The group ring of $GL_n(q)$ and the q-Schur algebra

By Mitsuhiro TAKEUCHI*

(Received Dec. 22, 1992) (Revised Jun. 6, 1994)

Introduction.

Dipper-James [5] have introduced the q-Schur algebra $S_q(n)$ to study representations of $GL_n(q)$ in non-describing characteristic. The q-Schur algebra is a q-analogue of the usual Schur algebra, and its representations are equivalent to polynomial representations of quantum general linear group [3]. Dipper-James [5] have established an interesting relationship between representations of $GL_n(q)$ and the q-Schur algebra $S_q(n)$. They deal with not only unipotent representations but also cuspidal representations. In this paper, we restrict to unipotent representations and show there is a shorter realization of the Dipper-James correspondence in this case.

Let KG be the group algebra of $G=GL_n(q)$ over the field K whose characteristic does not divide q. Let B be the upper-triangular matrices and let M=KG[B] the left ideal generated by [B], the sum of all elements in B. Let I_M be the annihilator of M in KG. By unipotent representations of G, we mean left KG/I_M modules. Let $\mathbf{mod}\ KG/I_M$ be the category of all left KG/I_M modules.

Let λ be a partition of n. James [9] defines the Specht module S_{λ} and its irreducible quotient D_{λ} . Both are left KG/I_M modules, and the set of D_{λ} for all partitions λ of n exhausts all irreducible unipotent representations of G. On the other hand, Dipper-James [6] define the q-Weyl module W_{λ} and its irreducible quotient F_{λ} , which are left $S_q(n)$ modules. The purpose of this paper is to prove:

THEOREM. Assume K has a primitive p-th root of 1. There is an idempotent E in KG/I_M satisfying the following properties:

- (a) The algebra $E(KG/I_M)E$ is isomorphic to the q-Schur algebra $S_q(n)$.
- (b) The functor $V \mapsto EV$ gives a category equivalence from $\operatorname{mod} KG/I_M$ to $\operatorname{mod} S_q(n)$.
- (c) Let λ be a partition of n, and let λ' be its dual partition. Under the category equivalence of (b), the KG/I_M module S_{λ} (resp. D_{λ}) corresponds to the $S_q(n)$ module $W_{\lambda'}$ (resp. $F_{\lambda'}$).

^{*} Supported in part by the Sumitomo Foundation grant 93-103-624.

As a corollary, if λ and μ are two partitions of n, one sees the composition multiplicity of D_{μ} in S_{λ} equals the composition multiplicity of $F_{\mu'}$ in $W_{\lambda'}$ (cf. [5, Theorem 4.7]).

I hope the theorem above yields a better understanding of some part of the Dipper-James theory. It is proved as follows.

The endomorphism algebra $\operatorname{End}_{KG}(M)$ is isomorphic to the Hecke algebra $\mathcal H$ associated with the pair (G,B) [8][1]. We let $\mathcal H$ act on M on the right. We define some idempotent e in KG explicitly (1.1) and prove the following properties:

- 1) The algebra KG/I_M is Morita equivalent to $e(KG/I_M)e$ via the functor $V \mapsto eV$ (1.11).
- 2) The canonical algebra map $eKGe \rightarrow \text{End}_{\mathcal{S}}(eM)$ is surjective (3.1).
- 3) The algebra $e(KG/I_M)e$ is isomorphic to the generalized q-Schur algebra S_A associated with some full labelling Λ (4.1).
- 4) In general, the generalized q-Schur algebra S_A associated with a full labelling A has an idempotent ε such that $\varepsilon S_A \varepsilon$ is isomorphic to $S_q(n)$ and that S_A is Morita equivalent to $S_q(n)$ via the functor $V \mapsto \varepsilon V$ (4.3).

Statements (a) and (b) of the theorem follow from 1), 3) and 4) above. (Item 2) is used to yield 3) and it requires a long calculation). The final statement (c) follows from definition of the idempotents e and ϵ together with the definition of modules S_{λ} and W_{λ} .

1. Representations of $GL_n(q)$

Let $G=GL_n(q)$ with q a power of the prime p. Let K be a field containing a primitive p^{th} root of 1. This means char $K\neq p$ in particular. We construct q^{n-1} orthogonal idempotents of the group algebra KG, by using the method of $[9, \S 9]$.

Let B be the subgroup of all upper triangular matrices in G, and let M = KG[B] the left ideal generated by [B], the sum of all b in B. (We are using Green's notation [7, 5.3]). Let U^{\pm} be the subgroup of all upper (resp. lower) triangular unipotent matrices in G. Let W be the subgroup of all permutation matrices in G. We identify W with the symmetric group on n letters. (We let a permutation act on letters on the left).

Let χ_1, \dots, χ_q be the distinct linear K-characters of $(F_q, +)$, where χ_1 is the trivial character (see [9, 9.1]). Let I(q, n-1) be the set of all sequences $c = (c(1), \dots, c(n-1))$ with $1 \le c(i) \le q$.

1.1. DEFINITION. For c in I(q, n-1), define a linear K-character

$$\chi_c: U^- \longrightarrow K$$

by setting

$$\chi_c(g) = \prod_{i=1}^{n-1} \chi_{c(i)}(g_{i+1,i}), \qquad g = (g_{ij}) \text{ in } U^-.$$

Define an idempotent in KG

$$E_c = |U^-|^{-1} \sum_{g \text{ in } U^-} \chi_c(g) g$$
.

(Note that the order $|U^-|$ is a power of q.) The intersection of all kernels $\text{Ker}(\chi_c)$ coincides with the commutator subgroup $(U^-)'$ of U^- . We define

$$e = |(U^{-})'|^{-1} \sum_{g \text{ in } (U^{-})'} g$$
.

1.2. PROPOSITION. $\{E_c \mid c \text{ in } I(q, n-1)\}$ is a set of orthogonal idempotents whose sum is e.

This is obvious, since $\{\chi_c \mid c \text{ in } I(q, n-1)\}$ exhausts all linear K-characters of U^- (cf. [9, line -2, p. 43]). It follows that

$$eM = \bigoplus_{c \text{ in } I(q, n-1)} E_c M$$
.

By a composition of n, we mean a sequence

$$\lambda = (\lambda_1, \lambda_2, \cdots)$$

of non-negative integers whose sum is n. It is called a partition if $\lambda_1 \ge \lambda_2 \ge \cdots$. Let $\mathcal{C}(n)$ (resp. $\mathcal{P}(n)$) be the set of all compositions (resp. partitions) of n.

Usually, we denote the composition λ by a finite sequence

$$(\lambda_1, \lambda_2, \cdots, \lambda_h)$$

which means that $\lambda_{h+1} = \lambda_{h+2} = \cdots = 0$. We say the composition λ is *tight* if $\lambda_a = 0$ implies $\lambda_{a+1} = 0$. All partitions are tight.

1.3. DEFINITION. For c in I(q, n-1), let

$$c^{-1}(1) = \{\Lambda_1, \Lambda_2, \cdots, \Lambda_{h-1}\}$$

with $1 \le \Lambda_1 < \Lambda_2 < \cdots < \Lambda_{h-1} < n$. We define

$$\lambda^{c} = (\Lambda_{1}, \Lambda_{2} - \Lambda_{1}, \cdots, \Lambda_{h-1} - \Lambda_{h-2}, n - \Lambda_{h-1})$$

which is a tight composition of n.

1.4. PROPOSITION. Let c and d be sequences in I(q, n-1). If $\lambda^c = \lambda^d$, then E_c and E_d are conjugate by a diagonal matrix in G.

This follows by using [9, (9.6)].

1.5. DEFINITION. Conversely, let λ be a tight composition of n. Define a sequence $c_{\lambda} = (c_{\lambda}(1), \dots, c_{\lambda}(n-1))$ in I(q, n-1) as follows:

$$c_\lambda(i) = \left\{ egin{array}{ll} 1 & ext{ if } i = \lambda_1 + \lambda_2 + \cdots + \lambda_a & ext{for some } a \geqq 1 \ 2 & ext{ otherwise.} \end{array}
ight.$$

We put

$$\chi_{\lambda} = \chi_{c_{\lambda}}$$
 and $E_{\lambda} = E_{c_{\lambda}}$.

Obviously, the composition associated with c_{λ} is λ . Note that our notation is a bit different from James [9, 11.4], where E_{λ} stands for our $E_{\lambda'}$ with λ' the partition dual to λ .

1.6. COROLLARY. If $\lambda = \lambda^c$, then E_c is conjugate to E_{λ} by a diagonal matrix in G.

We construct a K-basis for E_cM with c in I(q, n-1).

1.7. FACT [9, 7.11]. M has a K-basis $\{u\pi[B] | \pi \text{ in } W, u \text{ in } U^- \cap \pi U^- \pi^{-1}\}.$

If λ is a composition of n, we can decompose $\{1, 2, \dots, n\}$ as the disjoint union of *intervals* $\{1, 2, \dots, \lambda_1\}$, $\{\lambda_1+1, \lambda_1+2, \dots, \lambda_1+\lambda_2\}$, These intervals are called associated with the composition λ .

1.8. DEFINITION. A permutation π of n letters is distinguished relative to the composition λ if π^{-1} is increasing on each interval associated with λ . Let \mathcal{D}_{λ} be the set of all permutations distinguished relative to λ .

For π in W and u in $U^- \cap \pi U^- \pi^{-1}$, we have

$$E_c u \pi \lceil B \rceil = \chi_c(u)^{-1} E_c \pi \lceil B \rceil$$

and it follows from [9, 10.2] that $E_c\pi[B]\neq 0$ if and only if c(i)>1 implies $\pi^{-1}(i+1)>\pi^{-1}(i)$, i.e., π is distinguished relative to λ^c . Thus we have the following:

- 1.9. PROPOSITION. Let c be in I(q, n-1) and $\lambda = \lambda^c$.
- (a) For π in W, $E_c\pi[B]\neq 0$ if and only if π is distinguished relative to λ .
- (b) The set $\{E_c\pi[B]|\pi \text{ in } \mathcal{D}_{\lambda}\}$ forms a K-basis for E_cM .

We end this section by recalling the definition and main properties of the KG modules M_{λ} and S_{λ} associated with compositions λ of n.

Let P_{λ} be the parabolic subgroup of G corresponding to the composition λ . It consists of all $g=(g_{ij})$ in G such that $g_{ij}=0$ if i>j and i and j belong to distinct intervals relative to λ . Let $M_{\lambda}=KG[P_{\lambda}]$ a left ideal contained in M.

The K vector space $E_{\lambda'}M_{\lambda}$ is one-dimensional [9, 11.7] and we define $S_{\lambda} = KGE_{\lambda'}M_{\lambda}$ a submodule of M_{λ} (λ' the partition dual to λ). S_{λ} has a unique maximal submodule S_{λ}^{nax} and the quotient $D_{\lambda} = S_{\lambda}/S_{\lambda}^{\text{max}}$ is an absolutely irreducible KG module [9, (11.12)].

The following properties are proved in [9].

- 1.10. PROPERTIES OF M_{λ} , S_{λ} , AND D_{λ} .
- (1) M_{λ} , S_{λ} , and D_{λ} are defined over the prime field.
- (2) $S_{\lambda} = D_{\lambda}$ in characteristic zero [9, 11.16].
- (3) dim S_{λ} is independent of the field K [9, 16.5].
- (4) For a prime $l \neq p$, the module S_{λ, F_l} is identified with the *l*-modular reduction of $S_{\lambda, Q}$ [9, 16.6].
- (5) Let μ be the partition of n obtained by rearranging the parts of λ . Then

$$M_{\lambda} \cong M_{\mu}$$
, $S_{\lambda} \cong S_{\mu}$, $D_{\lambda} \cong D_{\mu}$ [9, 16.1].

(6) Every composition factor of the KG module M is isomorphic to D_{μ} for a uniquely determined partition μ of n [9, 16.4].

Let I_M be the annihilator of M in KG. We are concerned with representations of the quotient algebra KG/I_M , i.e., unipotent representations of G.

1.11. THEOREM. The functor

$$\operatorname{mod} KG/I_{M} \longrightarrow \operatorname{mod} e(KG/I_{M})e, \qquad V \mapsto eV$$

is a category equivalence.

PROOF. The set of D_{λ} for all partitions λ of n gives a complete set of representatives of all irreducible KG/I_M modules, by 1.10 (6). By construction, $eD_{\lambda}\neq 0$ for all λ . In fact, if $E_{\lambda}\cdot M_{\lambda}$ is spanned by v, then v=ev but $v\notin S_{\lambda}^{\max}$. It follows from the arguments in Chap. 6 of [7] that the above functor is a category equivalence. Q.E.D.

2. The Hecke algebra.

We use [8], [1], [4] as basic references on Hecke algebras. Let \mathcal{H} be the Hecke algebra $H_K(G, B)$ which has a K-basis T_{π} , π in W such that if s=(i, i+1) is a basic transposition, then we have

$$T_{\pi}T_{s} = \begin{cases} T_{\pi s} & \text{if } \pi(i) < \pi(i+1) \\ qT_{\pi s} + (q-1)T_{\pi} & \text{if } \pi(i) > \pi(i+1). \end{cases}$$

There is a right \mathcal{H} module structure on M which commutes with the left KG action. It is defined by

$$[B]T_{\pi} = [B\pi B] = \sum_{u \text{ in } U^{+} \cap \pi U^{-}\pi^{-1}} u\pi [B], \quad \pi \quad \text{in } W.$$

The right \mathcal{H} action induces an opposite algebra isomorphism

$$\mathcal{H} \underset{\text{opp}}{\cong} \operatorname{End}_{KG}(M)$$
.

Let λ be a composition of n. We denote by Y_{λ} the Young subgroup of W associated with λ . It consists of all permutations which leave the intervals $\{1, 2, \dots, \lambda_1\}$, $\{\lambda_1+1, \lambda_1+2, \dots, \lambda_1+\lambda_2\}$, \dots invariant. We define elements in \mathcal{H}

$$x_{\lambda} = \sum_{\pi \text{ in } Y_{\lambda}} T_{\pi}, \qquad y_{\lambda} = \sum_{\pi \text{ in } Y_{\lambda}} (-q)^{-l(\pi)} T_{\pi}$$

where $l(\pi)$ denotes the length of π [4, §3].

2.1. LEMMA (cf. [10, p. 235]). We have $[P_{\lambda}] = [B] x_{\lambda}$. Hence $M_{\lambda} = M x_{\lambda}$.

PROOF. The set $\{u\pi \mid \pi \text{ in } Y_{\lambda}, u \text{ in } U^{+} \cap \pi U^{-}\pi^{-1}\}$ forms a system of left coset representatives for B in P_{λ} . Hence we have

$$[P_{\lambda}] = \sum_{\pi, u} u \pi[B] = \sum_{\pi \text{ in } Y_{\lambda}} [B] T_{\pi} = [B] x_{\lambda}.$$
Q. E. D.

The multiplication of W induces a bijection

$$Y_{\lambda} \times \mathcal{D}_{\lambda} \cong W$$

and we have

$$x_{\lambda}T_{\pi} = q^{l(\pi)}x_{\lambda}, \quad y_{\lambda}T_{\pi} = (-)^{l(\pi)}y_{\lambda,\pi} \qquad \pi \text{ in } Y_{\lambda}.$$

The right ideal $x_{\lambda}\mathcal{H}$ (resp. $y_{\lambda}\mathcal{H}$) has a K-basis $x_{\lambda}T_{d}$ (resp. $y_{\lambda}T_{d}$) for d in \mathcal{D}_{λ} [4, 3, 2].

If μ is a composition of n obtained by rearranging the parts of λ , there is a permutation d in $\mathcal{D}_{\lambda} \cap \mathcal{D}_{\mu}^{-1}$ such that $x_{\lambda} T_{d} = T_{d} x_{\mu}$ [6, (1.1)]. This implies $M_{\lambda} \cong M_{\mu}$ as KG modules (1.10 (5)).

There is an algebra automorphism

$$\#: \mathcal{H} \longrightarrow \mathcal{H}$$

such that $T_s^*=q-1-T_s$ if s=(i,i+1) is a basic transposition [5, §2]. (Cf. the paragraph before [5, (2.1)].)

2.2. PROPOSITION. If $\lambda = (\lambda_1, \dots, \lambda_h)$ is a composition of n,

$$x_{\lambda}^{\#} = q^{\lambda_{1}(\lambda_{1}-1)/2+\cdots+\lambda_{h}(\lambda_{h}-1)/2}y_{\lambda}.$$

PROOF. We have only to show

$$x_{(n)}^* = q^{n(n-1)/2}y_{(n)}$$
.

In fact, it follows from l.3-l.5, p. 25 [5] that $x_{(n)} = ry_{(n)}$ with some scalar r. Comparison of the coefficients of T_{w_0} with the longest element w_0 yields $r=q^{n(n-1)/2}$. This shorter proof is due to the referee. Q.E.D.

We have a direct sum decomposition of the right \mathcal{H} module

$$eM = \bigoplus_{c \text{ in } I(q, n-1)} E_c M$$
.

We show that E_cM is isomorphic to $y_{\lambda}\mathcal{H}$ with $\lambda = \lambda^c$.

For $i \neq j$ and α in F_q , let $x_{ij}(\alpha) = I + \alpha E_{ij}$ with matrix units E_{ij} [9, §5].

- 2.3. Lemma. Let s=(i, i+1). Then
- (i) $\lceil B \rceil T_s = s \lceil B \rceil + \sum_{\alpha \neq 0} x_{i+1, i}(\alpha) \lceil B \rceil$.
- (ii) $[B]T_s^* = -s[B] + \sum_{\alpha \text{ in } F_q} (1 x_{i+1, i}(\alpha))[B].$

PROOF. (ii) follows from (i). If $\alpha \neq 0$ in F_q , then we have $x_{i,i+1}(\alpha)s[B] = x_{i+1,i}(\alpha^{-1})[B]$ by using

$$\begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \alpha^{-1} & 1 \end{pmatrix} \begin{pmatrix} \alpha & 1 \\ 0 & -\alpha^{-1} \end{pmatrix}.$$

Hence,

$$[B]T_s = \sum_{\alpha \text{ in } F_q} x_{i, i+1}(\alpha)s[B] = s[B] + \sum_{\alpha \neq 0} x_{i+1, i}(\alpha^{-1})[B]$$

yielding (i). Q.E.D.

2.4. PROPOSITION. Let c be in I(q, n-1) and $\lambda = \lambda^c$. If π is a permutation in Y_{λ} , then we have

$$E_c \lceil B \rceil T_{\pi} = (-)^{l(\pi)} E_c \lceil B \rceil$$
.

PROOF. We may assume $\pi = s = (i, i+1)$, where c(i) > 1. By using 2.3 (i) above, we have

$$E_c[B]T_s = E_cs[B] + \sum_{\alpha \neq 0} E_c x_{i+1,i}(\alpha)[B]$$
.

Let $\chi = \chi_{c(i)}^{-1}$ which is a nontrivial linear K-character of $(F_q, +)$. Then we have

$$E_c x_{i+1,i}(\alpha) = \chi(\alpha) E_c$$
 and $\sum_{\alpha} \chi(\alpha) = 0$.

On the other hand, $E_c s[B] = 0$, since s is not distinguished relative to λ (1.9 (a)). Hence we have

$$E_c[B]T_s = (\sum_{\alpha \neq 0} \chi(\alpha))E_c[B] = -E_c[B].$$

Q.E.D.

2.5. Proposition. Let c be in I(q, n-1) and $\lambda = \lambda^c$. For d in \mathcal{D}_{λ} , we have

$$E_{c}[B]T_{a}^{*} = (-)^{l(d)}E_{c}d[B]$$
.

PROOF. This is proved by induction on the length l(d). Assume l(d)>0. Take i with $1 \le i < n$ such that d(i)>d(i+1) and write $d=\sigma s$ with s=(i, i+1). Then $l(d)=l(\sigma)+1$. Since d is distinguished relative to λ , d(i) and d(i+1) should

belong to distinct intervals relative to λ . It follows that σ is distinguished relative to λ , too. We have

$$E_{c}[B]T_{\sigma}^{\sharp} = (-)^{l(\sigma)}E_{c}\sigma[B]$$

by the induction hypothesis. Using 2.3 (ii), we have

$$\begin{split} E_c[B]T_d{}^{\sharp} &= (-)^{l(\sigma)}E_c\sigma[B]T_s{}^{\sharp} \\ &= (-)^{l(d)}E_cd[B] + (-)^{l(\sigma)}\sum_{\alpha \text{ in } F_q}E_c\sigma(1-x_{i+1,\,i}(\alpha))[B] \,. \end{split}$$

We claim the second term vanishes. In fact,

$$E_{c}\sigma(1-x_{i+1,i}(\alpha)) = E_{c}(1-x_{\sigma(i+1),\sigma(i)}(\alpha))\sigma^{-1}$$

$$= \{1-\chi_{c}(x_{\sigma(i+1),\sigma(i)}(\alpha))\} E_{c}\sigma^{-1} = 0$$

since $\sigma(i)$ and $\sigma(i+1)$ belong to distinct intervals relative to λ . Q. E. D.

2.6. THEOREM. Let c be a sequence in I(q, n-1) and let $\lambda = \lambda^c$. There is an isomorphism of right \mathcal{H} modules

$$E_c M \cong y_{\lambda} \mathcal{H}, \quad E_c \lceil B \rceil h \longleftrightarrow y_{\lambda} h, \quad h \quad \text{in } \mathcal{H}.$$

PROOF. Proposition 2.4 implies the \mathcal{H} homomorphism $y_{\lambda}\mathcal{H} \to E_c M$, $y_{\lambda}h \mapsto E_c[B]h$ is well-defined. Consider the composite

$$x_{\lambda} \mathcal{H} \xrightarrow{*} y_{\lambda} \mathcal{H} \longrightarrow E_{c} M$$
.

The basis element $x_{\lambda}T_{d}$ goes to $E_{c}[B]T_{d}^{*}$ (up to a factor which is a power of q) for each d in \mathcal{D}_{λ} . Since $E_{c}[B]T_{d}^{*}$, d in \mathcal{D}_{λ} , form a K-basis for $E_{c}M$ by Propositions 1.9 and 2.5, the claim follows. Q. E. D.

3. Double centralizer theorem.

Since $V\mapsto eV$ is a category equivalence (1.11), the left KG module M and the left eKGe module eM have isomorphic endomorphism algebras which are anti-isomorphic to \mathcal{H} . We prove the left eKGe module eM has the following double centralizer property.

3.1. Theorem. The canonical algebra homomorphism

$$eKGe \longrightarrow \operatorname{End}_{\mathscr{A}}(eM)$$

is surjective.

This property can also be thought of as an analogue of Schur's reciprocity theorem [7, (2.6c)]. The rest of this section is devoted to the proof of this theorem.

Let c, d be sequences in I(q, n-1). We have only to show that every \mathcal{H} homomorphism $E_dM \to E_cM$ is the left multiplication by some element in E_cKGE_d . If the idempotents E_c and E_d satisfy this property, then obviously the conjugates gE_cg^{-1} and hE_dh^{-1} , with g and h in G, also satisfy the same property. Hence we can assume

$$E_c = E_\lambda$$
 and $E_d = E_\mu$

with tight compositions λ and μ of n. There is a 1-1 correspondence

such that if $\phi(x_{\mu})=x_{\lambda}h$ with h in \mathcal{H} , then $\psi(E_{\mu}[B])=E_{\lambda}[B]h^*$. This correspondence arises from #-isomorphisms

$$x_{\lambda}\mathcal{H} \cong E_{\lambda}M$$
 and $x_{\mu}\mathcal{H} \cong E_{\mu}M$

given by $x_{\lambda}h \leftrightarrow E_{\lambda}[B]h^*$ and $x_{\mu}h \leftrightarrow E_{\mu}[B]h^*$ for h in \mathcal{H} .

All \mathcal{H} homomorphisms $x_{\mu}\mathcal{H} \rightarrow x_{\lambda}\mathcal{H}$ are described in [4] as follows. We set

$$\mathcal{D}_{\lambda,\mu} = \mathcal{D}_{\lambda} \cap \mathcal{D}_{\mu}^{-1}$$

which is a system of $Y_{\lambda}-Y_{\mu}$ double coset representatives in W. Let d be a permutation in $\mathcal{D}_{\lambda,\mu}$. There are tight compositions ν and γ of n such that

$$Y_{\nu} = d^{-1}Y_{\lambda}d \cap Y_{\mu}$$
 and $Y_{r} = dY_{\mu}d^{-1} \cap Y_{\lambda}$.

A composition α is called a *refinement* of λ if $Y_{\alpha} \subset Y_{\lambda}$. Thus the composition ν (resp. γ) is a refinement of μ (resp. λ). We define elements in \mathcal{H}

(3.3)
$$\eta = \sum_{u \text{ in } Y_{\lambda \cap} \mathcal{D}_{\gamma}^{-1}} T_u \text{ and } \eta' = \sum_{v \text{ in } Y_{\mu \cap} \mathcal{D}_{\nu}} T_v.$$

We have

$$\eta T_d x_\mu = \sum_{w \text{ in } Y_\lambda dY_\mu} T_w = x_\lambda T_d \eta'.$$

We define an A homomorphism

$$\phi_d: x_\mu \mathcal{H} \longrightarrow x_\lambda \mathcal{H}$$

by setting

$$\phi_d(x_{\mu}h) = \eta T_d x_{\mu}h = x_{\lambda} T_d \eta' h, \quad h \text{ in } \mathcal{H}.$$

3.4. LEMMA [4, 3.4 Theorem]. The \mathcal{H} homomorphisms ϕ_d , d in $\mathfrak{D}_{\lambda,\mu}$, form a K-basis for $\operatorname{Hom}_{\mathcal{H}}(x_{\mu}\mathcal{H}, x_{\lambda}\mathcal{H})$.

For d in $\mathcal{D}_{\lambda,\mu}$, let

$$\phi_d: E_u M \longrightarrow E_{\lambda} M$$

be the \mathcal{H} homomorphism corresponding to ϕ_d under the correspondence of (3.2).

Thus we have

$$\psi_d(E_{\mu}[B]) = E_{\lambda}[B] T_d^* \eta'^* = \sum_{v \text{ in } Y_{\mu} \cap \mathcal{D}_{\nu}} (-)^{l(d)+l(v)} E_{\lambda} dv[B].$$

The double centralizer theorem will follow if we prove:

3.5. CLAIM. Let λ and μ be tight compositions of n, and let d be a permutation in $\mathfrak{D}_{\lambda,\mu}$. The $\mathcal H$ homomorphism ψ_d is the left multiplication by some element in $E_{\lambda}KGE_{\mu}$.

This claim is proved by induction on the fixed integer n. We will make some reductions.

- 3.6. REDUCTION. It is enough to show Claim 3.5 in the following three special cases.
- (a) d=1 and λ is a refinement of μ . The corresponding ϕ_d is the inclusion $x_u \mathcal{H} \rightarrow x_{\lambda} \mathcal{H}$.
- (b) d=1 and μ is a refinement of λ . The corresponding ϕ_d is the projection $x_{\mu}\mathcal{H} \rightarrow x_{\lambda}\mathcal{H}, x_{\mu} \mapsto x_{\lambda}$.
 - (c) $Y_{\lambda}d=dY_{\mu}$. In this case, we have $x_{\lambda}T_{d}=T_{d}x_{\mu}$, and

$$\phi_d(x_{\mu}h) = T_d x_{\mu}h = x_{\lambda}T_d h, \quad h \text{ in } \mathcal{H}.$$

In fact, using the notation of (3.3), the $\mathcal H$ homomorphism ϕ_d factors as follows:

$$\phi_d: x_{\mu}\mathcal{H} \xrightarrow{i} x_{\nu}\mathcal{H} \xrightarrow{\zeta} x_{\gamma}\mathcal{H} \xrightarrow{p} x_{\lambda}\mathcal{H}$$

where i is the inclusion and ζ (resp. p) is the left multiplication by T_d (resp. η). Note that $p(x_{\gamma})=x_{\lambda}$, since $\eta x_{\gamma}=x_{\lambda}$. These maps i, p, and ζ are of the form ϕ_d corresponding to cases (a), (b), and (c) respectively.

- 3.7. REDUCTION. We can further reduce the proof of 3.5 to the following cases.
- (a) d=1, $\mu=(\mu_1, \dots, \mu_{a-1}, m, \mu_{a+1}, \dots, \mu_h)$ and $\lambda=(\mu_1, \dots, \mu_{a-1}, i, m-i, \mu_{a+1}, \dots, \mu_h)$.
- (b) d=1, $\lambda=(\lambda_1, \dots, \lambda_{a-1}, m, \lambda_{a+1}, \dots, \lambda_h)$ and $\mu=(\lambda_1, \dots, \lambda_{a-1}, i, m-i, \lambda_{a+1}, \dots, \lambda_h)$.
 - (c) $\lambda = (\lambda_1, \dots, \lambda_{a-1}, i, j, \lambda_{a+2}, \dots, \lambda_h), \ \mu = (\lambda_1, \dots, \lambda_{a-1}, j, i, \lambda_{a+2}, \dots, \lambda_h), \ \text{and}$ $d = \begin{pmatrix} k+1, \dots, k+j, & k+1+j, \dots, k+i+j \\ k+i+1, \dots, k+i+j, & k+1, \dots, k+i \end{pmatrix}$

where $k = \lambda_1 + \cdots + \lambda_{\alpha-1}$.

PROOF. (a), (b) This is easy since any refinement of a composition is obtained by dividing a part into two parts successively.

(c) Assume that $Y_{\lambda}d=dY_{\mu}$. Then the composition λ is obtained by rearranging the parts of μ . There is a permutation π such that

$$\lambda = (\mu_{\pi(1)}, \dots, \mu_{\pi(h)}),$$

$$\mu = (\mu_1, \dots, \mu_h), \quad \text{with } \mu_a > 0 \text{ if } 1 \leq a \leq h.$$

The permutation d maps the $a^{\rm th}$ interval relative to μ onto the $\pi^{-1}(a)^{\rm th}$ interval relative to λ as an order preserving isomorphism. Thus the pair (d, λ) is determined by the permutation π of the parts of μ . Let us write $d=d(\pi): \mu \rightarrow \lambda = \mu \pi$ symbolically in this case. We have

(3.7.1)
$$l(d) = \sum_{a < b, \pi^{-1}(a) > \pi^{-1}(b)} \mu_a \mu_b.$$

Take some a with $1 \le a < h$ and $\pi^{-1}(a) > \pi^{-1}(a+1)$. Let s = (a, a+1) and write $\pi = s\rho$. Then $d = d(\pi) = d(\rho)d(s)$, where $d(s) : \mu \to \mu s$ and $d(\rho) : \mu s \to \mu s\rho = \lambda$. Since $l(\pi) = l(\rho) + l(s)$, it follows from (3.7.1) that $l(d) = l(d(\rho)) + l(d(s))$. This implies $T_a = T_{d(\rho)} T_{d(s)}$, i.e.,

$$\phi_d = \phi_{d(\rho)}\phi_{d(s)} : x_{\mu}\mathcal{H} \longrightarrow x_{\mu s}\mathcal{H} \longrightarrow x_{\lambda}\mathcal{H}.$$

Therefore 3.6 (c) reduces to the case $d(s): \mu \rightarrow \mu s$.

Q. E. D.

3.8. OBSERVATION.

We identify a tight composition as a finite sequence of its nonzero parts. In each case of 3.7 above, the tight compositions λ and μ can be written in the form

$$\lambda = (\alpha, \, \hat{\lambda}, \, \beta)$$
 and $\mu = (\alpha, \, \tilde{\mu}, \, \beta)$

where α (resp. β) is a tight composition of k (resp. m), and $\tilde{\lambda}$, $\tilde{\mu}$ are tight compositions of l, for some integers k, l, m whose sum is n. Let G_l be the subgroup of all $g=(g_{ij})$ in G such that $g_{ij}=\delta_{ij}$ unless $k+1 \leq i$, $j \leq k+l$. Let \mathcal{H}_l be the subalgebra of \mathcal{H} spanned by all T_{π} with π in $W_l=W \cap G_l$. It is identified with the Hecke algebra $H_K(G_l, B_l)$ where $B_l=B \cap G_l$. In each case of 3.7, we may think d is a permutation in $\mathcal{D}_{\tilde{\lambda},\tilde{\mu}}$ ($=W_l \cap \mathcal{D}_{\lambda,\mu}$). In this case, the corresponding elements η , η' (3.3) belong to the subalgebra \mathcal{H}_l . Let $M_l=KG_l[B_l]$ which is a left ideal of KG_l . Let

$$\tilde{\phi}_d: x_{\tilde{\mu}}\mathcal{H}_l \longrightarrow x_{\tilde{\lambda}}\mathcal{H}_l \text{ and } \tilde{\psi}_d: E_{\tilde{\mu}}M_l \longrightarrow E_{\tilde{\lambda}}M_l$$

be the G_l -analogues of \mathcal{H} homomorphisms ϕ_d and ψ_d . It follows that there is some element ξ in KG_l (see above 3.5) such that

$$\psi_d(E_u[B]) = E_{\lambda}\xi[B]$$
 and $\tilde{\psi}_d(E_{\tilde{u}}[B_t]) = E_{\tilde{\lambda}}\xi[B_t]$.

Assume there is an element ξ' in KG_l such that

$$(3.8.1) E_{\tilde{\lambda}}\xi[B_{l}] = \xi'E_{\tilde{\mu}}[B_{l}].$$

We claim the same relation

$$(3.8.2) E_{\lambda} \xi \lceil B \rceil = \xi' E_{u} \lceil B \rceil$$

holds. If l < n, such an element ξ' exists by the induction hypothesis.

To prove the claim, let V be the subgroup of all $u=(u_{ij})$ in U^- such that $u_{ij}=\delta_{ij}$ if $k+1\leq i,\ j\leq k+l$. Note that the linear characters χ_{λ} and χ_{μ} coincide on V by (1.5). Let χ be the common restriction. The subgroup V is normalized by G_l and the character χ is G_l -invariant. Hence the idempotent

$$E = |V|^{-1} \sum_{u \text{ in } V} \chi(u) u$$

commutes with the elements in G_l and we have by [9, 9.2]

$$E_{\lambda} = E E_{\tilde{\lambda}}, \qquad E_{\mu} = E E_{\hat{\mu}}.$$

The equality (3.8.2) is obtained by applying $\sum_i E(-)b_i$ to (3.8.1), where $\{b_i\}$ is a system of right coset representatives for B_i in B.

Using this observation, we have arrived at the final step.

- 3.9. REDUCTION. It is enough to show Claim 3.5 in the following three special cases.
 - (a) d=1, $\lambda=(i, n-i)$, and $\mu=(n)$.
 - (b) d=1, $\lambda=(n)$, and $\mu=(i, n-i)$.

(c)
$$\lambda = (i, n-i), \ \mu = (n-i, i), \ \text{and} \ d = \begin{pmatrix} 1, \dots, n-i, n-i+1, \dots, n \\ i+1, \dots, n, & 1, \dots, i \end{pmatrix}.$$

3.10. Proposition. Claim 3.5 is true in each case of 3.9.

PROOF. (a) $\operatorname{Hom}_{\mathcal{M}}(x_{\mu}\mathcal{H}, x_{\lambda}\mathcal{H})$ is one-dimensional, since $\mathcal{D}_{\lambda, \mu} = \{1\}$. We have only to show $E_{\lambda}KGE_{\mu}M \neq 0$. Let d be the permutation in (c) above. This d is in \mathcal{D}_{λ} . We claim $E_{\lambda}dE_{\mu}[B] \neq 0$. It is a linear combination of $E_{\lambda}\sigma[B]$ with σ in \mathcal{D}_{λ} (1.9). We will compute the coefficient of $E_{\lambda}d[B]$. Let u be an element in U^{-} . It is easy to see du is in $U^{-}dB$ if and only if u is of the form

$$u = \begin{pmatrix} u'' & 0 \\ 0 & u' \end{pmatrix}$$

where u' (resp. u'') is a lower unitriangular matrix of size i (resp. n-i). If this is the case, we have $du = \tilde{u} d$ and $\chi_{\mu}(u) = \chi_{\lambda}(\tilde{u})$ with

$$\tilde{u} = \begin{pmatrix} u' & 0 \\ 0 & u'' \end{pmatrix}.$$

Since all such matrices u form a subgroup of U^- of index $q^{i(n-i)}$, if we write $E_{\lambda}dE_{\mu}[B]$ as a linear combination of $E_{\lambda}\sigma[B]$ with σ in \mathcal{D}_{λ} , then it follows that the coefficient of $E_{\lambda}d[B]$ is $q^{-i(n-i)}$. Hence $E_{\lambda}dE_{\mu}[B]\neq 0$.

(b) $\operatorname{Hom}_{\mathscr{K}}(x_{\mu}\mathscr{H}, x_{\lambda}\mathscr{H})$ is one-dimensional, too. We have shown above $E_{\mu}dE_{\lambda}[B]\neq 0$ (with λ , μ interchanged). There is a symmetric G-invariant non-degenerate bilinear form \langle , \rangle on M defined as follows [9, 11.1]:

$$\langle g[B], h[B] \rangle = \begin{cases} 1 & \text{if } gB = hB \\ 0 & \text{otherwise.} \end{cases}$$

Let E'_{λ} and E'_{μ} be the images of E_{λ} and E_{μ} by the opposite automorphism $g \mapsto g^{-1}$. They are conjugate to E_{λ} and E_{μ} by diagonal matrices. Since $E_{\mu}dE_{\lambda}M \neq 0$, it follows that

$$\langle M, E_{\lambda}' d^{-1} E_{\mu}' M \rangle = \langle E_{\mu} d E_{\lambda} M, M \rangle \neq 0$$
.

This implies $E'_{\lambda}KGE'_{\mu}M\neq 0$, or $E_{\lambda}KGE_{\mu}M\neq 0$.

(c) The set $\mathcal{D}_{\lambda,\mu}$ consists of permutations π_0 , π_1 , \cdots , π_t with $t=\mathrm{Min}\,(i,n-i)$, where

$$\pi_a = \binom{a+1, \dots, n-i, n-i+1, \dots, n-a}{i+1, \dots, n-a, a+1, \dots, i}, \quad 0 \le a \le t.$$

Thus $\pi_0 = d$. A computation similar as in (a) yields that if we write $E_{\lambda}dE_{\mu}[B]$ as a linear combination of $E_{\lambda}\sigma[B]$ with σ in \mathcal{D}_{λ} , then the coefficient of $E_{\lambda}d[B]$ is $q^{-i(n-i)}$. It follows that the left multiplication by $E_{\lambda}dE_{\mu}$ is of the form

$$(-q)^{-i(n-i)}\psi_{\pi_0} + c_1\psi_{\pi_1} + \cdots + c_t\psi_{\pi_t}, \qquad c_t \text{ in } K.$$

To finish the proof, it is enough to verify the homomorphism ϕ_{π_a} is the left multiplication by some element in $E_{\lambda}KGE_{\mu}$ if a>0. Indeed, decompose ϕ_{π_a} as the composition

$$\psi_{\pi_a}: E_{\mu}M \xrightarrow{i} E_{\nu}M \xrightarrow{\zeta} E_{7}M \xrightarrow{p} E_{\lambda}M$$

as in 3.6. Here $\nu=(a, n-i-a, i-a, a)$ and $\gamma=(a, i-a, n-i-a, a)$. It follows from (a), (b) above that i and p are left multiplications by elements in KG and from 3.8 that ζ is also the left multiplication by some element in KG. Hence we are done. Q. E. D.

4. Generalized q-Schur algebras.

Let Λ be a finite set of compositions of n admitting some redundancy. Strictly speaking we are considering a pair (Λ, π) of a finite set Λ and a map $\pi: \Lambda \rightarrow \mathcal{C}(n)$. Such a pair is called a *labelling* of compositions. Let M_{Λ} (resp.

 M_{Λ}^{*}) be the direct sum of right \mathcal{H} modules $x_{\lambda}\mathcal{H}$ (resp. $y_{\lambda}\mathcal{H}$) for λ in Λ (λ meaning $\pi(\lambda)$ by abuse of notation). These right \mathcal{H} modules have isomorphic endomorphism algebras. We put

$$S_{\Lambda} = \operatorname{End}_{\mathcal{A}}(M_{\Lambda}) \cong \operatorname{End}_{\mathcal{A}}(M_{\Lambda}^{*})$$

and call it the generalized q-Schur algebra associated with the labelling Λ .

- 4.1. EXAMPLES. (1) $\Lambda = \mathcal{Q}(n)$. The corresponding q-Schur algebra is S(q, n) [5]. We prefer to denote it by $S_q(n)$.
- (2) $\Lambda = \Lambda(d, n)$ the set of all sequences $(\lambda_1, \dots, \lambda_d)$ of nonnegative integers whose sum is n. The corresponding q-Schur algebra is $S_q(d, n)$ [6][3] the q-analogue of the usual Schur algebra S(d, n) [7].
- (3) $\Lambda = I(q, n-1)$ with π the map $c \mapsto \lambda^c$ (1.3). The right \mathcal{H} module eM is isomorphic to M_A^* by 2.6. It follows from 3.1 that the corresponding q-Schur algebra is identified with $e(KG/I_M)e$ where I_M denotes the annihilator of M in KG.

The representation theory of q-Schur algebras as developed in [5, 6] can be generalized to our algebras S_A by Morita theory. The main results will be reviewed in the following.

Let Λ be a labelling of compositions of n. For each λ in Λ let $\xi_{\lambda}: M_{\Lambda} \rightarrow x_{\lambda} \mathcal{H}$ be the projection onto the λ component. We get orthogonal idempotents ξ_{λ} (λ in Λ) in S_{Λ} whose sum is 1. If V is a left S_{Λ} module, it is the direct sum of K subspaces $V^{\lambda} = \xi_{\lambda} V$, the λ -weight space. If two compositions λ , μ are obtained from each other by rearranging the parts (in which case we write $\lambda \sim \mu$), then, we have $x_{\lambda} \mathcal{H} \cong x_{\mu} \mathcal{H}$, hence there are f, g in S_{Λ} such that $\xi_{\lambda} = fg$ and $\xi_{\mu} = gf$. This implies $\dim_{K} V^{\lambda} = \dim_{K} V^{\mu}$.

Let Λ^+ be the set of partitions α of n such that $\alpha \sim \lambda$ for some λ in Λ . We say Λ is a *full* labelling if $\Lambda^+ = \mathcal{P}(n)$. Examples 4.1 (1) and (3) correspond to full labellings. The labelling $\Lambda(d, n)$ of (2) is full if $d \geq n$.

Let Λ be a full labelling. For each partition α of n, choose an element $\lambda(\alpha)$ in Λ such that $\alpha \sim \lambda(\alpha)$. Let ε be the sum of idempotents $\xi_{\lambda(\alpha)}$ for all partitions α of n. Since $\varepsilon M_{\Lambda} \cong M_{\mathcal{P}(n)}$ as right \mathcal{H} modules, we have $\varepsilon S_{\Lambda} \varepsilon \cong S_q(n)$ and the following functor of Schur type:

$$(4.2) \qquad \mod S_A \longrightarrow \mod S_q(n) , \qquad V \mapsto \varepsilon V .$$

The following proposition follows directly from Morita theory.

- 4.3. Proposition. Let Λ be a full labelling of compositions of n. With the idempotent ε defined above, we have
 - (i) $\varepsilon S_A \varepsilon \cong S_a(n)$ as algebras,
 - (ii) The functor (4.2) is a category equivalence.

It follows that the following algebras are Morita equivalent with one another (with n fixed).

(1)
$$S_q(n)$$
, (2) $S_q(d, n)$, $d \ge n$, (3) KG/I_M .

The Morita equivalence of (3) and (1) is realized as the composite of category equivalences 1.11 and 4.2 with $\Lambda = I(q, n-1)$.

q-Weyl modules play a crucial role in the representation theory of S_{Λ} . The main results of [6] can be translated to S_{Λ} via the category equivalence 4.2 if Λ is full. Some of them hold even if Λ is not full.

Let Λ be a labelling of compositions of n. For a composition λ of n, let λ' be the partition dual to λ . It is known that $x_{\lambda} \mathcal{H} y_{\lambda'}$ is one-dimensional [4, 4.1]. If λ is in Λ , this space is identified with $(M_{\Lambda})^{\lambda} y_{\lambda'}$ where $(M_{\Lambda})^{\lambda} = x_{\lambda} \mathcal{H}$ the λ -weight space. Let W_{λ} be the S_{Λ} submodule of M_{Λ} generated by the subspace $(M_{\Lambda})^{\lambda} y_{\lambda'}$. It is called the q-Weyl module associated with λ . If two weights λ , μ are equivalent under \sim , then $W_{\lambda} = W_{\mu}$. Therefore we can well-define the q-Weyl module W_{α} for each partition α in Λ^+ .

The q-Weyl modules W_{λ} (for various labellings) correspond with one another under the Morita equivalence arising in 4.3. If $\Lambda = \Lambda(d, n)$ the q-Weyl modules coincide with those in $\lceil \mathbf{6} \rceil$.

If we use M_A^* instead of M_A , the q-Weyl module is defined by $W_{\lambda} = S_A(M_A^*)^{\lambda} x_{\lambda'}$, λ in Λ .

The q-Weyl module W_{λ} is a highest weight module and has a unique maximal submodule W_{λ}^{\max} . The quotient S_{A} module $F_{\lambda}=W_{\lambda}/W_{\lambda}^{\max}$ is absolutely irreducible self-dual. If Λ is full, the modules F_{α} for all partitions α of n, give a complete set of non-isomorphic irreducible S_{Λ} modules, as a consequence of [6, 8.8] and the equivalence (4.2).

The following proposition yields (c) of Theorem in the Introduction.

4.4. Proposition. Under the category equivalence of 1.11:

$$\operatorname{mod} KG/I_M \longrightarrow \operatorname{mod} e(KG/I_M)e = \operatorname{mod} S_A$$

with $\Lambda = I(q, n-1)$, we have

$$eS_{\lambda} \cong W_{\lambda}$$
, and $eD_{\lambda} \cong F_{\lambda}$,

for all compositions λ of n.

PROOF. We have $M_{\lambda} = Mx_{\lambda}$ (2.1) and $M_{\lambda} \cong M_{\lambda''}$ since $\lambda \sim \lambda''$ (1.10) (5). We may identify $E_{\lambda}M$ with the λ -weight space $(M_{A}^{*})^{\lambda}$ by Theorem 2.6. It follows that

$$eS_{\lambda} = eKGE_{\lambda'}M_{\lambda} \cong eKGE_{\lambda'}M_{\lambda''} = S_{\lambda}(M_{\lambda'}^*)^{\lambda'}x_{\lambda''} = W_{\lambda'}$$

Obviously, this induces $eD_{\lambda} \cong F_{\lambda'}$.

Q.E.D.

Some of the properties 1.10 on KG modules S_{λ} and D_{λ} correspond to the analogous properties on S_{Λ} modules W_{λ} and F_{λ} via the category equivalence. The fact on decomposition numbers we mentioned after Theorem in the Introduction follows directly.

References

- [1] N. Bourbaki, Groupes et algèbres de Lie, Chap. 4-6, Hermann, Paris, 1968.
- [2] R. Dipper, Polynomial representations of finite general linear groups in non-describing characteristic, Progr. Math., 95 (1991), 343-370.
- [3] R. Dipper and S. Donkin, Quantum GL_n , Proc. London Math. Soc. (3), 63 (1991), 165-211.
- [4] R. Dipper and G. James, Representations of Hecke algebras of general linear groups, Proc. London Math. Soc. (3), 52 (1986), 20-52.
- [5] R. Dipper and G. James, The q-Schur algebra, Proc. London Math. Soc. (3), 59 (1989), 23-50.
- [6] R. Dipper and G. James, q-Tensor space and q-Weyl modules, Trans. Amer. Math. Soc., 327 (1991), 251-282.
- [7] J.A. Green, Polynomial representations of GL_n , Lecture Notes in Math., 830, Springer, 1980.
- [8] N. Iwahori, On the structure of the Hecke algebra of a Chevalley group over a finite field, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 10 (1964), 215-236.
- [9] G. James, Representations of general linear groups, London Math. Soc. Lecture Note Ser., 94, Cambridge, 1984.
- [10] G. James, The decomposition matrices of $GL_n(q)$ for $n \le 10$, Proc. London Math. Soc. (3), 60 (1990), 225-265.

Mitsuhiro TAKEUCHI Institute of Mathematics University of Tsukuba Tsukuba Ibaraki 305 Japan