J. Math. Soc. Japan
Vol. 48, No. 2, 1996

The group ring of GL,(g9) and the ¢g-Schur algebra

By Mitsuhiro TAKEUCHI*

(Received Dec. 22, 1992)
(Revised Jun. 6, 1994)

Introduction.

Dipper-James [5] have introduced the ¢-Schur algebra Sy(n) to study repre-
sentations of GL,(¢) in non-describing characteristic. The ¢-Schur algebra is a
g-analogue of the usual Schur algebra, and its representations are equivalent to
polynomial representations of quantum general linear group [3]. Dipper-James
have established an interesting relationship between representations of
GL,(¢g) and the ¢-Schur algebra S,(n). They deal with not only unipotent re-
presentations but also cuspidal representations. In this paper, we restrict to
unipotent representations and show there is a shorter realization of the Dipper-
James correspondence in this case.

Let KG be the group algebra of G=GL,(q) over the field K whose charac-
teristic does not divide ¢q. Let B be the upper-triangular matrices and let M=
KG[B] the left ideal generated by [ B], the sum of all elements in B. Let I
be the annihilator of M in KG. By unipotent representations of G, we mean
left KG/I; modules. Let mod KG/I, be the category of all left KG/I, modules.

Let A be a partition of n. James defines the Specht module S; and its
irreducible quotient D;. Both are left KG/I, modules, and the set of D; for
all partitions A of n exhausts all irreducible unipotent representations of G. On
the other hand, Dipper-James [6] define the ¢g-Weyl module W, and its irreduci-
ble quotient F;, which are left Sy(n) modules. The purpose of this paper is to
prove:

THEOREM. Assume K has a primitive p-th root of 1. There is an idem-
potent E in KG/Iy satisfying the following properties:

(a) The algebra E(KG/Iy)E is isomorphic to the g-Schur algebra Sy (n).

(b) The functor V—>EV gives a category equivalence from mod KG/Iy to
mod Sy(n).

(¢) Let 2 be a partition of n, and let A’ be its dual partition. Under the
category equivalence of (b), the KG/1y module S; (resp. D;) corresponds
to the Sy(n) module Wy (resp. Fi.).

* Supported in part by the Sumitomo Foundation grant 93-103-624.
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As a corollary, if 2 and p are two partitions of n, one sees the composi
tion multiplicity of D, in S; equals the composition multiplicity of F,. in W ;.
(cf. [5, Theorem 4.7]).
I hope the theorem above yields a better understanding of some part of the
Dipper-James theory. It is proved as follows.
The endomorphism algebra Endgs(M) is isomorphic to the Hecke algebra 4
associated with the pair (G, B) [8][1]. We let & act on M on the right. We
define some idempotent ¢ in KG explicitly (1.1) and prove the following pro-
perties :
1) The algebra KG/I, is Morita equivalent to e(KG/Iy)e via the functor
VeV (1.11).

2) The canonical algebra map eKGe—End4(eM) is surjective (3.1).

3) The algebra e¢(KG/I;)e is isomorphic to the generalized ¢-Schur algebra
S4 associated with some full labelling /4 (4.1).

4) In general, the generalized ¢-Schur algebra S, associated with a full
labelling A4 has an idempotent ¢ such that ¢S e is isomorphic to Sg(n)
and that S, is Morita equivalent to S,(n) via the functor V—eV (4.3).

Statements (a) and (b) of the theorem follow from 1), 3) and 4) above.
(Item 2) is used to yield 3) and it requires a long calculation). The final state-
ment (c) follows from definition of the idempotents e and ¢ together with the
definition of modules S; and W,.

1. Representations of GL,(g)

Let G=GL,(g) with ¢ a power of the prime p. Let K be a field containing
a primitive pt* root of 1. This means char K+ p in particular. We construct
g"! orthogonal idempotents of the group algebra KG, by using the method of
[9, §91.

Let B be the subgroup of all upper triangular matrices in G, and let M=
KG[B] the left ideal generated by [ B], the sum of all b in B. (We are using
Green’s notation [7, 5.3]). Let U* be the subgroup of all upper (resp. lower)
triangular unipotent matrices in G. Let W be the subgroup of all permutation
matrices in G. We identify W with the symmetric group on n letters. (We
let a permutation act on letters on the left).

Let X,, -+, X, be the distinct linear K-characters of (F,, +), where X, is the
trivial character (see [9, 9.1]). Let I(g, n—1) be the set of all sequences ¢=
(c(1), -+, c(n—1)) with 1=c(®)=q.

1.1. DEFINITION. For ¢ in I{g, n—1), define a linear K-character

X.:U-—K
by setting
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X(8) == Yooy (Gavn. o), g=1(gy) imU".
Define an idempotent in KG
E.= ]U—' | ! Eg in U"xc(:g>g .

(Note that the order |U~| is a power of ¢.) The intersection of all kernels
Ker (X.) coincides with the commutator subgroup (U~) of U~. We define

e=|U)Y|'"Zsinw~ &

1.2. PROPOSITION. {E.|c in I{g, n—1)} is a set of orthogonal idempotents
whose sum is e.

This is obvious, since {X.|c in I(g, n—1)} exhausts all linear K-characters
of U™ (cf. [9, line —2, p. 43]). It follows that

eM: EBc inI(g,n-1) E('M-
By a composition of n, we mean a sequence
;{ = (2]) 22} )

of non-negative integers whose sum is n. Itis called a partition if 2, Z4.= -
Let C(n) (resp. 2(n)) be the set of all compositions (resp. partitions) of n.
Usually, we denote the composition 4 by a finite sequence

(A1, 4, ==+, An)

which means that A4,,,=4,,.= - =0. We say the composition A is tight if
A.=0 implies A,.,=0. All partitions are tight.

1.3. DEFINITION. For ¢ in I{q, n—1), let
ML) = {4y, Ay, -, An_y}
with 14, <4, < - <Ap_1<n. We define
A=y, As—Ayy - Apos—Ansy n—A4_y)
which is a tight composition of n.

1.4. PROPOSITION. Let ¢ and d be sequences in I(q, n—1). If 2°=2%, then
E. and E, are conjugate by a diagonal matrix in G.

This follows by using [9, (9.6)].

1.5. DEFINITION. Conversely, let 4 be a tight composition of n. Define a
sequence ¢;=(c;(1), -+, c;(n—1)) in I{g, n—1) as follows:
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1 if i =A+4.+ - +4, for some a=1
c;(e) = .
2 otherwise.

We put
Xi =X, and E;=EFE

02 .
Obviously, the composition associated with ¢, is 4. Note that our notation

is a bit different from James [9, 11.4], where E; stands for our E,;. with A’
the partition dual to A.

1.6. COROLLARY. [If A=1%, then E. is conjugate to E; by a diagonal matrix
in G.

We construct a K-basis for E.M with ¢ in I(g, n—1).
1.7. FAcT [9, 7.11]. M has a K-basis {ux[B]l|x in W, u in U NzU " w71.

If 2 is a composition of n, we can decompose {1, 2, ---, n} as the disjoint
union of zntervals {1, 2, -+, A4, {A+1, 4,+2, -+, 3;+4}, -~ These intervals
are called associated with the composition A.

1.8. DEFINITION. A permutation = of n letters is distinguished relative to
the composition A if #~! is increasing on each interval associated with 4. Let
D, be the set of all permutations distinguished relative to A.

For # in W and u« in U"N\zU"z"!, we have
Eur[B] =X (u) 'E . x[B]

and it follows from [9, 10.2] that E.x[B]s0 if and only if ¢()>1 implies
7 G+ 1) >x"Y), i.e., = is distinguished relative to 4°. Thus we have the fol-
lowing :

1.9. PROPOSITION. Let ¢ be in I(g, n—1) and A=4".
(a) For win W, E.x[B]+#0 if and only if m is distinguished relative to A.
(b) The set {E.x[Bl|x in @D;} forms a K-basis for E.M.

We end this section by recalling the definition and main properties of the
KG modules M; and S; associated with compositions A of 7.

Let P; be the parabolic subgroup of G corresponding to the composition A.
It consists of all g=(g;; in G such that g;;=0 if :>; and 7 and ; belong to
distinct intervals relative to A. Let M;=KG[P;] a left ideal contained in M.

The K vector space E;.M; is one-dimensional [9, 11.7] and we define S;=
KGE;»M; a submodule of M; (1’ the partition dual to 4). S; has a unique
maximal submodule S72* and the quotient D;=S;/ST?* is an absolutely irre-
ducible KG module [9, (11.12)].
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The following properties are proved in [9].

1.10. PROPERTIES OF M;, S;, AND D;,.

(1) M;, S;, and D; are defined over the prime field.

(2) S;=D; in characteristic zero [9, 11.167.

(3) dim S; is independent of the field K [9, 16.5].

(4) For a prime [#p, the module S; p, is identified with the /[-modular
reduction of S; o [9, 16.6].

(5) Let p be the partition of n obtained by rearranging the parts of A.
Then

My=M, S;=S, Dy=D, [9 161]

(6) Every composition factor of the KG module M is isomorphic to D, for
a uniquely determined partition ¢ of n [9, 16.4].

Let I, be the annihilator of M in KG. We are concerned with representa-
tions of the quotient algebra KG/Iy, i.e., unipotent representations of G.

1.11. THEOREM. The functor
mod KG/Iy —> mod e(KG/Iy)e, VeV

is a category equivalence.

PrROOF. The set of D,; for all partitions 2 of n gives a complete set of
representatives of all irreducible KG/I; modules, by 1.10 (6). By construction,
eD;#0 for all A. In fact, if E;.M; is spanned by v, then v=ev but ve ST~
It follows from the arguments in Chap. 6 of that the above functor is a
category equivalence. Q.E.D.

2. The Hecke algebra.

We use [8], [1], as basic references on Hecke algebras. Let # be the
Hecke algebra Hx(G, B) which has a K-basis T, m in W such that if s=(, i+1)
is a basic transposition, then we have

T s if #()<m(@+1)
T.T,=
qT s+ (q—1T,  if z()>r@E+1).
There is a right 4 module structure on M which commutes with the left
KG action. It is defined by
(BIT.=[BrBl= Zuinvtraw--1 ux[B], = in W,

The right 4 action induces an opposite algebra isomorphism
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H o= EndKG (M) .
opp

Let 4 be a composition of n. We denote by Y ; the Young subgroup of W
associated with A. It consists of all permutations which leave the intervals
{1,2, -, A}, {A+1, 2,+2, -, Ai+2,}, -+ invariant. We define elements in 4

XXZZninYl T, ininnYl (_’Q)_—l(n)Tn
where [(x) denotes the length of = [4, §3].

2.1. LEMMA (cf. [10, p. 235]). We have [P;]=[B]lx;. Hence My=Mx,.

PROOF. The set {uzm|zm in Y, u in U'NnU"7"'} forms a system of left
coset representatives for B in P;. Hence we have

[PX] = Zn,u urc[B] = Zzin Y, [B]Tn = [B]XZ .
Q.E.D.

The multiplication of W induces a bijection

YVixo, =W
and we have
XxTﬂ:(]l(mX], y;T,,:(—)“”’y;,,, 7 in Y] .

The right ideal x4 (resp. v;9) has a K-basis x;T; (resp. y;T4) for d in 9,
4, 3, 2].

If ¢ is a composition of n obtained by rearranging the parts of 2, there is
a permutation d in 9;N\9D,”' such that x;T¢=T4x, [6, (1.1)]. This implies
M;=M, as KG modules (1.10 (5)).

There is an algebra automorphism

#iH—— K

such that T ¥=¢—1—T, if s=(z, i+1) is a basic transposition [5, §2]. (Cf. the
paragraph before [5, (2.1)].)

2.2. PROPOSITION. [If A=(4,, -+, A») IS a composition of n,

XA# — qzl(zl—l)/2+--»+1h(2h—1)/2y2 .
Proor. We have only to show
x(n)* = (I"("*l”zym) .

In fact, it follows from [.3—[.5, p. 25 [5] that x, *=ry, with some scalar
r. Comparison of the coefficients of 7', with the longest element w, yields
r=q"*~b/2 This shorter proof is due to the referee. Q.E.D.



Group ring of GL,(q) 265

We have a direct sum decomposition of the right 4 module
eM = @c in I(q, n-1) ECM.

We show that £.M is isomorphic to y; % with A=2°
For /#7 and a in F,, let x;;(@)=[+aF;; with matrix units E;; [9, §5].

2.3. LEMMA. Let s=(, i+1). Then
(i) [BIT;s = s[B]+Zazo Xis1,:(a)[B].
(i) [BIT:* = —s[B]+Zainr, A—=x s, (@) B].

ProOoOF. (ii) follows from (i). If a#0 in F,, then we have x; ;. .(@)s[B]=
Xie1,(@”)[B] by using

G D0 =G DG o)

[BITs = Zainr, Xi,i41(@)s[B] = s[B]+Zas Xear.4la™H[B]
vielding (i). Q.E.D.

Hence,

2.4. PROPOSITION. Let ¢ be in I{q, n—1) and A=i°. If m is a permutation
in'Y,;, then we have
E[BIT:=(-)"™EJ[B].
PrROOF. We may assume zw=s=(7, 7+1), where c¢(s)>1. By using 2.3 (i)
above, we have
E[BITs = Es[B]+2az0 Ecxiyr, (a)[B].

Let X=X.;"' which is a nontrivial linear K-character of (F, +). Then we
have
Ecxi+1,i<a) - x<a)Ec and Ea x(“) =0.

On the other hand, E.s[B]=0, since s is not distinguished relative to 1 (1.9
(a)). Hence we have

EJBIT: = (ZBar Xa)E[B] = —E.[B].
Q.E.D.

2.5. PROPOSITION. Let ¢ be in I(g, n—1) and A=2°. For d in D;, we have
EJ[BIT* =(—)}"YE d[B].

PROOF. This is proved by induction on the length /(d). Assume {(d)>0.
Take ¢ with 1<i<n such that d(@)>d(@+1) and write d=0cs with s=(, i+1).
Then I(d)=Ii(e)+1. Since d is distinguished relative to 4, d(?) and d(+1) should
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belong to distinct intervals relative to 4. It follows that ¢ is distinguished
relative to 4, too. We have
E[BIT* = (—)"E.0[B]
by the induction hypothesis. Using 2.3 (ii), we have
EJ[B]T:* = (=) E.0c[BIT*
= (=P EALBI+ (=)' Dainry Eo(l—x511,:(a))[B] .
We claim the second term vanishes. In fact,
E.o(1—xi1,4(a) = Ec(l— X504, 00 ()0
= {I-Xxoti+n.0(@)} Eco™ =0

since ¢(z) and ¢(z+1) belong to distinct intervals relative to A. Q.E.D.

2.6. THEOREM. Let ¢ be a sequence in I(q, n—1) and let A=4°. There is
an isomorphism of vight 4 modules

EM=y,4, E[Blh<—>v;h, h in 4.
PROOF. Proposition 2.4 implies the 4 homomorphism y ;4 — E.M, yh—
E [BJh is well-defined. Consider the composite
Ed
xzﬂ[—%yz.ﬂ(——»EcM.

The basis element x;7,; goes to E.[B]T ;¥ (up to a factor which is a power
of ¢) for each d in @;. Since E.,[B]T . * din 9,;, form a K-basis for E.M by
Propositions 1.9 and 2.5, the claim follows. Q.E.D.

3. Double centralizer theorem.

Since VeV is a category equivalence (1.11), the left KG module M and
the left eKGe module eM have isomorphic endomorphism algebras which are
anti-isomorphic to 4. We prove the left eKGe module eM has the following
double centralizer property.

3.1. THEOREM. The canonical algebra homomorphism

¢eKGe — End g4 (eM)
is surjective.

This property can also be thought of as an analogue of Schur’s reciprocity
theorem [7, (2.6c)]. The rest of this section is devoted to the proof of this
theorem.
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Let ¢, d be sequences in I(g, n—1). We have only to show that every 4
homomorphism E;M—FE M is the left multiplication by some element in £.KGE,.
If the idempotents E. and E, satisfy this property, then obviously the con-
jugates gE.g”* and hE h™', with g and h in G, also satisfy the same property.
Hence we can assume

E.=FE; and E;=FE,
with tight compositions 4 and g of n. There is a 1—1 correspondence
(3.2) Homy (x, %, x;%) = Homy (E .M, E; M), Q¢

such that if ¢(x,)=x,h with A in «, then ¢(E,[Bl)=FE,;[B]h*. This corre-
spondence arises from #-isomorphisms

X 9 = E;M and .’C#ﬂ[ = E#Al
# #
given by x,heFE;[Blh* and x,h—FE,[BJh* for h in 4.
All 4 homomorphisms x,#—x, % are described in as follows. We set
Dip=DiND,?

which is a system of Y ;—Y, double coset representatives in W. Let d be a
permutation in 9, , There are tight compositions v and y of n such that

Y,=d'YV;dNY, and Y,=dY ,.d'NY,.

A composition « is called a refinement of 4 if Y ,CY ;. Thus the composition
v (resp. 7) is a refinement of p (resp. 1). We define elements in %

(3.3) n = ! T, and %' = > T,.
win ¥ 9,1 vin¥,ndy
We have
77de}l = 2 Tw = ngdn/ .
winY,{dY#

We define an 4 homomorphism

Qo Xy H —> x4
by setting

Oa(xph) = 9T gx,h = x;T4n'h, h in 4.

3.4. LEMMA [4, 3.4 Theorem]. The 4 homomorphisms ¢q, d in D; ., form
a K-basis for Homy (x,9, x;.90).

For d in 9, ,, let
¢d . E#M'*l> E,zM

be the 4 homomorphism corresponding to ¢, under the correspondence of [3.2)
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Thus we have

Ga(Eu[B]) = E;[BIT *n'* = 3 (=)D WEdv[B].

vin Y[umfl",,

The double centralizer theorem will follow if we prove:

3.5. CLAIM. Let A and p be tight compositions of n, and let d be a per-
mutation in D; ,. The H homomorphism ¢y is the left multiplication by some
element in E;KGE,.

This claim is proved by induction on the fixed integer n. We will make
some reductions.

3.6. RepuctioN. It is enough to show Claim 3.5 in the following three
special cases.

(a) d=1 and 4 is a refinement of p. The corresponding ¢, is the inclu-
sion x,H—x, 9.

(b) d=1 and p is a refinement of 4. 'The corresponding ¢. is the projec-
tion x,H—x,9, xp—x,.

(¢) Y;d=dY,. In this case, we have x;7T;=T,x,, and

Oa(xph) =T gx,h = x,;T 4h, h in 4.

In fact, using the notation of [3.3) the % homomorphism ¢, factors as
follows :
7
Qai Xy H —> X, 9 —> ;9 —> x,.9
where 7 is the inclusion and { (resp. p) is the left multiplication by 7T, (resp.
n). Note that p(x;)=x,, since nx,=x;. These maps 7, p, and { are of the
form ¢, corresponding to cases (a), (b), and (c) respectively.

3.7. REDUCTION. We can further reduce the proof of 3.5 to the following
cases.

(@) d=1, p=(p1, 5 ta-1, My Yoy, 5 pn) a0d A=(pt1, =+, pa-y, 1, m—1,
Lart, 5 Pn)-

(b) d=1, A=(y, -+, Aae1, My Aayr, v, An) and p=(2,, -+, Aq_y, £, m—i,
Aasty 5 An)

© A=Ay, -+, Aaory 4, 7, Aase, 05 An), ;l:(zn 'y Aoty 15 4, Aase, o+, A), and

( kAL, kg, kLA, -, k+z‘+j)
C\Rdid L, e iy, kAl e, ki
where k=A,+ -+ +4q._1.
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PROOF. (a), (b) This is easy since any refinement of a composition is ob-
tained by dividing a part into two parts successively.

(c) Assume that YV ;d=dY,. Then the composition 4 is obtained by rear-
ranging the parts of g. There is a permutation 7 such that

A=z 5 frnd),s
/l = (ﬂl; Ty ﬂh)r Wlth ﬂ‘1>0 if 1§a§‘h.

The permutation d maps the a*® interval relative to p onto the 7= '(a)™® interval
relative to 4 as an order preserving isomorphism. Thus the pair (d, 4) is deter-
mined by the permutation = of the parts of p. Let us write d=d(x): py—Ai=pun
symbolically in this case. We have
(3.7.1) (d) = > Mafls -

a<d, " a)y>x 1)
Take some a with 1<a<h and n %a)>=n"(a+1). Let s=(a, a+1) and write
n=sp. Then d=d(n)=d(p)d(s), where d(s): p—pus and d(p): us—usp=A4. Since
(m)y=I(p)+I(s), it follows from that [(d)=I(d(p))+((d(s)). This implies
Td:Td(p)Td(s): i.e.,

¢d = ¢d<p)¢d(s) DX pH > Xy H— x4
Therefore 3.6 (c) reduces to the case d(s): p—us. Q.E.D.

3.8. OBSERVATION,

We identify a tight composition as a finite sequence of its nonzero parts.
In each case of 3.7 above, the tight compositions 2 and g can be written in the
form

i=(@ 4B and g=(a g f)

where a (resp. ) is a tight composition of k (resp. m), and %, i are tight com-
positions of /, for some integers k, [, m whose sum is n. Let G, be the sub-
group of all g=(g;;) in G such that g;;=d;; unless k+1=<7, 1 <k+[. Let 4,
be the subalgebra of 4 spanned by all T, with = in W,=WNG,. It is identified
with the Hecke algebra Hx(G,, B;) where B;=BNG,. In each case of 3.7, we
may think d is a permutation in 9z ; (=W,"\D; ). In this case, the corre-
sponding elements 7, ' (3.3) belong to the subalgebra J,. Let M,=KG,[B,]
which is a left ideal of KG,. Let

~

¢d . Xﬂj{l —> X,L%L and ([Z"d : E,;Ml —> E}IML

be the G,-analogues of 4 homomorphisms ¢, and ¢,. It follows that there is
some element & in KG, (see above 3.5) such that

$u(EL[BY) = E:6[B] and $u(E[B.]) = E&[B.].
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Assume there is an element & in KG, such that

(3.8.1) EX[B.] =&E;LB.].
We claim the same relation

(3.8.2) E§[B] =& E,[B]

holds. If /<#, such an element & exists by the induction hypothesis.

To prove the claim, let V be the subgroup of all u=(u;;) in U~ such that
u;;=0;; if k+1=1, s <k+I. Note that the linear characters ¥, and X, coincide
on V by (1.5). Let X be the common restriction. The subgroup V is normalized
by G, and the character X is G,-invariant. Hence the idempotent

E = ivl_lzuian(uﬁ’t
commutes with the elements in G, and we have by [9, 9.2]
E,=EFE;, EF,=FEE;.

The equality is obtained by applying >}; E(—)b; to [3.8.1), where {b;} is
a system of right coset representatives for B, in B.
Using this observation, we have arrived at the final step.

3.9. RepuctioN. It is enough to show Claim 3.5 in the following three
special cases.
(a) d=1, 2=(, n—1i), and p=(n).
(b) d=1, A=(n), and p=(i, n—i).
(¢) A=(i, n—i), p=(n—i, i), and d:(.l oo s AL ).
’ ’ et i+1, -, n, | S

3.10. PROPOSITION. Claim 3.5 is true in each case of 3.9.

PrROOF. (a) Homy (x,4, x, %) is one-dimensional, since 9, ,={l}. We
have only to show E;KGE,M=+0. Let d be the permutation in (c) above. This
d is in 9;. We claim E,dE,[B]+0. It is a linear combination of E;¢[B]
with ¢ in 9, (1.9). We will compute the coefficient of E;d[B]. Let u be an
element in U~. It is easy to see du is in U dB if and only if u is of the

form
=% )

where u’ (resp. u”) is a lower unitriangular matrix of size 7 (resp. n—i). If
this is the case, we have du=iid and X,(u)=X;(#%) with

= (l;), uo”> '
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Since all such matrices u form a subgroup of U~ of index ¢*™~» if we write
E;dE,B] as a linear combination of E;¢[B] with ¢ in 9@,, then it follows
that the coefficient of F;d[B] is ¢***™®. Hence E,;dE,[B]+0.

(b) Homg(x,9, x;%) is one-dimensional, too. We have shown above
E,dE;[B]+#0 (with 4, ¢ interchanged). There is a symmetric G-invariant non-
degenerate bilinear form <, > on M defined as follows [9, 11.17:

1 if gB=hB
(g[Bl, h[BY]) = { ,
0 otherwise.
Let E? and E, be the images of £; and E, by the opposite automorphism

g—g™'. They are conjugate to £, and E, by diagonal matrices. Since E,dE;M
#0, it follows that

M, EXdT'E,M> =<{E,dE;M, M) + 0.
This implies E;KGE,M+0, or E;KGE ,M+0.

(¢) The set @; , consists of permutations «,, x,, -+, m, with t=Min (7, n—1),
where
a+l, -, n—i, n—i+1, -, n—a
7ra:(.+ + . ), 0<a<t.
i+1, -, n—a, a4+l ,---, i

Thus m,=d. A computation similar as in (a) yields that if we write E;dF,[B]
as a linear combination of FE;c¢[B] with ¢ in 9;, then the coefficient of £ ;d[B]
is g7*». It follows that the left multiplication by E,dE, is of the form

(=) 0P A Cilhe + o FCihe,, ¢, in K.

To finish the proof, it is enough to verify the homomorphism ¢, is the left
multiplication by some element in E;KGE, if a>0. Indeed, decompose ¢, as
the composition

7 ¢ P
Gent EuM —> EM —> E;M —> E M

as in 3.6. Here v=(a, n—i—a, i—a, a) and y=:(a, i—a, n—i—a, a). It follows
from (a), (b) above that 7 and p are left multiplications by elements in KG and
from 3.8 that { is also the left multiplication by some element in KG. Hence
we are done. Q.E.D.

4. Generalized ¢-Schur algebras.

Let A4 be a finite set of compositions of n admitting some redundancy.
Strictly speaking we are considering a pair (4, 7) of a finite set 4 and a map
n: A—C(n). Such a pair is called a labelling of compositions. Let M, (resp.
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M%) be the direct sum of right % modules x;% (resp. y; %) for A in 4 (4
meaning 7(4) by abuse of notation). These right 4 modules have isomorphic
endomorphism algebras. We put

SA = Endj((MA) = El‘ldg[(Mﬁ)
and call it the generalized q-Schur algebra associated with the labelling A.

4.1. ExaMPLES. (1) A=®(n). The corresponding ¢-Schur algebra is S(g, n)
[6]. We prefer to denote it by Sy (n).

(2) A=A(d, n) the set of all sequences (4,, -, 4;) of nonnegative integers
whose sum is n. The corresponding ¢-Schur algebra is S,(d, n) [6][3] the g¢-
analogue of the usual Schur algebra S(d, n) [7].

(3) A=I{g, n—1) with = the map ¢—A° (1.3). The right 4 module eM is
isomorphic to M% by 2.6. It follows from 3.1 that the corresponding ¢-Schur
algebra is identified with e(KG/Iy)e where I, denotes the annihilator of M in
KG.

The representation theory of ¢-Schur algebras as developed in [5, 6] can be
generalized to our algebras S; by Morita theory. The main results will be
reviewed in the following.

Let /A be a labelling of compositions of n. For each 2in A let &;: M—x ;9
be the projection onto the 4 component. We get orthogonal idempotents &; (4
in 4) in S4; whose sum is 1. If V is a left S, module, it is the direct sum of
K subspaces V*4=¢,V, the A-weight space. 1f two compositions 4, p are obtained
from each other by rearranging the parts (in which case we write A~p), then,
we have x;4=x,9, hence there are f, g in Sy such that §;=fg and §,=gf.
This implies dimg V4=dimg V~.

Let A" be the set of partitions @ of n such that a~2 for some 2 in /.
We say A is a full labelling if A*=<®(n). Examples 4.1 (1) and (3) correspond
to full labellings. The labelling A(d, n) of (2) is full if d=n.

Let A be a full labelling. For each partition @ of n, choose an element
Aa) in A such that a~A(a). Let ¢ be the sum of idempotents &;,, for all
partitions a of n. Since eM =Mg¢ ., asright 4 modules, we have &S, e=S,(n)
and the following functor of Schur type:

(4.2) mod Ss — mod Sy(n), Ve—eV.
The following proposition follows directly from Morita theory.

4.3. PROPOSITION. Let A be a full labelling of compositions of n. With the
idempotent ¢ defined above, we have

(i) &S e=Sy(n) as algebras,

(i) The functor (4.2) is a category equivalence.
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It follows that the following algebras are Morita equivalent with one another
(with n fixed).

(1) So(n),  (2) Sfd, m), d=n, (3 KG/Iy.

The Morita equivalence of (3) and (1) is realized as the composite of category
equivalences 1.11 and 4.2 with A=1(q, n—1).

g-Weyl modules play a crucial role in the representation theory of S;. The
main results of can be translated to S, via the category equivalence 4.2 if
A is full. Some of them hold even if A is not full.

Let A4 be a labelling of compositions of n. For a composition 2 of n, let A’
be the partition dual to A. It is known that x4y ;. is one-dimensional (4, 4.17.
If 4 is in A, this space is identified with (M *y,, where (Mp*=x,4% the -
weight space. Let W, be the S, submodule of M, generated by the subspace
(Mg?*y,;.. Tt is called the ¢-Weyl module associated with 1. If two weights
A, p¢ are equivalent under ~, then W,;=W,. Therefore we can well-define the
g-Weyl module W, for each partition a in A",

The ¢-Weyl modules W; (for various labellings) correspond with one another
under the Morita equivalence arising in 4.3. If A=A4(d, n) the ¢-Weyl modules
coincide with those in [6].

If we use M¥% instead of M, the ¢-Weyl module is defined by W=
SA(Mf;)ZX,zr, Ain A.

The ¢-Weyl module W; is a highest weight module and has a unique
maximal submodule Wi2*, The quotient S; module F;=W,/W¥23% is absolutely
irreducible self-dual. If A is full, the modules F, for all partitions a of n,
give a complete set of non-isomorphic irreducible S; modules, as a consequence
of [6, 8.8] and the equivalence [4.2).

The following proposition yields (¢) of in the Introduction.

4.4. PROPOSITION. Under the category equivalence of 1.11:
mod KG /Iy —> mod e(KG/I)e = mod Sy
with A=I(q, n—1). we have
eS; =W, and eDz.'—:- F
for all compositions A of n.

Proor. We have M;=Mx,; (2.1) and M;=M,. since A~4” (1.10) (5). We
may identify E;M with the f-weight space (M#%)* by Theorem 2.6. It follows
that

eS; = eKGE ; M; = eKGEy M = Sy M¥)* x0 =W, .
Obviously, this induces eD;= F;.. Q.E.D.
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Some of the properties 1.10 on KG modules S; and D, correspond to the

analogous properties on S, modules W; and F; via the category equivalence.

The fact on decomposition numbers we mentioned after in the Intro-
duction follows directly.
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