poincare dual class $[S]^{c}$ in $G_{3}\left(T N, f^{*}(T P)\right.$) onto $\left[S_{\bar{D}_{k+1}}(f)\right]^{c}$. Therefore we need to show that $[S]^{c}$ is equal to the Euler class of the given vector bundle in the formula of Theorem 4. 1. If necessary, we slightly deform f by homotopy and obtain a series of submanifolds of $G_{3}\left(T N, f^{*}(T P)\right) ; c^{-1}\left(\left(\rho_{1} \circ \phi_{2}{ }^{\circ} \phi_{3}\right)^{-1}\left(\left(\Sigma^{i}\right)^{\prime}\right)\right)$ D $c^{-1}\left(\phi_{3}^{-1}\left(\left(\sum^{i, 2}\right)^{\prime}\right)\right) \supset c^{-1}\left(\left(\Sigma \bar{D}_{5}\right)^{\prime}\right) \supset \cdots \supset c^{-1}\left(\left(\Sigma \bar{D}_{k+1}\right)^{\prime}\right)$. It follows from the definition of c that every submanifold coincides with $c^{*}\left(s_{t}\right)^{\prime} \mathrm{s}$ or $c^{*}\left(r_{k}^{\prime}\right)^{\prime}$ s inverse image of
the zero-section of some vector bundle induced from one appeared in Propositions 5.1 and 5.2 by c. These bundles are extended to ones over $G_{3}(T N, f *(T P))$.

First we prove Theorem 4.1 for $P\left(D_{5}, f\right)$. The manifold $c^{-1}\left(\left(\Sigma \bar{D}_{5}\right)^{\prime}\right)$ is $c^{*}\left(s_{3}\right)$'s inverse image of the zero-section of $\operatorname{Hom}\left(\bigcirc^{2} K_{3} \bigcirc K_{2}, Q_{1}\right)$ by Proposition 5.2. Therefore $\left[c^{-1}\left(\left(\Sigma \bar{D}_{5}\right)^{\prime}\right)\right]^{c}$ is equal to $\left[c^{-1} \circ \phi_{3}^{-1}\left(\left(\Sigma^{i, 2}\right)^{\prime}\right)\right]^{c} \chi\left(\operatorname{Hom}\left(\bigcirc^{2} K_{3} \bigcirc K_{2}, Q_{1}\right)\right)$ by (6.1) and (6.2). By [1, Proposition 3.1] or the similar arguments above using Proposition 5.1 and the naturality of Gysin homomorphisms we know that $\left[c^{-1} \circ \phi_{3}^{-1}\left(\left(\sum^{i, 2}\right)^{\prime}\right)\right]^{c}$ is equal to the Euler class of $\operatorname{Hom}\left(K_{1}, f^{*}(T P)\right) \oplus \operatorname{Hom}\left(K_{0} / K_{1} \oplus\right.$ $\left.K_{2} \bigcirc K_{1}, Q_{1}\right)$. This shows the formula of $P\left(D_{\mathrm{b}}, f\right)$.

By combining the arguments above and Proposition 5.2 we can prove the general case.
Q.E.D.

We can also prove Theorem 4. 2 by applying the analogous discussion using Propositions 5.1, 5.2, (6.1) and (6.2) to the case of E_{t}. So the details are left to the readers.

§ 7. Foliated manifolds and bundles with naturality.

In this section we explain that the results about Thom polynomials for smooth maps in the previous sections also hold in more general settings of smooth maps into foliated manifolds (cf. [3]) or sections of smooth bundles with naturality (cf. [7]) where $J^{\infty}(N, P)$ and \boldsymbol{P} in the diagram (3.1) and also $f^{*}(T P)$ and Q_{1} in Theorems 4.1 and 4.2 should be replaced by appropriate other jet spaces and bundles respectively. Their proofs are very like that of the case of smooth maps and so are left to the readers.

Let \mathscr{F} be a nonsingular foliation of codimension p on a smooth manifold E. For \mathscr{I} we take a local coordinate system $\left\{U_{\lambda}, \psi_{\lambda}\right\}$ of E with submersion $\psi_{\lambda}: U \rightarrow \boldsymbol{R}^{p}$ having the well known required properties of foliations. For a smooth map $f: N \rightarrow E$ and \mathscr{G}, a point x of N is called a singular point of type A_{k}, D_{k} or E_{k} with respect to \mathscr{F} when x is that of a smooth map $\psi_{\lambda^{\circ}}\left(f \mid U_{\lambda}\right)$ for some λ respectively. We also define an $A D$ (resp. $A D E$)-regular smooth map $f: N \rightarrow E$ with respect to \subseteq similarly. Let $S_{x_{k}}(f, \mathscr{F})$ denote the set of all singular points of type X_{k} with respect to \mathscr{F} of f and $S_{\bar{x}_{k}}(f, \mathscr{F})$ denote its topological closure. Our purpose is to see that $\left[S_{\bar{X}_{k}}(f, \mathscr{F})\right]^{c}$ is calculated by the similar formulas in Theorems 4.1 and 4.2.

Let $\psi_{\lambda}^{\prime}: J^{\infty}\left(N, U_{\lambda}\right) \rightarrow J^{\infty}\left(N, \boldsymbol{R}^{p}\right)$ be the induced submersion of ψ_{λ} mapping a jet $j_{x}^{\infty} f$ onto $j_{x}^{\infty}\left(\psi_{2} \circ f\right)$ and identify $J^{\infty}(N, U)$ canonically with a subspace of $J^{\infty}(N, E)$ by the inclusion of U into E. Then we can define the submanifold $\Sigma X_{k}(\mathscr{F})$ in $J^{\infty}(N, E)$ as the union of all submanifolds $\left(\psi_{k}^{\prime}\right)^{-1}\left(\Sigma X_{k}\left(N, \boldsymbol{R}^{p}\right)\right)$ for all λ. Since ΣX_{k} is defined by using the kernel ranks of the higher intrinsic derivatives and related homomorphisms such as r_{k}, it follows that $\Sigma X_{k}(\mathscr{F})$ does
not depend on a choice of $\left\{U_{\lambda}, \psi_{\lambda}\right\}$. It will be easy to see that $S_{\bar{X}_{k}}(f, \mathscr{F})=$ $\left(j^{\infty} f\right)^{-1}\left(\Sigma \bar{X}_{k}(\mathscr{F})\right)$. As in Section 4 we write its Poincaré dual class as $P\left(X_{k}, f ; \mathscr{F}\right)$. In this situation we must replace $J^{\infty}(N, P)$ and \boldsymbol{P} by $J^{\infty}(N, E)$ and the induced bundle from the normal bundle $n(\mathscr{F})$ of \mathscr{F} by the projection of $J^{\infty}(N, E)$ onto E in (3.1) respectively. Then $P\left(D_{k}, f ; \mathscr{F}\right)$ and $P\left(E_{k}, f ; \mathscr{F}\right)$ are calculated by the same formula of Theorems 4.1 and 4.2 respectively, while $f^{*}(T P)$ must be changed by $f^{*}(n(\mathcal{F}))$ together with its associated bundles K_{i} and Q_{1}. For A-regular maps, $P\left(A_{k}, f ; \mathscr{F}\right.$) is also dealt with similarly (cf. [1, Theorem 3.2]).

For example consider an immersion f of N into E with $\operatorname{dim} N=n, \operatorname{dim} E$ $=n+1$ and $\operatorname{codim} \mathscr{F}=n-1$ for $n=7$ or 8 . Since $\operatorname{codim} \Sigma^{2,2,2}(n, n-1)=9, f$ becomes an $A D E$-regular map with respect to \mathscr{F}. It follows from Remark 4.3 that $P\left(E_{k+1}, f ; \mathscr{F}\right)=W_{k} W_{2}+W_{k-1}\left(W_{3}+W_{1} W_{2}\right)$ for $k=5$ or 6 and $P\left(E_{8}, f ; \mathscr{F}\right)=0$ where $W_{j}=W_{j}(T N-f *(n(\mathcal{F})))$.

Let $\pi: E \rightarrow N$ be a smooth fibre bundle having a fibre P with naturality condition (see [7]). Let $\left\{U_{\lambda}\right\}$ be its covering of N with trivialization $\psi_{\lambda}: E \mid U_{2} \rightarrow P$. For a section s of E, we define its A_{k}, D_{k} or E_{k} singular point by considering that of $\psi_{\lambda} \circ\left(s \mid U_{\lambda}\right)$ and $A D$ (resp. $A D E$)-regular sections similarly as above. Let $J^{\infty} E$ be its infinite jet space consisting of all jets of local sections of E. Then we have the identification $\phi_{\lambda}^{\prime}: J^{\infty}\left(E \mid U_{\lambda}\right) \rightarrow J^{\infty}\left(U_{\lambda}, P\right)$. Let $\Sigma X_{k}(E)$ denote the union of all spaces $\left(\psi_{\lambda}^{\prime}\right)^{-1}\left(\Sigma X_{k}\left(U_{\lambda}, P\right)\right)$ for all λ in $J^{\infty}(E)$. Again $\Sigma X_{k}(E)$ is well defined. Thus we can define the Thom polynomial $P\left(X_{k}, s ; \pi\right)$ similarly. If we replace $J^{\infty}(N, P)$ by $J^{\infty}(E)$ and \boldsymbol{P} by the induced bundle of the tangent bundle along the fibre $T\left(P_{E}\right)$ of E by the projection of $J^{\infty}(E)$ onto E in (3.1), then we can calculate $P\left(X_{k}, s ; \pi\right)$ by the same formulas of Theorems 4.1 and 4.2 for D_{k} and E_{k} and of [1, Theorem 3.2] for A_{k}, while $f^{*}(T P)$ must be replaced by $f^{*}\left(T\left(P_{E}\right)\right)$ together with its associated bundles K_{i} and Q_{1}.

The homotopy principle for $A D$ or $A D E$-regular maps is valid (see [3]) and therefore their existence problem is reduced to a homotopy theoretic problem. The primary obstructions of this problem modulo two become the Thom polynomials studied in this paper.

§ 8. Calculation.

We sketch a method to calculate the polynomial $P\left(D_{k+1}, f\right)$ for the case $n=p+1$ stated in Section 4 (the case of $P\left(E_{k+1}, f\right)$ is similar and omitted). The calculation of the Thom polynomials in [1, Section 4] will be helpful to understand its details. By the analogous argument to that in [1] we may reduce its calculation to the situation of $P\left(D_{k+1}, f^{\prime}\right)$ for $f^{\prime}: N^{\prime} \rightarrow P^{\prime}$ where $T N^{\prime}$ is stably equivalent to $T N-f^{*}(T P), T P^{\prime}$ is trivial and $\operatorname{dim} N^{\prime}-\operatorname{dim} P^{\prime}=n-p$.

For simplicity we may set $\operatorname{dim} N^{\prime}=n$, $\operatorname{dim} P^{\prime}=p$ and use the same notation for bundles which are induced from one bundle over any space in the pull-backed diagram of (3.1) by c in the following.

In the right hand term of the formulas of Theorems 4.1 and 4.2, let V denote the vector bundle whose Euler class is considered and V^{\prime} denote the vector bundle so that V is written as $\operatorname{Hom}\left(K_{1}, f^{*}\left(T P^{\prime}\right)\right) \oplus \operatorname{Hom}\left(V^{\prime}, Q_{1}\right)$ over $G_{3}\left(T N^{\prime}, f *\left(T P^{\prime}\right)\right)$. For D_{k+1}, as an example, V^{\prime} is $K_{0} / K_{1} \oplus K_{2} \bigcirc K_{1} \oplus K_{3} \bigcirc K_{3} \bigcirc K_{2}$ $\oplus \sum_{j=4}^{k=1} \bigcirc^{j} K_{3}$. Let $C\left(V^{\prime}\right)$ be written as $\prod_{i=1}^{n+k-1}\left(1-u_{i}\right)$ and $C\left(Q_{1}\right)=1+y$. Then we have

$$
C(V)=C\left(K_{1}^{*}\right)^{p} \prod_{i=1}^{n+k-1}\left(1+u_{i}+y\right)
$$

Note that $\chi(V)=C_{2 p+n+k-1}(V)$ and that its coefficient of y^{n-1} turns out to be $(-1)^{k+1} C_{2}\left(K_{1}^{*}\right)^{p} C_{k+1}\left(V^{\prime}\right)$. Since $T P$ is trivial, we have $\left(\rho_{3}\right)!\left(y^{n-2}\right)=1$ and $\left(\rho_{3}\right)!\left(y^{j}\right)=0$ when $j \neq n-2$ (see, for example, [1, Proposition 4.1(b)]). Therefore

$$
\left(\rho_{3}\right)!(\chi(V))=(-1)^{k+1} C_{2}\left(K_{1}^{*}\right)^{p} C_{k+1}\left(V^{\prime}\right) .
$$

Consider the following decomposition of π_{3} to compute $\left(\pi_{3}\right)$!.

$$
F_{2,2,1}\left(T N^{\prime}\right)=G_{1, n-2}\left(\tau^{*}\left(T N^{\prime}\right) /\left(T N^{\prime}\right)_{1}\right) \xrightarrow{\tau_{1}} G_{1, n-1}\left(T N^{\prime}\right) \xrightarrow{\tau} N^{\prime} .
$$

Let $C\left(K_{1} / K_{2}\right)=1+d$ and $C\left(K_{3}\right)=1+l$. Then we have

$$
\begin{aligned}
& C\left(K_{1}\right)=(1+d)(1+l), \quad C\left(K_{1}^{*}\right)=(1-d)(1-l) \\
& C\left(K_{0} / K_{1}\right)=C\left(K_{0}\right)(1+d)^{-1}(1+l)^{-1} \\
& C\left(K_{2} \bigcirc K_{1}\right)=(1+2 d)(1+d+l)(1+2 l) \\
& C\left(K_{3} \bigcirc K_{3} \bigcirc K_{2}\right)=(1+3 l)(1+d+2 l) \\
& C\left(\bigcirc^{j} K_{3}\right)=(1+j l) \\
& C\left(K_{3} \bigcirc K_{2} \bigcirc K_{2}\right)=(1+d+2 l)(1+3 l)(1+2 d+l)
\end{aligned}
$$

and

$$
C\left(\bigcirc^{3} K_{3} \bigcirc K_{2}\right)=(1+4 l)(1+d+3 l) .
$$

So $C_{2}\left(K^{*}\right)=d l$ and we can represent $C_{k+1}\left(V^{\prime}\right)$ as a polynomial with respect to $C_{i}\left(K_{0}\right), d$ and l. Suppose that $C_{2}\left(K_{1}^{*}\right) C_{k+1}\left(V^{\prime}\right)$ is written as a polynomial

$$
d^{p} l^{p}\left(\sum_{i=0}^{k+1} C_{i}\left(K_{0}\right)\left(\sum_{s+t=k+1-i} a_{s t} d^{s} l^{t}\right)\right)
$$

where $a_{s t}$ are integers. We note here that by [1, Proposition 4.1(b)]

$$
\begin{aligned}
\left(\tau_{1}\right)!\left(d^{n+s-1}\right) & =(-1)^{s+1} \bar{C}_{s+1}\left(K_{0} / K_{3}\right) \\
& =(-1)^{s+1}\left(\bar{C}_{s+1}\left(K_{0}\right)+\bar{C}_{s}\left(K_{0}\right) l\right)
\end{aligned}
$$

and

$$
(\tau)!\left(l^{n+s-1}\right)=(-1)^{s} \bar{C}_{s}\left(K_{0}\right) .
$$

By applying these formulas to the polynomial above we obtain the following by Theorems 4.1 and 4.2.

$$
\begin{aligned}
P\left(X_{k+1}, f\right) & =(-1)^{k+1} \sum_{i=0}^{k+1}(-1)^{k-i+1} C_{i}\left(\sum_{s+t=k-i+1} a_{s t}\left(-\bar{C}_{s+1} \bar{C}_{t}+\bar{C}_{s} \bar{C}_{t+1}\right)\right) \\
& =\sum_{i=0}^{k+1}(-1)^{i} C_{i}\left(\sum_{s+t=k-i+1} a_{s t}\left(-\bar{C}_{s+1} \bar{C}_{t}+\bar{C}_{s} \bar{C}_{t+1}\right)\right)
\end{aligned}
$$

where $C_{i}=C_{i}\left(K_{0}\right)=C_{i}(T N-f *(T P))$. Hence $P\left(X_{k+1}, f\right)$ can be written as follows.

$$
\sum_{i=1}^{k+1}(-1)^{i} C_{i}\left(\sum_{s=0}^{k+2-i}\left(a_{s, k+1-i-s}-a_{s-1, k+2-i-s}\right) \bar{C}_{s} \bar{C}_{k+2-i-s}\right)
$$

where $a_{-1, k+2-i}=a_{k+2-i,-1}=0$.
Let $p(d, l)$ be the polynomial

$$
C\left(K_{0}\right) d^{p} l^{p}(1+d)^{-1}(1+l)^{-1}(1+2 d)(1+2 l)(1+3 l)(1+d+l)(1+2 l+d)
$$

For $D_{k+1}, C_{2}\left(k_{1}^{*}\right)^{P} C_{k+1}\left(V^{\prime}\right)$ becomes the part of the degree $2 p+k+1$ of the polynomial

$$
p(d, l) \prod_{j=4}^{k-1}(1+j l)
$$

Similarly for $E_{k+1}(k=5,6$ or 7$), C_{2}\left(K_{1}^{*}\right) C_{k+1}\left(V^{\prime}\right)$ is the part of degree $2 p+k+1$ of the polynomial

$$
\begin{aligned}
& p(d, l)(1+2 d+l), \\
& p(d, l)(1+2 d+l)(1+4 l)
\end{aligned}
$$

or

$$
p(d, l)(1+2 d+l)(1+4 l)(1+3 d+3 l)
$$

respectively and we give two tables of $a_{s t}$ for D_{5} and E_{6}.

The precise formula of $P\left(D_{5}, f\right)$ for $n=p+1$ is as follows.

$$
\begin{aligned}
& -2 \bar{C}_{1} \bar{C}_{5}-12 \bar{C}_{2} \bar{C}_{4}+14 \bar{C}_{3}^{2} \\
& -C_{1}\left(14 \bar{C}_{1} \bar{C}_{4}-14 \bar{C}_{2} \bar{C}_{3}\right) \\
& +C_{2}\left(12 \bar{C}_{4}+12 \bar{C}_{1} \bar{C}_{3}-24 \bar{C}_{2}^{2}\right) \\
& -C_{3}\left(14 \bar{C}_{3}-14 \bar{C}_{1} \bar{C}_{2}\right) \\
& \quad+C_{4}\left(4 \bar{C}_{2}-4 \bar{C}_{1}^{2}\right) .
\end{aligned}
$$

The real version of the arguments above shows the formulas stated in Section 4.

References

[1] Y. Ando, On the higher Thom polynomials of Morin singularities, Publ. Res. Inst. Math. Sci., Kyoto Univ., 23 (1987), 195-207.
[2] Y. Ando, On local structures of the singularities A_{k}, D_{k} and E_{k} of smooth maps, Trans. Amer. Math. Soc., 331 (1992), 639-652.
[3] Y. Ando, An existence theorem of foliations with singularities A_{k}, D_{k} and E_{k}, Hokkaido Math. J., 20 (1991), 571-578.
[4] V.I. Arnold, Normal forms for functions near degenerate critical points, the Weyl groups A_{k}, D_{k}, E_{k} and lagrangian singularities, Funktsional. Anal. i Prilozhen, 6 (1972), 3-25.
[5] J. M. Boardman, Singularities of differentiable maps, Publ. Math. Inst. HES, 33 (1967), 21-57.
[6] A. Haefliger and A. Kosinski, Un théorème de Thom sur les singularités des applications différentiables, Séminaire H. Cartan E.N.S., 8 (1956/57).
[7] A. Haefliger, Lectures on the theorem of Gromov, Proc. Liverpool Singularities, Lecture Notes in Math., 209, Springer, 1971, pp. 128-141.
[8] H.I. Levine, Singularities of differentiable mappings, Proc. Liverpool Singularities, Lecture Notes in Math., 192, Springer, 1971, pp. 1-89.
[9] I.R. Porteous, Simple singularities, Proc. Liverpool Singularities, Lecture Notes in Math., 192, Springer, 1971, pp. 286-307.
[10] F. Ronga, Le calcul des classes duals singularités de Boardman d'ordre deux, Comment. Math. Helv., 47 (1972), 15-35.
[11] R. Thom, Les singularités des applications différentiables, Ann. Inst. Fourier, 6 (1955-56), 43-87.
[12] V.A. Vassilyev, Lagrange and Legendre characteristic classes, Gorden and Breach Sci. Publ., New York, London, 1988.

Yoshifumi ANDO
Department of Mathematics
Yamaguchi University
Yamaguchi 753
Japan

