On the capacity of singularity sets admitting no exceptionally ramified meromorphic functions

By Kikuji MATSUMOTO and Toshiko KUROKAWA

(Received April 19, 1994)

1. Introduction.

For a totally disconnected compact set E in the extended z-plane \hat{C} , we denote by M_E the totality of meromorphic functions each of which is defined in the domain complementary to E and has E as the set of transcendental singularities. A meromorphic function f(z) of M_E is said to be exceptionally ramified at a singularity $\zeta \in E$, if there exist values w_i , $1 \leq i \leq q$, and positive integers $\nu_i \geq 2$, $1 \leq i \leq q$, with

$$\sum_{i=1}^{q} \left(1 - \frac{1}{\nu_i} \right) > 2$$
 ,

such that, in some neighborhood of ζ , the multiplicity of any w_i -point of f(z)is not less than ν_i . Recently, we have shown that, for Cantor sets E with successive ratios $\{\xi_n\}$ satisfying $\xi_{n+1}=o(\xi_n^2)$, any function of M_E cannot be exceptionally ramified at any singularity $\zeta \in E$ (Theorem in [5]). The capacity (in this note, capacity means always logarithmic capacity) of these Cantor sets Eis zero, because they satisfy the necessary and sufficient condition

$$\sum_{n=1}^{\infty} \frac{1}{2^n} \log \frac{1}{\xi_n} = \infty$$

to be of capacity zero.

The purpose of this note is to give Cantor sets E of positive capacity improving the above theorem. We shall prove

THEOREM. Let E be a Cantor set with successive ratios $\{\xi_n\}$ satisfying the condition

$$\xi_{n+1} = o(\xi_n^{r_0}), \qquad r_0 = (1 + \sqrt{33})/4,$$

then any function of M_E cannot be exceptionally ramified at any singularity $\zeta \in E$.

We set $\xi_{n+1} = \xi_n^r$ $(n=1, 2, 3, \dots)$ with $r, r_0 < r < 2$. Then $\{\xi_n\}$ satisfies the condition of the theorem and

$$\sum\limits_{n=1}^{\infty}rac{1}{2^n}\lograc{1}{oldsymbol{\xi}_n}<+\infty$$
 ,

so that the Cantor set E having this $\{\xi_n\}$ as the successive ratios is one wanted.

2. Preliminaries.

2.1. Let f be an exceptionally ramified meromorphic function in a domain G in the extended z-plane having three totally ramified values $\{w_i\}_{i=1,2,3}$ with $\{\nu_i\}_{i=1,2,3}$ such that $\sum_{i=1}^{3} (1-(1/\nu_i))>2$, and let R be a doubly connected subdomain of G with $\overline{R} \subset G$ which is bounded by analytic curves Γ_1 and Γ_2 . Suppose that $f(\Gamma_1)$ and $f(\Gamma_2)$ are contained in discs D_1 and D_2 . Since f is exceptionally ramified, we have the following lemma from Lemma 2 in [2].

LEMMA 1. Under the above setting,

$$D_1 \cap D_2 \neq \emptyset$$
 and $f(\overline{R}) \subset D_1 \cup D_2$.

Now let Δ be a triply connected subdomain of G with $\overline{\Delta} \subset G$ which is bounded by analytic curves $\{\Gamma_j\}_{j=1,2,3}$. We assume that they satisfy the following three conditions (1), (2) and (3):

(1) There exist mutually disjoint simply connected domains $\{D_j\}_{j=1,\dots,\alpha}$ $(1 \le \alpha \le 3)$, the boundary curves ∂D_j being sectionally analytic, with

$$|D_{j}| < \frac{1}{2} \min_{k \neq m} \chi(w_{k}, w_{m})$$

such that the images $\{f(\Gamma_i)\}_{i=1,2,3}$ are covered with $\{D_j\}_{j=1,\dots,\alpha}$ and each D_j contains $f(\Gamma_i)$ for at least one *i*, where $\chi(w_k, w_m)$ denotes the chordal distance between w_k and w_m and $|D_j|$ denotes the diameter of D_j .

(2) The number *n* of roots of the equation f(z)=w in Δ is constant and ≥ 1 for $w \in \hat{C} - \bigcup_{j=1}^{q} \overline{D}_{j}$.

(3) f has no ramified values on each boundary ∂D_j .

We remove from Δ all relatively noncompact components of $\{f^{-1}(\overline{D}_j)\}_{j=1,\dots,\alpha}$ with respect to Δ . Then there remains an open set, each component of which cannot be simply or doubly connected because of Lemma 2 in [2]. Hence the open set is a triply connected subdomain Δ' of Δ , whose boundary curves Γ'_j are homotopic to Γ_j (j=1, 2, 3). The following 1), 2), 3) and 4) hold (see Lemma 3 in [2]).

1) The Riemannian image of Δ' under f belongs to one of the 25 classes listed in Table 1, where classes (8), (9), (19) and (22) are empty as we have shown recently in [5]. (This is the reason why we deleted these four classes from Table 1 by lining through them.)

2) f has no ramified values other than $\{w_i\}_{i=1,2,3}$ in Δ' .

3) Each component of $\Delta - \Delta'$ is doubly connected and its image is contained in one of $\{D_j\}_{j=1,\dots,\alpha}$.

4) Each D_j contains one of the totally ramified values $\{w_i\}_{i=1,2,3}$.

	ν_1	ν_2	ν_3	m ₁ l _{1, j}	т² l², j	т _з l _{з, j}	n	σ1	σ_2	σ_{3}
1	2	4	5	$3 l_{1,j} = 2$	$l_{2,1} = 4$	$l_{3,1} = 5$	6	0	$2 \\ \{1, 1\}$	$1 \\ \{1\}$
2	2	4	5	$\binom{4}{l_{1,j}=2}$	$2 l_{2, j} = 4$	$l_{3,1} = 5$	8	0	0	3 {1, 1, 1}
3	2	3	7	$l_{1,j} = 2$	$l_{2,j} = 3$	$l_{3,1} = 7$	8	0	$2 \\ \{1, 1\}$	$^{1}_{\{1\}}$
4	2	3	7	$l_{1, j} = 2$	$l_{2,j} = 3$	$l_{3,1} = 7$	9	$1 \\ \{1\}$	0	2 {1, 1}
5	2	3	7	$l_{1,j} = 2$	$l_{2, j} = 3$	$l_{3,1} = 7$	10	0	1 {1}	2 {1, 2}
6	2	3	7	$l_{1,j} = 2$	$l_{2, j} = 3$	$l_{3,1} = 8$	10	0	$1 \\ \{1\}$	2 {1, 1}
7	2	3	7	$l_{1,j} = 2$	$ \begin{array}{c} 3 \\ \{l_{2,1}, l_{2,2}, l_{2,3}\} \\ = \{3, 3, 4\} \end{array} $	$l_{3,1} = 7$	10	0	0	3 {1, 1, 1}
-8	-2	-3-	-7-	$\frac{6}{l_{1,j}=2}$	$\frac{4}{l_{2,j}=3}$	$\frac{1}{l_{3,1}=7}$	-12 -	-0	0	3 {1, 1, 3}
-9-	-2	-3	-7-	$\frac{6}{l_{1, j}=2}$	$\frac{4}{l_{2, j}=3}$	$\frac{1}{l_{3,1}=7}$	-12-	-0	-0	3 {1, 2, 2}
10	2	3	7	$\binom{6}{l_{1,j}=2}$	$l_{2, j} = 3$	$l_{3,1} = 8$	12	0	0	3 {1, 1, 2}
11	2	3	7		4 l _{2, j} =3	$l_{3,1} = 9$	12	0	0	3 {1, 1, 1}

Table 1.

12	2	3	7	$\binom{8}{l_{1, j}=2}$	$5 l_{2, j} = 3$	$2_{l_{3,j}=7}$	16	0	$1 \\ \{1\}$	2 {1, 1}
13	2	3	7	$\binom{9}{l_{1,j}=2}$	$l_{2,j} = 3$	$2_{3, j} = 7$	18	0	0	$3 \\ \{1, 1, 2\}$
14	2	3	7	$9 l_{1, j} = 2$	$\binom{6}{l_{2,j}=3}$	$ \begin{array}{c} 2 \\ \{l_{3, 1}, l_{3, 2}\} \\ = \{7, 8\} \end{array} $	18	0	0	3 {1, 1, 1}
15	2	3	7	$l_{1, j} = 2$	$\binom{8}{l_{2,j}=3}$	$l_{3,j} = 7$	24	0	0	3 {1, 1, 1}
16	3	3	4	$l_{1,1} = 3$	$l_{2,1} = 3$	0	3	0	0	$3 \\ \{1, 1, 1\}$
17	2	4	5	$l_{1, j} = 2$	$l_{2,1} = 4$	0	4	0	0	$3 \\ \{1, 1, 2\}$
18	2	3	7	$l_{1, j} = 2$	$l_{2,1} = 3$	0	4	0	$\begin{array}{c}1\\\{1\}\end{array}$	2 {1, 3}
-19-	-2	-3-	-7	$\frac{2}{l_{1,j}=2}$	$\frac{1}{l_{2.1}=3}$	0	4	0	$\frac{1}{\{1\}}$	2 {2, 2}
20	2	3	7	$l_{1,1} = 2$	$l_{2,1} = 3$	0	3	1 {1}	0	2 {1, 2}
21	2	3	7	$l_{1,j} = 2$	$2 l_{2,j} = 3$	0	6	0	0	3 {1, 1, 4}
-22-	2	3	7-	$\begin{array}{c c} 3\\ l_{1,j}=2 \end{array}$	$\frac{2}{l_{2,j}=3}$	0	6	0	0	$\frac{3}{\{1, 2, 3\}}$
23	2	3	7	$\begin{vmatrix} 3\\l_{1,j}=2 \end{vmatrix}$	$l_{2,j} = 3$	0	6	0	0	$3 \{2, 2, 2\}$

24	2 2 2 2	3 7 4 5	7 3 5 4	$l_{1,1} = 2$	0	0	2	0	1 {2}	2 {1, 1}
25	2 2 3	3 4 3	7 5 4	0	0	0	1	1 {1}	1 {1}	1 {1}

NOTATIONS. m_i : the number of w_i -points of f(z) in Δ' (i=1, 2, 3). $\{l_{i,j}\}_{j=1,\dots,m_i}$: the multiplicities of w_i -points.

 σ_i : the number of Γ'_j in $\{\Gamma'_j\}_{j=1,2,3}$ with $f(\Gamma'_j) = \partial D_k$, $D_k \ni w_i$, where $\sigma_i = 0$ means that none of $\{D_j\}_{j=1,\dots,\alpha}$ contains w_i .

 σ_3 2 means that two of $\{\Gamma'_j\}_{j=1,\,2,\,3}$ are mapped onto $\partial D_k,\,D_k\!\ni\!w_3,$ and $\{1,\,2\}$

one of them has an image curve winding once around w_3 , while the other has an image curve winding twice.

2.2. We form a Cantor set in the usual manner. Let $\{\xi_n\}$ be a sequence of positive numbers satisfying $0 < \xi_n < 2/3$, $n=1, 2, 3, \cdots$. We remove first an open interval of length $(1-\xi_1)$ from the interval $I_{0,1}: [-1/2, 1/2]$, so that on both sides there remain closed intervals of length $\xi_1/2 \equiv \eta_1$, which are denoted by $I_{1,1}$ and $I_{1,2}$. Inductively we remove an open interval of length $(1-\xi_n)\prod_{p=1}^{n-1}\eta_p$, with $\eta_p = (1/2)\xi_p$ ($p=1, 2, 3, \cdots$), from each interval $I_{n-1,k}$ of length $\prod_{p=1}^{n-1}\eta_p$, $k=1, 2, 3, \cdots, 2^{n-1}$, so that on both sides there remain closed intervals of length $\prod_{p=1}^n \eta_p$, which are denoted by $I_{n,2k-1}$ and $I_{n,2k}$. By repeating this procedure endlessly, we obtain an infinite sequence of closed intervals $\{I_{n,k}\}_{n=1,2,\cdots,k=1,2,\cdots,2^n}$. The set given by

$$E = \bigcap_{n=1}^{\infty} \bigcup_{k=1}^{2^n} I_{n,k}$$

is called the Cantor set on the interval $I_{0,1}$ with successive ratios $\{\xi_n\}$. Set

$$R_{n,k} = \left\{ z \; ; \; \prod_{p=1}^{n} \eta_p < |z - z_{n,k}| < \frac{1}{3} \prod_{p=1}^{n-1} \eta_p \right\}$$

and

$$\Gamma_{n,k} = \left\{ z ; |z - z_{n,k}| = \prod_{p=1}^{n-1} \eta_p \sqrt{\frac{\eta_n}{3}} \right\},$$

where $z_{n,k}$ is the midpoint of $I_{n,k}$. Denoting by $\mu_n = \mu(R_{n,k})$ the harmonic modulus of $R_{n,k}$, we have

$$\mu_n = \log rac{1}{3\eta_n} = \log rac{2}{3\xi_n}.$$

Assuming that $\lim_{n\to\infty} \xi_n = 0$, we have

LEMMA 2 (Lemma 4 in [2]). Let f be an exceptionally ramified meromorphic function in the domain $G = \hat{C} - E$. Then, for sufficiently large n, we have

$$|f(\Gamma_{n,k})| < M \exp(-\mu_n/2)$$
,

where M is a positive constant depending only on E and f.

Let f be exceptionally ramified in the domain $G = \widehat{C} - E$. By our previous result ([3]), f has just three totally ramified values $\{w_i\}_{i=1,2,3}$. Since $|f(\Gamma_{n,k})| < M \exp(-\mu_n/2) = M\sqrt{3\xi_n/2} = \delta_n$ by Lemma 2, we can take a spherical disc $D_{n,k}$ of radius δ_n containing $f(\Gamma_{n,k})$. We denote by $\Delta_{n,k}$ the triply connected domain bounded by $\Gamma_{n,k}$, $\Gamma_{n+1,2k-1}$ and $\Gamma_{n+1,2k}$. Taking n so large that $\delta_n <(1/12) \cdot \min_{i \neq j} \chi(w_i, w_j)$, we consider the union $D = \overline{D}_{n,k} \cup \overline{D}_{n+1,2k-1} \cup \overline{D}_{n+1,2k}$, which consists of at most three, say α , components.

If $\alpha=1$, that is, D is connected, it is possible that D is doubly connected, and we take a disc \tilde{D}_1 of radius at most $\delta_n+2\delta_{n+1}$ containing D. If $\alpha=2$ or 3, we denote the components of D by $\{\tilde{D}_j\}_{j=1,\dots,\alpha}$, which are simply connected.

When $\alpha=1$ and f takes in $\Delta_{n,k}$ no values outside $\widetilde{D}_1, \overline{f}(\Delta_{n,k}) \subset \widetilde{D}_1$, we say that $\mathcal{A}_{n,k}$ is degenerate(f). When $\alpha = 1$ and f takes in $\mathcal{A}_{n,k}$ values outside $\tilde{\mathcal{D}}_{1}$ or when $\alpha=2$ or 3, we say that $\mathcal{A}_{n,k}$ is non-degenerate(f). Then f, $\mathcal{A}_{n,k}$ and $\{\widetilde{D}_j\}_{j=1,\dots,\alpha}$ satisfy three conditions (1), (2) and (3) stated in 2.1, so that by 4) stated there, each \widetilde{D}_{i} contains one w_{j}^{*} of the totally ramified values $\{w_{i}\}_{i=1,2,3}$ and the union $\bigcup_{j=1}^{a} \tilde{D}_{j} \supset D$ is contained in $\bigcup_{i=1}^{3} D(w_{i}, 2(\delta_{n}+2\delta_{n+1})))$, where we denote by $D(w, \delta)$ the spherical disc of radius δ and with center at w. We assume $2\delta_{n+1} < \delta_n$ and set $D'_j = D(w^*_j, 4\delta_n)$, $j = 1, \dots, \alpha$. Then $f, \Delta_{n,k}$ and $\{\widetilde{D}'_{j}\}_{j=1,\dots,\alpha}$ again satisfy three conditions (1), (2) and (3), so that there exists a triply connected subdomain $\Delta'_{n,k}$ of $\Delta_{n,k}$ such that 1), 2), 3) and 4) stated there hold. The Riemannian image $S_{n,k}$ of $\mathcal{A}'_{n,k}$ under f belongs to one of the classes of Table 1. The boundary curves of $\Delta'_{n,k}$ are denoted by $\check{\gamma}_{n,k}$, $\hat{\gamma}_{n+1,2k-1}$ and $\hat{\gamma}_{n+1,2k}$ being homotopic to $\Gamma_{n,k}$, $\Gamma_{n+1,2k-1}$ and $\Gamma_{n+1,2k}$, respectively. Each γ of them has an image curve winding around some w^* of w_1 , w_2 and w_3 , and we denote its winding number by $s(\gamma)$. The value w^* corresponds to one \tilde{w} of three totally ramified values for the class in Table 1 to which $S_{n,k}$ belongs,

and we can read the ν -value, the minimum of the multiplicities of \tilde{w} -points, in Table 1, which we denote by $\nu(\gamma)$.

Suppose now that $S_{n,k}$ belongs to a class other than (23). Reading Table 1, we see that the image curves of at least two of $\check{\gamma}_{n,k}$, $\hat{\gamma}_{n+1,2k-1}$ and $\hat{\gamma}_{n+1,2k}$ have the winding number 1. Hence $s(\hat{\gamma}_{n+1,2k-1})=1$ or $s(\hat{\gamma}_{n+1,2k})=1$, say $s(\hat{\gamma}_{n+1,2k})=1$, where we assume $\nu(\hat{\gamma}_{n+1,2k-1}) \leq \nu(\hat{\gamma}_{n+1,2k})$ if $s(\hat{\gamma}_{n+1,2k-1}) = s(\hat{\gamma}_{n+1,2k})=1$. The adjacent $\varDelta_{n+1,2k}$ is degenerate(f) or non-degenerate(f). Suppose that $\varDelta_{n+1,2k}$ is nondegenerate(f). Then $\hat{\gamma}_{n+1,2k}$ and $\check{\gamma}_{n+1,2k}$ wind around the same totally ramified value w^* and bound a doubly connected domain where f takes the value w^* . Since $f(\hat{\gamma}_{n+1,2k}) \subset D(w^*, 4\delta_n)$ and $f(\check{\gamma}_{n+1,2k}) \subset D(w^*, 4\delta_{n+1})$, we see from Lemma 1 that f takes no values outside $D(w^*, 4\delta_n)$ in the doubly connected domain bounded by $\hat{\gamma}_{n+1,2k}$ and $\check{\gamma}_{n+1,2k}$. By the argument principle, we have

$$s(\hat{\gamma}_{n+1,2k}) + s(\check{\gamma}_{n+1,2k}) \ge \max\{\nu(\hat{\gamma}_{n+1,2k}), \nu(\check{\gamma}_{n+1,2k})\},\$$

that is,

$$s(\check{\gamma}_{n+1,2k}) \ge \max\{\nu(\hat{\gamma}_{n+1,2k}), \nu(\check{\gamma}_{n+1,2k})\} - 1,$$

because $s(\hat{\gamma}_{n+1,2k})=1$. From Table 1, we see that only the pairs $\{\mathcal{A}_{n,k}, \mathcal{A}_{n+1,2k}\}$ listed below satisfy this inequality.

	\varDelta_n	., k		$\varDelta_{n+1,2k}$			
class	$ u(\hat{\gamma}_{n+1,2k}) $	$S(\hat{\gamma}_{n+1,2k})$	class	$ u(\check{\gamma}_{n+1,2k}) $	$s(\check{\gamma}_{n+1,2k})$		
			(4)	2	1		
(20)	2	1	(20)	2	1		
			(25)	2	1		
(3)	3	1					
(5)	3	1					
(18)	3	1	(24)	3	2		
(24)	3	1					
(25)	3	1					

Table 2.

REMARK. The pair of $\mathcal{A}_{n,k}((20), 2, 1)$ and $\mathcal{A}_{n+1,2k}((24), 3, 2)$ satisfies the inequality, but, under the assumption that f is exceptionally ramified, we can

omit it, because $S_{n,k}$ and $S_{n+1,2k}$ have branch points of multiplicity 2 over distinct totally ramified values.

From Table 1, we see that, if $\Delta_{n+1,2k}$ of the right side of Table 2 is of class (4), (20) or (24), one of $\hat{\gamma}_{n+2,4k-1}$ and $\hat{\gamma}_{n+2,4k}$, say $\hat{\gamma}_{n+2,4k}$, satisfies $s(\hat{\gamma}_{n+2,4k}) = 1$ and $\nu(\hat{\gamma}_{n+2,4k}) = 7$, and if it is of class (25), $s(\hat{\gamma}_{n+2,4k}) = 1$ and $\nu(\hat{\gamma}_{n+2,4k}) \ge 5$. Therefore $\Delta_{n+2,4k}$ must be degenerate(f). Thus we have

LEMMA 3 (Lemma 2 in [5]). If $\Delta_{n,k}$ is non-degenerate(f) and belongs to a class other than the class (23), then for at least one of $\hat{\gamma}_{n+1,2k-1}$ and $\hat{\gamma}_{n+1,2k}$, say $\hat{\gamma}_{n+1,2k}$, $s(\hat{\gamma}_{n+1,2k})=1$. If the adjacent $\Delta_{n+1,2k}$ is non-degenerate(f), then for at least one of $\hat{\gamma}_{n+2,4k-1}$ and $\hat{\gamma}_{n+2,4k}$, say $\hat{\gamma}_{n+2,4k}$, $s(\hat{\gamma}_{n+2,4k})=1$ and the adjacent $\Delta_{n+2,4k}$ is degenerate(f).

We shall state a theorem due to Teichmüller for the moduli of ring domains as a lemma, which we shall often use later.

LEMMA 4. If a ring domain R in C separates two points 0 and $r_1e^{i\theta_1}$ from two points $r_2e^{i\theta_2}$ and ∞ $(r_1>0, r_2>0)$, then

har. mod.
$$R \leq \log\left(16\frac{r_2}{r_1}+8\right)$$

(cf. Lehto and Virtanen [4], pp. 54-62).

3. Proof of Theorem.

3.1. Now we shall prove our theorem. Contrary suppose that a function f of M_E is exceptionally ramified at a singularity $\zeta_0 \in E$. As mentioned after Lemma 2, f has just three totally ramified values $\{w_i\}_{i=1,2,3}$ near ζ_0 with $\{\nu_i\}_{i=1,2,3}$, satisfying

$$\sum_{i=1}^{3} \left(1 - \frac{1}{\nu_i}\right) > 2 ,$$

where we may assume without any loss of generality that $w_1 = \infty$, $w_2 = 1$ and $w_3 = 0$. From our assumption $\xi_{n+1} = o(\xi_n^{r_0})$, $r_0 = (1 + \sqrt{33})/4$, we can take n_0 so large that $\delta_n = M\sqrt{3\xi_n/2} < \sqrt{2}/24$ and $\delta_{n+1} < (1/2)\delta_n$ for $n \ge n_0$. Here we may assume that Γ_{n_0, k_0} surrounds ζ_0 and f is exceptionally ramified in the part G_0 of $G = \hat{C} - E$ surrounded with Γ_{n_0, k_0} . Then if $\Delta_{n, k}$ in G_0 is degenerate(f), $f(\bar{A}_{n, k})$ is contained in a disc $\tilde{D}_{n, k}$ of radius at most $\delta_n + 2\delta_{n+1} < 2\delta_n$.

Now suppose that all $\mathcal{A}_{n,k}$ in G_0 are degenerate(f). The image $f(\overline{\mathcal{A}}_{n_0,k_0})$ is contained in \widetilde{D}_{n_0,k_0} . Since $\widetilde{D}_{n_0,k_0} \cap \widetilde{D}_{n_0+1,2k_0-1} \neq \emptyset$ and $\widetilde{D}_{n_0,k_0} \cap \widetilde{D}_{n_0+1,2k_0} \neq \emptyset$, $f(\overline{\mathcal{A}}_{n_0,k_0} \cup \overline{\mathcal{A}}_{n_0+1,2k_0-1} \cup \overline{\mathcal{A}}_{n_0+1,2k_0})$ is contained in a disc D_2 of radius at most $2\delta_{n_0} + 4\delta_{n_0+1} < 2\delta_{n_0}(1+2^0)$ and with the same center w_0 as \widetilde{D}_{n_0,k_0} . If

 $f(\bar{\mathcal{A}}_{n_0,k_0}\cup(\bigcup_{p=1}^m(\bigcup_k'\bar{\mathcal{A}}_{n_0+p,k})))$ is contained in a disc D_m of radius at most $2\delta_{n_0}(1+\sum_{p=1}^m(1/2^{p-1}))$ and with center at w_0 , then $f(\bar{\mathcal{A}}_{n_0,k_0}\cup(\bigcup_{p=1}^{m+1}(\bigcup_k'\bar{\mathcal{A}}_{n_0+p,k})))$ is contained in a disc D_{m+1} of radius at most $2\delta_{n_0}(1+\sum_{p=1}^m(1/2^{p-1}))+4\delta_{n_0+m+1}<2\delta_{n_0}(1+\sum_{p=1}^{m+1}(1/2^{p-1}))$ and with center at w_0 , because $D_m\cap\tilde{D}_{n_0+m+1,k}\neq\emptyset$ for each $\mathcal{A}_{n_0+m+1,k}$ in G_0 , where $\bigcup_k'\mathcal{A}_{n_0+p,k}$ means the union taken over all the $\mathcal{A}_{n_0+p,k}$'s in G_0 . By induction, we conclude that $f(G_0)$ is contained in a disc of radius at most $2\delta_{n_0}(1+\sum_{p=1}^\infty(1/2^{p-1}))=6\delta_{n_0}<\sqrt{2}/4$. This means that f is bounded in G_0 . Since E is of linear measure zero, each point of E in the domain surrounded with Γ_{n_0,k_0} must be a removable singularity for f (cf. Besicovitch [1]). This contradicts our assumption that $f\in M_E$. Thus we see that there are infinitely many $\mathcal{A}_{n,k}$ in G_0 being non-degenerate(f).

We take such a domain $\Delta_{n,k}$. If $\Delta_{n,k}$ belongs to a class other than (23), we may assume from Lemma 3 that $s(\hat{\gamma}_{n+1,2k})=1$ and the adjacent $\Delta_{n+1,2k}$ is degenerate(f). We shall show that $f(\Gamma_{n+1,2k}) \subset D(w_i, 8\delta_{n+1})$ and $f(\Gamma_{n+2,4k-1}) \cup f(\Gamma_{n+2,4k}) \subset D(w_i, 8\delta_{n+2})$ for some $w_i \in \{w_i\}_{i=1,2,3}$.

For $\Delta_{m,l}$ being non-degenerate(f), the union $D = \overline{D}_{m,l} \cup \overline{D}_{m+1,2l-1} \cup \overline{D}_{m+1,2l}$ is contained in $\bigcup_{i=1}^{3} D(w_i, 2(\delta_m + 2\delta_{m+1})) \subset \bigcup_{i=1}^{3} D(w_i, 4\delta_m)$ as mentioned after we stated Lemma 2. Therefore, if $f(\Gamma_{m,l}) \not \subset \bigcup_{i=1}^{3} D(w_i, 8\delta_m)$, then $\Delta_{m,l}$ is degenerate(f) and $f(\overline{\Delta}_{m,l})$ is contained in a disc $\widetilde{D}_{m,l}$ of radius at most $2\delta_m$. We have $\widetilde{D}_{m,l} \cap \bigcup_{i=1}^{3} D(w_i, 4\delta_m) = \emptyset$. Since $2\delta_{m+1} < \delta_m$, we see that $f(\Gamma_{m+1,2l-1}) \not \subset$ $\bigcup_{i=1}^{3} D(w_i, 8\delta_{m+1})$ and $f(\Gamma_{m+1,2l}) \not \subset \bigcup_{i=1}^{3} D(w_i, 8\delta_{m+1})$ so that $\Delta_{m+1,2l-1}$ and $\Delta_{m+1,2l}$ both are degenerate(f). Then, by induction, we see all $\Delta_{p,q}$ in the part of Gsurrounded with $\Gamma_{m,l}$ are degenerate(f). However, this is impossible as we have seen above. Hence $f(\Gamma_{m,l}) \subset \bigcup_{i=1}^{3} D(w_i, 8\delta_m)$. We see now that $f(\Gamma_{m,l}) \subset$ $\bigcup_{i=1}^{3} D(w_i, 8\delta_m)$, whether $\Delta_{m,l}$ is non-degenerate(f) or degenerate(f). From this fact, $f(\Gamma_{n+1,2k}) \subset \bigcup_{i=1}^{3} D(w_i, 8\delta_{n+1})$ and $f(\Gamma_{n+2,4k-1}) \cup f(\Gamma_{n+2,4k}) \subset \bigcup_{i=1}^{3} D(w_i, 8\delta_{n+2})$. However, $\Delta_{n+1,2k}$ is degenerate(f) and so we see that $f(\Gamma_{n+1,2k}) \subset D(w_i, 8\delta_{n+1})$ and $f(\Gamma_{n+2,4k-1}) \cup f(\Gamma_{n+2,4k}) \subset D(w_i, 8\delta_{n+2})$ for some $w_i \in \{w_i\}_{i=1,2,3}$. We may assume $w_i = w_3 = 0$.

Set

$$\hat{\Gamma}_{n,k}^{(s)} = \{z ; |z - z_{n,k}| = (1/3)\xi_{n-1}^s Y_{n-1}\} \text{ and } \hat{\Gamma}_{n,k}^{(0)} = \hat{\Gamma}_{n,k},$$

where $Y_n = \prod_{p=1}^n \eta_p = (\prod_{p=1}^n \xi_p)/2^n$ and $0 \le 2s \le r_0 - 1$. By the Cauchy integral formula,

$$f'(z) = \frac{1}{2\pi i} \int_{\partial A_{n+1,2k}} \frac{f(\zeta)}{(\zeta-z)^2} d\zeta, \qquad z \in \hat{\Gamma}_{n+2,4k-1}^{(s)} \cup \hat{\Gamma}_{n+2,4k}^{(s)},$$

so that

$$|f'(z)| \leq \frac{1}{2\pi} \Big(\int_{\Gamma_{n+1,2k}} + \int_{\Gamma_{n+2,4k-1}} + \int_{\Gamma_{n+2,4k}} \Big) \frac{|f(\zeta)|}{|\zeta-z|^2} |d\zeta|.$$

Since
$$f(\Gamma_{n+1,2k}) \subset D(0, 8\delta_{n+1})$$
 and $f(\Gamma_{n+2,4k-1}) \cup f(\Gamma_{n+2,4k}) \subset D(0, 8\delta_{n+2})$,
 $|f'(z)| \leq \frac{1}{2\pi} \cdot \frac{8\delta_{n+1}}{\sqrt{1-(8\delta_{n+1})^2}} \cdot \frac{1}{\{\sqrt{\xi_{n+1}/6Y_n(1-\sqrt{3\xi_{n+1}/2})\}^2}} \cdot 2\pi \sqrt{\xi_{n+1}/6Y_n}$
 $+2 \cdot \frac{1}{2\pi} \cdot \frac{8\delta_{n+2}}{\sqrt{1-(8\delta_{n+2})^2}} \cdot \frac{1}{\{(1/3)\xi_{n+1}^s Y_{n+1}(1-3\sqrt{\xi_{n+2}/6\xi_{n+1}^{-s}})\}^2} \cdot 2\pi \sqrt{\xi_{n+2}/6Y_{n+1}}$
 $\leq \frac{192}{Y_n} M + \frac{288}{Y_n} M \cdot \frac{\xi_{n+2}\xi_{n+1}^{-(1+2s)}}{(1-3\sqrt{\xi_{n+2}/6\xi_{n+1}^{-s}})^2}$
 $< \frac{384}{Y_n} M$,

for sufficiently large *n*, because $\delta_n \to 0$, $\xi_n \to 0$, $\xi_{n+2}^{1/2} \xi_{n+1}^{-s} = o(\xi_{n+1}^{(r_0-2s)/2}) = o(\xi_{n+1}^{1/2})$ and $\xi_{n+2} \xi_{n+1}^{-(1+2s)} = o(\xi_{n+1}^{r_0-(1+2s)}) = o(1)$. Hence, for *z*, $z' \in \hat{\Gamma}_{n+2,4k-j}^{(s)}$ (*j*=0, 1),

$$|f(z) - f(z')| \leq \int_{\widehat{\Gamma}_{n+2,4k-j}^{(s)}} |f'(z)| |dz|$$

$$\leq \frac{384}{Y_n} \cdot 2\pi \frac{1}{3} \xi_{n+1}^s Y_{n+1} = 128\pi M \xi_{n+1}^{1+s} = \widehat{\delta}_{n+2}^{(s)}.$$

This inequality implies that the images $f(\hat{\Gamma}_{n+2,4k-1}^{(s)})$ and $f(\hat{\Gamma}_{n+2,4k}^{(s)})$ are contained in discs $\hat{D}_{n+2,4k-1}^{(s)}$ and $\hat{D}_{n+2,4k}^{(s)}$ of radius at most $\hat{\delta}_{n+2}^{(s)}$, respectively. We shall show that $f(\hat{\Gamma}_{n+2,4k-1}^{(s)}) \cup f(\hat{\Gamma}_{n+2,4k}^{(s)}) \subset D(0, \xi_{n+1}^{1+(g/2)})$ for sufficiently large n. Consider the triply connected domain $\hat{A}_{n+2,4k-1}$ bounded by $\hat{\Gamma}_{n+2,4k-1}^{(s)}$, $\Gamma_{n+3,8k-3}$ and $\Gamma_{n+3,8k-2}$, where $f(\Gamma_{n+3,8k-3})$ and $f(\Gamma_{n+3,8k-2})$ are contained in discs $D_{n+3,8k-3}$ and $D_{n+3,8k-2}$ of radius at most $\delta_{n+3} = M\sqrt{(3/2)\xi_{n+3}} = o(\xi_{n+1}^{1+(s/2)})$. If $\hat{A}_{n+2,4k-1}$ is non-degenerate(f), then the union $D = \overline{\hat{D}_{n+2,4k-1}^{(s)} \cup \overline{D}_{n+3,8k-3} \cup \overline{D}_{n+3,8k-2}$ is contained in $\bigcup_{i=1}^{3} D(w_i, 2(\hat{\delta}_{n+2}^{(s)} + 2\delta_{n+3}))$, so that $f(\hat{\Gamma}_{n+2,4k-1}^{(s)}) \subset D(0, \xi_{n+1}^{1+(s/2)})$ for sufficiently large n, because $\hat{\delta}_{n+2}^{(s)} = O(\xi_{n+1}^{1+(s/2)})$ and $\delta_{n+3} = o(\xi_{n+1}^{1+(s/2)})$. Therefore if $f(\hat{\Gamma}_{n+2,4k-1}^{(s)}) \not\subset D(0, \xi_{n+1}^{1+(s/2)})$, then $\hat{A}_{n+2,4k-1}$ is degenerate(f) and $f(\hat{A}_{n+2,4k-1}) \subset D$, where D is connected and $|D| \leq 2(\hat{\delta}_{n+2}^{(s)} + 2\delta_{n+3}) = o(\xi_{n+1}^{1+(s/2)})$. Thus $f(\Gamma_{n+3,8k-j}) \not\subset$ $D(0, 8\delta_{n+3})$ (j=3, 2). It is obvious that $f(\Gamma_{n+3,8k-j}) \cap \{D(\infty, 8\delta_{n+3}) \cup D(1, 8\delta_{n+3})\}$ $= \emptyset (j=3, 2)$, but, as we have seen above, any $\Gamma_{m,i}$ satisfies $f(\Gamma_{m,i}) \subset D(0, \xi_{n+1}^{1+(s/2)})$. Quite similarly, we have $f(\hat{\Gamma}_{n+2,4k}^{(s)}) \subset D(0, \xi_{n+1}^{1+(s/2)})$.

We consider now the part of Riemannian image of the quadruply connected domain bounded by $\Gamma_{n,k}$, $\Gamma_{n+1,2k-1}$, $\hat{\Gamma}_{n+2,4k-1}^{(s)}$ and $\hat{\Gamma}_{n+2,4k}^{(s)}$ under f over the annulus $R = \{w; \xi_{n+1}^{1+(s/2)} < \chi(0, w) < 1/2\}$, s > 0. Since $s(\hat{r}_{n+1,2k}) = 1$, f has no ramified values other than $\{w_i\}_{i=1,2,3}$ in $\Delta'_{n,k}$ and $f(\hat{\Gamma}_{n+2,4k-1}^{(s)}) \cup f(\hat{\Gamma}_{n+2,4k}^{(s)}) \subset D(0, \xi_{n+1}^{1+(s/2)})$, its component \tilde{R} containing $f(\hat{r}_{n+1,2k})$ covers R univalently, so that \tilde{R} is also an annulus and its harmonic modulus is equal to that of R. The inverse image $f^{-1}(\tilde{R})$ is a ring domain separating $\Gamma_{n,k} \cup \Gamma_{n+1,2k-1}$ from $\hat{\Gamma}_{n+2,4k-1}^{(s)} \cup \hat{\Gamma}_{n+2,4k}^{(s)}$. By Lemma 4, we have

$$\log\left(16\frac{Y_n(1-\hat{\xi}_{n+1})}{Y_{n+1}}+8\right) \ge \text{har. mod. } \widetilde{R}$$
$$= \log\frac{1/2\sqrt{1-(1/2)^2}}{\hat{\xi}_{n+1}^{1+(s/2)}/\sqrt{1-(\hat{\xi}_{n+1}^{1+(s/2)})^2}}$$

and hence

$$32/\xi_{n+1} \ge 1/2\xi_{n+1}^{1+(s/2)}$$
, so that $\xi_{n+1}^{s/2} > 1/64$.

Thus there are only finitely many $\Delta_{n,k}$ in G_0 being non-degenerate(f) which belong to classes other than the class (23), for, otherwise, the inequality holds for infinitely many *n* contradicting our assumption $\xi_{n+1} = o(\xi_n^{r_0})$. Now we may assume that all $\Delta_{n,k}$ in G_0 being non-degenerate(f) are of class (23).

3.2. Let $\mathcal{A}_{n,k}$ be non-degenerate(f) and belong to the class (23). Then the image $f(\partial \mathcal{A}_{n,k})$ of the boundary of $\mathcal{A}_{n,k}$ is contained in one of $\{D(w_i, 4\delta_n)\}_{i=1,2,3}$, say $D(w_3, 4\delta_n)$, $w_3=0$. Both of adjacent $\mathcal{A}_{n+1, 2k-1}$ and $\mathcal{A}_{n+1, 2k}$ are degenerate(f). In fact, if $\Delta_{n+1,2k-1}$ is non-degenerate(f), $s(\hat{\gamma}_{n+1,2k-1}) = s(\check{\gamma}_{n+1,2k-1}) = 2$ because $\mathcal{I}_{n+1,2k-1}$ is also of class (23), and f takes the totally ramified value $w_3=0$ with $\nu_3=7$. Because $f(\hat{\gamma}_{n+1,2k-1}) \cup f(\check{\gamma}_{n+1,2k-1}) \subset D(0, 4\delta_n)$, the image of the doubly connected domain bounded by $\hat{\gamma}_{n+1,2k-1}$ and $\check{\gamma}_{n+1,2k-1}$ is also contained in $D(0, 4\delta_n)$ by Lemma 1, consequently f has no poles there, and hence we have $s(\hat{\gamma}_{n+1,2k-1})$ $+s(\check{\gamma}_{n+1,2k-1}) \geq 7$ by the argument principle. It is absurd, and hence $\mathcal{A}_{n+1,2k-1}$ is degenerate(f). Similarly we see that $\mathcal{A}_{n+1,2k}$ is also degenerate(f). Now at least one of $\mathcal{A}_{n+2,4k-1}$ and $\mathcal{A}_{n+2,4k}$, say $\mathcal{A}_{n+2,4k}$, is degenerate(f). Contrary suppose that both of them are non-degenerate(f). Then they are of class (23) and f has the totally ramified value $w_3=0$ in the domain bounded by $\hat{\gamma}_{n+1,2k}$, $\check{\gamma}_{n+2,4k-1}$ and $\check{\gamma}_{n+2,4k}$, but has no poles there. In fact $\mathcal{A}_{n+1,2k}$ is degenerate(f) and hence f might have poles only in the doubly connected domain bounded by $\Gamma_{n+2,4k-1}$ and $\check{\gamma}_{n+2,4k-1}$ or $\Gamma_{n+2,4k}$ and $\check{\gamma}_{n+2,4k}$, while this is impossible because of Lemma 1. Therefore

$$s(\hat{\gamma}_{n+1,2k}) + s(\check{\gamma}_{n+2,4k-1}) + s(\check{\gamma}_{n+2,4k}) \ge 7$$

by the argument principle again, while $s(\hat{\gamma}_{n+1,2k}) = s(\check{\gamma}_{n+2,4k-1}) = s(\check{\gamma}_{n+2,4k}) = 2$. Contradiction. The other $\mathcal{A}_{n+2,4k-1}$ is degenerate(f) or non-degenerate(f) and of class (23).

Set

$$\check{\Gamma}_{n,k} = \{z; |z-z_{n,k}| = Y_n\}.$$

We shall show that the diameter of $f(\vec{\Gamma}_{n+2,4k})$ is $O(\xi_{n+1}\xi_{n+2})$. By the Cauchy integral formula,

$$f'(z) = \frac{1}{2\pi i} \int_{\partial (\mathcal{A}_{n+1,2k} \cup \Gamma_{n+2,4k} \cup \mathcal{A}_{n+2,4k})} \frac{f(\zeta)}{(\zeta-z)^2} d\zeta, \qquad z \in \check{\Gamma}_{n+2,4k},$$

so that

$$\begin{split} |f'(z)| &\leq \frac{1}{2\pi} \Big(\int_{\Gamma_{n+1,2k}} + \int_{\Gamma_{n+2,4k-1}} + \int_{\Gamma_{n+3,8k-1}} + \int_{\Gamma_{n+3,8k}} \Big) \frac{|f(\zeta)|}{|\zeta - z|^2} |d\zeta| \\ &\leq \frac{1}{2\pi} \cdot \frac{8\delta_{n+1}}{\sqrt{1 - (8\delta_{n+1})^2}} \cdot \frac{1}{\{\sqrt{\xi_{n+1}/6Y_n(1 - \sqrt{3\xi_{n+1}/2})\}^2}} \cdot 2\pi \sqrt{\xi_{n+1}/6Y_n} \\ &+ \frac{1}{2\pi} \cdot \frac{8\delta_{n+2}}{\sqrt{1 - (8\delta_{n+2})^2}} \cdot \frac{1}{\{Y_{n+1}(1 - 4\sqrt{\xi_{n+2}/6})\}^2} \cdot 2\pi \sqrt{\xi_{n+2}/6Y_{n+1}} \\ &+ 2 \cdot \frac{1}{2\pi} \cdot \frac{8\delta_{n+3}}{\sqrt{1 - (8\delta_{n+3})^2}} \cdot \frac{1}{\{(Y_{n+2}/2)(1 - 2\sqrt{\xi_{n+3}/6})\}^2} \cdot 2\pi \sqrt{\xi_{n+3}/6Y_{n+2}} \\ &\leq \frac{192M}{Y_n} + \frac{32M\xi_{n+2}}{Y_{n+1}} + \frac{256M\xi_{n+3}}{Y_{n+2}}, \end{split}$$

because $\Delta_{n+1,2k}$ and $\Delta_{n+2,4k}$ are both degenerate(f) and so $f(\Gamma_{n+1,2k}) \subset D(0, 8\delta_{n+1})$, $f(\Gamma_{n+2,4k-1}) \subset D(0, 8\delta_{n+2})$ and $f(\Gamma_{n+3,8k-1}) \cup f(\Gamma_{n+3,8k}) \subset D(0, 8\delta_{n+3})$. Hence

$$\begin{split} |f(z)-f(z')| &\leq \int_{\Gamma_{n+2,4k}} |f'(z)| |dz| \\ &\leq \Big(\frac{192M}{Y_n} + \frac{32M\xi_{n+2}}{Y_{n+1}} + \frac{256M\xi_{n+3}}{Y_{n+2}}\Big) 2\pi Y_{n+2} \\ &= 32\pi M (3\xi_{n+1}\xi_{n+2} + \xi_{n+2}^2 + 16\xi_{n+3}) \\ &< 2^{\epsilon} \cdot 3\pi M \xi_{n+1}\xi_{n+2} \equiv M' \xi_{n+1}\xi_{n+2} \equiv \check{\delta}_{n+2} \,, \end{split}$$

because $\xi_{n+2}^2 = o(\xi_{n+1}\xi_{n+2})$ and $\xi_{n+3} = o(\xi_{n+2}^{r_0}) = o(\xi_{n+1}^{r_0(r_0-1)}\xi_{n+2}) = o(\xi_{n+1}\xi_{n+2})$. This implies that the diameter of the image $f(\check{\Gamma}_{n+2,4k})$ is contained in a disc $\check{D}_{n+2,4k}$ of radius at most $\check{\delta}_{n+2}$. We note here that if $\mathcal{A}_{n+2,4k-1}$ is degenerate(f), the curve $\check{\Gamma}_{n+2,4k-1}$ has the same property.

3.3. To show that $f(\check{\Gamma}_{n+2,4k}) \subset D(0, 8\check{\delta}_{n+2})$, we shall prove first

LEMMA 5. If $\Delta_{m,l}$ belongs to the class (23), f has no zeros in the doubly connected domain bounded by $\hat{\Gamma}_{m,l}$ and $\check{\gamma}_{m,l}$ and $f(\hat{\Gamma}_{m,l}) \subset D(0, \xi_{m-1})$, then the image of the curve $\tilde{\Gamma}_{m,l} = \{z; |z-z_{m,l}| = (1/\sqrt{6})\xi_m^{1/2}Y_{m-1}\xi_{m-1}^{-1}\}$ is contained in $D(0, 24\pi^2\xi_{m-1}^{1/2}\xi_m)$.

PROOF. For small d>0, we denote by S_d the covering surface of class (23) over $\hat{C}-\bar{D}(0, d)$. When $d=4\delta_m$, S_d is the Riemannian image $S_{m,l}$ of the subdomain $\Delta'_{m,l}$ of $\Delta_{m,l}$. As the limit surface as $d \to 0$, we have a six-sheeted covering surface of $\hat{C}-\{0\}$ having three pinholes over 0. We stop up these

holes and obtain a six-sheeted covering surface Φ of \hat{C} , which is planar and has three branch points of multiplicity 2 over $w_1 = \infty$, two branch points of multiplicity 3 over $w_2=1$ and three branch points of multiplicity 2 over $w_3=0$. Let $w=\varphi(\omega)$ be a conformal mapping of the extended ω -plane onto Φ with $\varphi(0)$ $=\varphi(1)=\varphi(\infty)=0$. Consider S_d , $d=4\delta_m$, as a subdomain of Φ . Its inverse image $\varphi^{-1}(S_d)$ is a triply connected domain $\hat{C} - \bigcup_{i=1}^{3} B_i$, where $\partial B_1 = \varphi^{-1} \circ$ $f(\hat{\gamma}_{m+1,2l-1}), \ \partial B_2 = \varphi^{-1} \circ f(\hat{\gamma}_{m+1,2l}) \ \text{and} \ \partial B_3 = \varphi^{-1} \circ f(\hat{\gamma}_{m,l})$. We may assume that B_1 $=\omega_1=0, \ B_2 = \omega_2=1 \ \text{and} \ B_3 = \omega_3 = \infty$. If m is sufficiently large, that is, d is sufficiently small, for each i, ∂B_i is nearly a circle of chordal radius $\alpha_i \sqrt{d}$ and with center at ω_i , where $\{\alpha_i\}_{i=1,2,3}$ are positive constants not depending on dand hence on m. The annulus $R = \{\omega; 2\alpha_3\sqrt{d} < \chi(\omega, \infty) < 1/\sqrt{5}\}$ separates $B_1 \cup B_2$ from B_3 , so that its image $f^{-1} \circ \varphi(R)$ is a ring domain in $\Delta'_{m,l} \subset \Delta_{m,l}$ separating $\Gamma_{m+1,2l-1} \cup \Gamma_{m+1,2l}$ from $\Gamma_{m,l}$ and has the same harmonic modulus as R. We set

$$r = \min\{|z-z_{m,l}|; z \in \check{\gamma}_{m,l}\}.$$

By Lemma 4, we have

$$\log\left(16\frac{r}{Y_m/2}+8\right) \ge \text{har. mod. } R$$
$$= \log \frac{\sqrt{1-(2\alpha_3\sqrt{d}\,)^2}/2\alpha_3\sqrt{d}}{2}.$$

Hence

$$32r/Y_m \geq (1/8\alpha_3\sqrt{d}) - 8 \geq 1/16\alpha_3\sqrt{d}$$

so that we have

$$r \geq Y_m/2^{\mathfrak{g}} \alpha_{\mathfrak{g}} \sqrt{d} = KY_{m-1} \xi_m^{\mathfrak{g}/4}$$

with a constant K not depending on m. Similarly we have $r_i \leq K_i Y_m \xi_m^{1/4}$ with constants K_i not depending on m, where $r_i = \max\{|z - z_{m+1, 2l-i}| ; z \in \hat{r}_{m+1, 2l-i}\}, i=0, 1$. Therefore the ring domain $\{z; Y_m < |z - z_{m,l}| < KY_{m-1}\xi_m^{3/4}\} \subset \Delta'_{m,l}$ for sufficiently large m and its image under $\varphi^{-1} \circ f$ separates $B_1 \cup B_2$ from B_3 . Thus we have again by Lemma 4

16 min {
$$|\boldsymbol{\omega}|$$
; $\boldsymbol{\omega} \in \varphi^{-1} \circ f(\boldsymbol{\gamma}_{m,l})$ } $\geq K/\xi_m^{1/4} = K'/\sqrt{d}$,

where $\gamma_{m,l}$ denotes the circle $|z-z_{m,l}|=KY_{m-1}\xi_m^{s/4}$. This means that $|f(z)| \leq \alpha d = 4\alpha \delta_m$ on $\gamma_{m,l}$, where α does not depend on m.

Since f has no zeros and no poles in the domain bounded by $\Gamma_{m,l}$ and $\gamma_{m,l}$ and $s(\check{\gamma}_{m,l})=2$, the image curve of any closed curve in this domain being homotopic to $\Gamma_{m,l}$ winds twice around 0. Therefore $f^{1/2}$ is single-valued there. By the Cauchy integral formula,

$$\frac{df^{1/2}}{dz}(z) = \frac{1}{2\pi i} \left(\int_{\tilde{\Gamma}_{m,l}} - \int_{\tilde{\Gamma}_{m,l}} \right) \frac{f^{1/2}(\zeta)}{(\zeta - z)^2} d\zeta , \qquad z \in \tilde{\Gamma}_{m,l} .$$

We have

$$\begin{aligned} \left| \frac{df^{1/2}}{dz}(z) \right| &\leq \frac{1}{2\pi} \Big(\frac{(2\xi_{m-1})^{1/2}}{(Y_{m-1}/3 - (1/\sqrt{6})\xi_m^{1/2}Y_{m-1}\xi_{m-1}^{-1/4})^2} \cdot 2\pi \frac{Y_{m-1}}{3} \\ &+ \frac{(4\alpha\delta_m)^{1/2}}{((1/\sqrt{6})\xi_m^{1/2}Y_{m-1}\xi_{m-1}^{-1/4} - KY_{m-1}\xi_m^{3/4})^2} \cdot 2\pi KY_{m-1}\xi_m^{3/4} \Big) \\ &\leq \frac{6}{Y_{m-1}} \xi_{m-1}^{1/2} , \end{aligned}$$

for sufficiently large *m*. Thus the length of the curve $f^{1/2}(\tilde{\Gamma}_{m,l})$ is dominated by

$$\begin{split} \int_{\widetilde{\Gamma}_{m,l}} \left| \frac{df^{1/2}}{dz}(z) \right| |dz| &\leq \frac{6}{Y_{m-1}} \xi_{m-1}^{1/2} \cdot 2\pi \frac{1}{\sqrt{6}} \xi_m^{1/2} Y_{m-1} \xi_{m-1}^{-1/4} \\ &= 2\sqrt{6} \pi \xi_{m-1}^{1/4} \xi_m^{1/2} \,. \end{split}$$

Since the curve $f^{1/2}(\tilde{\Gamma}_{m,l})$ winds once around 0, we see that $|f^{1/2}(z)| \leq 2\sqrt{6}\pi\xi_{m-1}^{1/4}\xi_m^{1/2}$ and hence $|f(z)| \leq 24\pi^2\xi_{m-1}^{1/2}\xi_m$ on $\tilde{\Gamma}_{m,l}$. Thus $f(\tilde{\Gamma}_{m,l}) \subset D(0, 24\pi^2\xi_{m-1}^{1/2}\xi_m)$. Our proof is complete.

Now we can show that $f(\check{\Gamma}_{n+2,4k}) \subset D(0, 8\check{\delta}_{n+2}), \check{\delta}_{n+2} = M'\xi_{n+1}\xi_{n+2}$. Contrary suppose that $f(\check{T}_{n+2,4k}) \not\subset D(0, 8\check{\delta}_{n+2})$. Then $\check{D}_{n+2,4k} \cap D(0, 4\check{\delta}_{n+2}) = \emptyset$, where $\check{D}_{n+2,4k} \supset f(\check{\Gamma}_{n+2,4k})$ is a disc of radius at most $\check{\delta}_{n+2}$. Obviously $s(\check{\Gamma}_{n+2,4k}) = 0$ and we see similarly as before that one of $\mathcal{A}_{n+3,8k-1}$ and $\mathcal{A}_{n+3,8k}$, say $\mathcal{A}_{n+3,8k}$, is degenerate(f) and $f(\check{\Gamma}_{n+3,8k})$ is contained in a disc $\check{D}_{n+3,8k}$ of radius at most $\check{\delta}_{n+3}$ $=M'\xi_{n+2}\xi_{n+3}$. Assume that $\mathcal{A}_{n+3,8k-1}$ is non-degenerate(f) and of class (23). Then f has no poles in the domain Δ bounded by $\mathring{\Gamma}_{n+2,4k}$, $\check{\gamma}_{n+3,8k-1}$ $(f(\check{\gamma}_{n+3,8k-1}))$ $=\partial D(0, 4\delta_{n+3}), \ \delta_{n+3} = \sqrt{3/2}M\xi_{n+3}^{1/2})$ and $\check{\Gamma}_{n+3,8k}$, because $\varDelta_{n+2,4k}$ and $\varDelta_{n+3,8k}$ are degenerate(f) and f has no poles in the domain bounded by $\Gamma_{n+3,8k-1}$ and $\check{\gamma}_{n+3,8k-1}$ by Lemma 1. If $\check{D}_{n+3,8k} \not\equiv 0$, then $s(\check{\Gamma}_{n+3,8k}) = 0$, so that f has two zeros of order 1 or a zero of order 2 in Δ , while $w_3=0$ is a totally ramified value of f with $\nu_3 = 7$. Hence $0 \in \check{D}_{n+3,8k} \subset D(0, 4\check{\delta}_{n+2}) \cap D(0, 4\delta_{n+3})$. We take the component Δ' of $f^{-1}(\hat{C} - \check{D}_{n+3,8k}) \cap \Delta$ having $\check{\Gamma}_{n+2,4k}$ as a boundary component. The boundary $\partial \Delta'$ has a boundary component $\check{\Gamma}$ with $f(\check{\Gamma}) = \partial D_{n+3,8k}$, which separates $\check{\Gamma}_{n+2,4k}$ from $\check{\Gamma}_{n+3,8k}$ in \varDelta . We orientate $\check{\Gamma}$ positively with respect to the domain Δ' . Then $f(\vec{\Gamma})$ winds around 0 in the negative direction, so that, if $\check{\Gamma}$ separates $\check{\Gamma}_{n+2,4k}$ from $\check{\gamma}_{n+3,8k-1}$ too and \varDelta' is bounded by $\check{\Gamma}_{n+2,4k}$ and $\check{\Gamma}$, then f has at least one pole in Δ' , because the winding number of $\check{\Gamma}_{n+2,4k}$ is 0. Hence it is only possible that $\partial \Delta'$ consists of $\check{\Gamma}_{n+2,4k}$, $\check{\gamma}_{n+3,8k-1}$ and $\check{\Gamma}$ with winding numbers 0, 2 and -2 around 0, respectively, and f has no zeros in Δ' . Since $\Delta_{n+2,4k}$ is degenerate(f), $f(\hat{\Gamma}_{n+3,8k-1}) \subset D(0, \xi_{n+2})$ and we see from Lemma 5 that $f(\tilde{\Gamma}_{n+3,8k-1}) \subset D(0, 24\pi^2 \xi_{n+2}^{1/2} \xi_{n+3}) \subset D(0, 4\check{\delta}_{n+2})$. Thus $f(\check{\Gamma}_{n+2,4k}) \subset \check{D}_{n+2,4k}, \check{D}_{n+2,4k} \cap D(0, 4\check{\delta}_{n+2}) = \emptyset$ and $f(\check{\Gamma} \cup \tilde{\Gamma}_{n+3,8k-1}) \subset D(0, 4\check{\delta}_{n+2})$. Hence f is not bounded in $\Delta' \subset \Delta$, while f has no poles in Δ . Thus $\Delta_{n+3,8k-1}$ must be degenerate(f), so that $f(\check{\Gamma}_{n+3,8k-1})$ is contained in a disc $\check{D}_{n+3,8k-1}$ of radius at most $\check{\delta}_{n+3}$ and $\check{D}_{n+2,4k} \cup \check{D}_{n+3,8k-1} \cup \check{D}_{n+3,8k}$ is connected. Hence $f(\check{\Gamma}_{n+3,8k-1}) \not\subset D(0, 8\check{\delta}_{n+3})$ and $f(\check{\Gamma}_{n+3,8k}) \not\subset D(0, 8\check{\delta}_{n+3})$. By induction, we see that f is bounded in the part of $G = \widehat{C} - E$ surrounded with $\check{\Gamma}_{n+2,4k}$. This contradicts our assumption $f \in M_E$. We have now that $f(\check{\Gamma}_{n+2,4k}) \subset D(0, 8\check{\delta}_{n+2})$.

3.4. Recall that $\Delta_{n,k}$ is non-degenerate(f) and of class (23), $\Delta_{n+1,2k}$ and $\Delta_{n+2,4k}$ are degenerate(f) so that $f(\check{\Gamma}_{n+2,4k}) \subset D(0, 8\check{\delta}_{n+2})$, $\check{\delta}_{n+2} = M'\xi_{n+1}\xi_{n+2}$, and $\Delta_{n+2,4k-1}$ is degenerate(f) so that $f(\check{\Gamma}_{n+2,4k-1}) \subset D(0, 8\check{\delta}_{n+2})$, or non-degenerate(f) and of class (23). We denote by \hat{r} the curve in $\Delta_{n,k}$ such that $f(\hat{r}) = \{w; |w| = 1/2\}$ and it is homotopic to $\hat{r}_{n+1,2k}$, and by Δ the domain bounded by \hat{r} , $\Gamma_1 = \check{\Gamma}_{n+2,4k-1}$ and $\Gamma_2 = \check{\Gamma}_{n+2,4k}$ if $\Delta_{n+2,4k-1}$ is degenerate(f), or the domain bounded by \hat{r} , $\hat{r}_{n+2,4k-1}$ and $\Gamma_2 = \check{\Gamma}_{n+2,4k}$ if $\Delta_{n+2,4k-1}$ is of class (23). Assuming that $\Delta_{n+2,4k-1}$ is of class (23), we consider the component Δ' of $f^{-1}(\hat{C} - D(0, 8\check{\delta}_{n+2})) \cap \Delta$ having \hat{r} as a boundary component. The boundary $\partial \Delta'$ has a boundary component Γ' with $f(\Gamma') = \partial D(0, 8\check{\delta}_{n+2})$ which separates \hat{r} and $\check{r}_{n+2,4k-1}$ from Γ_2 or \hat{r} from $\check{r}_{n+2,4k-1}$ and Γ_2 . In the latter case, Δ' is the ring domain bounded by \hat{r} and Γ' and its Riemannian image under f covers divalently the ring domain $R = \{w; 8\check{\delta}_{n+2} < \chi(0, w) < 1/\sqrt{5}\}$, so that its harmonic modulus is equal to one half of that of R, that is, $(1/2) \log(\sqrt{1-(8\check{\delta}_{n+2})^2/16\check{\delta}_{n+2})}$. Since Δ' separates $\{z_{n+2,4k-1}, z_{n+2,4k}\}$ from $\{z_{n+1,2k-1}, \infty\}$, we have by Lemma 4

$$\log\left(16\frac{Y_n(1-\eta_{n+1})}{Y_{n+1}(1-\eta_{n+2})}+8\right) \ge \frac{1}{2}\log\frac{\sqrt{1-(8\check{\delta}_{n+2})^2}}{16\check{\delta}_{n+2}},$$

so that $2^{12}/\xi_{n+1}^2 \ge 1/2^5 M' \xi_{n+1} \xi_{n+2}$, that is, $o(\xi_{n+1}^{r_0-1}) \ge 1/2^{17} M'$. It is impossible for sufficiently large n. Therefore only the former case is possible and Δ' is bounded by \hat{r} , $\check{r}_{n+2,4k-1}$ and Γ' with winding numbers 2, 2 and -4 around 0, respectively, and f has no zeros there. Since $\Delta_{n+1,2k}$ is degenerate(f), $f(\hat{\Gamma}_{n+2,4k-1}) \subset D(0, \xi_{n+1})$ and we see from Lemma 5 that $f(\tilde{\Gamma}_{n+2,4k-1}) \subset$ $D(0, 24\pi^2 \xi_{n+1}^{1/2} \xi_{n+2})$. We set $\Gamma_1 = \tilde{\Gamma}_{n+2,4k-1}$ in the case that $\Delta_{n+2,4k-1}$ is of class (23). Noting that $f(\Gamma_1) \cup f(\Gamma_2) \subset D(0, 24\pi^2 \xi_{n+1}^{1/2} \xi_{n+2})$, we consider the component Δ'' of $f^{-1}(\hat{C} - D(0, 24\pi^2 \xi_{n+1}^{1/2} \xi_{n+2})) \cap \Delta$ having \hat{r} as a boundary component. The boundary $\partial \Delta''$ has two boundary components Γ''_1 and Γ''_2 with $f(\Gamma''_1) = f(\Gamma''_2) =$ $\partial D(0, 24\pi^2 \xi_{n+1}^{1/2} \xi_{n+2})$, being homotopic to Γ_1 and Γ_2 , respectively, or a boundary component Γ'' with $f(\Gamma'') = \partial D(0, 24\pi^2 \xi_{n+1}^{1/2} \xi_{n+2})$ separating \hat{r} from Γ_1 and Γ_2 . Quite similarly as before we see that only the former case is possible. Then Δ'' is bounded by \hat{r} , Γ''_1 and Γ''_2 and its Riemannian image \tilde{R} under f covers the ring domain $R' = \{w; 24\pi^2 \xi_{n+1}^{1/2} \xi_{n+2} < \chi(0, w) < 1/\sqrt{5}\}$ divalently. By the Hurwitz formula, \tilde{R} has just one branch point of order 2, whose projection we denote by w^* . Since the part of \tilde{R} over $\{w; |w^*| < |w| < 1/2\}$ is doubly connected, we have by Lemma 4

$$\log\left(16\frac{Y_n(1-\eta_{n+1})}{Y_{n+1}(1-\eta_{n+2})}+8\right) \ge \frac{1}{2}\log\left(1/2\|w^*\|\right),$$

that is,

 $|w^*| > \xi_{n+1}^2/2^{13}$.

The inverse image of the circle $\{w : |w| = |w^*|\}$ in Δ'' is an eightshaped closed curve crossing at the point z^* with $f(z^*) = w^*$, that is, it consists of two simple closed curves C_1 and C_2 with $C_1 \cap C_2 = \{z^*\}$, being homotopic to Γ_1 and Γ_2 , respectively. Since $s(C_2)=s(\Gamma_2)=1$, one of $\mathcal{A}_{n+3,8k-1}$ and $\mathcal{A}_{n+3,8k}$, say $\mathcal{A}_{n+3,8k}$, is degenerate(f) so that $f(\check{\Gamma}_{n+3,8k}) \subset D(0, 8\check{\delta}_{n+3})$, $\check{\delta}_{n+3} = M' \xi_{n+2} \xi_{n+3}$, and $\varDelta_{n+3,8k-1}$ is degenerate(f) so that $f(\check{\Gamma}_{n+3,8k-1}) \subset D(0, 8\check{\delta}_{n+3})$, or non-degenerate(f) and of class (23). We denote by D the domain bounded by C_2 , $C = \check{\Gamma}_{n+3,8k-1}$ and $C' = \check{\Gamma}_{n+3,8k}$ if $\mathcal{A}_{n+3,8k-1}$ is degenerate(f), or the domain bounded by C_2 , $\check{\gamma}_{n+3,8k-1}$ and C'= $\check{\Gamma}_{n+3,8k}$ if $\varDelta_{n+3,8k-1}$ is of class (23). Assuming that $\varDelta_{n+3,8k-1}$ is of class (23), we consider the component D' of $f^{-1}(\widehat{C} - D(0, 8\check{\delta}_{n+3})) \cap D$ having C_2 as a boundary The boundary $\partial D'$ has a boundary component \tilde{C} with $f(\tilde{C}) =$ component. $\partial D(0, 8\check{\delta}_{n+3})$ which separates C_2 and $\check{\gamma}_{n+3,8k-1}$ from C' or C_2 from $\check{\gamma}_{n+3,8k-1}$ and C'. In the latter case, D' is the ring domain bounded by C_2 and \widetilde{C} and its Riemannian image under f covers univalently the ring domain $\{w; 8\dot{\delta}_{n+3} < \chi(0, w)\}$ $< |w^*|/\sqrt{1+|w^*|^2}$. Since D' separates $\{z_{n+3,8k-1}, z_{n+3,8k}\}$ from $\{z_{n+2,4k-1}, \infty\}$, we have by Lemma 4

$$\log\left(16\frac{Y_{n+1}(1-\eta_{n+2})}{Y_{n+2}(1-\eta_{n+3})}+8\right) \ge \log\frac{|w^*|\sqrt{1-(8\check{\delta}_{n+3})^2}}{8\check{\delta}_{n+3}}$$

so that

$$2^{6}/\xi_{n+2} \geq |w^{*}|/2^{4}M'\xi_{n+2}\xi_{n+3} \geq \xi_{n+1}^{2}/2^{17}M'\xi_{n+2}\xi_{n+3}.$$

Hence we have $o(\xi_{n+1}^{r_0^2-2}) > 1/2^{23}M'$, where $r_0^2 - 2 > 0$. It is absurd.

Thus \tilde{C} separates C_2 and $\check{\gamma}_{n+3,8k-1}$ from C', D' is bounded by C_2 , $\check{\gamma}_{n+3,8k-1}$ and \tilde{C} with winding numbers 1, 2 and -3 around 0, respectively, and f has no zeros there. Since $\Delta_{n+2,4k}$ is degenerate(f), $f(\hat{\Gamma}_{n+3,8k-1}) \subset D(0, \xi_{n+2})$ and we see from Lemma 5 that $f(\tilde{\Gamma}_{n+3,8k-1}) \subset D(0, 24\pi^2 \xi_{n+2}^{1/2} \xi_{n+3})$. We set $C = \tilde{\Gamma}_{n+3,8k-1}$ in the case that $\Delta_{n+3,8k-1}$ is of class (23).

Noting that $f(C) \cup f(C') \subset D(0, 24\pi^2 \xi_{n+2}^{1/2} \xi_{n+3})$, we consider D'' of $f^{-1}(\widehat{C} - D(0, 24\pi^2 \xi_{n+2}^{1/2} \xi_{n+3})) \cap D$ having C_2 as a boundary component. The Riemannian image of D'' under f covers univalently the ring domain $\{w; 24\pi^2 \xi_{n+2}^{1/2} \xi_{n+3} < \chi(0, w) < |w^*| / \sqrt{1+|w^*|^2}\}$, so that D'' is a ring domain with harmonic modulus

 $\log(|w^*|\sqrt{1-(24\pi^2\xi_{n+2}^{1/2}\xi_{n+3})^2/24\pi^2\xi_{n+2}^{1/2}\xi_{n+3}}). \text{ Since } D'' \text{ separates } \{z_{n+3,8k-1}, z_{n+3,8k}\}$ from $\{z_{n+2,4k-1}, \infty\}$, we have by Lemma 4

$$2^6/\xi_{n+2} \ge |w^*|/48\pi^2\xi_{n+2}^{1/2}\xi_{n+3} \ge \xi_{n+1}^2/2^{17}\cdot 3\xi_{n+2}^{1/2}\xi_{n+3}$$
 ,

so that $o(\xi_{n+1}^{r_0(r_0-(1/2))-2}) \ge 1/2^{23} \cdot 3$, where $r_0 \{r_0-(1/2)\} - 2 = 0$. It is absurd and now our proof of the theorem is complete.

References

- A.S. Besicovitch, On sufficient conditions for a function to be analytic, and on behaviour of analytic functions in the neighborhood of non-isolated singular points, Proc. London Math. Soc., Ser. 2, 32 (1930), 1-9.
- [2] T. Kurokawa, Exceptionally ramified meromorphic functions with a non-enumerable set of essential singularities, Nagoya Math. J., 88 (1982), 133-154.
- [3] T. Kurokawa and K. Matsumoto, On totally ramified values, Tôhoku Math. J., 28 (1976), 245-256.
- [4] O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, Springer-Verlag, 1973.
- [5] K. Matsumoto and T. Kurokawa, Meromorphic functions with a perfect set as the set of singularities, Pitman Research Notes in Mathematics Series, 212, 1989, pp. 123-148.

Kikuji MATSUMOTOToshiko KUROKAWANagoya UniversityFaculty of EducationChikusa-kuMie UniversityNagoya 464-01Kamihama-cho, Tsu 514JapanJapan