An example of self homotopy equivalences

Dedicated to Professor Teiichi Kobayashi on his 60th birthday

By Kouzou TSUKIYAMA

(Received July 9, 1994)

1. Introduction.

Let us consider the principal fibre bundle

with structure group G. G acts on P freely.

Then one can consider the space of (unbased) G-equivariant self-homotopy equivalences of P, which we denote

(1.2) $\operatorname{aut}_{G}(P)$.

We define

(1.3)
$$\mathscr{F}_G(P) = \pi_0(\operatorname{aut}_G(P)).$$

We call this group the group of G-equivariant self-equivalences of the principal fibre bundle (1.1) (cf. [4, 5]).

Also one can consider the space of (unbased) self-homotopy-equivalences of P, which we denote

$$(1.4) aut(P).$$

We define

(1.5)
$$\mathcal{F}(P) = \pi_0(\operatorname{aut}(P)).$$

We call this group the group of self-equivalences of the space P. We have a natural homomorphism from (1.3) to (1.5) forgetting the G-action

(1.6)
$$\mathscr{F}_{G}(P) = \pi_{0}(\operatorname{aut}_{G}(P)) \longrightarrow \pi_{0}(\operatorname{aut}(P)) = \mathscr{F}(P),$$

induced by the inclusion $aut_G(P) \rightarrow aut(P)$.

In [3, Problem 13, p. 206] the author has raised the following problem in 1988: when is the homomorphism (1.6) a monomorphism.

At this point no examples are known, where this homomorphism is not a monomorphism.

K. Tsukiyama

In this note we give an example where this forgetting homomorphism (1.6) is not a monomorphism.

2. Example.

Let G be a compact connected Lie group which is not a torus, and let T be a maximal torus of G. We have the following principal fibre bundle with structure group G:

$$(2.1) G \longrightarrow G/T \longrightarrow BT.$$

We have the following homotopy commutative diagram

where $i: T \subset G$ is an inclusion.

We show that for the principal fibre bundle (2.1), the natural homomorphism

(2.3)
$$\mathscr{F}_G(G/T) \longrightarrow \mathscr{F}(G/T)$$

cannot be a monomorphism.

EXAMPLE 1. The natural map $\mathcal{F}_{\mathcal{G}}(G/T) \rightarrow \mathcal{F}(G/T)$ is not a monomorphism.

PROOF. First we show that

$$\pi_1(\max(BT, BG), Bi)$$

is an uncountable group.

By D. Notbohm [1, pp. 156–157, 163],

(2.4)
$$\pi_1(\operatorname{map}(BT, BG), Bi) \cong \prod_{n \ge 1} H^n(BT, \pi_{n+1}(G) \otimes Z^{\wedge}/Z),$$

where Z^{\uparrow} is the completion of the integer Z.

Since $Z^{/Z}$ is a rational vector space of uncountable dimension, $\pi_1(\max(BT, BG), Bi)$ is an uncountable group.

We consider the Serre fibration induced by the principal fibre bundle (2.1)

$$\operatorname{aut}_{G}(G/T) \longrightarrow \operatorname{aut}(BT)$$
.

Since $\pi_1(\operatorname{aut}BT, 1)=0$, we have the following exact sequence by [4, Theorem 1.5], which is induced by the homotopy exact sequence of this fibration

(2.5)
$$0 \longrightarrow \pi_1(\operatorname{map}(BT, BG), Bi) \longrightarrow \mathcal{F}_G(G/T) \longrightarrow \mathcal{F}(BT).$$

By (2.4) $\mathcal{F}_G(G/T)$ is uncountable.

Next we consider the group $\mathcal{F}(G/T)$. By S. Papadima [2, Proposition], $\mathcal{F}(G/T)$ is a finite group.

Therefore, the map $\mathcal{F}_G(G/T) \rightarrow \mathcal{F}(G/T)$ cannot be a monomorphism.

REMARK. One may think that the map (2.3) may be a surjection. Consider the following principal fibre bundle of the form (2.1)

$$S^3 \longrightarrow S^3/S^1 \longrightarrow BS^1$$
.

 $\mathcal{F}_{S^3}(S^3/S^1)$ is isomorphic to the group of based *G*-equivariant self equivalences $\mathcal{F}_{S^3}^*(S^3/S^1)$, since $\pi_1(S^3/S^1) = \pi_1(S^2) = 0$. Hence any S^3 -equivariant self-equivalences on the total space $S^3/S^1 = S^2$ induces an identity map on the fibre S^3 .

Therefore

$$\mathcal{F}_{S^3}(S^2) \longrightarrow \mathcal{F}(S^2)$$

is not surjective.

Bibliography

- [1] D. Notbohm, Maps between classifying spaces, Math. Z., 207 (1991), 153-168.
- [2] S. Papadima, Rigidity properties of compact Lie groups modulo maximal tori, Math. Ann., 275 (1986), 637-652.
- [3] R. Piccinini, Groups of self-equivalences and related topics, Springer-Verlag, 1425, 1990.
- [4] K. Tsukiyama, Equivariant self equivalences of principal fibre bundles, Math. Proc. Cambridge Philos. Soc., 98 (1985), 87-92.
- [5] H. Oshima and K. Tsukiyama, On the group of equivariant self-equivalences of free actions, Publ. Res. Inst. Math. Sci., Kyoto Univ., 22 (1986), 905-923.

Kouzou TSUKIYAMA Department of Mathematics Shimane University Matsue, Shimane 690 Japan