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\S 1. Introduction.

Unbounded derivations in non-commutative $c*$-algebras have been studied in
detail by many authors, which are closely related to mathematical physics
and especially are one of the natural frameworks for quantum dynamics in
operator algebra context ([3, 4, 5, 14, 17, 18, 21, 22]).

In commutative $c*$-algebras, unbounded derivations, which were studied
systematically by Sakai in [21], are also very important and interesting object
to study, because it plays a role of certain differential structure of underlying
space ([1, 2, 9, 11, 12, 24]). Indeed, known examples are given by (partial) dif-
ferentiation on spaces with some differential structure.

Since the differentiation $d/dt$ on the space $C^{(1)}([0,1])$ of continuously dif-
ferentiable functions on $[0,1]$ is a typical example of closed derivations, for
any closed derivation $\delta$ in a commutative unital $c*$-algebra $C(K)(K$ : a compact
Hausdorff space) we may regard the domain $\mathfrak{D}(\delta)$ of $\delta$ as a generalization of
the Banach space $C^{(1)}([0,1])$ . Moreover, if $\mathfrak{D}(\delta)=C(K),$ $\delta$ is bounded and
hence $\delta\equiv 0$ . Thus, we wish to look for unified approach to deal with $C(K)$ ,
$C^{(1\rangle}([0,1])$ and several other spaces of differentiable functions together.

Properties of the domains of closed derivations (for example, functional
calculus) have been investigated by several authors. E5)(6) becomes Banach alge-
bras under several graph norms. Moreover, it was shown that ES)(6) with a
closed $*$-derivation $\delta$ is a \v{S}ilov algebra by Sakai ([22]), and other interesting
properties of $\mathfrak{D}(\delta)$ as a Banach algebra have been studied by Batty, Goodman
and Tomiyama ([1, 2, 9, 24]). We are also interested in some interplays be-
tween properties of $\mathfrak{D}(\delta)$ as a Banach space (or a Banach algebra) and the
structure of $\delta$ .

On the other hand, a well-known Banach-Stone theorem [8] states that
surjective linear isometries of $C(K)$ are induced by homeomorphisms of $K$ and
this theorem was extended to more general case by Novinger, Okayasu and
Takagaki ([15, 16]). Moreover, the structure of surjective linear isometries of
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$C^{(1)}([0,1])$ with various graph norms have been studied by Cambern [6], Cam-
bern and Pathak [7], Rao and Roy [19]. Recently, Jarosz and Pathak [10]

gave a general scheme to study surjective linear isometries between many
classical well known spaces.

The purpose of this paper is to discuss the Banach algebra $\mathfrak{D}(\delta)$ with $\Sigma_{-}$

norm and the Banach space $\mathfrak{D}(\delta)$ with $M$-norm as generalizations of spaces of
differentiable functions. In section 2, we present basic notations and summarize
several properties of closed $*$-derivations which will be used later. In section
3, we determine the form of extreme points of the closed unit ball of the con-
jugate space $\mathfrak{D}(\delta)^{*}$ of $\mathfrak{D}(\delta)$ with $\Sigma$-norm. In section 4, by using the result in
section 3 we study the structure of surjective linear isometries of $\mathfrak{D}(\delta)$ with $\Sigma_{-}$

norm. In section 5 and 6, we get the form of extreme points of the closed
unit ball of $\mathfrak{D}(\delta)^{*}$ and the structure of surjective linear isometries of $\mathfrak{D}(\delta)$ with
$M$-norm. In section 7, characterizations of extreme points of the closed unit
ball of $\mathfrak{D}(\delta)$ with $M$-norm will be given.

TO investigate further detailed properties of $\mathfrak{D}(\delta)$ as a function space, it
seems necessary to analyze $\delta$ itself in detail.

\S 2. Preliminaries.

Let $K$ be a compact Hausdorff space and $C(K)$ denotes the space of all
complex valued continuous functions on $K$ with the supremum norm $||\cdot||_{\infty}$ . A
derivation $\delta$ in $C(K)$ is a linear mapping in $C(K)$ satisfying the following con-
dition:

(1) The domain $\mathfrak{D}(\delta)$ of $\delta$ is a norm dense subalgebra of $C(K)$ .
(2) $\delta(fg)=\delta(f)g+f\delta(g)(f, g\in \mathfrak{D}(\delta))$ .

$\delta$ is said to be a $*$-derivation if it also satisfies :
(3) $f\in \mathfrak{D}(\delta)$ implies $f^{*}\in \mathfrak{D}(\delta)$ and $\delta(f^{*})=\delta(f)^{*}$ where $f^{*}$ means the complex

conjugate of $f$ .
$\delta$ is said to be closed if $f_{n}\in \mathfrak{D}(\delta),$ $f_{n}arrow f$ and $\delta(f_{n})arrow g$ implies $f\in \mathfrak{D}(\delta)$ and $\delta(f)$

$=g$ , that is, $\delta$ is a closed linear operator.
NOW, we give three examples of closed $*$-derivations.
(1) Let $K=I$ or $I\cup J$ where $I$ and $J$ are finite closed intervals of the real

line with $I\cap J=\emptyset$ and let $\delta$ be the differentiation $d/dt$ on $C^{(1)}(K)$ . Then $\delta$ is
a closed $*$-derivation in $C(K)$ . If $K=I$, then the kernel of $\delta$ is $C1$ and if $K=$

$I\cup J$ , then $C1$ is a proper subset of the kernel of $\delta$ .
(2) Let $K$ be a compact Hausdorff space and let $\delta$ be the partial derivative

on $C([0,1]\cross K)$ , that is, for $f\in C([0,1]xK)$ and $(s, x)\in[0,1]\cross K$

$\delta(f)(s, x)$ $:= \lim^{(f(t},$ $x)-f(s, x))/(t-s)$ ,
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whenever the limit exists. Let

$\mathfrak{D}(\delta):=$ { $f\in C([0,1]\cross K):\delta(f)$ is defined and continuous on $[0,1]\cross K$}.

Then $\delta$ is a closed $*$-derivation in $C([0,1]\cross K)$ and the kernel of $\delta$ and $C(K)$

are isomorphic ([9]).
(3) Let $\Phi$ be a non-constant generalized Cantor function and let $C^{*}(1, \Phi)$

be the $c*$-subalgebra of $C([0,1])$ generated by $\Phi$ and 1. Define $\delta(f+g):=$

$(d/di)f$ ($f\in C^{(1)}([0,1])$ and $g\in C^{*}(1,$ $\Phi)$). Then $\delta$ is a closed $*$-derivation in
$C([0,1])$ which is a proper extension of $d/dt$ and the kernel of $\delta$ is the $C^{*}-$

subalgebra $C^{*}(1, \Phi)$ . The converse statement also holds ([22]).

NOW we state several facts on closed $*$-derivations. $\mathfrak{D}(\delta)$ necessarily con-
tains the constant function 1 (and hence $C1$ ) and $C^{(1)}$ -functional calculus is
possible in $\mathfrak{D}(\delta)$ (see Proposition A below). $\mathfrak{D}(\delta)$ becomes a Banach space under
the norm.
($M$-norm) $||f||_{M}$ $:= \max(||f||_{\infty}, ||\delta(f)||_{\infty})$ $(f\in \mathfrak{D}(\delta))$ .

Moreover, $\mathfrak{D}(\delta)$ is a Banach algebra for each of the following three norms, re-
spectively.

( $\Sigma$-norm) $||f||_{\Sigma}:=||f||_{\infty}+||\delta(f)||_{\infty}$ $(f\in \mathfrak{D}(\delta))$ ,

( $c$-norm) $||f||_{c}:= \sup\{|f(x)|+|\delta(f)(x)| : x\in K\}$ $(f\in \mathfrak{D}(\delta))$

and

( $\delta$-norm) $||f||_{\delta}:= \sup_{t\in K}||(\begin{array}{ll}f(t) \delta(f)(t)0 f(t)\end{array})||$ $(f\in \mathfrak{D}(\delta))$ .

We summarize three important results in [22] which will be used later
frequently. In the following three propositions, let $K$ be a compact Hausdorff
space and let $\delta$ be a closed $*$-derivation in $C(K)$ .

PROPOSITION A ([22]). For $f(=f^{*})\in \mathfrak{D}(\delta)$ and $h\in C^{(1)}([-||f||_{\infty}, ||f||_{\infty}]),$ $h(f)$

$(=h\circ f)\in \mathfrak{D}(\delta)$ and $\delta(h(f))=h’(f)\delta(f)$ where $h’$ means the derivative of $h$ .

PROPOSITION $B([22])$ . If $f\in \mathfrak{D}(\delta)$ is a constant in a neighborhood of $x\in K$,

then $\delta(f)(x)=0$ .

PROPOSITION $C([22])$ . Let $J_{1}$ and $J_{2}$ be $dis_{J}$ oint closed subsets of K. Then
there is an element $f\in \mathfrak{D}(\delta)$ such that

$f=0$ on $J_{1}$ , $f=1$ on $J_{2}$ and $0\leqq f\leqq 1$ .
For other properties of unbounded derivations in $c*$-algebras, we refer to

[22].

Finally, we shall state notations, For a Banach space $B,$ $B^{*}$ denotes the
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dual space of B. $B_{1}$ and $B_{1}^{*}$ denote the closed unit balls of $B$ and $B^{*}$ , respec-
tively. Moreover, $extB_{1}$ and $extB_{1}^{*}$ denote the sets of extreme points of $B_{1}$ and
$B^{*}$ , resPectively. Let $Ker(\delta)$ be the kernel of a closed $*$-derivation $\delta$ and $\Re(\delta)$

the range of $\delta$ . $T$ denotes the unit circle $\{z\in C : |z|=1\}$ in the complex plane.
For fixed point $x\in K$ we define two linear functionals $\eta_{x},$

$\eta_{x}\circ\delta$ on $\mathfrak{D}(\delta)$ by

$\eta_{x}(f):=f(x)$ $(f\in \mathfrak{D}(\delta))$ ,

$\eta_{x}\circ\delta(f):=\delta(f)(x)$ $(f\in \mathfrak{D}(\delta))$ .
Let $K(\delta)$ be the set of $x\in K$ such that $\eta_{x}\circ\delta\neq 0$ , that is,

$K(\delta)=\{x\in K:\eta_{x}\circ\delta\neq 0\}$

$=$ { $x\in K:\exists f\in \mathfrak{D}(\delta)$ such that $\delta(f)(x)\neq 0$}.

Then $K(\delta)$ is an open set in $K$.

\S 3. Extreme points of the closed unit ball of the conjugate
space $\mathfrak{D}(\delta)^{*}$ of $\mathfrak{D}(\delta)$ with $\Sigma$-norm.

Througbout this section, let $K$ be a compact Hausdorff space and let $\delta$ be
a closed $*$-derivation in $C(K)$ ; the norm of $f\in \mathfrak{D}(\delta)$ is

$||f||_{\Sigma}=||f||_{\infty}+||\delta(f)||_{\infty}$ .
We use the following lemma later frequently.

LEMMA 3.1. For $x_{0}EK(\delta)$ and a closed subset $J(\ni x_{0})$ of $K$, there exists an
element $f(=f^{*})\in \mathfrak{D}(\delta)$ such that

$\delta(f)(x_{0})=1$ and $\delta(f)=0$ on $J$ .
PROOF. AS $\eta_{x_{0}}\circ\delta\neq 0$ , there exists a function $f_{0}(=f_{0}^{*})\in \mathfrak{D}(\delta)$ such that

$\delta(f_{0})(x_{0})=1$ . Since $K$ is a compact Hausdorff space, there exist an open neigh-
borhood $U_{1}$ of $x_{0}$ and an open neighborhood $U_{2}$ of $J$ such that $U_{1}\cap\overline{U}_{2}=\emptyset$ .
Then $g_{0}(=g_{0}^{*})\in \mathfrak{D}(\delta)$ such that

$g_{0}=1$ on $U_{1}$ and $g_{0}=0$ on $U_{2}$ .
Then $f_{0}g_{0}\in \mathfrak{D}(\delta),$ $\delta(f_{0}g_{0})(x_{0})=\delta(f_{0})(x_{0})g_{0}(x_{0})+f_{0}(x_{0})\delta(g_{0})(x_{0})=1$ and $\delta(f_{0}g_{0})(x)=0$

for $x\in J$ . This completes the proof of Lemma 3.1.

The Krein-Milman theorem asserts that the closed unit ball of the conjugate
space of any Banach space has sufficiently many extreme points in the sense
that the unit ball is the $w^{*}$-closed convex hull of its extreme points. In this
section, we get concrete expressions of extreme points of $\mathfrak{D}(\delta)_{1}^{*}$ .

Let $W$ be the compact Hausdorff space $K\cross K\cross T$ with the product topology.
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For $f\in \mathfrak{D}(\delta)$ , we define $\tilde{f}\in C(W)$ by

$\tilde{f}(x, x’, z)$ $:=f(x)+z\delta(f)(x’)$ $((x, x’, z)\in W)$ .
Then we may embed $\mathfrak{D}(\delta)$ as a closed subspace of $C(W)$ .

LEMMA 3.2. The mapping $\varphi:f-f$ establishes a linear and norm-Presermng
correspondence between $\mathfrak{D}(\delta)$ and the closed subspace $S:=\{f:f\in \mathfrak{D}(\delta)\}$ of $C(W)$ .

$\eta_{x}+z\eta_{x’}\circ\delta$ , $\eta_{x}\in \mathfrak{D}(\delta)^{*}$ have clearly norm one. The following lemma
shows that $\eta_{x}\circ\delta(\neq 0)\in \mathfrak{D}(\delta)^{*}$ has also norm one.

LEMMA 3.3. If $x_{0}\in K(\delta)$ , the norm of $\eta_{x_{0}}\circ\delta$ is one.

PROOF. For $x_{0}\in K(\delta)$ , set $G:=\eta_{x_{0}}\circ\delta(\neq 0)$ . Let $\Psi$ be any norm-preserving
extension of $(\varphi^{-1})^{*}(G)$ to $C(W)$ . Then there exist a complex regular Borel
measure $\mu$ on $W$ such that $||\mu||=||\Psi||=||\eta_{x_{0}}\circ\delta||\leqq 1$ and

$\Psi(g)=\int_{W}gd\mu$ $(g\in C(W))$ .

Hence we have

$\delta(f)(x_{0})=\int_{W}f(x, x’, z)d\mu=\int_{W}(f(x)+z\delta(f)(x’))d\mu$

for all $f\in \mathfrak{D}(\delta)$ . For any open neighborhood $U(\subset K)$ of $x_{0}$ we choose an open
neighborhood $V$ of $x_{0}$ such that $\overline{V}\subset U$ . Then we take $g_{1}\in \mathfrak{D}(\delta)$ such that

$g_{1}(x_{0})=1$ , $g_{1}=0$ on $K\backslash V$ and $0\leqq g_{1}\leqq 1$ ,

then $g_{1}=\delta(g_{1})=0$ on $K\backslash U$ . For arbitrary $\epsilon>0$ , we take $f_{\epsilon}(=f_{\epsilon}^{*})\in \mathfrak{D}(\delta)$ such
that

$||\eta_{x_{0}}\circ\delta||-\epsilon\leqq|\delta(f_{e})(x_{0})|$ and $||f_{\epsilon}||_{\Sigma}<1$ .
Put $c_{\epsilon}:= \min((1-||\delta(f_{\epsilon})||_{\infty})/(||\delta(g_{1})||_{\infty}+1), \epsilon)$ . Then we take a function $h_{\epsilon}\in$

$C^{(1)}([-||f_{\epsilon}||_{\infty}, ||f_{\epsilon}||_{\infty}])$ such that

$||h_{\text{\’{e}}}||_{\infty}\leqq c_{\text{\’{e}}}$ , $h_{\epsilon}(f_{\epsilon}(x_{0}))=0$ , $h_{\epsilon}’(f_{\epsilon}(x_{0}))=1$ , and $||h_{\epsilon}’||_{\infty}=1$ .
Put $g_{\epsilon}:=h_{\epsilon}(f_{\epsilon})$ . Then we have $\delta(g_{1}g_{\epsilon})=0$ on $K\backslash U$ ,

$\delta(g_{1}g_{\epsilon})(x_{0})=\delta(g_{1})(x_{0})g_{\text{\’{e}}}(x_{0})+g_{1}(x_{0})\delta(g_{\epsilon})(x_{0})=\delta(g_{\epsilon})(x_{0})=\delta(f_{\epsilon})(x_{0})$ ,

$||g_{1}g_{\epsilon}||_{\Sigma}=||g_{1}g_{\epsilon}||_{\infty}+||\delta(g_{I}g_{\epsilon})||_{\infty}\leqq(1+||\delta(g_{1})||_{\infty})c_{\text{\’{e}}}+||\delta(f_{\epsilon})||_{\infty}$ $ 1.

Then we have
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$|| \eta_{x_{0}}\circ\delta||-\epsilon\leqq|\delta(f_{\epsilon})(x_{0})|=|\delta(g_{1}g_{\epsilon})(x_{0})|=|\int_{W}((g_{1}g_{\epsilon})(x)+z\delta(g_{1}g_{\epsilon})(x’))d\mu|$

$\leqq\int_{K\cross U\cross T}(|(g_{1}g_{\epsilon})(x)|+|\delta(g_{1}g_{\epsilon})(x’)|)d|\mu|+\int_{K\cross(K\backslash U)\cross T}|(g_{1}g_{\epsilon})(x)|d|\mu|$

$S||g_{1}g_{\epsilon}||_{\Sigma}\int_{K\cross U\cross T}d|\mu|+c_{\epsilon}\int_{K\cross(K\backslash U)\cross T}d|\mu|$

$\leqq|\mu|(K\cross U\chi T)+\epsilon|\mu|(K\cross K\backslash U\cross T)$

$\leqq||\mu||+\epsilon=||\eta_{x_{0}}\circ\delta||+\epsilon$ .
AS $\epsilonarrow 0$ , we have $|\mu|(K\cross U\cross T)=||\mu^{1}|$ and hence $supp|\mu|\subset K\cross\{x_{0}\}\cross T$ . For
$f\in \mathfrak{D}(\delta)$ ,

$\delta(f)(x_{0})=\int_{K\cross\{x_{0}\}\cross T}(f(x)+z\delta(f)(x’))d\mu$

$= \int_{K\cross\{x_{0}\}\cross T}f(x)d\mu+\delta(f)(x_{0})\int_{K}$ . $\{x_{0}\}\cross r^{Zd\mu}$

AS $\eta_{x_{0}}\circ\delta\neq 0$ , there exists $f_{0}(=f_{0}^{*})\in \mathfrak{D}(\delta)$ such that $\delta(f_{0})(x_{0})=1$ . For arbitrary
$\epsilon’>0$ , we take a function $h_{\epsilon’}\in C^{(1)}([-||f_{0}||_{\infty}, ||f_{0}||_{\infty}])$ such that $||h_{\epsilon’}||_{\infty}\leqq\epsilon’$ and
$h_{\epsilon}’,(f_{0}(x_{0}))=1$ . Then, $h_{\epsilon’}(f_{0})\in \mathfrak{D}(\delta)$ and

$1=|\delta(h_{\epsilon’}(f_{0}))(x_{0})|$

$\leqq\int_{K\cross\{x_{0})\cross T}|h_{\epsilon’}(f_{0})(x)|d|\mu|+|\delta(h_{\epsilon’}(f_{0}))(x_{0})|\int_{K\cross\{x_{0}\}\cross T}|z|d|\mu|$

$\leqq\epsilon’||\mu||+||\mu||\leqq\epsilon’+1$ .
AS $\epsilon’arrow 0$ , we conclude that $||\eta_{x_{0}}\circ\delta||=||\Psi||=||\mu||=1$ . This completes the proof.

NOW we state the main result of this section. If $\delta=0$ , an element $G\in \mathfrak{D}(\delta)^{*}$

is an extreme point of $\mathfrak{D}(\delta)_{1}^{*}$ if and only if $G=\alpha\eta_{x_{0}}$ for some $x_{0}\in K$ and $\alpha\in T$ .
Hence we deal with the case that $\delta\neq 0$ .

NOW, we show that for $(x, x’, z)\in K\cross K(\delta)\cross T$ , the expression of $\alpha(\eta_{x}+$

$z\eta_{x^{t}}\circ\delta)$ is unique. Suppose that

$\alpha_{1}(\eta_{x_{1}}+z_{1}\eta_{x_{2}}\circ\delta)=\alpha_{2}(\eta_{y_{1^{+Z_{2}}}}\eta_{y_{2}}\circ\delta)$ ...... $(*)$

for $\alpha_{1},$
$\alpha_{2}\in T$ and $(x_{1}, x_{2}, z_{1}),$ $(y_{1}, y_{2}, z_{2})\in K\cross K(\delta)\cross T$ . As $1\in \mathfrak{D}(\delta)$ , we have

$\alpha_{1}=\alpha_{2}$ . Suppose that $x_{2}\neq y_{2}$ . Since $x_{2}\in K(\delta)$ , there exists $f_{1}(=f_{1}^{*})\in \mathfrak{D}(\delta)$ such
that $\delta(fi)(x_{2})=1$ and $\delta(f_{1})(y_{2})=0$ from Lemma 3.1. Then we take $h_{1}\in$

$C^{(1)}([-||f_{1}||_{\infty}, ||f_{1}||_{\infty}])$ such that

$h_{1}(f_{1}(x_{1}))=h_{1}(f_{1}(y_{1}))=0$ and $h\text{\’{i}}(f_{1}(x_{2}))=1$ .
Put $g_{1}:=h_{1}(f_{1})$ ; then
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$g_{1}(x_{1})=g_{1}(y_{1})=0$ , $\delta(g_{1})(x_{2})=1$ and $\delta(g_{1})(y_{2})=0$ .
This contradicts with $(*)$ and hence $x_{2}=y_{2}$ .

Next, suppose that $x_{1}\neq y_{1}$ ; there exists $f_{2}(=f_{2}^{*})\in \mathfrak{D}(\delta)$ such that $f_{2}(x_{1})=1$

and $f_{2}(y_{1})=0$ . Then we take $h_{2}\in C^{(1)}([-||f_{2}||_{\infty}, ||f_{2}||_{\infty}])$ such that

$h_{2}(0)=0$ , $h_{2}(1)=1$ , and $h_{2}’(f_{2}(x_{2}))=0$ .

Set $g_{2}:=h_{2}(f_{2})\in \mathfrak{D}(\delta)$ ; we have

$g_{2}(x_{1})=1$ , $g_{2}(y_{1})=0$ and $\delta(g_{2})(x_{2})=0$ .

This contradicts with $(*)$ and hence $x_{1}=y_{1}$ . Hence the expression of $\alpha(\eta_{x}+$

$z\eta_{x’}\circ\delta)((x, x’, z)\in K\cross K(\delta)\cross T)$ is unique.

THEOREM 3.4. Let $K$ be a compact Hausdorff space and let $\delta(\neq 0)$ be a closed
$*$-derivation in $C(K)$ . Then an element $G\in \mathfrak{D}(\delta)^{*}$ is an extreme $p\alpha nt$ of $\mathfrak{D}(\delta)Y$

if and $mly$ if
$G=\alpha(\eta_{x_{1^{+Z}}}\eta_{x_{2}}\circ\delta)$ for some $(x_{1}, x_{2}, z)\in K\cross K(\delta)\cross T$ and $\alpha\in T$ .

PROOF. At first, we show ’only if part’. Let $L$ be an extreme point of
$S_{1}^{*}$ , where $S$ is as in Lemma 3.2. Then we can extend $L$ to the extreme point
of $C(W)_{1}^{*}$ . We recall that any extreme point of $C(W)_{1}^{*}$ is a point evaluation
multiplied by $\alpha(\alpha\in T)$ . Hence if $G\in \mathfrak{D}(\delta)^{*}$ is an extreme point of $\mathfrak{D}(\delta)_{1}^{*}$ , then

$G=\alpha(\eta_{x_{1}}+z\eta_{x_{2}}\circ\delta)$ for some $(x_{1}, x_{2}, z)\in W$ and $\alpha\in T$ .
AS $\delta\neq 0$ , there exists $x_{3}\in K(\delta)$ . For $(x_{1}, x_{2}, z)\in K\cross K\backslash K(\delta)\cross T$ and $\alpha\in T$ , we
have

$G_{0}:=\alpha(\eta_{x_{1}}+z\eta_{x_{2}}\circ\delta)$

$=\alpha\eta_{x_{1}}=(\alpha/2)\{(\eta_{x_{1}}+\eta_{x_{3}}\circ\delta)+(\eta_{x_{1}}-\eta_{x_{3}}\circ\delta)\}$ ,

which implies that $G_{0}$ is not an extreme point.
Next, we prove the converse statement. For $(x_{1}, x_{2}, z_{0})\in KXK(\delta)\cross T$ , we

set $G:=\eta_{x_{1}}+Z_{0\eta_{x_{2}}\circ\delta}$ . Let $\Psi$ be any norm-preserving extension of $(\varphi^{-1})^{*}(G)$ to

$C(W)$ . There exists a regular Borel measure $\mu$ on $W$ such that $\Psi(g)=\int_{W}gd\mu$

$(g\in C(W))$ and $||\mu||=||\Psi||=1$ . Hence we have

$f(x_{1})+z_{0} \delta(f)(x_{2})=\int_{W}f(x, x’, z)d\mu=\int_{W}(f(x)+z\delta(f)(x’))d\mu$

for all $f\in \mathfrak{D}(\delta)$ . Moreover, since $\Psi(1)=(\varphi^{-1})^{*}(G)(1)=G(1)=1\sim\sim,$
$\mu$ is non-negative.

For any open neighborhood $U(\subset K)$ of $x_{2}$ we choose an open neighborhood $V$

of $x_{2}$ such that $\overline{V}\subset U$ . Then we take $g_{1}\in \mathfrak{D}(\delta)$ such that

$g_{1}(x_{2})=1$ , $g_{1}=0$ on $K\backslash V$ and OS $g_{1}\leqq 1$ ,
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then $g_{1}=\delta(g_{1})=0$ on $K\backslash U$ . For arbitrary $\epsilon>0$ , there exists $f_{\text{\’{e}}}(=f_{\epsilon}^{*})\in \mathfrak{D}(\delta)$ such
that

$1-\epsilon=||\eta_{x_{2}}\circ\delta||-\epsilon<|\delta(f_{\epsilon})(x_{2})|$ and $||f_{\text{\’{e}}}||_{\Sigma}<1$ .

Put c\’e: $= \min((1-||\delta(f_{\epsilon})||_{\infty})/(||\delta(g_{1})||_{\infty}+1), \epsilon)$ . Then we take a function $h_{\epsilon}\in$

$C^{(1)}([-||f_{\text{\’{e}}}||_{\infty}, ||f_{\epsilon}||_{\infty}])$ such that

$||h_{\epsilon}||_{\infty}\leqq c_{\epsilon}$ , $h_{\epsilon}(f_{e}(x_{1}))=h_{\text{\’{e}}}(f_{\epsilon}(x_{2}))=0$ , $h_{\epsilon}’(f_{\epsilon}(x_{2}))=1$ , and $||h_{\epsilon}’||_{\infty}=1$ .
Put $g_{\epsilon}:=h_{\epsilon}(f_{\epsilon})$ . Then we have $(g_{1}g_{\epsilon})(x_{1})=0,$ $\delta(g_{1}g_{\epsilon})=0$ on $K\backslash U$ ,

$\delta(g_{1}g_{\text{\’{e}}})(x_{2})=\delta(g_{1})(x_{2})g_{\epsilon}(x_{2})+g_{1}(x_{2})\delta(g_{\epsilon})(x_{2})=\delta(g_{\epsilon})(x_{2})=\delta(f_{\text{\’{e}}})(x_{2})$ ,

and $||g_{1}g_{\epsilon}||_{\Sigma}=||g_{1}g_{\epsilon}||_{\infty}+||\delta(g_{1}g_{\epsilon})||_{\infty}\leqq(1+||\delta(g_{1})||_{\infty})c_{\epsilon}+||\delta(f_{\epsilon})||_{\infty}\leqq 1$ .
Then

$1-\epsilon\leqq|\delta(f_{\epsilon})(x_{2})|=|(g_{1}g_{\epsilon})(x_{1})+z\delta(g_{1}g_{\epsilon})(x_{2})|$

$=| \int_{W}((g_{1}g_{\epsilon})(x)+z\delta(g_{1}g_{\epsilon})(x’))d\mu|$

$\leqq\int_{K}$ . $U \cross\tau(|(g_{1}g_{\epsilon})(x)|+|\delta(g_{1}g_{\epsilon})(x’)|)d\mu+\int_{K\cross(K\backslash U)\cross T}|(g_{1}g_{\epsilon})(x)|d\mu$

$\leqq||g_{1}g_{\epsilon}||_{\Sigma}\int_{K\cross U\cross T}d\mu+c_{\epsilon}\int_{K\cross(K\backslash U)\cross T}d\mu$

$\leqq\mu(K\cross U\cross T)+\epsilon\mu(K\cross K\backslash U\cross T)$

$\leqq 1+\epsilon$ .
AS $\epsilonarrow 0$ , we get $\mu(K\cross U\cross T)=1$ . Since $\mu$ is a regular measure, $\mu(K\cross\{x_{2}\}\cross T)$

$=1$ , which means that the $suPport$ of $\mu$ is concentrated on the set $K\cross\{x_{2}\}xT$ .
Next, We show that $\mu(\{x_{1}\}\cross\{x_{2}\}\cross T)=1$ . For any open neighborhood $U$

of $x_{1}$ , we get a function $f_{2}(=f_{f}^{*})\in \mathfrak{D}(\delta)$ such that

$f_{2}(x_{1})=1$ , $f_{2}=0$ on $K\backslash U$ and OS $f_{2}\leqq 1$ .

There exists $h_{2}\in C^{(1)}([-||f_{2}||_{\infty}, ||f_{2}||_{\infty}])$ such that

$h_{2}(1)=1$ , $h_{2}(0)=0$ , $0$ $ $h_{2}\leqq 1$ and $h_{2}’(f_{2}(x_{2}))=0$ .

Put $g_{2}:=h_{2}(f_{2})\in \mathfrak{D}(\delta)$ ; then we have

$||g_{2}||_{\infty}=1$ , $g_{2}(x_{1})=1$ , $g_{2}=0$ on $K\backslash U$ and $\delta(g_{2})(x_{2})=0$ .
Since

$1=g_{2}(x_{1})+z_{0} \delta(g_{2})(x_{2})=|\int_{K\cross\{x_{2}\}\cross T}g_{2}(x)d\mu|$

$\leqq\int_{U\cross\{x_{2}1\cross T}|g_{2}(x)|d\mu+\int_{(K\backslash U)}$ . $\{x_{2})\cross T|g_{2}(x)|d\mu$

$\leqq\mu(U\cross\{x_{2}\}\cross T)\leqq 1$ ,
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we have $\mu(U\cross\{x_{2}\}\cross T)=1$ . Since $\mu$ is a regular measure, we have $\mu(\{x_{1}\}\cross$

$\{x_{2}\}xT)=1$ . Hence for $f\in \mathfrak{D}(\delta)$

$f(x_{1})+z_{0} \delta(f)(x_{2})=\int_{\{x_{1}\}\cross\{x_{2})\cross T}f(x)d\mu+\int_{\{x_{1})\cross(x_{2}\}\cross T}z\delta(f)(x’)d\mu$

$=f(x_{1})+ \delta(f)(x_{2})\int_{(x_{1}I\cross\{x_{2}1}$ . $Tzd\mu$

AS $\eta_{x_{2}}\circ\delta\neq 0$ , we have $z_{0}= \int_{\{x_{1})\cross(x_{2}\}\cross T}zd\mu$ . Put $h(x_{1}, X_{2}, z):=z$ for $(x_{1}, x_{2}, z)\in$

$W$ . Then

$z_{0}=z_{0} \mu(\{x_{1}\}\cross\{x_{2}\}\cross\{z_{0}\})+\int_{\{x_{1}\}\cross\{x_{2}\}\cross T\backslash \{z_{0}},hd\mu$ ,

that is,

$Z_{0\mu(\{x_{1}\}\cross\{x_{2}\}\cross T\backslash \{z_{0}\})=} \int_{\{x_{1}1\cross\{x_{2}\iota\cross T\backslash 1z_{0}I}hd\mu$

Therefore we have

$\int_{tx_{1}\}\cross\{x_{2}\}\cross T\backslash (z_{0}\}}|h|d\mu=\mu(\{x_{1}\}\cross\{x_{2}\}\cross T\backslash \{z_{0}\})=|\int_{\{x_{1}\}\cross\{x_{2}\}\cross T\backslash \{z_{0\}}}hd\mu|$ .

Thus there exists $a\in C$ such that

$h=a|h|=a$ $(a.e. \mu)$ .
Hence we get

$z_{0} \mu(\{x_{1}\}\cross\{x_{2}\}\cross T\backslash \{z_{0}\})=\int_{tx_{1})\cross tx_{2}\}\cross T\backslash tz_{0}},ad\mu=a\mu(\{x_{1}\}\cross\{x_{2}\}\cross T\backslash \{z_{0}\})$ .

Suppose that $\mu(\{x_{1}\}\cross\{x_{2}\}\cross T\backslash \{z_{0}\})>0$ ; then $z_{0}=a$ , that is, $h(x_{1}, x_{2}, z)=z_{0}(a.e. \mu)$ ,
which implies $\mu(\{x_{1}\}\cross\{x_{2}\}\cross T\backslash \{z_{0}\})=0$ . This is a contradiction and hence we
get $\mu(\{x_{1}\}\cross\{x_{2}\}\cross\{z_{0}\})=1$ . Since $\mu$ is the dirac measure at $(x_{1}, x_{2}, z_{0})$ , any
norm-preserving extension of $(\varphi^{-1})^{*}(G)$ is an extreme point of $C(W)_{1}^{*}$ . Let

$(\varphi^{-1})^{*}(G)$ $:=(1/2)(F_{1}+F_{2})$ $(F_{1}, F_{2}\in S_{1}^{*})$ .

Let $F_{1}$ and $fl_{2}$ be any norm-preserving extensions of $F_{1}$ and $F_{2}$ to $C(W)$ , respec-
tively. Since $(1/2)(F_{1}+F_{2})$ is a norm-preserving extension of $(\varphi^{-1})^{*}(G),$ $F_{1}=F_{2}$ .
Hence we have $F_{1}=F_{2}$ , that is, $(\varphi^{-1})^{*}(G)$ is an extreme point of $S_{1}^{*}$ , which
implies that $G=\eta_{x_{1}}+z_{0}\eta_{x_{2}}\circ\delta$ is an extreme point of $\mathfrak{D}(\delta)_{1}^{*}$ . This completes the
proof.

We remark that if $1\in\Re(\delta)$ , then $K(\delta)=K$.
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\S 4. Linear isometries between $\mathfrak{D}(\delta_{1})$ and $\mathfrak{D}(\delta_{2})$ with $\Sigma$-norm.

Rao and Roy ([19]) investigated the structure of surjective linear isometries
of $C^{(1)}([0,1])$ with $\Sigma$-norm.

In this section we use the results in section 3 to get the structure theorem
of surjective linear isometries of $\mathfrak{D}(\delta)$ with the $\Sigma$-norm as one of generalizations
of the result by Rao and Roy.

Let $K_{i}$ be a compact Hausdorff space and let $\delta_{i}$ be a closed $*$-derivation in
$C(K_{i})(i=1,2)$ . Let $T$ be a surjective linear isometry from $\mathfrak{D}(\delta_{1})$ to $\mathfrak{D}(\delta_{2})$ .
Then we have the following two lemmas.

LEMMA 4.1. For all $y\in K_{2}$

$|T1(y)|=1$ and $\delta_{2}(T1)(y)=0$ .

PROOF. If $\delta_{i}=0(i=1,2)$ , it is clear. Suppose that $\delta_{i}\neq 0(i=1,2)$ . Since
$\tau*$ carries $ext\mathfrak{D}(\delta_{2})_{1}^{*}$ onto $ext\mathfrak{D}(\delta_{1})_{1}^{*}$ , for $y_{1}\in K_{2},$ $y_{2}\in K_{2}(\delta_{2})$ and $z\in T$ there exist
$x_{1}\in K_{1},$ $x_{2}\in K_{1}(\delta_{1}),$ $z’\in T$ and $\alpha\in T$ such that

$T^{*}(\eta_{y_{1^{+Z}}}\eta_{y_{2}}\circ\delta_{2})=\alpha(\eta_{x_{1^{+Z’}}}\eta_{x_{2}}\circ\delta_{1})$ ,

which implies
$|T1(y_{1})+z\delta_{2}(T1)(y_{2})|=1$ .

Hence for arbitrary $y_{1}\in K_{2}$ and $y_{2}EK_{2}(\delta_{2})$ ,

$|T1(y_{1})|+|\delta_{2}(T1)(y_{2})|=1$ or $||T1(y_{1})|-|\delta_{2}(T1)(y_{2})||=1$ ,

which implies that $|T1(y_{1})|=1$ or $T1(y_{1})=0$ . Suppose $T1\equiv 0$ ; then $\delta_{2}(T1)=0$ ,

which is a contradiction. Hence there exists $y\in K_{2}$ such that $|T1(y)|=1$ , that
is, $||T1||_{\infty}=1$ . Since

$1=||1||_{\Sigma}=||T1||_{\Sigma}=$ I $T1||_{\infty}+||\delta_{2}(T1)||_{\infty}=1+||\delta_{2}(T1)||_{\infty}$ ,

we see $\delta_{2}(T1)\equiv 0$ . Hence $|T1(y)|=1$ and $\delta_{2}(T1)(y)=0$ for all $y\in K_{2}$ . Similarly,
we observe that it holds in the case that $\delta_{1}=0$ and $\delta_{2}\neq 0$ . Considering of $T^{-1}$ ,

we can conclude that it holds in the case that $\delta_{1}=0$ and $\delta_{2}\neq 0$ . This completes
the proof.

If $\delta_{i}=0(i=1,2)$ , for $y_{0}\in K_{2}$ there exist $x_{0}\in K_{1}$ and $\alpha_{0}\in T$ such that $T^{*}(\eta_{y_{0}})$

$=\alpha_{0}\eta_{x_{0}}$ . From Theorem 3.4, if $\delta_{i}\neq 0(i=1,2)$ , for $y_{1}\in K_{2}$ and $y_{2}\in K_{2}(\delta_{2})$ there
exist $x_{1}\in K_{1},$ $x_{2}\in K_{1}(\delta_{1}),$ $z_{1}\in T$ and $\alpha_{1}\in T$ such that

$T^{*}(\eta_{y_{1}}+\eta_{y_{2}}\circ\delta_{2})=\alpha_{1}(\eta_{x_{1}}+z_{1}\eta_{x_{2}}\circ\delta_{1})$ .

LEMMA 4.2. In the above situation,

$T^{*}(\eta_{y_{1}})=\alpha_{1}\eta_{x_{1}}$ and $T^{*}(\eta_{y_{2}}\circ\delta_{2})=\alpha_{1}(z_{1}\eta_{x_{2}^{o}}\delta_{1})$ .
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PROOF. For $y_{1}\in K_{2},$ $y_{2}\in K_{2}(\delta_{2})$ , there exist $x_{1}\in K_{1},$ $x_{2}\in K_{1}(\delta_{1}),$ $z_{1}\in T$ and
$\alpha_{1}\in T$ such that

$T^{*}(\eta_{y_{1}}+\eta_{y_{2}}\circ\delta_{2})=\alpha_{1}(\eta_{x_{1^{+Z_{1}}}}\eta_{x_{2}}\circ\delta_{1})$ .
Put $F_{1}:=T^{*}(\eta_{y_{1}})$ and $F_{2}:=T^{*}(\eta_{y_{2}}\circ\delta_{2})$ . Since $F_{1}-F_{2}\in ext9(\delta_{1})_{1}^{*}$ , there exist
$x_{3}\in K_{1},$ $x_{4}\in K_{1}(\delta_{1}),$ $z_{2}\in T$ and $\alpha_{2}\in T$ such that

$F_{1}-F_{2}=\alpha_{2}(\eta_{x_{3}}+z_{2}\eta_{x_{4}}\circ\delta_{1})$ .
Since $F_{2}(1)=0$ from Lemma 4.1, we see $\alpha_{1}=\alpha_{2}=F_{1}(1)$ . Thus we have

$F_{1}=(\alpha_{1}/2)\{(\eta_{x_{1^{+Z_{1}}}}\eta_{x_{2}}\circ\delta_{1})+(\eta_{x_{\theta}}+Z_{2\eta_{x_{4}}\circ\delta_{1})\}}$ ,

and $F_{2}=(\alpha_{1}/2)\{(\eta_{x_{1}}+z_{1}\eta_{x_{2}}\circ\delta_{1})-(\eta_{x_{3}}+z_{2}\eta_{x_{4}}\circ\delta_{1})\}$ .
Since $F_{1}+iF_{2}\in ext\mathfrak{D}(\delta_{1})_{1}^{*}$ , there exist $x_{5}\in K_{1},$ $x_{6}\in K_{1}(\delta_{1}),$ $z_{3}\in T$ and $\alpha_{3}\in T$ such
that

$F_{1}+iF_{2}=\alpha_{3}(\eta_{x_{5}}+z_{3}\eta_{x_{5}}\circ\delta_{1}):=A$

$=(\alpha_{1}/2)\{(1+i)(\eta_{x_{1}}+z_{1}\eta_{x_{2}}\circ\delta_{1})+(1-i)(\eta_{x_{\theta}}+z_{2}\eta_{x_{4}}\circ\delta_{1})\}:=B$ .
NOW, we show that $x_{6}=x_{2}$ and $x_{6}=x_{4}$ , that is, $x_{2}=x_{4}$ . Suppose that $x_{6}\neq x_{2}$

and $x_{6}=x_{4}$ , then from $x_{6}\in K_{1}(\delta_{1})$ and Lemma 3.1 there exists $f_{1}(=f_{1}^{*})\in \mathfrak{D}(\delta_{1})$

such that $\delta_{1}(f_{1})(x_{6})=1$ and $\delta_{1}(fi)(x_{2})=0$ . Then we take $h_{1}\in C^{(1)}([-||f_{1}||_{\infty}, ||f_{1}||_{\infty}])$

such that

$h_{1}(f_{1}(x_{1}))=h_{1}(f_{1}(x_{3}))=h_{1}(f_{1}(x_{5}))=0$ and $h_{1}’(f_{1}(x_{\epsilon}))=1$ .

Put $g_{1}:=h_{1}(f_{1})$ ; then

$g_{1}(x_{1})=g_{1}(x_{3})=g_{1}(x_{5})=0$, $\delta_{1}(g_{1})(x_{2})=0$ and $\delta_{1}(g_{1})(x_{6})=1$ .
Then $|A(g_{1})|=1$ , but $|B(g_{1})|=\sqrt{}\overline{2}/2$ . This is a contradiction and hence this
case does not occur. Similarly, the case that $x_{6}=x_{2}$ and $x_{6}\neq x_{4}$ does not occur.
Suppose that $x_{6}\neq x_{2}$ and $x_{6}\neq x_{4}$ . Since $x_{6}\in K_{1_{\backslash }^{(’}}\delta_{1}$ ), there exists $f_{2}(=f_{2}^{\star})\in \mathfrak{D}(\delta_{1})$

such that
$\delta_{1}(f_{2})(x_{6})=1$ and $\delta_{1}(f_{2})(x_{2})=\delta_{1}(f_{2})(x_{4})=0$

from Lemma 3.1. Then we take $h_{2}\in C^{(1)}([-||f_{2}||_{\infty}, ||f_{2}||_{\infty}])$ such that

$h_{2}(f_{2}(x_{1}))=h_{2}(f_{2}(x_{3}))=h_{2}(f_{2}(x_{6}))=0$ , and $h_{2}’(f_{2}(x_{6}))=1$ .
Put $g_{2}:=h_{2}(f_{2})$ ; then

$g_{2}(x_{1})=g_{l}(x_{S})=g_{2}(x_{6})=0$ , $\delta_{1}(g_{2})(x_{2})=\delta_{1}(g_{2})(x_{4})=0$ and $\delta_{1}(g_{2})(x_{6})=1$ .
Then $|A(g_{2})|=1$ , but $|B(g_{2})|=0$ . This is a contradiction and thus this case
does not occur, too. Hence we get that $x_{6}=x_{2}$ and $x_{6}=x_{4}$ , that is, $x_{4}=x_{2}$ .

Next, we show that $x_{f}=x_{1}$ and $x_{6}=x_{s}$ , that is, $x_{1}=x_{S}$ . Suppose that $x_{\epsilon}\neq x_{1}$
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and $x_{6}=x_{3}$ , there exists $f_{3}(=f_{s}^{*})\in \mathfrak{D}(\delta_{1})$ such that $f_{3}(x_{S})=1$ and $f_{3}(x_{1})=0$ . Then
we take $h_{s}\in C^{(1)}([-||f_{S}||_{\infty}, ||f_{3}||_{\infty}])$ such that

$h_{8}(0)=0$ , $h_{3}(1)=1$ , and $h_{3}’(f_{S}(x_{2}))=0$ .
Set $g_{3}:=h_{3}(f_{S})\in \mathfrak{D}(\delta_{1})$ ; we have

$g_{3}(x_{1})=0$ , $g_{3}(x_{6})=1$ and $\delta_{1}(g_{3})(x_{2})=0$ .
Then $|A(g_{s})|=1$ , but $|B(g_{3})|=\sqrt{2}/2$ . This is a contradiction and hence this
case does not occur. Similarly, the case that $x_{5}=x_{1}$ and $x_{5}\neq x_{3}$ does not occur.
Suppose that $x_{\dot{o}}\neq x_{1}$ and $x_{s}\neq x_{3}$ . Then we can take $g_{4}\in \mathfrak{D}(\delta_{1})$ such that

$g_{4}(x_{1})=0$ , $g_{4}(x_{5})=1$ and $\delta_{1}(g_{4})(x_{2})=0$

and $g_{b}\in \mathfrak{D}(\delta_{1})$ such that

$g_{S}(x_{3})=0$ , $g_{s}(x_{s})=1$ and $\delta_{1}(g_{S})(x_{2})=0$

as a function $g_{3}$ above. Then $g_{4}g_{5}\in \mathfrak{D}(\delta_{1})$ and $|A(g_{4}g_{5})|=1$ , but $B(g_{4}g_{S})=0$ .
This is a contradiction and thus this case does not occur, too. Hence we get
that $x_{s}=x_{1}$ and $x_{5}=x_{3}$ , that is, $x_{1}=x_{3}$ . Hence we obtain

$F_{1}=\alpha_{1}\eta_{x_{1}}+(\alpha_{1}/2)(z_{1}+z_{2})(\eta_{x_{2}}\circ\delta_{1})$

$F_{2}=(\alpha_{1}/2)(z_{1}-z_{2})(\eta_{x_{2}}\circ\delta_{1})$ .
Since $||\eta_{y}\circ\delta_{2}||=1(y\in K_{2}(\delta_{2}))$ from Lemma 3.2 and $\tau*$ is a linear isometry,

$1=||T^{*}(\eta_{y_{2}}\circ\delta_{2})||=||F_{2}||=(1/2)|z_{1}-z_{2}|||\eta_{x_{2}}\circ\delta_{1}||=(1/2)|z_{1}-z_{2}|$

and hence $z_{2}=-z_{1}$ . Consequently, we have

$T^{*}(\eta_{y_{1}})=\alpha_{1}\eta_{x_{1}}$ and $T^{*}(\eta_{y_{2}}\circ\delta_{2})=\alpha_{1}(Z_{1\eta_{x_{2}}\circ\delta_{1})}$ .
Thus the proof is completed.

REMARK 4.3. The same argument as in the above proof implies that if
there exists a surjective linear isometry between $\mathfrak{D}(\delta_{1})$ and $\mathfrak{D}(\delta_{2})$ , then $\delta_{i}=0$

$(i=1,2)$ or $\delta_{i}\neq 0(i=1,2)$ .
From this lemma, we get the following theorem.

THEOREM 4.4. Let $K_{i}$ be a compact Hausdorff space and let $\delta_{i}$ be a closed
$*$-derivation in $C(K_{i})(i=1,2)$ .

(1) Let $T$ be a $sur_{J}$ ective linear isometry from $\mathfrak{D}(\delta_{1})$ to $\mathfrak{D}(\delta_{2})$ . Then the
following statements are held.

(i) There exist a homeomorphism $\tau$ from $K_{2}$ to $K_{1},$ $w_{1}\in Ker(\delta_{2})$ and a con-
tinuous function $w_{2}$ on $K_{2}(\delta_{2})$ such that $\tau(K_{2}(\delta_{2}))=K_{1}(\delta_{1}),$ $|w_{1}(y)|=1$ for all $y\in K_{2}$ ,
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$|w_{2}(y)|=1$ for all $y\in K_{2}(\delta_{2})$ ,
$(Tf)(y)=w_{1}(y)f(\tau(y))$ for $f\in \mathfrak{D}(\delta_{1})$ and $y\in K_{2}$ ,

$\delta_{2}(Tf)(y)=w_{2}(y)\delta_{1}(f)(\tau(y))$ for $f\in \mathfrak{D}(\delta_{1})$ and $y\in K_{2}(\delta_{2})$ .
(ii) $T(Ker(\delta_{1}))=Ker(\delta_{2})$ .
(2) Suppose that there exist $w\in Ker(\delta_{2})$ and a homeomorphism $\tau$ from $K_{2}$ to

$K_{1}$ such that $|w(y)|=1$ for all $y\in K_{2},$ $\tau(K_{2}(\delta_{2}))=K_{1}(\delta_{1}),$ $f\circ\tau\in \mathfrak{D}(\delta_{2})$ for all $f\in$

$\mathfrak{D}(\delta_{1}),g\circ\tau^{-1}\in \mathfrak{D}(\delta_{1})$ for all $g\in \mathfrak{D}(\delta_{2})$ , and $|\delta_{2}(f\circ\tau)(y)|=|\delta_{1}(f)(\tau(y))|$ for all $f\in$

$\mathfrak{D}(\delta_{1})$ and all $y\in K_{2}(\delta_{2})$ . Then the operator $T$ from $\mathfrak{D}(\delta_{1})$ to $\mathfrak{D}(\delta_{2})$ defined by

$(Tf)(y):=w(y)f(\tau(y))$ for $f\in \mathfrak{D}(\delta_{1})$ and $y\in K_{2}$

is a surjective linear isometry.

PROOF. At first, we prove the statement (i). We may assume that $\delta_{i}\neq 0$

$(i=1,2)$ . From Lemma 4.2, for each point $y\in K_{2}$ , there exist $x\in K_{1}$ and $\alpha\in T$

such that
$T^{*}\eta_{y}=\alpha\eta_{x}$

Defining $\tau$ and $w_{1}$ by $T^{*}\eta_{y}:=w_{1}(y)\eta_{\tau(y)}$ , then $w_{1}=T1\in Ker(\delta_{2})$ from Lemma 4.1
and $\tau$ is a homeomorphism from $K_{2}$ to $K_{1}$ . We note that $f\circ\tau=w_{1}^{*}(Tf)\in \mathfrak{D}(\delta_{2})$

for $f\in \mathfrak{D}(\delta_{1})$ .
From Lemma 4.2, for each point $y\in K_{2}(\delta_{2})$ there exist $x\in K_{1}(\delta_{1})$ and $\alpha\in T$

such that
$T^{*}(\eta_{y}\circ\delta_{2})=\alpha(\eta_{x}\circ\delta_{1})\neq 0$ .

Defining $\tau_{0}$ and $w_{2}$ by $T^{*}(\eta_{y}\circ\delta_{2}):=w_{2}(y)\eta_{\tau_{0^{(y)^{O}}}}\delta_{1}$ , then $\tau_{0}$ is a mapping from
$K_{2}(\delta_{2})$ to $K_{1}(\delta_{1})$ .

Next we show that $\tau=\tau_{0}$ on $K_{2}(\delta_{2})$ . Since $w_{1}\in Ker(\delta_{2})$ ,

$w_{1}(y)\delta_{2}(f\circ\tau)(y)=\delta_{2}(w_{1}f\circ\tau)(y)=\delta_{2}(Tf)(y)$

$=w_{2}(y)\delta_{1}(f)(\tau_{0}(y))$ ...... $(*)$

for all $f\in \mathfrak{D}(\delta_{1})$ and all $y\in K_{2}(\delta_{2})$ . Suppose that there exists $y_{0}\in K_{2}(\delta_{2})$ sucb
that $\tau(y_{0})\neq\tau_{0}(y_{0})$ . Then there exist $f_{1}\in \mathfrak{D}(\delta_{1})$ such that $\delta_{1}(f_{1})(\tau_{0}(y_{0}))=1$ and
$\delta_{1}(f_{1})(\tau(y_{0}))=0$ from Lemma 3.1. Since $K_{1}$ is a compact Hausdorff space, there
exist an open neighborhood $U_{1}(\subset K_{1})$ of $\tau_{0}(y_{0})$ and an open neighborhood $U_{2}(\subset K_{1})$

of $\tau(y_{0})$ such that $\overline{U}_{1}\cap\overline{U}_{2}=\emptyset$ . Then we take $g_{1}\in \mathfrak{D}(\delta_{1})$ such that $g_{1}=1$ on $\overline{U}_{1}$

and $g_{1}=0$ on $\overline{U}_{2}$ . Since $\tau$ is a homeomorphism, $\tau^{-1}(U_{2})$ is an open neighborhood
of $y_{0}$ and hence $(f_{1}g_{1})\circ\tau=0$ on $\tau^{-1}(U_{2})$ , which implies $\delta_{2}((f_{1}g_{1})\circ\tau)(y_{0})=0$ . But
$\delta_{1}(f_{1}g_{1})(\sim_{0}(y_{0}))=\delta_{1}(f_{1})(\tau_{0}(y_{0}))g_{1}(\tau_{0}(y_{0}))=1$ . This contradicts with $(*)$ , which im-
plies that $\tau=\tau_{0}$ on $K_{2}(\delta_{2})$ . Hence we have $T^{*}(\eta_{y}\circ\delta_{2})=w_{2}(y)\eta_{\tau(y)}\circ\delta_{1}$ for $y\in K_{2}(\delta_{2})$ .

Finally, we show that $w_{2}$ is continuous on $K_{2}(\delta_{2})$ . Since $\tau(K_{2}(\delta_{2}))=K_{1}(\delta_{1})$,
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for arbitrary $y_{0}\in K_{2}(\delta_{2})$ , there is $f_{0}\in \mathfrak{D}(\delta_{1})$ such that $\delta_{1}(f_{0})(\tau(y_{0}))\neq 0$ . We take
an open neighborhood $U(\subset K_{1}(\delta_{1}))$ of $\tau(y_{0})$ such that $\delta_{1}(f_{0})(x)\neq 0(x\in U)$ . Then
we have $w_{2}(y)=w_{1}(y)\delta_{2}(f\circ\tau)(y)/\delta_{1}(f)(\tau(y))$ for $y\in\tau^{-1}(U)$ and $w_{2}$ is continuous at
$y_{0}$ , that is, $w_{2}$ is continuous on $K_{2}(\delta_{2})$ . This completes the proof of (i). (ii)
follows easily from (i).

Next, we prove the converse statement (2). From the assumption in (2),
$T$ is well-defined as a surjective linear operator from $\mathfrak{D}(\delta_{1})$ to $\mathfrak{D}(\delta_{2})$ . Then we
have

$||Tf||_{\Sigma}=||Tf||_{\infty}+||\delta_{2}(Tf)||_{\infty}$

$=||Tf||_{\infty}+||w\delta_{2}(f\circ\tau)||_{\infty}$

$=||f||_{\infty}+||\delta_{1}(f)||_{\infty}=$ lfllx.
Thus all the proofs of Theorem 4.4 are completed.

REMARK 4.5. If $\Re(\delta_{1})\ni 1$ (especially, $\Re(\delta_{1})=C(K_{1})$), then $K_{1}(\delta_{1})=K_{1}$ and
there exists $f_{0}\in \mathfrak{D}(\delta_{1})$ such that $\delta_{1}(f_{0})=1$ and hence $w_{2}(y)=w_{1}(y)\delta_{2}(f_{0}\circ\tau)(y)$ for
all $y\in K_{2}$ .

We note that if $\delta=d/dt$ on $C^{(1)}([0,1])$ , then $\Re(\delta)=C([0,1])$ and if $\delta=d/dz$

on $C^{(1)}(T)$ , then $1\in\Re(\delta)\subseteqq C(T)$ .

Let $\delta$ be a closed $*$-derivation in $C([0,1])$ such that $\delta$ extends $d/dt$, that
is, $C^{(1)}([0,1])\subset \mathfrak{D}(\delta)$ and $\delta(f)=f’$ for $f\in C^{(1)}([0,1])$ . Applying Theorem 4.4 to
$\delta$ , we can investigate further structure of $T$. At first, we shall state several
facts for our purpose.

A real valued function $\Phi$ on $[0,1]$ is said to be a generalized Cantor func-
tion (abbreviated GCF) if $\Phi$ is increasing on $[0,1]$ , but not strictly increasing
on any subinterval of $[0,1]([22])$ . For a GCF $\Phi$ , there exists a family of
non-empty disjoint open intervals $\{l_{k}\}$ such that $U_{k=1}^{\infty}I_{k}$ is dense in $[0,1]$ and
$\Phi$ is constant on each $I_{k}$ .

Let $\delta$ be a closed $*$-derivation in $C([0,1])$ such that $\delta$ extends $d/dt$ . Then
there is a GCF $\Phi$ such that $Ker(\delta)=C^{*}(1, \Phi)$ and $\mathfrak{D}(\delta)=C^{(1)}([0,1])+Ker(\delta)$

$([22])$ .
We denote the identity mapping of $[0,1]$ by $id$ .
COROLLARY 4.6. Let $\delta$ be a closed $*$-denvation in $C([0,1_{\lrcorner}^{\urcorner})$ such that $\delta$ ex-

tends $d/dt$ . Suppose that the norm of $f\in \mathfrak{D}(\delta)$ is

llflfs $=||f||_{\infty}+||\delta(f)||_{\infty}$ .
(1) Let $T$ be a surjective linear isometry of $\mathfrak{D}(\delta)$ . Then there exist $w,$ $\tau_{0}$ ,

$\rho_{0}\in Ker(\delta)$ such that $|w(x)|=1$ for all $x\in[0,1],$ $\tau:=id+\tau_{0}$ is a homeomorphism

of $[0,1],$ $\tau^{-1}=id+p_{0},$ $\tau_{0}(0)=\tau_{0}(1)=\rho_{0}(0)=\rho_{0}(1)=0$ and further,
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$(Tf)(x)=w(x)f\circ(id+\tau_{0})(x)$ for $f\in \mathfrak{D}(\delta)$ and $x\in[0,1]$ ,

$or$

$(Tf)(x)=w(x)f\circ(1-(id+\tau_{0}))(x)$ for $f\in \mathfrak{D}(\delta)$ and $x\in[0,1]$ .
(2) Suppose that there exist $w,$ $\tau_{0}\in Ker(\delta)$ such that $|w(x)|=1$ for all $x\in$

$[0,1],$ $\tau:=id+\tau_{0}$ is a homeomorphism of $[0,1]$ and $f\circ\tau,$ $f\circ\tau^{-1}\in \mathfrak{D}(\delta)$ for all
$f\in Ker(\delta)$ . Then the operators $T_{1}$ and $T_{2}m\mathfrak{D}(\delta)$ defined respectively by

$(T_{1}f)(x):=w(x)f\circ(id+\tau_{0})(x)$ for $f\in \mathfrak{D}(\delta)$ and $x\in[0,1]$ ,

$(T_{2}f)(x):=w(x)f\circ(1-(id+\tau_{0}))(x)$ for $f\in \mathfrak{D}(\delta)$ and $x\in[0,1]$

are $sur_{J}$ ective linear isometries of $\mathfrak{D}(\delta)$ .

PROOF. We shall prove the statement (1). From (1) of Theorem 4.4, there
exist a homeomorphism $\tau$ of $[0,1]$ and $w\in Ker(\delta)$ such that $|w(x)|=1$ for all
$x\in[0,1]$ and

$(Tf)(x)=w(x)f(\tau(x))$ for $f\in \mathfrak{D}(\delta)$ and $x\in[0,1]$ .
Since $\tau$ is a homeomorphism, we may suppose that $\tau$ is strictly increasing on
$[0,1]$ . Since 1, $id$ and $w=T(1)\in \mathfrak{D}(\delta),$ $\tau=w^{*}T(id)\in \mathfrak{D}(\delta)$ . Then there exist a
real function $\tau\in C^{(1)}([0,1])$ and a real function $\tau_{0}\in Ker(\delta)$ such that $\tau=\tau_{1}+\tau_{0}$ ,
$\tau_{1}(0)=\tau_{0}(0)=0$ and $\tau_{1}(1)+\tau_{0}(1)=1$ . Then there exists $h\in C([-||\Phi||_{\infty}, ||\Phi||_{\infty}])$ such
that $\tau_{0}=h\circ\Phi$ , which implies that $\tau_{0}$ is constant on each $I_{k}$ . Now, since $\tau=$

$\tau_{1}+h\circ\Phi$ and $\tau$ is strictly increasing on $[0,1]$ , we get $\tau_{1}$ is strictly increasing
on each $I_{k}$ . We show that $\tau_{1}$ is strictly increasing on $[0,1]$ . Suppose that
there exist $x_{0}$ and $y_{0}$ in $[0,1]$ such that $x_{0}<y_{0}$ and $\tau_{1}(y_{0})\leqq\tau_{1}(x_{0})$ . Since $\tau_{1}$ is
in $C^{(1)}([0,1])$ , then there exists an open subinterval $J(\subset(x_{0}, y_{0}))$ on which $\tau_{1}$

is non-increasing. But $\tau_{1}$ is strictly increasing on $J\cap I_{k}$ for some $I_{k}$ . This is
a contradiction. Thus $\tau_{1}$ is strictly increasing on $[0,1]$ . Hence $\tau_{1}’$ IIO. Next,
we show $\tau_{1}’\equiv 1$ . Since $\delta(w)=0$ , we have

$2=||id||_{\Sigma}=||T(id)||_{\Sigma}$

$=||w\tau||_{\infty}+||\delta(w\tau)||_{\infty}$

$=||\tau||_{\infty}+||\tau_{1}’||_{\infty}$ .

From this and $||\tau||_{\infty}=1$ , we have $||\tau_{1}’||_{\infty}=1$ . SupPose that there exists $x_{0}$ in $[0,1]$

such that $\tau_{1}’(x_{0})<1$ . Then we choose a function $h\in C^{(1)}([0,1])$ such that $||h||_{\infty}$

$<1$ , $||h’||_{\infty}=1$ , $h’(\tau(x_{0}))=1$ and $0<h’(x)<1$ for all $x(\neq\tau(x_{0}))\in[0,1]$ . Since
$\tau_{1}’(x_{0})<1$ and $0<h’(x)<1$ for all $x(\neq\tau(x_{0}))\in[0,1]$ , there exists an open neigh-
borhood $U_{x_{0}}$ of $x_{0}$ such that

$\sup\{\tau_{1}’(x):x\in\overline{U_{x_{0}}}\}(:=c_{1})<1$
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and
$\sup\{h’\circ\tau(x) : x\in([0,1]\backslash U_{x_{0}})\}(:=c_{2})<1$ .

Then
$1=||h’||_{\infty}=||\delta(h)||_{\infty}$

$=||\delta(Th)||_{\infty}=||\delta(h\circ\tau)||_{\infty}$

$= \sup\{h’\circ\tau(x)\tau_{1}’(x):x\in[0,1]\}$

$\leqq\max(c_{1}, c_{2})<1$ .

This is a contradiction. Thus $\tau_{1}’\equiv 1$ . Since $\tau_{1}(0)=0$ , we get $\tau_{1}=id$ . Consider-
ing $T^{-1}$ , we get $p_{0}\in Ker(\delta)$ such that $\tau^{-1}=id+p_{0}$ . If $\tau$ is strictly decreasing,
we may consider $1-\tau$ .

We prove the converse statement (2). Since $\tau_{0}\circ\tau^{-1}\in \mathfrak{D}(\delta)$ from assumption
in (2), $\tau^{-1}=id-\tau_{0^{o}}\tau^{-1}\in \mathfrak{D}(\delta)$ . Hence we have $f\circ\tau$ and $fQ\tau^{-1}\in \mathfrak{D}(\delta)$ for all $f\in$

$\mathfrak{D}(\delta)$ . Thus $T_{1}$ defined in (2) is a surjective linear operator on $\mathfrak{D}(\delta)$ . Next, we
shall show that $|\delta(f\circ\tau)(x)|=|\delta(f)(\tau(x))|$ for all $f\in \mathfrak{D}(\delta)$ and all $x\in[0,1]$ . For
each $f\in \mathfrak{D}(\delta)$ , there exist $f_{1}\in C^{(1)}([0,1])$ and $f_{0}\in Ker(\delta)$ such that $f=f_{1}+f_{0}$ .
Since

$|\delta(f\circ\tau)(x)|=|\delta(f_{1}\circ\tau+f_{0}\circ\tau)(x)|$

$=|(f_{1}’\circ\tau\delta(\tau)+\delta(f_{0}\circ\tau))(x)|$

$=|(f_{1}’\circ\tau+\delta(f_{0}\circ\tau))(x)|$ ,

it is sufficient to show $f_{0}\circ\tau\in Ker(\delta)$ . From our assumption, $g:=f_{0}\circ\tau\in \mathfrak{D}(\delta)$ .
Therefore there exist $g_{1}\in C^{(1)}([0,1])$ and $g_{0}\in Ker(\delta)$ such that $f_{0}\circ\tau=g_{1}+g_{0}$ .
For each $I_{m},$ $U_{k=1}^{\infty}\{\tau^{-1}(I_{m})\cap I_{k}\}$ is dense in $\tau^{-1}(I_{m})$ . Since $g=g_{1}+g_{0}$ and $g$ and
$g_{0}$ are constant on each non-empty open interval $\tau^{-1}(I_{m})\cap I_{k}$ , then $g_{1}$ is constant
and hence $g_{1}’\equiv 0$ on each such interval $\tau^{-1}(I_{m})OI_{k}$ . Since $g_{1}$ is in $C^{(1)}([0,1])$ ,

then $g_{1}’\equiv 0$ on each $\tau^{-1}(I_{m})$ . Since $\bigcup_{k=1}^{\infty}\tau^{-1}(I_{m})$ is dense in $[0,1],$ $g_{1}’\equiv 0$ on
$[0,1]$ , which implies that $g_{1}$ is constant and hence $f_{0}\circ\tau\in Ker(\delta)$ . Thus, from
(2) of Theorem 4.4, we get $||T_{1}f||_{\Sigma}=||f||_{\Sigma}$ for all $f\in \mathfrak{D}(\delta)$ . Similarly, we can
prove tbat $T_{2}$ is a surjective isometry of $\mathfrak{D}(\delta)$ . This completes the proof.

Considering the case that $\Phi$ is constant and $\delta=d/dt$ in Corollary 4.6, we
get the following corollary.

COROLLARY 4.7 (Rao and Roy). Suppose that the norm of $f\in C^{(1)}([0,1])$ is

$||f||_{\Sigma}=||f||_{\infty}+||\delta(f)||_{\infty}$ .

Let $T$ be a surjective linear isometry of $C^{(1)}([0,1])$ . Then $T$ has the following
expression
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$(Tf)(x)=\alpha f(\tau(x))$ for all $f\in C^{(1)}([0,1])$ and $x\in[0,1]$

with $T(1)=\alpha(\alpha\in T)$ is a constant and $\tau$ is one of the two functions $id$ or $1-id$ .

\S 5. Extreme points of the closed unit ball of the conjugate
space $\mathfrak{D}(\delta)^{*}$ of $\mathfrak{D}(\delta)$ with M-norm.

Throughout this section, let $K$ be a compact Hausdorff space and let $\delta$ be
a closed $*$-derivation in $C(K)$ ; the norm of $f\in \mathfrak{D}(\delta)$ is

$|1f||_{M}= \max(||f||_{\infty}, ||\delta(f)||_{\infty})$ .
In this section, we get concrete expressions of extreme points of $\mathfrak{D}(\delta)_{1}^{*}$ with
M-norm.

Let $W$ be the compact Hausdorff space $XvY$ (topological sum with $X=Y$

$=K)$ . We define $\tilde{f}$ on $C(W)(f\in \mathfrak{D}(\delta))$ by

$f(w):=\{$
$f(w)$ if $w\in X$

$\delta(f)(w)$ if $w\in Y$ .

Then we may embed $\mathfrak{D}(\delta)$ as a closed subspace of $C(W)$ .

LEMMA 5.1. The mapping $\psi:farrow\tilde{f}$ establishes a linear and norm-preserving
correspondence between $\mathfrak{D}(\delta)$ and the closed subspace $S:=\{f:f\in \mathfrak{D}(\delta)\}$ of $C(W)$ .

We recall that $C(W)=C(K)\oplus_{l^{\infty}}C(K)$ and $C(W)^{*}=C(K)^{*}\oplus_{l1}C(K)^{*}$ by the
canonical correspondence. Let $\Psi$ be an extension of $(\psi^{-1})^{*}(F)(F\in \mathfrak{D}(\delta)^{*})$ to
$C(W)$ , where this extension is not necessary unique; then $\Psi\in C(W)^{*}$ has the
form

$\Psi(g)=\int_{K}gd\mu+\int_{K}\delta(g)d\nu$ $(\forall g\in C(W))$

for some complex regular Borel measures $\mu$ and $\nu$ on $K$. Hence $F(\in \mathfrak{D}(\delta)^{*})$ has
the form

$F(f)= \Psi(f)=\int_{K}fd\mu+\int_{K}\delta(f)d\nu$ (V $f\in \mathfrak{D}(\delta)$).

If $\Psi$ is a norm-preserving extension, $||F||=||\Psi||=||\mu||+||\nu||$ .
NOW we state the main result of this section. We note that the expressions

of $\eta_{x}$ and $\eta_{x}\circ\delta\neq 0$ are unique.

THEOREM 5.2. Let $K$ be a compact Hausdorff space and let $\delta$ be a closed
$*$-derivatim in $C(K)$ . Then an element $G\in \mathfrak{D}(\delta)^{*}$ is an extreme point of $\mathfrak{D}(\delta)_{1}^{*}$

if and only if
$G=\alpha\eta_{x}(\alpha\in T, x\in K)$ or $\alpha(\eta_{x}\circ\delta)(\alpha\in T, x\in K(\delta))$ .
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PROOF. At first, we prove ’only if part’. Suppose that $L$ is an extreme
point of $S_{1}^{*}$ , where $S$ is as in Lemma 5.1 ; then we can extend $L$ to the ex-
treme point of $C(W)^{*}$ . We recall that the form of an extreme point of $C(W)_{1}^{*}$

is a point evaluation multiplied by $\alpha(\alpha\in T)$ . Hence, if an element $G$ of $\mathfrak{D}(\delta)^{*}$

is an extreme point of $\mathfrak{D}(\delta)_{1}^{*}$ , then

$G=\alpha\eta_{x}(\alpha\in T, x\in K)$ or $\alpha(\eta_{x}\circ\delta)(\alpha\in T, x\in K(\delta))$ .
Next, we show ’if part’. For $x_{0}\in X(=K)$ , we set $G_{1}:=\eta_{x_{0}}\in \mathfrak{D}(\delta)^{*}$ . Let

$\Psi_{1}$ be any norm-preserving extension of $(\psi^{-1})^{*}(G_{1})$ to $C(W)$ . Then there exist
complex regular Borel measures $\mu\in C(X)^{*}$ and $\nu\in C(Y)^{*}$ such that $||\Psi_{1}||=||\mu||+$

$||\nu||$ and

$f(x_{0})= \Psi_{1}(f)=\int_{K}fd\mu+\int_{K}\delta(f)d\nu$

for all $f\in \mathfrak{D}(\delta)$ . S’nce

$1= \Psi_{1}(1)=\sim\int_{K}d\mu=|\int_{K}d\mu|\leqq\int_{K}d|\mu|=||\mu||\leqq||\Psi_{1}||=1$ ,

we have $||\mu||=\mu_{\backslash }’1$ ) $=1$ and hence $\mu$ is a positive measure. Since $1=||\Psi_{1}||=||\mu||$

$+||\nu||$ , we have $\nu=0$ . Hence for all $f\in \mathfrak{D}(\delta),$ $f(x_{0})= \Psi_{1}(\tilde{f})=\int_{K}fd\mu$ Since $\mathfrak{D}(\delta)$

is dense in $C(K),$ $\mu$ is the dirac measure at $x_{0}$ . Thus $\Psi_{1}$ (arbitrary norm-
preserving extension of $(\psi^{-1})^{*}(G_{1})$ to $C(W))$ is an extreme point of $C(W)_{1}^{*}$ and
hence we conclude that $(\psi^{-1})^{*}(G_{1})$ is an extreme point of $S_{1}^{*}$ , which implies that
$G_{1}=\eta_{x_{0}}$ is an extreme point of $\mathfrak{D}(\delta)_{1}^{*}$ .

Finally, we shall show that $G_{2}:=\eta_{y_{0}}\circ\delta$ is an extreme point of $\mathfrak{D}(\delta)_{1}^{*}$ for
$y_{0}\in K(\delta)(\subset Y)$ . Let $\Psi_{2}$ be any norm-preserving extension of $(\psi^{-1})^{*}(G_{2})$ to $C(W)$ .
Then there exist complex regular Borel measures $\mu\in C(X)^{*}$ and $\nu\in C(Y)^{*}$ such
that $||\Phi||=||\mu||+||\nu||$ and

$\delta(f)(y_{0})=\Psi_{2}(f)=\int_{K}fd\mu+\int_{K}\delta(f)d\nu$

for all $f\in \mathfrak{D}(\delta)$ . For arbitrary $\epsilon>0$ , we take $f_{\epsilon}(=f_{\epsilon}^{*})\in \mathfrak{D}(\delta)$ such that

$||\eta_{y_{0}}\circ\delta||-\epsilon\leqq|\delta(f_{\epsilon})(y_{0})|$ and $||f_{\epsilon}||_{M}<1$ .
For any open neighborhood $U(\subset Y)$ of $y_{0}$ we choose an oPen neighborhood $V$

of $y_{0}$ such that $\overline{V}\subset U$ . Then we take $g_{1}\in \mathfrak{D}(\delta)$ such that

$g_{1}(y_{0})=1$ , $g_{1}=0$ on $K\backslash V$ and OS $g_{1}\leqq 1$ ,

then $g_{1}=\delta(g_{1})=0$ on $K\backslash U$ . Put $c_{\epsilon}:=(1-||\delta(f_{\epsilon})||_{\infty})/(||\delta(g_{1})||_{\infty}+1)(<1)$ . Then we
take a function $h_{\epsilon}\in C^{(1)}([-||f_{\text{\’{e}}}||_{\infty}, ||f_{\epsilon}||_{\infty}])$ such that

$||h_{\epsilon}||_{\infty}\leqq c_{\epsilon}$ , $h_{\epsilon}(f_{\epsilon}(y_{0}))=0$ , $h_{\text{\’{e}}}’(f_{\epsilon}(y_{0}))=1$ and $||h_{\epsilon}’||_{\infty}=1$ .
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Put $g_{\text{\’{e}}}:=h_{\epsilon}(f_{\epsilon})$ . Then we have

$\delta(g_{1}g_{\epsilon})(y_{0})=\delta(g_{1})(y_{0})g_{\epsilon}(y_{0})+g_{1}(y_{0})\delta(g_{\epsilon})(y_{0})=\delta(g_{\epsilon})(y_{0})=\delta(f_{\epsilon})(y_{0})$ ,

$||g_{1}g_{e}||_{\infty}\leqq c_{\epsilon}$ , $||\delta(g_{1}g_{\epsilon})||_{\infty}\leqq 1$ and $g_{1}g_{\epsilon}=\delta(g_{1}g_{\epsilon})=0$ on $K\backslash U$ .
Since

$||\eta_{y_{0}}\circ\delta||-\epsilon\leqq|\delta(f_{\epsilon})(y_{0})|=|\delta(g_{1}g_{\epsilon})(y_{0})|$

$=| \int_{K}g_{1}g_{\epsilon}d\mu+\int_{K}\delta(g_{1}g_{\epsilon})d\nu|$

$\leqq\int_{K}|g_{1}g_{\epsilon}|d|\mu|+\int_{K}|\delta(g_{1}g_{\epsilon})|d|\nu|$

$\leqq\int_{U}d|\mu|+\int_{U}d|\nu|$

$\leqq$ I $\mu||+||\nu||=||\Psi_{2}||=||\eta_{y_{0}}\circ\delta||$ ,

we $have\int_{U}d|\mu|=||\mu||$ and $\int_{U}d|\nu|=||\nu||$ . Thus we have $supp|\mu|\subset\{y_{0}\}$ and $supp|\nu|$

$\subset\{y_{0}\}$ , which implies there exist $a,$ $b\in C$ such that $\mu=a\delta_{y_{0}}$ and $\nu=b\delta_{y_{0}}$ where
$\delta_{y_{0}}$ is the dirac measure at $\{y_{0}\}$ . Hence we have $\delta(f)(y_{0})=af(y_{0})+b\delta(f)(y_{0})$ .
Since $1\in \mathfrak{D}(\delta)$ and $y_{0}\in K(\delta)$ , we see $a=0$ and $b=1$ . Thus $\nu$ is the dirac meas-
ure at $y_{0}$ and $\mu=0$ , wbich implies $\Psi_{2}$ is an extreme point of $C(W)_{1}^{*}$ . Then we
conclude that $(\psi^{-1})^{*}(G_{2})$ is an extreme point of $S_{1}^{*}$ , which implies that $G_{2}=\eta_{y_{0}}\circ\delta$

is an extreme point of $\mathfrak{D}(\delta)_{1}^{*}$ . This completes the proof.

\S 6. Linear isometries between $\mathfrak{D}(\delta_{1})$ and $\mathfrak{D}(\delta_{2})$ with M-norm.

In this section we use the results in section 5 to study the structure of
surjective linear isometries of $\mathfrak{D}(\delta)$ with the M-norm.

THEOREM 6.1. Let $K_{i}$ be a compact Hausdorff space and let $\delta_{i}$ be a closed
$*$ -derivation in $C(K_{i})(i=1,2)$ .

(1) Let $T$ be a $sur_{J}$ ective linear isometry from $\mathfrak{D}(\delta_{1})$ to $\mathfrak{D}(\delta_{2})$ . Then the
following statements are held.

(i) There exist a homeomorphism $\tau$ from $K_{2}$ to $K_{1},$ $w_{1}\in Ker(\delta_{2})$ and a con-
tinuous function $w_{2}$ on $K_{2}(\delta_{2})$ such that $\tau(K_{2}(\delta_{2}))=K_{1}(\delta_{1}),$ $|w_{1}(y)|=1$ for all $y\in K_{2}$ ,
$|w_{2}(y)|=1$ for all $y\in K_{2}(\delta_{2})$ ,

$(Tf)(y)=w_{1}(y)f(\tau(y))$ for $f\in \mathfrak{D}(\delta_{1})$ and $y\in K_{2}$ ,

$\delta_{2}(Tf)(y)=w_{2}(y)\delta_{1}(f)(\tau(y))$ for $f\in \mathfrak{D}(\delta_{1})$ and $y\in K_{2}(\delta_{2})$ .

(ii) $T(Ker(\delta_{1}))=Ker(\delta_{2})$ .
(2) Suppose that there exist $w\in Ker(\delta_{2})$ and a homeomorphism $\tau$ from $K_{2}$ to



248 T. MA $rsuMO1O$ and S. WATANABE

$K_{1}$ such that $|w(y)|=1$ for all $y\in K_{2},$ $\tau(K_{2}(\delta_{2}))=K_{1}(\delta_{1}),$ $f\circ\tau\in \mathfrak{D}(\delta_{2})$ for all $f\in$

$\mathfrak{D}(\delta_{1}),g\circ\tau^{-1}\in \mathfrak{D}(\delta_{1})$ for all $g\in \mathfrak{D}(\delta_{2})$ , and $|\delta_{2}(f\circ\tau)(y)|=|\delta_{1}(f)(\tau(y))|$ for all $f\in$

$\mathfrak{D}(\delta_{1})$ and all $y\in K_{2}(\delta_{2})$ . Then the operator $T$ from $\mathfrak{D}(\delta_{1})$ to $\mathfrak{D}(\delta_{2})$ defined by

$(Tf)(y):=w(y)f(\tau(y))$ for $f\in \mathfrak{D}(\delta_{1})$ and $y\in K_{2}$

is a surjective linear isometry.

PROOF. At first, we recall that

$ext\mathfrak{D}(\delta_{t})_{1}^{*}=\{\alpha\eta_{x}, \beta(\eta_{y}\circ\delta_{i}):\alpha, \beta\in T, x\in K_{i}, y\in K_{i}(\delta_{i})\}$

and its expression is unique. For each point $y\in K_{2}$ , we have two possibilities:
1. There exist $x_{1}\in K_{1}$ and $\alpha_{1}\in T$ such that

$T^{*}\eta_{y}-\alpha_{1}\eta_{x_{1}}$

or
2. There exist $x_{2}\in K_{1}$ and $\alpha_{2}\in T$ such that

$T^{*}\eta_{y}=\alpha_{2}(\eta_{x_{2}}\circ\delta_{1})$ .
Hence we have $|T1(y)|=1$ or $T1(y)=0$ for each $y\in K_{2}$ . Put

$\Omega:=\{y\in K_{2} : |T1(y)|=1\}(\neq\emptyset)$ ,

$\Gamma:=\{y\in K_{2} : T1(y)=0\}$ .
Suppose that $\Gamma\neq\emptyset$ ; then $\Omega$ and $\Gamma$ are non-empty open and closed sets. Put
$p:=1-(T1)^{*}(T1)\in \mathfrak{D}(\delta_{2})$ ; then $P$ is a projection and hence $\delta_{2}(p)=0$ . For $\lambda\in T$ ,

$||T1+ \lambda p||_{M}=\max(||T1+\lambda p||_{\infty}, ||\delta_{2}(T1)||_{\infty})$

$= \max(||T1||_{\infty}, ||\delta_{2}(T1)||_{\infty})$

$=||T1||_{M}=1$

and $T^{-1}(T1+\lambda p)=1+\lambda T^{-1}(p)$ , but there exists $\lambda_{0}\in T$ such that

$||T^{-1}(T1+\lambda_{0}p)||_{M}=||1+\lambda_{0}T^{-1}(p)||_{M}>1$ .
This is a contradiction, which implies $\Gamma=\emptyset$ . Hence for each point $y\in K_{2}$ ,

there exist $x\in K_{1}$ and $\alpha\in T$ such that

$T^{*}\eta_{y}=\alpha\eta_{x}$

Then, defining $\tau$ and $w_{1}$ by $T^{*}\eta_{y}:=w_{1}(y)\eta_{\tau(y)}$ , we have $w_{1}=T1\in \mathfrak{D}(\delta_{2})$ and $\tau$

is a homeomorphism from $K_{2}$ to $K_{1}$ .
Since $\tau*$ carries $ext\mathfrak{D}(\delta_{2})_{1}^{*}$ and $\{\alpha\eta_{y} : \alpha\in T, y\in K_{2}\}$ onto $ext\mathfrak{D}(\delta_{1})_{1}^{*}$ and

$\{\alpha\eta_{x} : \alpha\in T, x\in K_{1}\}$ respectively, for each $y\in K_{2}(\delta_{2})$ there exist $x\in K_{1}(\delta_{1})$ and
$\alpha\in T$ such that
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$T^{*}(\eta_{y}\circ\delta_{2})=\alpha\eta_{x}\circ\delta_{1}(\neq 0)$ .
From this, we see $w_{1}\in Ker(\delta_{2})$ . Defining $\tau_{0}$ and $w_{2}$ by $T^{*}(\eta_{y^{o}}\delta_{2}):=w_{2}(y)\eta_{\tau_{0}(y)}\circ\delta_{1}$ ,
then $\tau_{0}$ is a mapping from $K_{2}(\delta_{2})$ to $K_{1}(\delta_{1})$ . By the same way as in the proof
of Theorem 4.4, the proof of (i) is completed. (ii) follows easily from (i).

We prove the converse statement (2). From the assumption in (2), $T$ is
well-defined as a surjective linear isometry from $\mathfrak{D}(\delta_{1})$ to $\mathfrak{D}(\delta_{2})$ . Then we have

$||Tf||_{\infty}=||f||_{\infty}$ and I $\delta_{2}(Tf)||_{\infty}=$ I $\delta_{1}(f)||_{\infty}$ ,

that is, $||Tf||_{M}=||f||_{M}$ for all $f\in \mathfrak{D}(\delta_{1})$ . From $g\circ\tau^{-1}\in \mathfrak{D}(\delta_{1})$ for all $g\in \mathfrak{D}(\delta_{2}),$ $T$

is surjective. Thus, all the proofs are completed.

If $1\in\Re(\delta_{1})$ , refer to Remark 4.5.

REMARK 6.2. Let $T$ be a surjective linear isometry from $\mathfrak{D}(\delta_{1})$ to $\mathfrak{D}(\delta_{2})$ .
From Theorem 6.1, then $||Tf||_{\infty}=||f||_{\infty}$ and $||\delta_{2}(Tf)||_{\infty}=||\delta_{1}(f)||_{\infty}$ for all $f\in \mathfrak{D}(\delta_{1})$ .
Hence if there exist a surjective linear isometry from $\mathfrak{D}(\delta_{1})$ to $\mathfrak{D}(\delta_{2}),$ $\delta_{i}=0(i=$

$1,2)$ or $\delta_{i}\neq 0(i=1,2)$ . If $\delta_{i}=0(i=1,2)$ , we have a well-known Banach-Stone
theorem.

In Theorem 6.1, let $\delta$ be a closed $*$-derivation in $C([0,1])$ such that $\delta$ ex-
tends $d/dt$ . By the same way as in the proof of Corollary 4.6, we get the
following corollary.

COROLLARY 6.3. Let $\delta$ be a closed $*$-derivation in $C([0,1])$ such that $\delta$ ex-
tends $d/dt$ . Suppose that the norm of $f\in \mathfrak{D}(\delta)$ is

$||f||_{M}= \max(||f||_{\infty}, ||\delta(f)||_{\infty})$ .
(1) Let $T$ be a $sur_{J}$ ective linear isometry of $\mathfrak{D}(\delta)$ . Then there exist $w,$ $\tau_{0}$ ,

$\rho_{0}\in Ker(\delta)$ such that $|w(x)|=1$ for all $x\in[0,1],$ $\tau:=id+\tau_{0}$ is a homeomorphism

of $[0,1],$ $\tau^{-1}=id+\rho_{0},$ $\tau_{0}(0)=\tau_{0}(1)=\rho_{0}(0)=\rho_{0}(1)=0$ and further,

$(Tf)(x)=w(x)f\circ(id+\tau_{0})(x)$ for $f\in \mathfrak{D}(\delta)$ and $x\in[0,1]$ ,

$or$

$(Tf)(x)=w(x)f\circ(1-(id+\tau_{0}))(x)$ for $f\in \mathfrak{D}(\delta)$ and $x\in[0,1]$ .

(2) Suppose that there exist $w,$ $\tau_{0}\in Ker(\delta)$ such that $|w(x)|=1$ for all $x\in$

$[0,1],$ $\tau:=id+\tau_{0}$ is a homeomorphism of $[0,1]$ and $f\circ\tau,$ $f\circ\tau^{-1}\in \mathfrak{D}(\delta)$ for all
$f\in Ker(\delta)$ . Then the operators $T_{1}$ and $T_{2}$ on $\mathfrak{D}(\delta)$ defined respectively by

$(T_{1}f)(x):=w(x)f\circ(id+\tau_{0})(x)$ for $f\in \mathfrak{D}(\delta)$ and $x\in[0,1]$ ,

$(T_{2}f)(x):=w(x)f\circ(1-(id+\tau_{0}))(x)$ for $f\in \mathfrak{D}(\delta)$ and $x\in[0,1]$

are surjective linear isometries of $\mathfrak{D}(\delta)$ .
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Considering the case that $\Phi$ is constant and $\delta=d/dt$ in Corollary 6.3, we
get the following corollary.

COROLLARY 6.4. Suppose that the norm of $f\in C^{(1)}([0,1])$ is

$||f||_{M}= \max(||f||_{\infty}, ||f’||_{\infty})$ .

Let $T$ be a surjective linear isometry of $C^{(1)}([0,1])$ . Then $T$ has the following
expression

$(Tf)(x)=\alpha f(\tau(x))$ for $f\in C^{(1)}([0,1])$ and $x\in[0,1]$

with $T(1)=\alpha(\alpha\in T)$ is a constant and $\tau$ is one of the two functions $id$ or $1-id$ .

\S 7. Extreme points of the closed unit ball of $\mathfrak{D}(\delta)$ with M-norm.

Let $K$ be a compact Hausdorff space and let $\delta$ be a closed $*$-derivation in
$C(K)$ . Extreme points of the closed unit balls of Banach spaces have been
investigated for many concrete spaces by many authors. In this section we
wish to characterize all the extreme points of the closed unit ball of $\mathfrak{D}(\delta)$ with
$M$-norm, that is,

$||f||_{M}= \max(||f||_{\infty}, ||\delta(f)||_{\infty})$ .

The first thing to note is that for $f$ to belong to $ext\mathfrak{D}(\delta)_{1}$ , it is necessary
that $||f||_{\infty}=1$ . For if $||f||_{\infty}<1$ , then $||f\pm(1-||f||_{\infty})1||_{M}\leqq 1$ and

$f=(1/2)\{(f+(1-||f||_{\infty})1)+(f-(1-||f||_{\infty})1)\}$ ,

which implies that $f$ is not extreme. Moreover, if $f$ belongs $\mathfrak{D}(\delta)_{1}$ and $|f(x)|$

$=1$ for all $x\in K$, then $f$ belongs to $ext\mathfrak{D}(\delta)_{1}$ . This is because $f$ is already
extreme in $C(K)$ . In the situation mentioned above, we describe the other
members of $ext\mathfrak{D}(\delta)_{1}$ .

THEOREM 7.1. Let $K$ be a compact Hausdorff space and let $\delta$ be a closed
$*$-derivation with $Ker(\delta)=C1$ . Let $f$ be an element of $\mathfrak{D}(\delta)$ such that $||f||_{M}=||f||_{\infty}$

$=1$ and suppose that $f$ is not of modulus one everywhere. Then $f\in ext\mathfrak{D}(\delta)_{1}$ if
and only if $|\delta(f)(x)|=1(x\in K\backslash M_{f})$ , where $M_{f}:=\{x\in K:|f(x)|=||f||_{\infty}=1\}$ .

PROOF. We first prove ‘only if’ Part. SuPPose that there exists $x_{0}\in K\backslash M_{f}$

such that $|\delta(f)(x_{0})|<1$ , that is, there exists $a>0$ such that $\max(|f(x_{0})|$ ,
$|\delta(f)(x_{0})|)<a<1$ . Let $U_{x_{0}}:= \{x\in K:\max(|f(x)|, |\delta(f)(x)|)<a\}$ . Then there
exists $f_{0}\in \mathfrak{D}(\delta)$ such that

$f_{0}(x_{0})=1$ , $f_{0}(x)=0$ $(x\in K\backslash U_{x_{0}})$ and OS $f_{0}\leqq 1$ .
Moreover, there exists $h\in C^{(1)}([0,1])$ such that
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$0<h(1)<1$ and $h(O)=h’(O)=0$ .

Put $g_{0}:=h(f_{0})$ . Then $g_{0}\in \mathfrak{D}(\delta)$ is non-zero and $g_{0}=\delta(g_{0})=0$ on $K\backslash U_{x_{0}}$ . We
choose a real $\lambda$ such that

$0< \lambda<\min(1/||g_{0}||_{\infty}, 1/(1+||\delta(g_{0})||_{\infty}))(1-a)$ .
Then we have

$||f \pm\lambda g_{0}||_{M}=\max(||f\pm\lambda g_{0}||_{\infty}, ||\delta(f\pm\lambda g_{0})||_{\infty})\leqq 1$ ,

which implies that $f\pm\lambda g_{0}$ belong to $\mathfrak{D}(\delta)_{1}$ . Moreover, we have

$\beta=(1/2)\{(f+\lambda g_{0})+(f-\lambda g_{0})\}$ .
Consequently, $f\in ext\mathfrak{D}(\delta)_{1}$ implies that $|\delta(f)|=1$ on $K\backslash M_{f}$ .

TO prove the converse statement, we take $f\in \mathfrak{D}(\delta)_{1}$ such that $||f||_{M}=||f||_{\infty}$

$=1$ and $f$ is not necessarily modulus one everywhere. Suppose further that
$|\delta(f)|=1$ on $K\backslash M_{f}$ . Let

$f:=(1/2)(g_{1}+g_{2})$ $(g_{1}, g_{2}\in \mathfrak{D}(\delta)_{1})$ .
Clearly,

$g_{1}=g_{2}=f$ on $M_{f}$ .
Also,

$\delta(f)=(1/2)(\delta(g_{1})+\delta(g_{2}))$ .
Hence, from the assumption we have

$\delta(g_{1})=\delta(g_{2})=\delta(f)$ on $K\backslash M_{f}$ .
We show that

$\delta(g_{1})=\delta(g_{2})=\delta(f)$ on $M_{f}$ .
TO this end, we take and fix arbitrary $x\in M_{f}$ . Suppose that there exists an
open neighborhood $U_{x}$ of $x$ such that $U_{x}\subset M_{f}$ . Then

$f-g_{1}=0$ and $f-g_{2}=0$ on $U_{x}$ ,

which implies
$\delta(f)(x)=\delta(g_{1})(x)$ and $\delta(f)(x)=\delta(g_{2})(x)$ .

Next, suppose that for each open neighborhood $U_{x}$ of $x\in M_{f}$ , there exists $y\in$

$U_{x}\cap(K\backslash M_{f})$ . Then there exists a net $\{x_{\gamma}\}$ in $K\backslash M_{f}$ such that

$x_{\gamma}arrow x$ , $\delta(f)(x_{\gamma})=\delta(g_{1})(x_{\gamma})$ and $\delta(f)(x_{r})=\delta(g_{2})(x_{\gamma})$ .
Therefore

$\delta(f)(x)=\delta(g_{1})(x)=\delta(g_{2})(x)$ .
Consequently, we have

$\delta(g_{1})=\delta(g_{2})=\delta(f)$ on $K$,
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that is,
$\delta(f-g_{1})=0$ and $\delta(f-g_{2})=0$ on $K$.

From our assumption, $f-g_{1}$ and $f-g_{2}$ are constant on $K$. Since $f=g_{1}$ and
$f=g_{2}$ on $M_{f}$ , we have $f=g_{1}$ and $f=g_{2}$ on $K$, which implies that $f$ belongs to
$ext\mathfrak{D}(\delta)_{1}$ . This completes the proof.

REMARK 7.2. In the proof of ’only if’ part of Theorem 7.1, the condition
$Ker(\delta)=C1$ is unnecessary. However, this condition can not be deleted in ‘if’
part and such example is easlly constructed.

AS stated in the first paragraph of this section, a unitary element $u$ (that

is, $|u(x)|$ sl on $K$ ) of $\mathfrak{D}(\delta)_{1}$ is an extreme point of $\mathfrak{D}(\delta)_{1}$ . For a unitary $u\in \mathfrak{D}(\delta)$

it may happen that $||\delta(u)||_{\infty}>1$ , and for a non-unitary $u\in \mathfrak{D}(\delta),$ $\delta(u)$ is able to be
unitary. Such examples are easy to find in $C^{(1)}([0,1])$ . In connection with
this, we present some examples.

EXAMPLE 7.3. Let $K$ be a compact Hausdorff space and let $\delta$ be a closed
$*$-derivation in $C(K)$ . For any $f(=f^{*})\in \mathfrak{D}(\delta)$ such tbat $||\delta(f)||_{\infty}=1$ , there exists
$h\in C^{(1)}([-||f]|_{\infty}, ||f||_{\infty}])$ such that $||h’||_{\infty}\leqq 1$ and $h$ is of modulus one everywhere.
Then, $||h(f)||_{M}=1$ and $h(f)$ is unitary, hence $h(f)\in ext\mathfrak{D}(\delta)_{1}$ .

EXAMPLE 7.4. Let $K$ be a compact connected Hausdorff space and let $\delta$ be
a closed $*$-derivation in $C(K)$ with $\Re(\delta)=C(K)$ . Then there exist $f(=f^{*})\in \mathfrak{D}(\delta)$

and $h\in C^{(1)}([-||f||_{\infty}, ||f||_{\infty}])$ such that $h(f)$ is non-unitary with $||h(f)||_{\infty}=1$ and
$\delta(h(f))$ is unitary. Thus $l?(f)$ is in $\mathfrak{D}(\delta)_{1}$ and $h(f)$ satisfies the condition of
Theorem 7.1. Thus, if the kernel of $\delta$ is one dimensional $C1,$ $h(f)$ is an ex-
treme point of $\mathfrak{D}(\delta)_{1}$ .

Next, we consider a special case with $Ker(\delta)\neq C1$ .
PROPOSITION 7.5. Let $K=I\cup J$ where I and $J$ are disjoznt finite closed

intervals of the real line and let $\delta$ be a closed *-derivation in $C(K)$ . Suppose that
the kernel of $\delta$ is the set of functions which are respectively constant on I and $J$.
Let $f$ be an element of $\mathfrak{D}(\delta)$ such that $||f||_{M}=||f||_{\infty}=1$ and suppose that $f$ is not
of modulus one everywhere. Then $f\in ext\mathfrak{D}(\delta)_{1}$ if and $mly$ if $|\delta(f)(x)|=1(x\in$

$K\backslash M_{f}),$ $I\cap M_{f}\neq\emptyset$ and $J\cap M_{f}\neq\emptyset$ , where $f:=\{x\in K:|f(x)|=||f||_{\infty}=1\}$ .
PROOF. We first prove‘only if’ part. From Theorem 7.1, $f\in ext\mathfrak{D}(\delta)_{1}$

implies that $|\delta(f)|=1$ on $K\backslash M_{f}$ . Suppose that $I\cap M_{f}=\emptyset$ , that is, there exists
$b>0$ such that $b \leqq 1-\sup\{|f(x)| : x\in I\}$ . Put $g\in \mathfrak{D}(\delta)$ ,

$g=b$ on $I$ and $g=0$ on $J$ .
Then $||f\pm g||_{M}\leqq 1$ and

$f=(1/2)\{(f+g)+(f-g)\}$ ,
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which implies that $f$ is not extreme. Consequently, $f\in ext\mathfrak{D}(\delta)_{1}$ implies that
$|\delta(f)(x)|=1(x\in K\backslash M_{f}),$ $I\cap M_{f}\neq\emptyset$ and $J\cap M_{f}\neq\emptyset$ .

By the same way as in the proof of the Theorem 7.1, we get the converse
statement. This completes the proof.

REMARK 7.6. Let $K=I\cup J$ where $I$ and $J$ are disjoint finite closed intervals
of the real line and let $\delta$ be the differentiation $d/dt$ in $C(K)$ ; then $\delta$ satisfies
the condition of the preceding proposition.
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