On the capacity of singularity sets admitting no exceptionally ramified meromorphic functions

By Kikuji Matsumoto and Toshiko Kurokawa

(Received April 19, 1994)

1. Introduction.

For a totally disconnected compact set E in the extended z-plane \hat{C}, we denote by M_{E} the totality of meromorphic functions each of which is defined in the domain complementary to E and has E as the set of transcendental singularities. A meromorphic function $f(z)$ of M_{E} is said to be exceptionally ramified at a singularity $\zeta \in E$, if there exist values $w_{i}, 1 \leqq i \leqq q$, and positive integers $\nu_{i} \geqq 2,1 \leqq i \leqq q$, with

$$
\sum_{i=1}^{q}\left(1-\frac{1}{\nu_{i}}\right)>2,
$$

such that, in some neighborhood of ζ, the multiplicity of any w_{i}-point of $f(z)$ is not less than ν_{i}. Recently, we have shown that, for Cantor sets E with successive ratios $\left\{\xi_{n}\right\}$ satisfying $\xi_{n+1}=o\left(\xi_{n}^{2}\right)$, any function of M_{E} cannot be exceptionally ramified at any singularity $\zeta \in E($ Theorem in [5]). The capacity (in this note, capacity means always logarithmic capacity) of these Cantor sets E is zero, because they satisfy the necessary and sufficient condition

$$
\sum_{n=1}^{\infty} \frac{1}{2^{n}} \log \frac{1}{\xi_{n}}=\infty
$$

to be of capacity zero.
The purpose of this note is to give Cantor sets E of positive capacity improving the above theorem. We shall prove

Theorem. Let E be a Cantor set with successive ratios $\left\{\xi_{n}\right\}$ satisfying the condition

$$
\xi_{n+1}=o\left(\xi_{n}^{r_{0}}\right), \quad r_{0}=(1+\sqrt{ } 33) / 4
$$

then any function of M_{E} cannot be exceptionally ramified at any singularity $\zeta \in E$.
We set ${ }^{7} \xi_{n+1}=\xi_{n}^{r}(n=1,2,3, \cdots)$ with $r, r_{0}<r<2$. Then $\left\{\xi_{n}\right\}$ satisfies the condition of the theorem and

$$
\sum_{n=1}^{\infty} \frac{1}{2^{n}} \log \frac{1}{\xi_{n}}<+\infty
$$

so that the Cantor set E having this $\left\{\xi_{n}\right\}$ as the successive ratios is one wanted.

2. Preliminaries.

2.1. Let f be an exceptionally ramified meromorphic function in a domain G in the extended z-plane having three totally ramified values $\left\{w_{i}\right\}_{i=1,2,3}$ with $\left\{\nu_{i}\right\}_{i=1,2,3}$ such that $\sum_{i=1}^{3}\left(1-\left(1 / \nu_{i}\right)\right)>2$, and let R be a doubly connected subdomain of G with $\bar{R} \subset G$ which is bounded by analytic curves Γ_{1} and Γ_{2}. Suppose that $f\left(\Gamma_{1}\right)$ and $f\left(\Gamma_{2}\right)$ are contained in discs D_{1} and D_{2}. Since f is exceptionally ramified, we have the following lemma from Lemma 2 in [2].

Lemma 1. Under the above setting,

$$
D_{1} \cap D_{2} \neq \varnothing \quad \text { and } \quad f(\bar{R}) \subset D_{1} \cup D_{2}
$$

Now let Δ be a triply connected subdomain of G with $\bar{\Delta} \subset G$ which is bounded by analytic curves $\left\{\Gamma_{j}\right\}_{j=1,2,3}$. We assume that they satisfy the following three conditions (1), (2) and (3):
(1) There exist mutually disjoint simply connected domains $\left\{D_{j}\right\}_{j=1, \ldots, \alpha}$ $(1 \leqq \alpha \leqq 3)$, the boundary curves ∂D_{j} being sectionally analytic, with

$$
\left|D_{j}\right|<\frac{1}{2} \min _{k \neq m} \chi\left(w_{k}, w_{m}\right)
$$

such that the images $\left\{f\left(\Gamma_{i}\right)_{i=1,2,3}\right.$ are covered with $\left\{D_{j}\right\}_{j=1, \ldots, \alpha}$ and each D_{j} contains $f\left(\Gamma_{i}\right)$ for at least one i, where $\chi\left(w_{k}, w_{m}\right)$ denotes the chordal distance between w_{k} and w_{m} and $\left|D_{j}\right|$ denotes the diameter of D_{j}.
(2) The number n of roots of the equation $f(z)=w$ in Δ is constant and $\geqq 1$ for $w \in \widehat{\boldsymbol{C}}-\bigcup_{j=1}^{\alpha} \bar{D}_{j}$.
(3) f has no ramified values on each boundary ∂D_{j}.

We remove from Δ all relatively noncompact components of $\left\{f^{-1}\left(\bar{D}_{j}\right)\right\}_{j=1, \ldots, \alpha}$ with respect to Δ. Then there remains an open set, each component of which cannot be simply or doubly connected because of Lemma 2 in [2]. Hence the open set is a triply connected subdomain Δ^{\prime} of Δ, whose boundary curves Γ_{j}^{\prime} are homotopic to $\Gamma_{j}(j=1,2,3)$. The following 1), 2), 3) and 4) hold (see Lemma 3 in [2]).

1) The Riemannian image of Δ^{\prime} under f belongs to one of the 25 classes listed in Table 1, where classes (8), (9), (19) and (22) are empty as we have shown recently in [5]. (This is the reason why we deleted these four classes from Table 1 by lining through them.)
2) f has no ramified values other than $\left\{w_{i}\right\}_{i=1,2,3}$ in Δ^{\prime}.
3) Each component of $\Delta-\Delta^{\prime}$ is doubly connected and its image is contained in one of $\left\{D_{j}\right\}_{j=1, \ldots, \alpha}$.
4) Each D_{j} contains one of the totally ramified values $\left\{w_{i}\right\}_{i=1,2,3}$.

Table 1.

	ν_{1}	ν_{2}	23	$\underset{l_{1, j}}{m_{1}}$	${ }_{l}^{m_{2, j}}$	$m_{3, j}$ $l_{3,}$	n	σ_{1}	σ_{2}	σ_{3}
1	2	4	5	$\stackrel{3}{l_{1, j}}=2$	$l_{2,1}=4$	$l_{3,1}=5$	6	0	$\stackrel{2}{\{1,1\}}$	11
2	2	4	5	$l_{1, j} \stackrel{4}{=} 2$	$l_{2, j}^{2}=4$	$\stackrel{1}{l_{3,1}}=5$	8	0	0	$\begin{gathered} 3 \\ \{1,1,1\} \end{gathered}$
3	2	3	7	$l_{1, j} \stackrel{4}{=} 2$	$l_{2, j}^{2}=3$	$l_{3,1} \stackrel{1}{=} 7$	8	0	$\stackrel{2}{21,1\}}$	$\stackrel{1}{\{1\}}$
4	2	3	7	$l_{1, j} \stackrel{4}{=} 2$	$l_{2, j} \stackrel{3}{=} 3$	$\stackrel{1}{l_{3,1}}=7$	9	\{1	0	[21,1$\}$
5	2	3	7	$l_{1, j}{ }^{5}=2$	$l_{2, j} \stackrel{3}{=} 3$	$l_{3,1} \stackrel{1}{=} 7$	10	0	$\underset{\{1\}}{1}$	$\stackrel{2}{21,2\}}$
6	2	3	7	$l_{l_{1, j}}=2$	$l_{2, j} \stackrel{3}{=}$	$l_{3,1}=8$	10	0	$\underset{\{1\}}{1}$	$\underset{\{1,1\}}{2}$
7	2	3	7	$l_{1, j} \stackrel{5}{=} 2$	$\begin{gathered} 3 \\ \left\{l_{2,1}, l_{2,2}, l_{2,3}\right\} \\ =\{3,3,4\} \end{gathered}$	$l_{3,2}{ }^{1}=7$	10	0	0	3 $\{1,1,1\}$
8	2	3	7	$\frac{6}{l_{1, j}=2}$	$\frac{4}{l_{2, j}=3}$	$\frac{1}{l_{3,1}=7}$	12	0	0	$\frac{3}{\{1,1,3\}}$
9	2	3	7	$\frac{6}{l_{1, j}=2}$	$\frac{4}{l_{2, j}=3}$	$\frac{1}{l_{3,1}=7}$	12	0	0	$\frac{3}{} \frac{31,2,2\}}{}$
10	2	3	7	$l_{1, j}=2$	$l_{2, j} \stackrel{4}{=} 3$	$l_{3,1}{ }^{1}=8$	12	0	0	
11	2	3	7	$\stackrel{6}{l_{1, j}}=2$	$l_{2, j} \stackrel{4}{=} 3$	$l_{3,1} \stackrel{1}{=} 9$	12	0	0	3 $\{1,1,1\}$

12	2	3	7	$\stackrel{8}{l_{1, j}=2}$	$l_{2, j}=3$	$\stackrel{2}{l_{3, j}}=7$	16	0	${ }_{1}^{1}$	$\stackrel{2}{2}$
13	2	3	7	$\stackrel{9}{l_{1, j}=2}$	$l_{2, j} \stackrel{6}{=3}$	$l_{3, j}^{2}=7$	18	0	0	3 $\{1,1,2\}$
14	2	3	7	$\stackrel{9}{l_{1, j}=2}$	$l_{2, j} \stackrel{6}{=} 3$	$\begin{gathered} 2 \\ \left\{l_{3,1}, l_{3,2}\right\} \\ =\{7,8\} \end{gathered}$	18	0	0	$\begin{gathered} 3 \\ \{1,1,1\} \end{gathered}$
15	2	3	7	$\stackrel{12}{l_{1 . j}=2}$	$\stackrel{8}{l_{2, j}}=3$	$l_{3, j} \stackrel{3}{=7}$	24	0	0	$\stackrel{3}{\{1,1,1\}}$
16	3	3	4	$\stackrel{1}{l_{1,1}}=3$	$\stackrel{1}{l_{2,1}}=3$	0	3	0	0	$\begin{gathered} 3 \\ \{1,1,1\} \end{gathered}$
17	2	4	5	$l_{1, j}^{2}=2$	$l_{2,1}=4$	0	4	0	0	$\begin{gathered} 3 \\ \{1,1,2\} \end{gathered}$
18	2	3	7	$\stackrel{2}{l_{1, j}=2}$	$l_{2,1} \stackrel{1}{=} 3$	0	4	0	$\begin{gathered} 1 \\ \{1\} \end{gathered}$	$\stackrel{2}{\{1,3\}}$
19	2	3	7	$\frac{2}{t_{1, j}=2}$	$\frac{1}{l_{2,1}=3}$	0	-4	0	$\frac{1}{\{1\}}$	$\frac{2}{\{2,2\}}$
20	2	3	7	$\stackrel{1}{l_{1,1}}=2$	$l_{2,1} \stackrel{1}{=} 3$	0	3	$\begin{gathered} 1 \\ \{1\} \end{gathered}$	0	\{1, ${ }^{2}$,
21	2	3	7	$l_{1, j}=2$	$l_{2, j}=3$	0	6	0	0	$\begin{gathered} 3 \\ \{1,1,4\} \end{gathered}$
22	2	3	7	$\frac{3}{l_{1, j}=2}$	$\frac{2}{l_{2, j}=3}$	0	6	0	0	$\frac{3}{\{1,2,3\}}$
23	2	3	7	$l_{1, j}=2$	$l_{2, j} \stackrel{2}{=}$	0	6	0	0	$\begin{gathered} 3 \\ \{2,2,2\} \end{gathered}$

24	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	3 7 4 5	$\begin{aligned} & 7 \\ & 3 \\ & 5 \\ & 4 \end{aligned}$	$l_{1,1}=2$	0	0	2	0	$\underset{\{2\}}{1}$	$\stackrel{2}{2} \underset{\{1,1\}}{ }$
25	2 2 3	3 4 3	7 5 4	0	0	0	1	${ }_{\text {11 }}$	$\underset{\{1\}}{1}$	\{1\}

Notations. m_{i} : the number of w_{i}-points of $f(z)$ in $\Delta^{\prime}(i=1,2,3)$.
$\left\{l_{i, j}\right\}_{j=1, \ldots, m_{i}}$: the multiplicities of w_{i}-points.
σ_{i} : the number of Γ_{j}^{\prime} in $\left\{\Gamma_{j}^{\prime}\right\}_{j=1,2,3}$ with $f\left(\Gamma_{j}^{\prime}\right)=\partial D_{k}, D_{k} \ni w_{i}$, where $\sigma_{i}=0$ means that none of $\left\{D_{j}\right\}_{j=1, \ldots, \alpha}$ contains w_{i}.
$\sigma_{2}^{\sigma_{3}}$ means that two of $\left\{\Gamma_{j}^{\prime}\right\}_{j=1,2,3}$ are mapped onto $\partial D_{k}, D_{k} \ni w_{3}$, and $\{1,2\}$
one of them has an image curve winding once around w_{3}, while the other has an image curve winding twice.
2.2. We form a Cantor set in the usual manner. Let $\left\{\xi_{n}\right\}$ be a sequence of positive numbers satisfying $0<\xi_{n}<2 / 3, n=1,2,3, \cdots$. We remove first an open interval of length $\left(1-\xi_{1}\right)$ from the interval $I_{0,1}:[-1 / 2,1 / 2]$, so that on both sides there remain closed intervals of length $\xi_{1} / 2 \equiv \eta_{1}$, which are denoted by $I_{1,1}$ and $I_{1,2}$. Inductively we remove an open interval of length $\left(1-\xi_{n}\right) \Pi_{p=1}^{n-1} \eta_{p}$, with $\eta_{p}=(1 / 2) \xi_{p}(p=1,2,3, \cdots)$, from each interval $I_{n-1, k}$ of length $\Pi_{p=1}^{n-1} \eta_{p}$, $k=1,2,3, \cdots, 2^{n-1}$, so that on both sides there remain closed intervals of length $\Pi_{p=1}^{n} \eta_{p}$, which are denoted by $I_{n, 2 k-1}$ and $I_{n, 2 k}$. By repeating this procedure endlessly, we obtain an infinite sequence of closed intervals $\left\{I_{n, k}\right\}_{n=1,2, \ldots, k=1,2, \ldots 2^{n}}$. The set given by

$$
E=\bigcap_{n=1}^{\infty} \bigcup_{k=1}^{2^{n}} I_{n, k}
$$

is called the Cantor set on the interval $I_{0,1}$ with successive ratios $\left\{\xi_{n}\right\}$.
Set

$$
R_{n, k}=\left\{z ; \prod_{p=1}^{n} \eta_{p}<\left|z-z_{n, k}\right|<\frac{1}{3} \prod_{p=1}^{n-1} \eta_{p}\right\}
$$

and

$$
\Gamma_{n, k}^{\prime}=\left\{z ;\left|z-z_{n, k}\right|=\prod_{p=1}^{n-1} \eta_{p} \sqrt{\frac{\eta_{n}}{3}}\right\}
$$

where $z_{n, k}$ is the midpoint of $I_{n, k}$. Denoting by $\mu_{n}=\mu\left(R_{n, k}\right)$ the harmonic modulus of $R_{n, k}$, we have

$$
\mu_{n}=\log \frac{1}{3 \eta_{n}}=\log \frac{2}{3 \xi_{n}}
$$

Assuming that $\lim _{n \rightarrow \infty} \xi_{n}=0$, we have
Lemma 2 (Lemma 4 in [2]). Let f be an exceptionally ramified meromorphic function in the domain $G=\widehat{\boldsymbol{C}}-E$. Then, for sufficiently large n, we have

$$
\left|f\left(\Gamma_{n, k}\right)\right|<M \exp \left(-\mu_{n} / 2\right)
$$

where M is a positive constant depending only on E and f.
Let f be exceptionally ramified in the domain $G=\widehat{\boldsymbol{C}}-E$. By our previous result ([3]), f has just three totally ramified values $\left\{w_{i}\right\}_{i=1,2,3}$. Since $\left|f\left(\Gamma_{n, k}\right)\right|$ $<M \exp \left(-\mu_{n} / 2\right)=M \sqrt{3 \xi_{n} / 2} \equiv \delta_{n}$ by Lemma 2, we can take a spherical disc $D_{n, k}$ of radius δ_{n} containing $f\left(\Gamma_{n, k}\right)$. We denote by $\Delta_{n, k}$ the triply connected domain bounded by $\Gamma_{n, k}, \Gamma_{n+1,2 k-1}$ and $\Gamma_{n+1,2 k}$. Taking n so large that $\delta_{n}<(1 / 12)$ $\cdot \min _{i \neq j} \chi\left(w_{i}, w_{j}\right)$, we consider the union $D \equiv \bar{D}_{n, k} \cup \bar{D}_{n+1,2 k-1} \cup \bar{D}_{n+1,2 k}$, which consists of at most three, say α, components.

If $\alpha=1$, that is, D is connected, it is possible that D is doubly connected, and we take a disc \tilde{D}_{1} of radius at most $\delta_{n}+2 \delta_{n+1}$ containing D. If $\alpha=2$ or 3 , we denote the components of D by $\left\{\widetilde{D}_{j}\right\}_{j=1, \ldots, \alpha}$, which are simply connected.

When $\alpha=1$ and f takes in $\Delta_{n, k}$ no values outside $\widetilde{D}_{1}, \bar{f}\left(\Delta_{n, k}\right) \subset \widetilde{D}_{1}$, we say that $\Delta_{n, k}$ is degenerate (f). When $\alpha=1$ and f takes in $\Delta_{n, k}$ values outside \widetilde{D}_{1} or when $\alpha=2$ or 3 , we say that $\Delta_{n, k}$ is non-degenerate (f). Then $f, \Delta_{n, k}$ and $\left\{\widetilde{D}_{j}\right\}_{j=1, \ldots, \alpha}$ satisfy three conditions (1), (2) and (3) stated in 2.1 , so that by 4) stated there, each \widetilde{D}_{j} contains one w_{j}^{*} of the totally ramified values $\left\{w_{i}\right\}_{i=1,2,3}$ and the union $\bigcup_{j=1}^{\alpha} \tilde{D}_{j} \supset D$ is contained in $\bigcup_{i=1}^{3} D\left(w_{i}, 2\left(\boldsymbol{\delta}_{n}+2 \boldsymbol{\delta}_{n+1}\right)\right.$), where we denote by $D(w, \boldsymbol{\delta})$ the spherical disc of radius δ and with center at w. We assume $2 \delta_{n+1}<\delta_{n}$ and set $\tilde{D}_{j}^{\prime}=D\left(w_{j}^{*}, 4 \delta_{n}\right), j=1, \cdots, \alpha$. Then $f, \Delta_{n, k}$ and $\left\{\tilde{D}_{j}^{\prime}\right\}_{j=1, \ldots, \alpha}$ again satisfy three conditions (1), (2) and (3), so that there exists a triply connected subdomain $\Delta_{n, k}^{\prime}$ of $\Delta_{n, k}$ such that 1), 2), 3) and 4) stated there hold. The Riemannian image $S_{n, k}$ of $\Delta_{n, k}^{\prime}$ under f belongs to one of the classes of Table 1. The boundary curves of $\Delta_{n, k}^{\prime}$ are denoted by $\check{\gamma}_{n, k}, \hat{\gamma}_{n+1,2 k-1}$ and $\hat{\gamma}_{n+1,2 k}$ being homotopic to $\Gamma_{n, k}, \Gamma_{n+1,2 k-1}$ and $\Gamma_{n+1,2 k}$, respectively. Each γ of them has an image curve winding around some w^{*} of w_{1}, w_{2} and w_{3}, and we denote its winding number by $s(\gamma)$. The value w^{*} corresponds to one \tilde{w} of three totally ramified values for the class in Table 1 to which $S_{n, k}$ belongs,
and we can read the ν-value, the minimum of the multiplicities of \tilde{w}-points, in Table 1, which we denote by $\nu(\gamma)$.

Suppose now that $S_{n, k}$ belongs to a class other than (23). Reading Table 1, we see that the image curves of at least two of $\check{\gamma}_{n, k}, \hat{\gamma}_{n+1,2 k-1}$ and $\hat{\gamma}_{n+1,2 k}$ have the winding number 1 . Hence $s\left(\hat{\gamma}_{n+1,2 k-1}\right)=1$ or $s\left(\hat{\gamma}_{n+1,2 k}\right)=1$, say $s\left(\hat{\gamma}_{n+1,2 k}\right)=1$, where we assume $\nu\left(\hat{\gamma}_{n+1,2 k-1}\right) \leqq \nu\left(\hat{\gamma}_{n+1,2 k}\right)$ if $s\left(\hat{\gamma}_{n+1,2 k-1}\right)=s\left(\hat{\gamma}_{n+1,2 k}\right)=1$. The adjacent $\Delta_{n+1,2 k}$ is degenerate (f) or non-degenerate (f). Suppose that $\Delta_{n+1,2 k}$ is nondegenerate (f). Then $\hat{\gamma}_{n+1,2 k}$ and $\check{\gamma}_{n+1,2 k}$ wind around the same totally ramified value w^{*} and bound a doubly connected domain where f takes the value w^{*}. Since $f\left(\hat{\gamma}_{n+1,2 k}\right) \subset D\left(w^{*}, 4 \boldsymbol{\delta}_{n}\right)$ and $f\left(\check{\gamma}_{n+1,2 k}\right) \subset D\left(w^{*}, 4 \delta_{n+1}\right)$, we see from Lemma 1 that f takes no values outside $D\left(w^{*}, 4 \delta_{n}\right)$ in the doubly connected domain bounded by $\hat{\gamma}_{n+1,2 k}$ and $\check{\gamma}_{n+1,2 k}$. By the argument principle, we have

$$
s\left(\hat{\gamma}_{n+1,2 k}\right)+s\left(\check{\gamma}_{n+1,2 k}\right) \geqq \max \left\{\nu\left(\hat{\gamma}_{n+1,2 k}\right), \nu\left(\check{\gamma}_{n+1},{ }_{2 k}\right)\right\},
$$

that is,

$$
s\left(\check{\gamma}_{n+1,2 k}\right) \geqq \max \left\{\nu\left(\hat{\gamma}_{n+1,2 k}\right), \nu\left(\check{\gamma}_{n+1,2 k}\right)\right\}-1,
$$

because $s\left(\hat{\gamma}_{n+1,2 k}\right)=1$. From Table 1, we see that only the pairs $\left\{\Delta_{n, k}, \Delta_{n+1,2 k}\right\}$ listed below satisfy this inequality.

Table 2.

	$\Delta_{n, k}$		$\Delta_{n+1,2 k}$		
class	$\nu\left(\hat{\gamma}_{n+1,2 k}\right)$	$s\left(\hat{\gamma}_{n+1,2 k}\right)$	class	$\nu\left(\check{\gamma}_{n+1,2 k}\right)$	$s\left(\check{\gamma}_{n+1,2 k}\right)$
			(4)	2	1
(20)	2	1	(20)	2	1
			(25)	2	1
(3)	3	1			
(5)	3	1			
(18)	3	1	(24)	3	2
(24)	3	1			
(25)	3	1			

Remark. The pair of $\Delta_{n, k}((20), 2,1)$ and $\Delta_{n+1,2 k}((24), 3,2)$ satisfies the inequality, but, under the assumption that f is exceptionally ramified, we can
omit it, because $S_{n, k}$ and $S_{n+1,2 k}$ have branch points of multiplicity 2 over distinct totally ramified values.

From Table 1, we see that, if $\Delta_{n+1,2 k}$ of the right side of Table 2 is of class (4), (20) or (24), one of $\hat{\gamma}_{n+2,4 k-1}$ and $\hat{\gamma}_{n+2,4 k}$, say $\hat{\gamma}_{n+2,4 k}$, satisfies $s\left(\hat{\gamma}_{n+2,4 k}\right)$ $=1$ and $\nu\left(\hat{\gamma}_{n+2,4 k}\right)=7$, and if it is of class (25), $s\left(\hat{\gamma}_{n+2,4 k}\right)=1$ and $\nu\left(\hat{\gamma}_{n+2,4 k}\right) \geqq 5$. Therefore $\Delta_{n+2,4 k}$ must be degenerate (f). Thus we have

Lemma 3 (Lemma 2 in [5]). If $\Delta_{n, k}$ is non-degenerate (f) and belongs to a class other than the class (23), then for at least one of $\hat{\gamma}_{n+1,2 k-1}$ and $\hat{\gamma}_{n+1,2 k}$, say $\hat{\gamma}_{n+1,2 k}, s\left(\hat{\gamma}_{n+1,2 k}\right)=1$. If the adjacent $\Delta_{n+1,2 k}$ is non-degenerate(f), then for at least one of $\hat{\gamma}_{n+2,4 k-1}$ and $\hat{\gamma}_{n+2,4 k}$, say $\hat{\gamma}_{n+2,4 k}, s\left(\hat{\gamma}_{n+2,4 k}\right)=1$ and the adjacent $\Delta_{n+2,4 k}$ is degenerate(f).

We shall state a theorem due to Teichmüller for the moduli of ring domains as a lemma, which we shall often use later.

Lemma 4. If a ring domain R in \boldsymbol{C} separates two points 0 and $r_{1} e^{i \theta_{1}}$ from two points $r_{2} e^{i \theta_{2}}$ and $\infty\left(r_{1}>0, r_{2}>0\right)$, then

$$
\text { har. } \bmod . R \leqq \log \left(16 \frac{r_{2}}{r_{1}}+8\right)
$$

(cf. Lehto and Virtanen [4], pp. 54-62).

3. Proof of Theorem.

3.1. Now we shall prove our theorem. Contrary suppose that a function f of M_{E} is exceptionally ramified at a singularity $\zeta_{0} \in E$. As mentioned after Lemma 2, f has just three totally ramified values $\left\{w_{i}\right\}_{i=1,2,3}$ near ζ_{0} with $\left\{\nu_{i}\right\}_{i=1,2,3}$, satisfying

$$
\sum_{i=1}^{3}\left(1-\frac{1}{\nu_{i}}\right)>2,
$$

where we may assume without any loss of generality that $w_{1}=\infty, w_{2}=1$ and $w_{3}=0$. From our assumption $\xi_{n+1}=o\left(\xi_{n}^{r_{0}}\right), r_{0}=(1+\sqrt{33}) / 4$, we can take n_{0} so large that $\delta_{n}=M \sqrt{3 \xi_{n}} / 2<\sqrt{2} / 24$ and $\delta_{n+1}<(1 / 2) \delta_{n}$ for $n \geqq n_{0}$. Here we may assume that $\Gamma_{n_{0}, k_{0}}$ surrounds ζ_{0} and f is exceptionally ramified in the part G_{0} of $G=\widehat{\boldsymbol{C}}-E$ surrounded with $\Gamma_{n_{0}, k_{0}}$. Then if $\Delta_{n, k}$ in G_{0} is degenerate (f), $f\left(\overline{\mathcal{A}}_{n, k}\right)$ is contained in a disc $\tilde{D}_{n, k}$ of radius at most $\delta_{n}+2 \delta_{n+1}<2 \delta_{n}$.

Now suppose that all $\Delta_{n, k}$ in G_{0} are degenerate (f). The image $f\left(\overline{\boldsymbol{A}}_{n_{0}, k_{0}}\right)$ is contained in $\widetilde{D}_{n_{0}, k_{0}}$. Since $\widetilde{D}_{n_{0}, k_{0}} \cap \widetilde{D}_{n_{0}+1,2 k_{0}-1} \neq \varnothing$ and $\widetilde{D}_{n_{0}, k_{0}} \cap \widetilde{D}_{n_{0}+1,2 k_{0}} \neq \varnothing$, $f\left(\bar{\Delta}_{n_{0}, k_{0}} \cup \bar{\Delta}_{n_{0}+1,2 k_{0}-1} \cup \bar{\Delta}_{n_{0}+1,2 k_{0}}\right)$ is contained in a disc D_{2} of radius at most $2 \delta_{n_{0}}+4 \delta_{n_{0}+1}<2 \delta_{n_{0}}\left(1+2^{0}\right)$ and with the same center w_{0} as $\tilde{D}_{n_{0}, k_{0}}$. If
$f\left(\overline{\mathcal{A}}_{n_{0}, k_{0}} \cup\left(\cup_{p=1}^{m}\left(\bigcup_{k}^{\prime} \bar{\Delta}_{n_{0}+p, k}\right)\right)\right)$ is contained in a disc D_{m} of radius at most $2 \delta_{n_{0}}\left(1+\sum_{p=1}^{m}\left(1 / 2^{p-1}\right)\right)$ and with center at w_{0}, then $f\left(\bar{\Delta}_{n_{0}, k_{0}} \cup\left(\cup_{p=1}^{m+1}\left(\cup_{k}^{\prime} \bar{\Lambda}_{n_{0}+p, k}\right)\right)\right)$ is contained in a disc D_{m+1} of radius at most $2 \delta_{n_{0}}\left(1+\sum_{p=1}^{m}\left(1 / 2^{p-1}\right)\right)+4 \delta_{n_{0}+m+1}<$ $2 \delta_{n_{0}}\left(1+\sum_{p=1}^{m+1}\left(1 / 2^{p-1}\right)\right)$ and with center at w_{0}, because $D_{m} \cap \widetilde{D}_{n_{0}+m+1, k} \neq \varnothing$ for each $\Delta_{n_{0}+m+1, k}$ in G_{0}, where $\cup_{k}^{\prime} \Delta_{n_{0}+p, k}$ means the union taken over all the $\Delta_{n_{0}+p . k}$'s in G_{0}. By induction, we conclude that $f\left(G_{0}\right)$ is contained in a disc of radius at most $2 \delta_{n_{0}}\left(1+\sum_{p=1}^{\infty}\left(1 / 2^{p-1}\right)\right)=6 \delta_{n_{0}}<\sqrt{2} / 4$. This means that f is bounded in G_{0}. Since E is of linear measure zero, each point of E in the domain surrounded with $\Gamma_{n_{0}, k_{0}}$ must be a removable singularity for f (cf. Besicovitch [1]). This contradicts our assumption that $f \in M_{E}$. Thus we see that there are infinitely many $\Delta_{n, k}$ in G_{0} being non-degenerate (f).

We take such a domain $\Delta_{n, k}$. If $\Delta_{n, k}$ belongs to a class other than (23), we may assume from Lemma 3 that $s\left(\hat{\gamma}_{n+1,2 k}\right)=1$ and the adjacent $\Delta_{n+1,2 k}$ is degenerate (f). We shall show that $f\left(\Gamma_{n+1,2 k}\right) \subset D\left(w_{i}, 8 \delta_{n+1}\right)$ and $f\left(\Gamma_{n+2,4 k-1}\right) \cup$ $f\left(\Gamma_{n+2,4 k}\right) \subset D\left(w_{i}, 8 \delta_{n+2}\right)$ for some $w_{i} \in\left\{w_{i}\right\}_{i=1,2,3}$.

For $\Delta_{m, l}$ being non-degenerate (f), the union $D=\bar{D}_{m, l} \cup \bar{D}_{m+1,2 l-1} \cup \bar{D}_{m+1,2 l}$ is contained in $\bigcup_{i=1}^{3} D\left(w_{i}, 2\left(\boldsymbol{\delta}_{m}+2 \delta_{m+1}\right)\right) \subset \bigcup_{i=1}^{3} D\left(w_{i}, 4 \delta_{m}\right)$ as mentioned after we stated Lemma 2. Therefore, if $f\left(\Gamma_{m, l}\right) \not \subset \bigcup_{i=1}^{3} D\left(w_{i}, 8 \delta_{m}\right)$, then $\Delta_{m, l}$ is degenerate (f) and $f\left(\bar{\Lambda}_{m, l}\right)$ is contained in a disc $\tilde{D}_{m, l}$ of radius at most $2 \delta_{m}$. We have $\tilde{D}_{m, l} \cap \cup_{i=1}^{3} D\left(w_{i}, 4 \delta_{m}\right)=\varnothing$. Since $2 \delta_{m+1}<\delta_{m}$, we see that $f\left(\Gamma_{m+1,2 l-1}\right) \not \subset$ $\bigcup_{i=1}^{3} D\left(w_{i}, 8 \delta_{m+1}\right)$ and $f\left(\Gamma_{m+1,2 l}\right) \not \subset \bigcup_{i=1}^{3} D\left(w_{i}, 8 \delta_{m+1}\right)$ so that $\Delta_{m+1,2 l-1}$ and $\Delta_{m_{+1,2 l}}$ both are degenerate (f). Then, by induction, we see all $\Delta_{p, q}$ in the part of G surrounded with $\Gamma_{m, l}$ are degenerate (f). However, this is impossible as we have seen above. Hence $f\left(\Gamma_{m, l}\right) \subset \bigcup_{i=1}^{3} D\left(w_{i}, 8 \delta_{m}\right)$. We see now that $f\left(\Gamma_{m, l}\right) \subset$ $\bigcup_{i=1}^{3} D\left(w_{i}, 8 \delta_{m}\right)$, whether $\Delta_{m, 2}$ is non-degenerate(f) or degenerate (f). From this fact, $f\left(\Gamma_{n+1,2 k}\right) \subset \bigcup_{i=1}^{3} D\left(w_{i}, 8 \delta_{n+1}\right)$ and $f\left(\Gamma_{n+2,4 k-1}\right) \cup f\left(\Gamma_{n+2,4 k}\right) \subset \bigcup_{i=1}^{3} D\left(w_{i}, 8 \delta_{n+2}\right)$. However, $\Delta_{n+1,2 k}$ is degenerate (f) and so we see that $f\left(\Gamma_{n+1,2 k}\right) \subset D\left(w_{i}, 8 \delta_{n+1}\right)$ and $f\left(\Gamma_{n+2,4 k-1}\right) \cup f\left(\Gamma_{n+2,4 k}\right) \subset D\left(w_{i}, 8 \delta_{n+2}\right)$ for some $w_{i} \in\left\{w_{i}\right\}_{i=1,2,3}$. We may assume $w_{i}=w_{3}=0$.

Set

$$
\hat{\Gamma}_{n, k}^{(s)}=\left\{z ;\left|z-z_{n, k}\right|=(1 / 3) \xi_{n-1}^{s} Y_{n-1}\right\} \quad \text { and } \quad \hat{\Gamma}_{n, k}^{(0)}=\hat{\Gamma}_{n, k},
$$

where $Y_{n}=\prod_{p=1}^{n} \eta_{p}=\left(\Pi_{p=1}^{n} \xi_{p}\right) / 2^{n}$ and $0 \leqq 2 s \leqq r_{0}-1$. By the Cauchy integral formula,

$$
f^{\prime}(z)=\frac{1}{2 \pi i} \int_{\partial \Delta_{n+1,2 k}} \frac{f(\zeta)}{(\zeta-z)^{2}} d \zeta, \quad z \in \hat{\Gamma}_{n+2,4 k-1}^{(s)} \cup \hat{\Gamma}_{n+2,4 k}^{(s)},
$$

so that

$$
\left|f^{\prime}(z)\right| \leqq \frac{1}{2 \pi}\left(\int_{\Gamma_{n+1,2 k}}+\int_{\Gamma_{n+2,4 k-1}}+\int_{\Gamma_{n+2,4 k}}\right) \frac{|f(\zeta)|}{|\zeta-z|^{2}}|d \zeta| .
$$

Since $f\left(\Gamma_{n+1,2 k}\right) \subset D\left(0,8 \delta_{n+1}\right)$ and $f\left(\Gamma_{n+2,4 k-1}\right) \cup f\left(\Gamma_{n+2,4 k}\right) \subset D\left(0,8 \delta_{n+2}\right)$,

$$
\begin{aligned}
\left|f^{\prime}(z)\right| & \leqq \frac{1}{2 \pi} \cdot \frac{8 \delta_{n+1}}{\sqrt{1-\left(8 \delta_{n+1}\right)^{2}}} \cdot \frac{1}{\left\{\sqrt{\xi_{n+1} / 6 Y_{n}\left(1-\sqrt{\left.\left.3 \xi_{n+1} / 2\right)\right\}^{2}}\right.} \cdot 2 \pi \sqrt{\xi_{n+1} / 6 Y_{n}}\right.} \\
& +2 \cdot \frac{1}{2 \pi} \cdot \frac{8 \delta_{n+2}}{\sqrt{1-\left(8 \delta_{n+2}\right)^{2}}} \cdot \frac{1}{\left\{(1 / 3) \xi _ { n + 1 } ^ { s } Y _ { n + 1 } \left(1-3 \sqrt{\left.\left.\xi_{n+2} / 6 \xi_{n+1}^{-s}\right)\right\}^{2}} \cdot 2 \pi \sqrt{\xi_{n+2} / 6 Y_{n+1}}\right.\right.} \\
& \leqq \frac{192 M}{Y_{n}}+\frac{288 M}{Y_{n}} \cdot \frac{\xi_{n+2} \xi_{n+1}^{-(1+2 s)}}{\left(1-3 \sqrt{\left.\xi_{n+2} / 6 \xi_{n+1}^{-s}\right)^{2}}\right.} \\
& <\frac{384 M}{Y_{n}}
\end{aligned}
$$

for sufficiently large n, because $\delta_{n} \rightarrow 0, \xi_{n} \rightarrow 0, \xi_{n+2}^{1 / 2} \xi_{n+1}^{-s}=o\left(\xi_{n+1}^{(r 0-2 s) / 2}\right)=o\left(\xi_{n+1}^{1 / 2}\right)$ and $\xi_{n+2} \xi_{n+1}^{-(1+2 s)}=o\left(\xi_{n+1}^{r_{0}-(1+2 s)}\right)=o(1)$. Hence, for $z, z^{\prime} \in \hat{\Gamma}_{n+2,4 k-j}^{(s)}(j=0,1)$,

$$
\begin{aligned}
\left|f(z)-f\left(z^{\prime}\right)\right| & \leqq \int_{\hat{\Gamma}_{n+2,4 k-j}^{(s)}}\left|f^{\prime}(z)\right||d z| \\
& \leqq \frac{384 M}{Y_{n}} \cdot 2 \pi \frac{1}{3} \xi_{n+1}^{s} Y_{n+1}=128 \pi M \xi_{n+1}^{1+s} \equiv \hat{\delta}_{n+2}^{(s) 2}
\end{aligned}
$$

This inequality implies that the images $f\left(\hat{\Gamma}_{n+2,4 k-1}^{(s)}\right)$ and $f\left(\hat{\Gamma}_{n+2,4 k}^{(s)}\right)$ are contained in discs $\hat{D}_{n+2,4 k-1}^{(s)}$ and $\hat{D}_{n+2,4 k}^{(s)}$ of radius at most $\hat{\delta}_{n+2}^{(s)}$, respectively. We shall show that $f\left(\hat{\Gamma}_{n+2,4 k-1}^{(s)}\right) \cup f\left(\hat{\Gamma}_{n+2,4 k}^{(s)}\right) \subset D\left(0, \xi_{n+1}^{1+(s / 2)}\right)$ for sufficiently large n. Consider the triply connected domain $\hat{\Delta}_{n+2,4 k-1}$ bounded by $\hat{\Gamma}_{n+2,4 k-1}^{(s)}, \Gamma_{n+3,8 k-3}$ and $\Gamma_{n+3,8 k-2}$, where $f\left(\Gamma_{n+3,8 k-3}\right)$ and $f\left(\Gamma_{n+3,8 k-2}\right)$ are contained in discs $D_{n+3,8 k-3}$ and $D_{n+3,8 k-2}$ of radius at most $\delta_{n+3}=M \sqrt{(3 / 2)} \overline{\xi_{n+3}}=o\left(\xi_{n+1}^{1+(s / 2)}\right)$. If $\hat{\Delta}_{n+2,4 k-1}$ is non-degenerate (f), then the union $D=\overline{\hat{D}}_{n+2,4 k-1}^{(s)} \cup \bar{D}_{n+3,8 k-3} \cup \bar{D}_{n+3,8 k-2}$ is contained in $\bigcup_{i=1}^{3} D\left(w_{i}, 2\left(\hat{\delta}_{n+2}^{(s)}+2 \delta_{n+3}\right)\right.$, so that $f\left(\hat{\Gamma}_{n+2,4 k-1}^{(s)}\right) \subset D\left(0, \xi_{n+1}^{1+(s / 2)}\right)$ for sufficiently large n, because $\hat{\delta}_{n+2}^{(s)}=O\left(\xi_{n+1}^{1+s}\right)=O\left(\xi_{n+1}^{1+(s / 2)}\right)$ and $\delta_{n+3}=O\left(\xi_{n+1}^{1+(s / 2)}\right)$. Therefore if $f\left(\hat{\Gamma}_{n+2,4 k-1}^{(s)}\right) \not \subset D\left(0, \xi_{n+1}^{1+(s / 2)}\right)$, then $\hat{\Delta}_{n+2,4 k-1}$ is degenerate (f) and $f\left(\hat{\boldsymbol{\Lambda}}_{n+2,4 k-1}\right) \subset D$, where D is connected and $|D| \leqq 2\left(\hat{\boldsymbol{\delta}}_{n+2}^{(s)}+2 \delta_{n+3}\right)=o\left(\xi_{n+1}^{1+(s / 2)}\right)$. Thus $f\left(\Gamma_{n+3,8 k-j}\right) \not \subset$ $D\left(0,8 \delta_{n+3}\right)(j=3,2)$. It is obvious that $f\left(\Gamma_{n+3,8 k-j}\right) \cap\left\{D\left(\infty, 8 \delta_{n+3}\right) \cup D\left(1,8 \delta_{n+3}\right)\right\}$ $=\varnothing(j=3,2)$, but, as we have seen above, any $\Gamma_{m, l}$ satisfies $f\left(\Gamma_{m, l}\right) \subset D\left(w_{i}, 8 \boldsymbol{\delta}_{m}\right)$ for some $w_{i} \in\left\{w_{i}\right\}_{i=1,2,3}$. Contradiction. Thus we have $f\left(\hat{\Gamma}_{n+2,4 k-1}^{(s)}\right) \subset D\left(0, \xi_{n+1}^{1+(s / 2)}\right)$. Quite similarly, we have $f\left(\hat{\Gamma}_{n+2,4 k}^{(s)}\right) \subset D\left(0, \xi_{n+1}^{1+(s / 2)}\right)$.

We consider now the part of Riemannian image of the quadruply connected domain bounded by $\Gamma_{n, k}, \Gamma_{n+1,2 k-1}, \hat{\Gamma}_{n+2,4 k-1}^{(s)}$ and $\hat{\Gamma}_{n+2,4 k}^{(s)}$ under f over the annulus $R=\left\{w ; \xi_{n+1}^{1+(s / 2)}<\chi(0, w)<1 / 2\right\}, s>0$. Since $s\left(\hat{\gamma}_{n+1,2 k}\right)=1, f$ has no ramified values other than $\left\{w_{i}\right\}_{i=1,2,3}$ in $\Delta_{n, k}^{\prime}$ and $f\left(\hat{\Gamma}_{n+2,4 k-1}^{(s)}\right) \cup f\left(\hat{\Gamma}_{n+2,4 k}^{(s)}\right) \subset D\left(0, \xi_{n+1}^{1+(s / 2)}\right)$, its component \tilde{R} containing $f\left(\hat{\gamma}_{n+1,2 k}\right)$ covers R univalently, so that \tilde{R} is also an annulus and its harmonic modulus is equal to that of R. The inverse image $f^{-1}(\tilde{R})$ is a ring domain separating $\Gamma_{n, k} \cup \Gamma_{n+1,2 k-1}$ from $\hat{\Gamma}_{n+2,4 k-1}^{(s)} \cup \hat{\Gamma}_{n+2,4 k}^{(s)}$. By Lemma 4 we have

$$
\begin{aligned}
\log \left(16 \frac{Y_{n}\left(1-\xi_{n+1}\right)}{Y_{n+1}}+8\right) & \geqq \text { har. } \bmod . \tilde{R} \\
& =\log \frac{1 / 2 \sqrt{1-(1 / 2)^{2}}}{\xi_{n+1}^{1+(s / 2)} / \sqrt{1-\left(\xi_{n+1}^{1+(s / 2)}\right)^{2}}}
\end{aligned}
$$

and hence

$$
32 / \xi_{n+1} \geqq 1 / 2 \xi_{n+1}^{1+(s / 2)}, \text { so that } \xi_{n+1}^{s / 2}>1 / 64
$$

Thus there are only finitely many $\Delta_{n, k}$ in G_{0} being non-degenerate (f) which belong to classes other than the class (23), for, otherwise, the inequality holds for infinitely many n contradicting our assumption $\xi_{n+1}=o\left(\xi_{n}^{r_{0}}\right)$. Now we may assume that all $\Delta_{n, k}$ in G_{0} being non-degenerate(f) are of class (23).
3.2. Let $\Delta_{n, k}$ be non-degenerate (f) and belong to the class (23). Then the image $f\left(\partial \Delta_{n, k}\right)$ of the boundary of $\Delta_{n, k}$ is contained in one of $\left\{D\left(w_{i}, 4 \boldsymbol{\delta}_{n}\right)\right\}_{i=1,2,3}$, say $D\left(w_{3}, 4 \boldsymbol{\delta}_{n}\right), w_{3}=0$. Both of adjacent $\Delta_{n+1,2 k-1}$ and $\Delta_{n+1,2 k}$ are degenerate (f). In fact, if $\Delta_{n+1,2 k-1}$ is non-degenerate $(f), \quad s\left(\hat{\gamma}_{n+1,2 k-1}\right)=s\left(\check{\gamma}_{n+1,2 k-1}\right)=2$ because $\Delta_{n+1,2 k-1}$ is also of class (23), and f takes the totally ramified value $w_{3}=0$ with $\nu_{3}=7$. Because $f\left(\hat{\gamma}_{n+1,2 k-1}\right) \cup f\left(\check{\gamma}_{n+1,2 k-1}\right) \subset D\left(0,4 \delta_{n}\right)$, the image of the doubly connected domain bounded by $\hat{\gamma}_{n+1,2 k-1}$ and $\check{\gamma}_{n+1,2 k-1}$ is also contained in $D\left(0,4 \delta_{n}\right)$ by Lemma 1, consequently f has no poles there, and hence we have $s\left(\hat{\gamma}_{n+1,2 k-1}\right)$ $+s\left(\check{\gamma}_{n+1,2 k-1}\right) \geqq 7$ by the argument principle. It is absurd, and hence $\Delta_{n+1,2 k-1}$ is degenerate (f). Similarly we see that $\Delta_{n+1,2 k}$ is also degenerate (f). Now at least one of $\Delta_{n+2,4 k-1}$ and $\Delta_{n+2,4 k}$, say $\Delta_{n+2,4 k}$, is degenerate (f). Contrary suppose that both of them are non-degenerate (f). Then they are of class (23) and f has the totally ramified value $w_{3}=0$ in the domain bounded by $\hat{\gamma}_{n+1,2 k}$, $\check{\gamma}_{n+2,4 k-1}$ and $\check{\gamma}_{n+2,4 k}$, but has no poles there. In fact $\Delta_{n+1,2 k}$ is degenerate (f) and hence f might have poles only in the doubly connected domain bounded by $\Gamma_{n+2,4 k-1}$ and $\check{\gamma}_{n+2,4 k-1}$ or $\Gamma_{n+2,4 k}$ and $\check{\gamma}_{n+2,4 k}$, while this is impossible because of Lemma 1. Therefore

$$
s\left(\hat{\gamma}_{n+1,2 k}\right)+s\left(\check{\gamma}_{n+2,4 k-1}\right)+s\left(\check{\gamma}_{n+2,4 k}\right) \geqq 7
$$

by the argument principle again, while $s\left(\hat{\gamma}_{n+1,2 k}\right)=s\left(\check{\gamma}_{n+2,4 k-1}\right)=s\left(\check{\gamma}_{n+2,4 k}\right)=2$. Contradiction. The other $\Delta_{n+2,4 k-1}$ is degenerate (f) or non-degenerate (f) and of class (23).

Set

$$
\check{\Gamma}_{n, k}=\left\{z ;\left|z-z_{n, k}\right|=Y_{n}\right\} .
$$

We shall show that the diameter of $f\left(\check{\Gamma}_{n+2,4 k}\right)$ is $O\left(\xi_{n+1} \xi_{n+2}\right)$. By the Cauchy integral formula,

$$
f^{\prime}(z)=\frac{1}{2 \pi i} \int_{\partial\left(\Delta_{n+1,2 k} \cup \Gamma_{n+2,4 k} \cup \Delta_{n+2,4 k)}\right)} \frac{f(\zeta)}{(\zeta-z)^{2}} d \zeta, \quad z \in \check{\Gamma}_{n+2,4 k},
$$

so that

$$
\begin{aligned}
\left|f^{\prime}(z)\right| & \leqq \frac{1}{2 \pi}\left(\int_{\Gamma_{n+1}, k}+\int_{\Gamma_{n+2,4 k-1}}+\int_{\Gamma_{n+3,8 k-1}}+\int_{\Gamma_{n+3,8 k}}\right) \frac{|f(\zeta)|}{|\zeta-z|^{2}}|d \zeta| \\
& \leqq \frac{1}{2 \pi} \cdot \frac{8 \delta_{n+1}}{\sqrt{1-\left(8 \delta_{n+1}\right)^{2}}} \cdot \frac{1}{\left\{\sqrt{\left.\xi_{n+1} / 6 Y_{n}\left(1-\sqrt{3 \xi_{n+1} / 2}\right)\right\}^{2}} \cdot 2 \pi \sqrt{\xi_{n+1} / 6} Y_{n}\right.} \\
& +\frac{1}{2 \pi} \cdot \frac{8 \delta_{n+2}}{\sqrt{1-\left(8 \delta_{n+2}\right)^{2}}} \cdot \frac{1}{\left\{Y_{n+1}\left(1-4 \sqrt{ } \xi_{n+2} / 6\right)\right\}^{2}} \cdot 2 \pi \sqrt{\xi_{n+2} / 6} Y_{n+1} \\
& +2 \cdot \frac{1}{2 \pi} \cdot \frac{8 \delta_{n+3}}{\sqrt{1-\left(8 \delta_{n+3}\right)^{2}}} \cdot \frac{1}{\left\{(Y _ { n + 2 } / 2) \left(1-2 \sqrt{\left.\left.\xi_{n+3} / 6\right)\right\}^{2}}\right.\right.} \cdot 2 \pi \sqrt{\xi_{n+3} / 6} Y_{n+2} \\
& \leqq \frac{192 M}{Y_{n}}+\frac{32 M \xi_{n+2}}{Y_{n+1}}+\frac{256 M \xi_{n+3}}{Y_{n+2}},
\end{aligned}
$$

because $\Delta_{n+1,2 k}$ and $\Delta_{n+2,4 k}$ are both degenerate (f) and so $f\left(\Gamma_{n+1,2 k}\right) \subset D\left(0,8 \delta_{n+1}\right)$, $f\left(\Gamma_{n+2,4 k-1}\right) \subset D\left(0,8 \delta_{n+2}\right)$ and $f\left(\Gamma_{n+3,8 k-1}\right) \cup f\left(\Gamma_{n+3,8 k}\right) \subset D\left(0,8 \delta_{n+3}\right)$. Hence

$$
\begin{aligned}
\left|f(z)-f\left(z^{\prime}\right)\right| & \leqq \int_{\Gamma_{n+2,4 k}}\left|f^{\prime}(z)\right||d z| \\
& \leqq\left(\frac{192 M}{Y_{n}}+\frac{32 M \xi_{n+2}}{Y_{n+1}}+\frac{256 M \xi_{n+3}}{Y_{n+2}}\right) 2 \pi Y_{n+2} \\
& =32 \pi M\left(3 \xi_{n+1} \xi_{n+2}+\xi_{n+2}^{2}+16 \xi_{n+3}\right) \\
& <2^{6} \cdot 3 \pi M \xi_{n+1} \xi_{n+2} \equiv M^{\prime} \xi_{n+1} \xi_{n+2} \equiv \check{\delta}_{n+2}
\end{aligned}
$$

because $\xi_{n+2}^{2}=o\left(\xi_{n+1} \xi_{n+2}\right)$ and $\xi_{n+3}=o\left(\xi_{n+2}^{r_{0}}\right)=o\left(\xi_{n+1}^{r_{0}\left(r_{0}-1\right)} \xi_{n+2}\right)=o\left(\xi_{n+1} \xi_{n+2}\right)$. This implies that the diameter of the image $f\left(\check{\Gamma}_{n+2,4 k}\right)$ is contained in a disc $\check{D}_{n+2,4 k}$ of radius at most $\check{\delta}_{n+2}$. We note here that if $\Delta_{n+2,4 k-1}$ is degenerate (f), the curve $\check{\Gamma}_{n+2,4 k-1}$ has the same property.
3.3. To show that $f\left(\check{\Gamma}_{n+2,4 k}\right) \subset D\left(0,8 \check{\delta}_{n+2}\right)$, we shall prove first

Lemma 5. If $\Delta_{m, l}$ belongs to the class (23), f has no zeros in the doubly connected domain bounded by $\hat{\Gamma}_{m, l}$ and $\breve{\gamma}_{m, l}$ and $f\left(\hat{\Gamma}_{m, l}\right) \subset D\left(0, \xi_{m-1}\right)$, then the image of the curve $\tilde{\Gamma}_{m, l}=\left\{z ;\left|z-z_{m, l}\right|=(1 / \sqrt{6}) \xi_{m}^{1 / 2} Y_{m-1} \xi_{m}^{-1 / 4}\right\}$ is contained in $D\left(0,24 \pi^{2} \xi_{m-1}^{1 / 2} \xi_{m}\right)$.

Proof. For small $d>0$, we denote by S_{d} the covering surface of class (23) over $\widehat{\boldsymbol{C}}-\bar{D}(0, d)$. When $d=4 \delta_{m}, S_{d}$ is the Riemannian image $S_{m, l}$ of the subdomain $\Delta_{m, l}^{\prime}$ of $\Delta_{m, l}$. As the limit surface as $d \rightarrow 0$, we have a six-sheeted covering surface of $\widehat{\boldsymbol{C}}-\{0\}$ having three pinholes over 0 . We stop up these
holes and obtain a six-sheeted covering surface Φ of $\widehat{\boldsymbol{C}}$, which is planar and has three branch points of multiplicity 2 over $w_{1}=\infty$, two branch points of multiplicity 3 over $w_{2}=1$ and three branch points of multiplicity 2 over $w_{3}=0$. Let $w=\varphi(\omega)$ be a conformal mapping of the extended ω-plane onto Φ with $\varphi(0)$ $=\varphi(1)=\varphi(\infty)=0$. Consider $S_{d}, d=4 \delta_{m}$, as a subdomain of Φ. Its inverse image $\varphi^{-1}\left(S_{d}\right)$ is a triply connected domain $\widehat{\boldsymbol{C}}-\cup_{i=1}^{3} B_{i}$, where $\partial B_{1}=\varphi^{-1}$ 。 $f\left(\hat{\gamma}_{m+1,2 l-1}\right), \partial B_{2}=\varphi^{-1} \circ f\left(\hat{\gamma}_{m+1,2 l}\right)$ and $\partial B_{3}=\varphi^{-1} \circ f\left(\check{\gamma}_{m, l}\right)$. We may assume that B_{1} $\ni \omega_{1}=0, B_{2} \ni \omega_{2}=1$ and $B_{3} \ni \omega_{3}=\infty$. If m is sufficiently large, that is, d is sufficiently small, for each $i, \partial B_{i}$ is nearly a circle of chordal radius $\alpha_{i} \sqrt{d}$ and with center at ω_{i}, where $\left\{\alpha_{i}\right\}_{i=1,2,3}$ are positive constants not depending on d and hence on m. The annulus $R=\left\{\omega ; 2 \alpha_{3} \sqrt{d}<\chi(\omega, \infty)<1 / \sqrt{5}\right\}$ separates $B_{1} \cup B_{2}$ from B_{3}, so that its image $f^{-1} \circ \varphi(R)$ is a ring domain in $\Delta_{m, l}^{\prime} \subset \Delta_{m, l}$ separating $\Gamma_{m_{+1,2 l-1}} \cup \Gamma_{m+1,2 l}$ from $\Gamma_{m, l}$ and has the same harmonic modulus as R. We set

$$
r=\min \left\{\left|z-z_{m, l}\right| ; z \in \check{\gamma}_{m, l}\right\} .
$$

By Lemma 4, we have

$$
\begin{aligned}
\log \left(16 \frac{r}{Y_{m} / 2}+8\right) & \geqq \text { har. mod. } R \\
& =\log \frac{\sqrt{1-\left(2 \alpha_{3} \sqrt{d}\right)^{2}} / 2 \alpha_{3} \sqrt{d}}{2} .
\end{aligned}
$$

Hence

$$
32 r / Y_{m} \geqq\left(1 / 8 \alpha_{3} \sqrt{d}\right)-8 \geqq 1 / 16 \alpha_{3} \sqrt{d},
$$

so that we have

$$
r \geqq Y_{m} / 2^{9} \alpha_{3} \sqrt{d}=K Y_{m-1} \xi_{m}^{3 / 4}
$$

with a constant K not depending on m. Similarly we have $r_{i} \leqq K_{i} Y_{m} \xi_{m}^{1 / 4}$ with constants K_{i} not depending on m, where $r_{i}=\max \left\{\left|z-z_{m+1,2 l-i}\right| ; z \in \hat{\gamma}_{m+1,2 l-i}\right\}$, $i=0,1$. Therefore the ring domain $\left\{z ; Y_{m}<\left|z-z_{m, 2}\right|<K Y_{m-1} \xi_{m}^{3 / 4}\right\} \subset \Delta_{m, l}^{\prime}$ for sufficiently large m and its image under $\varphi^{-1} \circ f$ separates $B_{1} \cup B_{2}$ from B_{3}. Thus we have again by Lemma 4

$$
16 \min \left\{|\boldsymbol{\omega}| ; \boldsymbol{\omega} \in \varphi^{-1} \circ f\left(\gamma_{m, l}\right)\right\} \geqq K / \xi_{m}^{1 / 4}=K^{\prime} / \sqrt{d},
$$

where $\gamma_{m, l}$ denotes the circle $\left|z-z_{m, l}\right|=K Y_{m-1} \xi_{m}^{3 / 4}$. This means that $|f(z)| \leqq$ $\alpha d=4 \alpha \delta_{m}$ on $\gamma_{m, l}$, where α does not depend on m.

Since f has no zeros and no poles in the domain bounded by $\hat{\Gamma}_{m, l}$ and $\gamma_{m, l}$ and $s\left(\check{\gamma}_{m, l}\right)=2$, the image curve of any closed curve in this domain being homotopic to $\Gamma_{m, l}$ winds twice around 0 . Therefore $f^{1 / 2}$ is single-valued there. By the Cauchy integral formula,

$$
\frac{d f^{1 / 2}}{d z}(z)=\frac{1}{2 \pi i}\left(\int_{\hat{\Gamma}_{m, l}}-\int_{\gamma_{m, l}}\right) \frac{f^{1 / 2}(\zeta)}{(\zeta-z)^{2}} d \zeta, \quad z \in \tilde{\Gamma}_{m, l}
$$

We have

$$
\begin{aligned}
\left|\frac{d f^{1 / 2}}{d z}(z)\right| & \leqq \frac{1}{2 \pi}\left(\frac{\left(2 \xi_{m-1}\right)^{1 / 2}}{\left(Y_{m-1} / 3-(1 / \sqrt{6}) \xi_{m}^{1 / 2} Y_{m-1} \xi_{m-1}^{-1 / 4}\right)^{2}} \cdot 2 \pi \frac{Y_{m-1}}{3}\right. \\
& \left.+\frac{\left(4 \alpha \delta_{m}\right)^{1 / 2}}{\left((1 / \sqrt{6}) \xi_{m}^{1 / 2} Y_{m-1} \xi_{m-1}^{-1 / 4}-K Y_{m-1} \xi_{m}^{3 / 4}\right)^{2}} \cdot 2 \pi K Y_{m-1} \xi_{m}^{3 / 4}\right) \\
& \leqq \frac{6}{Y_{m-1}} \xi_{m-1}^{1 / 2}
\end{aligned}
$$

for sufficiently large m. Thus the length of the curve $f^{1 / 2}\left(\tilde{\Gamma}_{m, l}\right)$ is dominated by

$$
\begin{aligned}
\int_{\Gamma_{m, l}}\left|\frac{d f^{1 / 2}}{d z}(z)\right||d z| & \leqq \frac{6}{Y_{m-1}} \xi_{m-1}^{1 / 2} \cdot 2 \pi \frac{1}{\sqrt{6}} \xi_{m}^{1 / 2} Y_{m-1} \xi_{m-1}^{-1 / 4} \\
& =2 \sqrt{6} \pi \xi_{m-1}^{1 / 4} \xi_{m}^{1 / 2}
\end{aligned}
$$

Since the curve $f^{1 / 2}\left(\tilde{\Gamma}_{m, l}\right)$ winds once around 0 , we see that $\left|f^{1 / 2}(z)\right| \leqq$ $2 \sqrt{6} \pi \xi_{m-1}^{1 / 4} \xi_{m}^{1 / 2}$ and hence $|f(z)| \leqq 24 \pi^{2} \xi_{m-1}^{1 / 2} \xi_{m} \quad$ on $\quad \tilde{\Gamma}_{m, l}$. Thus $f\left(\tilde{\Gamma}_{m, l}\right) \subset$ $D\left(0,24 \pi^{2} \xi_{m-1}^{1 / 2} \xi_{m}\right)$. Our proof is complete.

Now we can show that $f\left(\check{\Gamma}_{n+2,4 k}\right) \subset D\left(0,8 \check{\delta}_{n+2}\right), \check{\delta}_{n+2}=M^{\prime} \xi_{n+1} \xi_{n+2}$. Contrary suppose that $f\left(\check{\Gamma}_{n+2,4 k}\right) \not \subset D\left(0,8 \check{\delta}_{n+2}\right)$. Then $\check{D}_{n+2,4 k} \cap D\left(0,4 \check{\delta}_{n+2}\right)=\varnothing$, where $\check{D}_{n+2,4 k} \supset f\left(\check{\Gamma}_{n+2,4 k}\right)$ is a disc of radius at most $\check{\delta}_{n+2}$. Obviously $s\left(\check{\Gamma}_{n+2,4 k}\right)=0$ and we see similarly as before that one of $\Delta_{n+3,8 k-1}$ and $\Delta_{n+3,8 k}$, say $\Delta_{n+3,8 k}$, is degenerate (f) and $f\left(\check{\Gamma}_{n+3,8 k}\right)$ is contained in a disc $\check{D}_{n+3,8 k}$ of radius at most $\check{\delta}_{n+3}$ $=M^{\prime} \xi_{n+2} \xi_{n+3}$. Assume that $\Delta_{n+3,8 k-1}$ is non-degenerate (f) and of class (23). Then f has no poles in the domain Δ bounded by $\check{\Gamma}_{n+2,4 k}, \check{\gamma}_{n+3,8 k-1}\left(f \check{\gamma}_{n+3,8 k-1}\right)$ $\left.=\partial D\left(0,4 \delta_{n+3}\right), \delta_{n+3}=\sqrt{3 / 2} M \xi_{n+3}^{1 / 2}\right)$ and $\check{\Gamma}_{n+3,8 k}$, because $\Delta_{n+2,4 k}$ and $\Delta_{n+3,8 k}$ are degenerate (f) and f has no poles in the domain bounded by $\Gamma_{n+3,8 k-1}$ and $\check{\gamma}_{n+3,8 k-1}$ by Lemma 1. If $\check{D}_{n+3,8 k} \not \equiv 0$, then $s\left(\check{\Gamma}_{n+3,8 k}\right)=0$, so that f has two zeros of order 1 or a zero of order 2 in Δ, while $w_{3}=0$ is a totally ramified value of f with $\nu_{3}=7$. Hence $0 \in \check{D}_{n+3,8 k} \subset D\left(0,4 \check{\delta}_{n+2}\right) \cap D\left(0,4 \delta_{n+3}\right)$. We take the component Δ^{\prime} of $f^{-1}\left(\widehat{\boldsymbol{C}}-\check{D}_{n+3,8 k}\right) \cap \Delta$ having $\check{\Gamma}_{n+2,4 k}$ as a boundary component. The boundary $\partial \Delta^{\prime}$ has a boundary component $\check{\Gamma}$ with $f(\check{\Gamma})=\partial D_{n+3,8 k}$, which separates $\check{\Gamma}_{n+2,4 k}$ from $\check{\Gamma}_{n+3,8 k}$ in Δ. We orientate $\check{\Gamma}$ positively with respect to the domain Δ^{\prime}. Then $f(\check{\Gamma})$ winds around 0 in the negative direction, so that, if $\check{\Gamma}$ separates $\check{\Gamma}_{n+2,4 k}$ from $\check{\gamma}_{n+3,8 k-1}$ too and Δ^{\prime} is bounded by $\check{\Gamma}_{n+2,4 k}$ and $\check{\Gamma}$, then f has at least one pole in Δ^{\prime}, because the winding number of $\check{\Gamma}_{n+2,4 k}$ is 0 . Hence it is only possible that $\partial \Delta^{\prime}$ consists of $\check{\Gamma}_{n+2,4 k}, \check{\gamma}_{n+3,8 k-1}$ and $\check{\Gamma}$ with winding numbers 0,2 and -2 around 0 , respectively, and f has no zeros in
Δ^{\prime}. Since $\Delta_{n+2,4 k}$ is degenerate $(f), f\left(\hat{\Gamma}_{n+3,8 k-1}\right) \subset D\left(0, \xi_{n+2}\right)$ and we see from Lemma 5 that $f\left(\tilde{\Gamma}_{n+3,8 k-1}\right) \subset D\left(0,24 \pi^{2} \xi_{n+2}^{1 / 2} \xi_{n+3}\right) \subset D\left(0,4 \check{\delta}_{n+2}\right)$. Thus $f\left(\check{\Gamma}_{n+2,4 k}\right) \subset$ $\check{D}_{n+2,4 k}, \check{D}_{n+2,4 k} \cap D\left(0,4 \check{\delta}_{n+2}\right)=\varnothing$ and $f\left(\check{\Gamma} \cup \tilde{\Gamma}_{n+3,8 k-1}\right) \subset D\left(0,4 \check{\delta}_{n+2}\right)$. Hence f is not bounded in $\Delta^{\prime} \subset \Delta$, while f has no poles in Δ. Thus $\Delta_{n+3,8 k-1}$ must be degenerate (f), so that $f\left(\check{\Gamma}_{n+3,8 k-1}\right)$ is contained in a disc $\check{D}_{n+3,8 k-1}$ of radius at most $\check{\delta}_{n+3}$ and $\check{D}_{n+2,4 k} \cup \check{D}_{n+3,8 k-1} \cup \check{D}_{n+3,8 k}$ is connected. Hence $f\left(\check{\Gamma}_{n+3,8 k-1}\right) \not \subset$ $D\left(0,8 \check{\delta}_{n+3}\right)$ and $f\left(\check{\Gamma}_{n+3,8 k}\right) \not \subset D\left(0,8 \check{o}_{n+3}\right)$. By induction, we see that f is bounded in the part of $G=\widehat{\boldsymbol{C}}-E$ surrounded with $\check{\Gamma}_{n+2,4 k}$. This contradicts our assumption $f \in M_{E}$. We have now that $f\left(\check{\Gamma}_{n+2,4 k}\right) \subset D\left(0,8 \check{o}_{n+2}\right)$.
3.4. Recall that $\Delta_{n, k}$ is non-degenerate (f) and of class (23), $\Delta_{n+1,2 k}$ and $\Delta_{n+2,4 k}$ are degenerate (f) so that $f\left(\check{\Gamma}_{n+2,4 k}\right) \subset D\left(0,8 \check{\delta}_{n+2}\right), \check{\delta}_{n+2}=M^{\prime} \xi_{n+1} \xi_{n+2}$, and $\Delta_{n+2,4 k-1}$ is degenerate (f) so that $f\left(\check{\Gamma}_{n+2,4 k-1}\right) \subset D\left(0,8 \check{\delta}_{n+2}\right)$, or non-degenerate (f) and of class (23). We denote by $\hat{\gamma}$ the curve in $\Delta_{n, k}$ such that $f(\hat{\gamma})=\{w ;|w|$ $=1 / 2\}$ and it is homotopic to $\hat{\gamma}_{n+1,2 k}$, and by Δ the domain bounded by $\hat{\gamma}, \Gamma_{1}=$ $\check{\Gamma}_{n+2,4 k-1}$ and $\Gamma_{2}=\check{\Gamma}_{n+2,4 k}$ if $\Delta_{n+2,4 k-1}$ is degenerate (f), or the domain bounded by $\hat{\gamma}, \check{\gamma}_{n+2,4 k-1}$ and $\Gamma_{2}=\check{\Gamma}_{n+2,4 k}^{\prime}$ if $\Delta_{n+2,4 k-1}$ is of class (23). Assuming that $\Delta_{n+2,4 k-1}$ is of class (23), we consider the component Δ^{\prime} of $f^{-1}\left(\widehat{\boldsymbol{C}}-D\left(0,8 \check{\delta}_{n+2}\right)\right) \cap \Delta$ having $\hat{\gamma}$ as a boundary component. The boundary $\partial \Delta^{\prime}$ has a boundary component Γ^{\prime} with $f\left(\Gamma^{\prime}\right)=\partial D\left(0,8 \check{\delta}_{n+2}\right)$ which separates $\hat{\gamma}$ and $\check{\gamma}_{n+2,4 k-1}$ from Γ_{2} or $\hat{\gamma}$ from $\check{\gamma}_{n+2,4 k-1}$ and Γ_{2}. In the latter case, Δ^{\prime} is the ring domain bounded by $\hat{\gamma}$ and Γ^{\prime} and its Riemannian image under f covers divalently the ring domain $R=\left\{w ; 8 \check{o}_{n+2}<\chi(0, w)<1 / \sqrt{5}\right\}$, so that its harmonic modulus is equal to one half of that of R, that is, $(1 / 2) \log \left(\sqrt{1-\left(8 \check{\delta}_{n+2}\right)^{2}} / 16 \check{\delta}_{n+2}\right)$. Since Δ^{\prime} separates $\left\{z_{n+2,4 k-1}, z_{n+2,4 k}\right\}$ from $\left\{z_{n+1,2 k-1}, \infty\right\}$, we have by Lemma 4

$$
\log \left(16 \frac{Y_{n}\left(1-\eta_{n+1}\right)}{Y_{n+1}\left(1-\eta_{n+2}\right)}+8\right) \geqq \frac{1}{2} \log \frac{\sqrt{1-\left(8 \check{\boldsymbol{o}}_{n+2}\right)^{2}}}{16 \check{\delta}_{n+2}},
$$

so that $2^{12} / \xi_{n+1}^{2} \geqq 1 / 2^{5} M^{\prime} \xi_{n+1} \xi_{n+2}$, that is, $o\left(\xi_{n+1}^{r 0-1}\right) \geq 1 / 2^{17} M^{\prime}$. It is impossible for sufficiently large n. Therefore only the former case is possible and Δ^{\prime} is bounded by $\hat{\gamma}, \check{\gamma}_{n+2,4 k-1}$ and Γ^{\prime} with winding numbers 2,2 and -4 around 0 , respectively, and f has no zeros there. Since $\Delta_{n+1,2 k}$ is degenerate (f), $f\left(\hat{\Gamma}_{n+2,4 k-1}\right) \subset D\left(0, \xi_{n+1}\right)$ and we see from Lemma 5 that $f\left(\tilde{\Gamma}_{n+2,4 k-1}\right) \subset$ $D\left(0,24 \pi^{2} \xi_{n+1}^{1 / 2} \xi_{n+2}\right)$. We set $\Gamma_{1}=\tilde{\Gamma}_{n+2,4 k-1}$ in the case that $\Delta_{n+2,4 k-1}$ is of class (23). Noting that $f\left(\Gamma_{1}\right) \cup f\left(\Gamma_{2}\right) \subset D\left(0,24 \pi^{2} \xi_{n+1}^{1 / 2} \xi_{n+2}\right)$, we consider the component $\Delta^{\prime \prime}$ of $f^{-1}\left(\widehat{\boldsymbol{C}}-D\left(0,24 \pi^{2} \xi_{n+1}^{1 / 2} \xi_{n+2}\right)\right) \cap \Delta$ having $\hat{\gamma}$ as a boundary component. The boundary $\partial \Delta^{\prime \prime}$ has two boundary components $\Gamma_{11}^{\prime \prime}$ and $\Gamma_{2}^{\prime \prime}$ with $f\left(\Gamma_{1}^{\prime \prime}\right)=f\left(\Gamma_{2}^{\prime \prime}\right)=$ $\partial D\left(0,24 \pi^{2} \xi_{n+1}^{1 / 2} \xi_{n+2}\right)$, being homotopic to Γ_{1} and Γ_{2}, respectively, or a boundary component $\Gamma^{\prime \prime}$ with $f\left(\Gamma^{\prime \prime}\right)=\partial D\left(0,24 \pi^{2} \xi_{n+1}^{1 / 2} \xi_{n+2}\right)$ separating $\hat{\gamma}$ from Γ_{1} and Γ_{2}. Quite similarly as before we see that only the former case is possible. Then $\Delta^{\prime \prime}$ is bounded by $\hat{\gamma}, \Gamma_{1}^{\prime \prime}$ and $\Gamma_{2}^{\prime \prime}$ and its Riemannian image \tilde{R} under f covers
the ring domain $R^{\prime}=\left\{w ; 24 \pi^{2} \xi_{n+1}^{1 / 2} \xi_{n+2}<\chi(0, w)<1 / \sqrt{5}\right\}$ divalently. By the Hurwitz formula, \tilde{R} has just one branch point of order 2, whose projection we denote by w^{*}. Since the part of \tilde{R} over $\left\{w ;\left|w^{*}\right|<|w|<1 / 2\right\}$ is doubly connected, we have by Lemma 4

$$
\log \left(16 \frac{Y_{n}\left(1-\eta_{n+1}\right)}{Y_{n+1}\left(1-\eta_{n+2}\right)}+8\right) \geqq \frac{1}{2} \log \left(1 / 2\left|w^{*}\right|\right),
$$

that is,

$$
\left|w^{*}\right|>\xi_{n+1}^{2} / 2^{13} .
$$

The inverse image of the circle $\left\{w ;|w|=\left|w^{*}\right|\right\}$ in $\Delta^{\prime \prime}$ is an eightshaped closed curve crossing at the point z^{*} with $f\left(z^{*}\right)=w^{*}$, that is, it consists of two simple closed curves C_{1} and C_{2} with $C_{1} \cap C_{2}=\left\{z^{*}\right\}$, being homotopic to Γ_{1} and Γ_{2}, respectively. Since $s\left(C_{2}\right)=s\left(\Gamma_{2}\right)=1$, one of $\Delta_{n+3,8 k-1}$ and $\Delta_{n+3,8 k}$, say $\Delta_{n+3,8 k}$, is degenerate (f) so that $f\left(\check{\Gamma}_{n+3,8 k}\right) \subset D\left(0,8 \check{o}_{n+3}\right), \check{\delta}_{n+3}=M^{\prime} \xi_{n+2} \xi_{n+3}$, and $\Delta_{n+3,8 k-1}$ is degenerate (f) so that $f\left(\check{\Gamma}_{n+3,8 k-1}\right) \subset D\left(0,8 \check{\delta}_{n+3}\right)$, or non-degenerate (f) and of class (23). We denote by D the domain bounded by $C_{2}, C=\check{\Gamma}_{n+3,8 k-1}$ and $C^{\prime}=\check{\Gamma}_{n+3,8 k}$ if $\Delta_{n+3,8 k-1}$ is degenerate(f), or the domain bounded by $C_{2}, \check{\gamma}_{n+3,8 k-1}$ and $C^{\prime}=$ $\check{\Gamma}_{n+3,8 k}$ if $\Delta_{n+3,8 k-1}$ is of class (23). Assuming that $\Delta_{n+3,8 k-1}$ is of class (23), we consider the component D^{\prime} of $f^{-1}\left(\widehat{\boldsymbol{C}}-D\left(0,8 \check{\delta}_{n+3}\right)\right) \cap D$ having C_{2} as a boundary component. The boundary ∂D^{\prime} has a boundary component \tilde{C} with $f(\tilde{C})=$ $\partial D\left(0,8 \check{o}_{n+3}\right)$ which separates C_{2} and $\check{\gamma}_{n+3,8 k-1}$ from C^{\prime} or C_{2} from $\check{\gamma}_{n+3,8 k-1}$ and C^{\prime}. In the latter case, D^{\prime} is the ring domain bounded by C_{2} and \tilde{C} and its Riemannian image under f covers univalently the ring domain $\left\{w ; 8 \check{\delta}_{n+3}<\chi(0, w)\right.$ $\left.<\left|w^{*}\right| / \sqrt{1+\left|w^{*}\right|^{2}}\right\}$. Since D^{\prime} separates $\left\{z_{n+3,8 k-1}, z_{n+3,8 k}\right\}$ from $\left\{z_{n+2,4 k-1}, \infty\right\}$, we have by Lemma 4

$$
\log \left(16 \frac{Y_{n+1}\left(1-\eta_{n+2}\right)}{Y_{n+2}\left(1-\eta_{n+3}\right)}+8\right) \geqq \log \frac{\left|w^{*}\right| \sqrt{1-\left(8 \check{\delta}_{n+3}\right)^{2}}}{8 \check{\delta}_{n+3}}
$$

so that

$$
2^{6} / \xi_{n+2} \geqq\left|w^{*}\right| / 2^{4} M^{\prime} \xi_{n+2} \xi_{n+3} \geqq \xi_{n+1}^{2} / 2^{17} M^{\prime} \xi_{n+2} \xi_{n+3}
$$

Hence we have $o\left(\xi_{n+1}^{r_{0}^{2}-2}\right)>1 / 2^{23} M^{\prime}$, where $r_{0}^{2}-2>0$. It is absurd.
Thus \tilde{C} separates C_{2} and $\check{\gamma}_{n+3,8 k-1}$ from C^{\prime}, D^{\prime} is bounded by $C_{2}, \check{\gamma}_{n+3,8 k-1}$ and \tilde{C} with winding numbers 1,2 and -3 around 0 , respectively, and f has no zeros there. Since $\Delta_{n+2,4 k}$ is degenerate $(f), f\left(\hat{\Gamma}_{n+3,8 k-1}\right) \subset D\left(0, \xi_{n+2}\right)$ and we see from Lemma 5 that $f\left(\tilde{\Gamma}_{n+3,8 k-1}\right) \subset D\left(0,24 \pi^{2} \xi_{n+2}^{1 / 2} \xi_{n+3}\right)$. We set $C=\tilde{\Gamma}_{n+3,8 k-1}$ in the case that $\Delta_{n+3,8 k-1}$ is of class (23).

Noting that $f(C) \cup f\left(C^{\prime}\right) \subset D\left(0,24 \pi^{2} \xi_{n+2}^{1 / 2} \xi_{n+3}\right)$, we consider $D^{\prime \prime}$ of $f^{-1}(\widehat{\boldsymbol{C}}-$ $\left.D\left(0,24 \pi^{2} \xi_{n+2}^{1 / 2} \xi_{n+3}\right)\right) \cap D$ having C_{2} as a boundary component. The Riemannian image of $D^{\prime \prime}$ under f covers univalently the ring domain $\left\{w ; 24 \pi^{2} \xi_{n+2}^{1 / 2} \xi_{n+3}<\right.$ $\left.\chi(0, w)<\left|w^{*}\right| / \sqrt{1+\left|w^{*}\right|^{2}}\right\}$, so that $D^{\prime \prime}$ is a ring domain with harmonic modulus
$\log \left(\left|w^{*}\right| \sqrt{1-\left(24 \pi^{2} \xi_{n+2}^{1 / 2} \xi_{n+3}\right)^{2}} / 24 \pi^{2} \xi_{n+2}^{1 / 2} \xi_{n+3}\right)$. Since $D^{\prime \prime}$ separates $\left\{z_{n+3,8 k-1}, z_{n+3,8 k}\right\}$ from $\left\{z_{n+2,4 k-1}, \infty\right\}$, we have by Lemma 4

$$
2^{6} / \xi_{n+2} \geqq\left|w^{*}\right| / 48 \pi^{2} \xi_{n+2}^{1 / 2} \xi_{n+3} \geqq \xi_{n+1}^{2} / 2^{17} \cdot 3 \xi_{n+2}^{1 / 2} \xi_{n+3},
$$

so that $o\left(\xi_{n+1}^{r_{0}\left(r_{0}-(1 / 2) 1-2\right.}\right) \geqq 1 / 2^{23} \cdot 3$, where $r_{0}\left\{r_{0}-(1 / 2)\right\}-2=0$. It is absurd and now our proof of the theorem is complete.

References

[1] A.S. Besicovitch, On sufficient conditions for a function to be analytic, and on behaviour of analytic functions in the neighborhood of non-isolated singular points, Proc. London Math. Soc., Ser. 2, 32 (1930), 1-9.
[2] T. Kurokawa, Exceptionally ramified meromorphic functions with a non-enumerable set of essential singularities, Nagoya Math. J., 88 (1982), 133-154.
[3] T. Kurokawa and K. Matsumoto, On totally ramified values, Tôhoku Math. J., 28 (1976), 245-256.
[4] O. Lehto and K.I. Virtanen, Quasiconformal mappings in the plane, SpringerVerlag, 1973.
[5] K. Matsumoto and T. Kurokawa, Meromorphic functions with a perfect set as the set of singularities, Pitman Research Notes in Mathematics Series, 212, 1989, pp. 123-148.

Kikuji Matsumoto
Nagoya University
Chikusa-ku
Nagoya 464-01
Japan

Toshiko Kurokawa
Faculty of Education
Mie University
Kamihama-cho, Tsu 514
Japan

