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1. Introduction.

For a totally disconnected compact set $E$ in the extended $z$-plane $\hat{C}$ , we
denote by $M_{E}$ the totality of meromorphic functions each of which is defined
in the domain comPlementary to $E$ and has $E$ as the set of transcendental
singularities. A meromorphic function $f(z)$ of $M_{E}$ is said to be exceptionally
ramified at a singularity $\zeta\in E$ , if there exist values $w_{i},$ $1\leqq i\leqq q$ , and positive
integers $\nu_{i}\geqq 2$ , l$i$q, with

$\sum_{i=1}^{q}(1-\frac{1}{\nu_{i}})>2$ ,

such that, in some neighborhood of $\zeta$ , the multiplicity of any $w_{i}$-point of $f(z)$

is not less than $v_{i}$ . Recently, we have shown that, for Cantor sets $E$ with
successive ratios $\{\xi_{n}\}$ satisfying $\xi_{n+1}=o(\xi_{n}^{2})$ , any function of $M_{E}$ cannot be excep-
tionally ramified at any singularity $\zeta\in E$(Theorem in [5]). The capacity (in

this note, capacity means always logarithmic capacity) of these Cantor sets $E$

is zero, because they satisfy the necessary and sufficient condition

$\sum_{n=1}^{\infty}\frac{1}{2^{n}}\log\frac{1}{\xi_{n}}=\infty$

to be of capacity zero.
The purpose of this note is to give Cantor sets $E$ of positive capacity im-

proving the above theorem. We shall prove

THEOREM. Let $E$ be a Cantor set with successive ratios $\{\xi_{n}\}$ satisfying the
condition

$\xi_{n+1}=o(\xi_{n}^{r_{0}})$ , $r_{0}=(1+\sqrt 33)/4$ ,

then any function of $M_{E}$ cannot be excePtionally ramified at any srngularity $\zeta\in E$ .

We set $\xi_{n+1}=\xi_{n}^{r}$ $(n=1,2,3, -)$ with $r,$ $r_{0}<r<2$ . Then $\{\xi_{n}\}$ satisfies the
condition of the $theorem$ and
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$\sum_{n=1}^{\infty}\frac{1}{2^{n}}\log\frac{1}{\xi_{n}}<+\infty$ ,

so that the Cantor set $E$ having this $\{\xi_{n}\}$ as the successive ratios is one
wanted.

2. Preliminaries.

2.1. Let $f$ be an exceptionally ramified meromorphic function in a domain
$G$ in tbe extended $z$-plane having three totally ramified values $\{w_{i}\}_{i=1,2,3}$ with
$\{\nu_{i}\}_{i=1.2,3}$ such that $\sum_{i=1}^{3}(1-(1/\nu_{i}))>2$ , and let $R$ be a doubly connected sub-
domain of $G$ with $\overline{R}\subset G$ which is bounded by analytic curves $\Gamma_{1}$ and $\Gamma_{2}$ . $Sup-$

pose that $f(\Gamma_{1})$ and $f(\Gamma_{2})$ are contained in discs $D_{1}$ and $D_{2}$ . Since $f$ is excep-
tionally ramified, we have the following lemma from Lemma 2 in [2].

LEMMA 1. Under the above setting,

$D_{1}\cap D_{2}\neq\emptyset$ and $f(\overline{R})\subset D_{1}\cup D_{2}$ .

NOW let $\Delta$ be a triply connected subdomain of $G$ with $\overline{\Delta}\subset G$ which is
bounded by analytic curves $\{\Gamma_{j}\}_{j=1.2,3}$ . We assume that they satisfy the follow-
ing three conditions (1), (2) and (3):

(1) There exist mutually disjoint simply connected domains $\{D_{j}\}_{j\Rightarrow 1},$
$\cdots\alpha$

(l$aS3), the boundary curves $\partial D_{j}$ being sectionally analytic, with

$|D_{j}|< \frac{1}{2}\min_{k\neq m}\chi_{(w_{k}}w_{m})$

such that the images $\{f(\Gamma_{i})\}_{i=1,2,3}$ are covered with $\{D_{j}\}_{j=1\ldots.,a}$ and each $D_{j}$

contains $f(\Gamma_{i})$ for at least one $i$ , where $\chi(w_{k}, w_{m})$ denotes the chordal distance
between $w_{k}$ and $w_{m}$ and $|D_{j}|$ denotes the diameter of $D_{j}$ .

(2) The number $n$ of roots of the equation $f(z)=w$ in $\Delta$ is constant and
$\geqq 1$ for $w \in\hat{C}-\bigcup_{f=1}^{\alpha}\overline{D}_{j}$ .

(3) $f$ has no ramified values on each boundary $\partial D_{j}$ .
We remove from $\Delta$ all relatively noncompact components of $\{f^{-1}(\overline{D}_{j})\}_{j=1,\cdots,\alpha}$

with respect to $\Delta$ . Then there remains an open set, each component of which
cannot be simply or doubly connected because of Lemma 2 in [2]. Hence the
open set is a triply connected subdomain $\Delta’$ of $\Delta$ , whose boundary curves $\Gamma_{j}’$

are homotopic to $\Gamma_{j}(]=1,2,3)$ . The following 1), 2), 3) and 4) hold (see

Lemma 3 in [2] $)$ .
1) The Riemannian image of $\Delta’$ under $f$ belongs to one of the 25 classes

listed in Table 1, where classes (8), (9), (19) and (22) are empty as we have
sbown recently in [5]. (This is the reason why we deleted these four classes
from Table 1 by lining through them.)
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2) $f$ has no ramified values other than $\{w_{t}\}_{i=1,2}8$ in $\Delta’$ .
3) Each component of $\Delta-\Delta’$ is doubly connected and its image is contained

in one of $\{D_{f}\}_{j=1}.\cdots\alpha$ .
4) Each $D_{j}$ contains one of the totally ramified values $\{w_{i}\}_{i=1,2.3}$ .

Table 1.
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NOTATIONS. $m_{i}$ : the number of $w_{i}$-points of $f(z)$ in $\Delta’(i=1,2,3)$ .
$\{l_{i.j}\}_{j=1\ldots..m_{i}}$ : the multiplicities of $w_{i}$-points.

$\sigma_{i}$ : the number of $\Gamma_{j}’$ in $\{\Gamma_{j}’\}_{f=1,3.S}$ with $f(\Gamma_{j}’)=\partial D_{k},$ $D_{k}\ni w_{i}$ , where
$\sigma_{i}=0$ means that none of $\{D_{j}\}_{j=1,\cdots.a}$ contains $w_{i}$ .
$\sigma_{2^{3}}$ means that two of $\{\Gamma_{j}’\}_{j=1.2,\}$ are mapped onto $\partial D_{k},$ $D_{h}\ni w_{3}$ , and
{1, 2}
one of them has an image curve winding once around $w_{3}$ , while the
other has an image curve winding twice.

2.2. We form a Cantor set in the usual manner. Let $\{\xi_{n}\}$ be a sequence
of positive numbers satisfying $0<\xi_{n}<2/3,$ $n=1,2,3,$ $\cdots$ We remove first an
open interval of length $(1-\xi_{1})$ from the interval $I_{0.1}$ : $[-1/2,1/2]$ , so that on
both sides there remain closed intervals of length $\xi_{1}/2\equiv\eta_{1}$ , which are denoted
$byI_{1.1}andI_{1.2}$ . Inductively we remove an open interval of length $(1-\xi_{n})\Pi_{p=1}^{n-1}\eta_{p}$ ,
with $\eta_{p}=(1/2)\xi_{p}(p=1,2, 3, )$ , from each interval $I_{n-1.k}$ of length IIB $=-1\eta p1$

$k=1,2,3,$ $\cdots$ , $2^{n-1}$ , so that on both sides there remain closed intervals of length
$\Pi_{p=1}^{n}\eta_{p}$ , which are denoted by $I_{n,2k-1}$ and $I_{n.2k}$ . By repeating this Procedure
endlessly, we $obta\dot{i}$ an infinite sequence of closed intervals $\{I_{n.k}\}_{n=1.2\ldots..k=1.8\ldots.2^{n}}$ .
The set given by

$E= \bigcap_{n=1}^{\infty}\bigcup_{k\Rightarrow 1}^{2^{n}}I_{n.k}$

is called the Cantor set on the interval $I_{0.1}$ with successive ratios $\{\xi_{n}\}$ .
Set

$R_{n,k}= \{z;\prod_{p=1}^{n}\eta_{p}<|z-z_{n,k}|<\frac{1}{3}\prod_{p=1}^{n-1}\eta_{p}\}$

and
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$I_{n,k}^{1}=\{z$ ; $|z-z_{n,k}|= \prod_{p=1}^{n-1}\eta_{p}\sqrt{}\frac{\eta_{n}^{-}}{3}\}$ ,

where $z_{n,k}$ is the midpoint of $I_{n,k}$ . Denoting by $\mu_{n}=\mu(R_{n,k})$ the harmonic
modulus of $R_{n.k}$ , we have

$\mu_{n}=\log\frac{1}{3\eta_{n}}=\log\frac{2}{3\xi_{n}}$ .

Assuming that $\lim_{narrow\infty}\xi_{n}=0$ , we have

LEMMA 2 (Lemma 4 in [2]). Let $f$ be an exceptionally ramified meromorPhic
function in the domain $G=\hat{C}-E$ . Then, for sufficiently large $n$ , we have

$|f(\Gamma_{n,k})|<M\exp(-\mu_{n}/2)$ ,

where $M$ is a positive constant depending only on $E$ and $f$ .

Let $f$ be exceptionally ramified in the domain $G=\hat{C}-E$ . By our previous
result ([3]), $f$ has just three totally ramified values $\{w_{i}\}_{i=1,2,3}$ . Since $|f(\Gamma_{n,k})|$

$<M\exp(-\mu_{n}/2)=M\sqrt{}\overline{3\xi_{n}/2}\equiv\delta_{n}$ by Lemma 2, we can take a spherical disc $D_{n,k}$

of radius $\delta_{n}$ containing $f(\Gamma_{n,k})$ . We denote by $\Delta_{n.k}$ the triply connected domain
bounded by $\Gamma_{n.k}$ , $\Gamma_{n+1.2k-1}$ and $\Gamma_{n+1,2k}$ . Taking $n$ so large that $\delta_{n}<(1/12)$

. $\min_{i\neq f}\chi(w_{\ell}, w_{f})$ , we consider the union $D\equiv\overline{D}_{n,k}\cup\overline{D}_{n+1.2k-1}\cup\overline{D}_{n+1,2k}$ , which
consists of at most three, say $\alpha$ , components.

If $\alpha=1$ , that is, $D$ is connected, it is possible that $D$ is doubly connected,
and we take a disc $D_{1}$ of radius at most $\delta_{n}+2\delta_{n+1}$ containing $D$ . If $\alpha=2$ or 3,
we denote the components of $D$ by $\{\tilde{D}_{j}\}_{j=1,\cdots,a}$ , which are simply connected.

When $\alpha=1$ and $f$ takes in $\Delta_{n}k$ no values outside $\hat{D}_{1},\overline{f}(\Delta_{n,k})\subset\tilde{D}_{1}$ , we say
that $\Delta_{n,k}$ is degenerate$(f)$ . When $\alpha=1$ and $f$ takes in $\Delta_{n.k}$ values outside $\tilde{D}_{1}$

or when $\alpha=2$ or 3, we say that $\Delta_{n,k}$ is non-degenerate$(f)$ . Then $f,$ $\Delta_{n.k}$ and
$\{\tilde{D}_{f}\}_{j=1.\cdots.a}$ satisfy three conditions (1), (2) and (3) stated in 2.1, so that by 4)

stated there, each $\tilde{D}_{j}$ contains one $w_{j}^{*}$ of the totally ramified values $\{w_{i}\}_{i=1.2.3}$

and the union $\bigcup_{j=1}^{\alpha}\tilde{D}_{j}\supset D$ is contained in $U_{i=1}^{3}D(w_{i}, 2(\delta_{n}+2\delta_{n+1}))$ , where we
denote by $D(w, \delta)$ the spherical disc of radius $\delta$ and with center at $w$ . We
assume $2\delta_{n+1}<\delta_{n}$ and set $\tilde{D}_{j}’=D(w_{j}^{*}, 4\delta_{n})$ , $J^{=1}$ , $\alpha$ . Then $f,$ $\Delta_{n.k}$ and
$\{\tilde{D}_{j}’\}_{f=1,\cdots,a}$ again satisfy three conditions (1), (2) and (3), so that there exists a
triply connected subdomain $\Delta_{n,k}’$ of $\Delta_{n,k}$ such that 1), 2), 3) and 4) stated there
hold. The Riemannian image $S_{n,k}$ of $\Delta_{n.k}’$ under $f$ belongs to one of the classes
of Table 1. The boundary curves of $\Delta_{n,k}’$ are denoted by $\check{\gamma}_{n.k},\hat{\gamma}_{n+1.2k-1}$ and
$r_{n+1,2k}$ being homotopic to $\Gamma_{n,k},$ $\Gamma_{n+1.2k-1}$ and $\Gamma_{n+1,2k}$ , resPectively. Each $\gamma$ of
them has an image curve winding around some $w^{*}$ of $w_{1},$ $w_{1}$ and $w_{3}$ , and we
denote its winding number by $s(\gamma)$ . The value $w^{*}$ corresponds to one $\tilde{w}$ of
three totally ramified values for the class in Table 1 to which $S_{n,k}$ belongs,
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and we can read the $\nu$-value, the minimum of the multiplicities of $\tilde{w}$ -points, in
Table 1, which we denote by $\nu(\gamma)$ .

Suppose now that $S_{n.k}$ belongs to a class other than (23). Reading Table 1,
we see that the image curves of at least two of $\check{\gamma}_{n.k},$ $\rho_{n+1,2k-1}$ and $\gamma_{n+1.2k}$ have
the winding number 1. Hence $s(f_{n+1.2k-1})=1$ or $s(f_{n+1.2k})=1$ , say $s(f_{n+1.2k})=1$ ,

where we assume $\nu(\hat{\gamma}_{n+1.2k-1})\leqq v(\hat{\gamma}_{n+1.2k})$ if $s(f_{n+1.2k-1})=s(t_{n+1.2k})=1$ . The adja-
cent $\Delta_{n+1,2k}$ is degenerate$(f)$ or non-degenerate$(f)$ . SupPose that $\Delta_{n+1,2k}$ is non-
degenerate$(f)$ . Then $\hat{\gamma}_{n+1.2k}$ and $\check{\gamma}_{n+1.2k}$ wind around the same totally ramified
value $w^{*}$ and bound a doubly connected domain where $f$ takes the value $w^{*}$ .
Since $f(\hat{\gamma}_{n+1.2k})\subset D(w^{*}, 4\delta_{n})$ and $f(\check{\gamma}_{n+1.2k})\subset D(w^{*}, 4\delta_{n+1})$ , we see from Lemma 1
that $f$ takes no values outside $D(w^{*}, 4\delta_{n})$ in the doubly connected domain
bounded by $f_{n+1.2k}$ and $\check{\gamma}_{n+1.2k}$ . By the argument principle, we have

$s( \hat{\gamma}_{n+1.2k})+s(\check{\gamma}_{n+1.2k})\geqq\max\{\nu(\hat{\gamma}_{n+1.2k}), \nu(\check{\gamma}_{n+1},2k)\}$ ,

that is,
$s( \check{\gamma}_{n+1,2k})\geqq\max\{\nu(\hat{\gamma}_{n+1.2k}), \nu(\check{\gamma}_{n+1.2k})\}-1$ ,

because $s(f_{n+1,2k})=1$ . From Table 1, we see that only the pairs $\{\Delta_{n,k}, \Delta_{n+1.2k}\}$

listed below satisfy this inequality.

Table 2.

REMARK. The pair of $\Delta_{n,k}((20), 2,1)$ and $\Delta_{n+1.2k}((24), 3,2)$ satisfies the in-
equality, but, under the assumption that $f$ is exceptionally ramified, we can
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omit it, because $S_{n.k}$ and $S_{n+1,2k}$ have branch points of multiPlicity 2 over dis-
tinct totally ramified values.

From Table 1, we see that, if $\Delta_{n+1,2k}$ of the right side of Table 2 is of
class (4), (20) or (24), one of $\hat{\gamma}_{n+2.4k-1}$ and $\hat{\gamma}_{n+2,4k}$ , say $\hat{\gamma}_{n+2.4k}$ , satisfies $s(f_{n+2.4k})$

$=1$ and $\nu(\hat{\gamma}_{n+2.4k})=7$ , and if it is of class (25), $s(\hat{\gamma}_{n+2.4k})=1$ and $\nu(\hat{\gamma}_{n+2.4k})\geqq 5$ .
Therefore $\Delta_{n+2.4k}$ must be degenerate $(f)$ . Thus we have

LEMMA 3 (Lemma 2 in [5]). If $\Delta_{n,k}$ is non-degenerate$(f)$ and belongs to a
class other than the class (23), then for at least one of $\oint_{n+1.2k-1}$ and $\gamma_{n+1.2k}$ , say
$f_{n+1.2k},$ $s(f_{n+1.2k})=1$ . If the adjacent $\Delta_{n+1.2k}$ is non-degenerate $(f)$ , then for at
least one of $f_{n+2.4k-1}$ and $f_{n+2,4k}$ , say $f_{n+2,4k},$ $s(f_{n+2.4k})=1$ and the adjacent $\Delta_{n+2.4k}$

is degenerate$(f)$ .

We shall state a theorem due to Teichm\"uller for tbe moduli of ring domains
as a lemma, which we shall often use later.

LEMMA 4. If a ring domain $R$ in $C$ separates two points $0$ and $r_{1}e^{t\theta_{1}}$ from
two ponnts $r_{2}e^{\iota\theta_{2}}$ and $\infty(r_{1}>0, r_{2}>0)$ , then

har. $mod$ . $R \leqq\log(16\frac{r_{2}}{r_{1}}+8)$

(cf. Lehto and Virtanen [4], pp. 54-62).

3. Proof of Theorem.

3.1. NOW we shall prove our theorem. Contrary suppose that a function
$f$ of $M_{E}$ is exceptionally ramified at a singularity $\zeta_{0}\in E$ . As mentioned after
Lemma 2, $f$ has just three totally ramified values $\{w_{t}\}_{i=1,2,3}$ near $\zeta_{0}$ with
$\{\nu_{t}\}_{i=1,2.S}$ , satisfying

$\sum_{i=1}^{3}(1-\frac{1}{\nu_{i}})>2$ ,

where we may assume without any loss of generality that $w_{1}=\infty,$ $w_{2}=1$ and
$w_{3}=0$ . From our assumption $\xi_{n+1}=o(\xi_{n^{0}}^{r}),$ $r_{0}=(1+\sqrt{33})/4$ , we can take $n_{0}$ so
large that $\delta_{n}=M\sqrt{3\xi_{n}/2}<\sqrt{}\overline{2/}24$ and $\delta_{n\cdot 1}<(1/2)\delta_{n}$ for $n\geqq n_{0}$ . Here we may
assume that $\Gamma_{n_{0},k_{0}}$ surrounds $\zeta_{0}$ and $f$ is exceptionally ramified in the part $G_{0}$

of $G=\hat{C}-E$ surrounded with $\Gamma_{n_{0},k_{0}}$ . Then if $\Delta_{n,k}$ in $G_{0}$ is degenerate$(f)$ ,
$f(a., k)$ is contained in a disc $\tilde{D}_{n,k}$ of radius at most $\delta_{n}+2\delta_{n+1}<2\delta_{n}$ .

NOW suppose that all $\Delta_{n,k}$ in $G_{0}$ are degenerate $(f)$ . The image $f(\overline{\Delta}_{n_{0}.h_{0}})$ is
contained in $\tilde{D}_{n_{0}.k_{0}}$ . Since $\tilde{D}_{n_{0}.k_{0^{\cap}}}D_{n_{0}+1,2k_{0}-1}\neq\emptyset$ and $\tilde{D}_{n_{0},k_{0^{\cap}}}D_{n_{0}+1.2k_{0}}\neq\emptyset$ ,
$f(\overline{\Delta}_{n_{0},k_{0}}\cup\overline{\Delta}_{n_{0}+1.2k_{0}-1}\cup\overline{\Delta}_{n_{0}+1,2k_{0}})$ is contained in a disc $D_{2}$ of radius at most
$2\delta_{n_{0}}+4\delta_{n_{0}+1}<2\delta_{n_{0}}(1+2^{0})$ and with the same center $w_{0}$ as $\tilde{D}_{n_{0}.k_{0}}$ . If
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$f( \overline{\Delta}_{n_{0},k_{0}}\cup(U_{p=1}^{m}(\bigcup_{k}’\overline{\Delta}_{n_{0}+p.k})))$ is contained in a disc $D_{m}$ of radius at most
$2\delta_{n_{0}}(1+\Sigma_{p=1}^{m}(1/2^{p-1}))$ and with center at $w_{0}$ , then $f$( $\overline{\Delta}_{n_{0}.k_{0}}\cup(U_{p=1}^{m+1}$ (US $\overline{\Delta}_{n_{0}+p.k}$ ) $)$ )

is contained in a disc $D_{m+1}$ of radius at most $2\delta_{n_{0}}(1+\Sigma_{p=1}^{m}(1/2^{p-1}))+4\delta_{n_{0}+m+1}<$

$2\delta_{n_{0}}(1+\Sigma_{p=1}^{m+1}(1/2^{p-1}))$ and with center at $w_{0}$ , because $D_{m}\cap\tilde{D}_{n_{0}+m+1.k}\neq\emptyset$ for
each $\Delta_{n_{0}+m_{\dagger^{1.k}}}$ in $G_{0}$ , where $\bigcup_{k}’\Delta_{n_{0}+p.k}$ means the union taken over all the
$\Delta_{n_{0}+p.k}’ s$ in $G_{0}$ . By induction, we conclud $e$ that $f(G_{0})$ is contained in a disc of
radius at most $2 \delta_{n_{0}}(1+\sum_{p=1}^{\infty}(1/2^{p-1}))=6\delta_{n_{0}}<\sqrt{}\overline{2}/4$ . This means that $f$ is
bounded in $G_{0}$ . Since $E$ is of linear measure zero, each point of $E$ in the do-
main surrounded with $\Gamma_{n_{0}.k_{0}}$ must be a removable singularity for $f$ (cf. Besi-
covitch [1] $)$ . This contradicts our assumption that $f\in M_{E}$ . Thus we see that
there are infinitely many $\Delta_{n.k}$ in $G_{0}$ being non-degenerate$(f)$ .

We take such a domain $\Delta_{n.k}$ . If $\Delta_{n.k}$ belongs to a class other than (23),

we may assume from Lemma 3 that $s(\hat{\gamma}_{n+1.2k})=1$ and the adjacent $\Delta_{n+1.2k}$ is
$\deg enerate(f)$ . We shall show that $f(\Gamma_{n+1.2k})\subset D(w_{i}, 8\delta_{n+1})$ and $f(\Gamma_{n+2.4k1}-)\cup$

$f(\Gamma_{\mathcal{R}+2,4k})\subset D(w_{i}, 8\delta_{n+2})$ for some $w_{i}\in\{w_{i}\}_{i=1.2.3}$ .
For $\Delta_{m.l}$ being non-degenerate $(f)$ , the union $D=\overline{D}_{m.l}\cup\overline{D}_{m+1.2l-1}\cup\overline{D}_{m+1.2l}$ is

contained in $\bigcup_{i=1}^{3}D(w_{i}, 2(\delta_{m}+2\delta_{m+1}))\subset\bigcup_{i=1}^{3}D(w_{i}, 4\delta_{m})$ as mentioned after we
stated Lemma 2. Therefore, if $f( \Gamma_{m.l})\not\subset\bigcup_{i=1}^{3}D(w_{i}, 8\delta_{m})$ , then $\Delta_{m’ l}$ is degener-
ate$(f)$ and $f\overline{A}_{m,l}$ ) is contained in a disc $\tilde{D}_{m.l}$ of radius at most $2\delta_{xn}$ . We
have $D_{m.l^{\cap U_{i=1}^{3}D(w_{i}}},$ $4\delta_{m}$ ) $=\emptyset$ . Since $2\delta_{m+1}<\delta_{m}$ , we see that $f(\Gamma_{m+1.2l-1})\not\subset$

$U_{i=1}^{3}D(w_{i}, 8\delta_{m+1})$ and $f(\Gamma_{m+1.2l})\not\subset U_{i=1}^{3}D(w_{i}, 8\delta_{m+1})$ so that $\Delta_{m+1.2l-1}$ and $\Delta_{m+1,2l}$

both are degenerate $(f)$ . Then, by induction, we see all $\Delta_{p.q}$ in the part of $G$

surrounded with $\Gamma_{m,l}$ are degenerate $(f)$ . However, this is impossible as we
have seen above. Hence $f( \Gamma_{m.l})\subset\bigcup_{i=1}^{3}D(w_{i}, 8\delta_{m})$ . We see now that $f(\Gamma_{m.l})\subset$

$U_{i=1}^{3}D(w_{i}, 8\delta_{m})$, whether $\Delta_{m,l}$ is non-degenerate $(f)$ or degenerate $(f)$ . From this
fact, $f( \Gamma_{n+1.2k})\subset\bigcup_{i=1}^{3}D(w_{i}, 8\delta_{n+1})$ and $f(\Gamma_{n+2.4k-1})\cup f(\Gamma_{n+2.4k})\subset U_{i=1}^{3}D(w_{i}, 8\delta_{n+2})$ .
However, $\Delta_{n+1.2k}$ is degenerate$(f)$ and so we see that $f(\Gamma_{n+1.2k})\subset D(w_{i}, 8\delta_{n+1})$

and $f(\Gamma_{n+2.4k-1})\cup f(\Gamma_{n+2.4k})\subset D(w_{i}, 8\delta_{n+2})$ for some $w_{i}\in\{w_{i}\}_{i=1.2.S}$ . We may
assume $w_{i}=w_{3}=0$ .

Se $t$

$\hat{\Gamma}_{n.k}^{(S)}=\{z;|z-z_{n.k}|=(1/3)\xi_{n-1}^{s}Y_{\mathcal{R}-1}\}$ and $\hat{\Gamma}_{n,k}^{(0)}=\hat{\Gamma}_{n.k}$ ,

where $Y_{n}=\Pi_{p=1}^{n}\eta_{p}=(\Pi_{p=1}^{n}\xi_{p})/2^{n}$ and $0\leqq 2s\leqq r_{0}-1$ . By the Cauchy integral
formula,

$f’(z)= \frac{1}{2\pi i}\int_{\partial\Lambda_{n+1.2k}}\frac{f(\zeta)}{(\zeta-z)^{2}}d\zeta$ , $z\in\hat{\Gamma}_{n+2.4k-1}^{(s)}\cup\hat{\Gamma}_{n+2.4k}^{(}$ ,

so that

$|f’(z)| \leqq\frac{1}{2\pi}(\int_{\Gamma_{n+1.2k}}+\int_{\Gamma_{n+2.4k-1}}+\int_{\Gamma_{n+2.4k}})\frac{|f(\zeta)|}{|\zeta-z|^{2}}|d\zeta|$ .
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Since $f(\Gamma_{n+1,2k})\subset D(0,8\delta_{n+1})$ and $f(\Gamma_{n+2,4k-1})\cup f(\Gamma_{n+2,4k})\subset D(0,8\delta_{n+2})$ ,

$|f’(z)| \leqq\frac{1}{2\pi}\cdot\frac{8\delta_{n+1}}{\sqrt{}^{\frac{}{1-(8\delta_{n+1})^{2}}}}\cdot---2\pi\sqrt{}\overline{\xi_{n+1}/6}Y_{n}\overline{\{\sqrt{}}\overline{\overline{\xi_{n+1}/6}Y_{n}(1-\sqrt 3\xi}_{n+1}\overline{\overline{/}2)\}^{2}}1$.

$+2 \cdot\frac{1}{2\pi}\cdot\frac{8\delta_{n+2}}{\sqrt 1\overline{-(8\delta}_{n+2}\overline{)}^{2}}\cdot\frac{1}{Y_{n+1}(1-3}\cdot 2\pi\sqrt{}\xi_{n+2}\overline{/6}Y_{n+1}\overline{\{(1/3)\xi_{n+1}^{s}}\overline{\sqrt{\xi_{n+2}/6}\xi_{n+1}^{-s})\}^{2}}$

$\leqq\frac{192M}{Y_{n}}+\frac{288M}{Y_{n}}\cdot\frac{\xi_{n+2}\xi_{n+1}^{-(1+2s)}}{(1-3\sqrt{\xi_{n+2}/6}\xi_{n+1}^{-S})^{2}}$

$< \frac{384M}{Y_{n}}$ ,

for sufficiently large $n$ , because $\delta_{n}arrow 0,$ $\xi_{n}arrow 0,$ $\xi_{n+2}^{1/2}\xi_{n+1}^{-l}=o(\xi_{n+1}^{\prime r_{0}-2s)/2}\backslash )=o(\xi_{n+1}^{1/2})$ and
$\xi_{n+2}\xi_{n+1}^{-(1+2S)}=o(\xi_{n+1}^{r_{0}-(1+2S)})=o(1)$ . Hence, for $z,$ $z’\in\hat{\Gamma}_{n+24k-j}^{(S)}(j=0,1)$ ,

$|f(z)-f(z’)| \leqq\int_{\hat{\Gamma}_{n+2,4k-f}^{(}}|f’(z)||dz|$

$\leqq\frac{384M}{Y_{n}}\cdot 2\pi\frac{1}{3}\xi_{n+1}^{s}Y_{n+1}=128\pi M\xi_{n+1}^{1+s}\equiv\hat{\delta}_{n+2}^{(S)}$ .

This inequality imPlies that the images $f(\hat{\Gamma}_{n+2,4k-1}^{(S)})$ and $f(\hat{\Gamma}_{n+2,4k}^{(})$ are contained
in discs $D_{n+2,4k-1}^{(S)}$ and $D_{n+2.4k}^{t}$ of radius at most $\hat{\delta}_{n+2}^{(S)}$ , respectively. We shall
show that $f(\hat{\Gamma}_{n+2,4k-1}^{(S)})\cup f(\hat{\Gamma}_{n+2.4k}^{(S)})\subset D(0, \xi_{n+1}^{1+(S/2)})$ for sufficiently large $n$ . Con-
sider the triply connected domain $\hat{\Delta}_{n+2.4k-1}$ bounded by $\hat{\Gamma}_{n+2.4k-1}^{(S)},$ $\Gamma_{n+3,8k-3}$

and $\Gamma_{n+3,Sk-2}$ , where $f(\Gamma_{n+3,8k-3})$ and $f(\Gamma_{n+3,Sk-2})$ are contained in discs $D_{n+3.8k-3}$

and $D_{n+3,8k-2}$ of radius at most $\delta_{n+3}=M\sqrt{(3/}\overline{2)\xi_{n+3}}=o(\xi_{n+1}^{1+(s/2)})-\cdot$ If $\hat{\Delta}_{n+2.4k-1}$ is
$non-\deg enerate(f)$ , then the union $D=\hat{D}_{n+2,4k-1}^{(S)}\cup\overline{D}_{n+3,8k-3}\cup\overline{D}_{n+3,8k-2}$ is contained
in $\bigcup_{i=1}^{3}D(w_{t}, 2(\hat{\delta}_{n+2}^{(S)}+2\delta_{n+3}))$ , so that $f(\hat{\Gamma}_{n+2.4k-1}^{(S)})\subset D(0, \xi_{n+1}^{1+(S/2)})$ for sufficiently
large $n$ , because $\hat{\delta}_{n+2}^{(s)}=O(\xi_{n+1}^{1+s})=o(\xi_{n+1}^{1+(s/2)})$ and $\delta_{n+3}=o(\xi_{n+1}^{1+ts/2)})$ . Therefore if
$f(\hat{\Gamma}_{n+2.4k-1}^{(s)})\not\subset D(0, \xi_{n+1}^{1+(S/2)})$ , then $\Delta_{n+2,4k-1}$ is degenerate$(f)$ and $f(\hat{\Delta}_{n+2.4k-1})\subset D$ ,

where $D$ is connected and $|D|\leqq 2(\hat{\delta}_{n+2}^{(S)}+2\delta_{n+3})=o(\xi_{n+1}^{1+(S/2)})$ . Thus $f(\Gamma_{n+3,8k-j})\not\subset$

$D(O, 8\delta_{n+3})(]=3,2)$ . It is obvious that $f(\Gamma_{n+3.8k-j})\cap\{D(\infty, 8\delta_{n+3})\cup D(1,8\delta_{n+3})\}$

$=\emptyset(]=3,2)$ , but, as we have seen above, any $\Gamma_{m,l}$ satisfies $f(\Gamma_{m,l})\subset D(w_{i}, 8\delta_{m})$

for some $w_{i}\in\{w_{i}\}_{i=1,2,3}$ . Contradiction. Thus we have $f(\hat{\Gamma}_{n+2.4k-1}^{(s)})\subset D(0, \xi_{n+1}^{1+(S/2)})$ .
Quite similarly, we have $f(\hat{\Gamma}_{n+2,4k}^{(S)})\subset D(0, \xi_{n+1}^{1+(S/2)})$ .

We consider now the part of Riemannian image of the quadruPly connected
domain bounded by $\Gamma_{n.k},$ $\Gamma_{n+1.2k-1},\hat{\Gamma}_{n+2.4k-1}^{(S)}$ and $\hat{\Gamma}_{n+2.4k}^{(s)}$ under $f$ over the an-
nulus $R=\{w ; \xi_{n+1}^{1+(s/2)}<\chi(0, w)<1/2\},$ $s>0$ . Since $s(f_{n+1,2k})=1,$ $f$ has no ramified
values other than $\{w_{i}\}_{i=1}23$ in $\Delta_{n,k}’$ and $f(\hat{\Gamma}_{n+2,4k-1}^{(S)})\cup f(\hat{\Gamma}_{n+2,4k}^{(S)})\subset D(0, \xi_{n+1}^{1+(S/2)})$ ,
its component $\tilde{R}$ containing $f(\hat{\gamma}_{n+1,2k})$ covers $R$ univalently, so that $\hat{R}$ is also an
annulus and its harmonic modulus is equal to tbat of $R$ . The inverse image
$f^{-1}(R)$ is a ring domain separating $\Gamma_{n,k}\cup\Gamma_{n+1,2k-1}$ from $\hat{\Gamma}_{n+2.4k-1}^{(S)}\cup\hat{\Gamma}_{n+2,4k}^{(}$ . By
Lemma 4, we have
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$\log(16\frac{Y_{n}(1-\xi_{n+1})}{Y_{n+1}}+8)\geqq har$ . $mod.\tilde{R}$

$= \log\frac{1/2\sqrt{}}{\xi_{n+1}^{1+(s/2)/}}\frac{1-(1/_{\frac{\overline{2)^{2}}}{n+11+(s/2)-)^{2}}}1-}{(\xi}$

and hence
$32/\xi_{n+1}\geqq 1/2\xi_{n+1}^{1+(S/2)}$ , so that $\xi_{n+1}^{s/2}>1/64$ .

Thus there are only finitely many $a_{n,k}$ in $G_{0}$ being non-degenerate$(f)$ which
belong to classes other than the class (23), for, otherwise, the inequality holds
for infinitely many $n$ contradicting our assumption $\xi_{n+1}=o(\xi_{n^{0}}^{r})$ . Now we may
assume that all $\Delta_{n,k}$ in $G_{0}$ being $non-\deg enerate(f)$ are of class (23).

3.2. Let $\Delta_{n,k}$ be non-degenerate$(f)$ and belong to the class (23). Then the
image $f(\partial\Delta_{n,k})$ of the boundary of $\Delta_{n.k}$ is contained in one of $\{D(w_{i}, 4\delta_{n})\}_{i=1.2.3}$ ,
say $D(w_{3},4\delta_{n}),$ $w_{3}=0$ . Both of adjacent $\Delta_{n+1,2k-1}$ and $\Delta_{n+1,2k}$ are degenerate $(f)$ .
In fact, if $\Delta_{n+1,2k-1}$ is non-degenerate$(f)$ , $s(\hat{\gamma}_{n+1,2k-1})=s(\check{\gamma}_{n+1.2k-1})=2$ because
$\Delta_{n+1.2k-1}$ is also of class (23), and $f$ takes the totally ramified value $w_{3}=0$ with
$\nu_{3}=7$ . Because $f(f_{n+1.2k-1})\cup f(\check{\gamma}_{n+1}2k-1)\subset D(0,4\delta_{n})$ , the image of the doubly
connected domain bounded by $\rho_{n+1}$ 2k-l and $\check{\gamma}_{n+1,2k-1}$ is also contained in $D(O, 4\delta_{n})$

by Lemma 1, consequently $f$ has no poles there, and hence we have $s(p_{n+1,2k-1})$

$+s(t_{n+1,2k-1})\geqq 7$ by the argument principle. It is absurd, and hence $\Delta_{n+1.2k-1}$ is
degenerate $(f)$ . Similarly we see that $\Delta_{n+1,2k}$ is also degenerate $(f)$ . Now at
least one of $\Delta_{n+2,4k-1}$ and $\Delta_{n+2,4k}$ , say $\Delta_{n+2.4k}$ , is $\deg enerate(f)$ . Contrary sup-
pose that both of them are non-degenerate $(f)$ . Then they are of class (23) and
$f$ has the totally ramified value $w_{3}=0$ in the domain bounded by $\hat{r}_{n+1.2k}$ ,
$\check{\gamma}_{n+2,4k-1}$ and $\check{\gamma}_{n+2,4k}$ , but has no poles there. In fact $\Delta_{n+1.2k}$ is degenerate $(f)$

and hence $f$ might have Poles only in the doubly connected domain bounded
by $\Gamma_{n+2,4k-1}$ and $\check{\gamma}_{n}+$ or $\Gamma_{n+2,4k}$ and $\check{\gamma}_{n+2,4k}$ , while this is impossible because
of Lemma 1. Therefore

$s(7_{n+1.2k})+s(\check{\gamma}_{n+2.4k-1})+s(\check{\gamma}_{n+2.4h})$ 11117
by the argument principle again, while $s(\rho_{n+1.2k})=s(\check{\gamma}_{n+2,4k-1})=s(\check{\gamma}_{n+2.4k})=2$ .
Contradiction. The other $\Delta_{n+2,4k-1}$ is degenerate$(f)$ or non-degenerate$(f)$ and
of class (23).

Set
$\check{\Gamma}_{n,k}=\{z;|z-z_{n.k}|=Y_{n}\}$ .

We shall show that the diameter of $f(\check{\Gamma}_{n+2,4k})$ is $O(\xi_{n+1}\xi_{n+2})$ . By the Cauchy
integral formula,
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$f’(z)= \frac{1}{2\pi i}\int_{\partial(\Lambda_{n+1.2k^{\cup\Gamma_{n+2.4k^{\cup\Delta_{n+2.4k)}}}}}}\frac{f(\zeta)}{(\zeta-z)^{2}}d\zeta$ , $z\in\check{\Gamma}_{n+2.4k}$ ,

so that

$|f’(z)|$ $ $\frac{1}{2\pi}(\int_{\Gamma_{n+1\cdot 2k}}+\int_{\Gamma_{n+2.4k-1}}+\int_{\Gamma_{n+3.8k-1}}+\int_{\Gamma_{n+3.8k}})\frac{|f(\zeta)|}{|\zeta-z|^{2}}|d\zeta|$

$\leqq\frac{1}{2\pi}\cdot\frac{8\delta_{n+1}}{\sqrt{1-(8\delta_{n+1})^{2}}}\cdot\frac{1}{\{\sqrt{}\overline{\xi_{n+1}/6}Y_{n}(1-\frac{32}{\xi_{n+1}/})\}^{2}}\cdot 2\pi\sqrt{\xi_{n+1}/6}Y_{n}$

$+ \frac{1}{2\pi}\cdot\frac{8\delta_{n+2}}{\sqrt{1-(8\delta_{n+2})^{2}}}\cdot\frac{1}{\{Y_{n+1}(1-4\sqrt{\xi_{n+2}/6})\}^{2}}\cdot 2\pi\sqrt{}\overline{\xi_{n+2}/6}Y_{n+1}$

$+2 \cdot\frac{1}{2\pi}\cdot\frac{8\delta_{n+3}}{\sqrt{1-(8\delta_{n+3})^{2}}}\cdot\frac{1}{\{(Y_{n+2}/2)(1-2\sqrt{}\xi_{n+3}\overline{/6})\}^{2}}\cdot 2\pi\sqrt{}\overline{\xi_{n+3}/6}Y_{n+2}$

$\leqq\frac{192M}{Y_{n}}+\frac{32M\xi_{n+2}}{Y_{n+1}}+\frac{256M\xi_{n+3}}{Y_{n+2}}$ ,

because $\Delta_{n+1,2k}$ and $\Delta_{n+2.4k}$ are both degenerate$(f)$ and so $f(\Gamma_{n+1.2k})\subset D(0,8\delta_{n+1})$,
$f(\Gamma_{n+2.4k-1})\subset D(0,8\delta_{n+2})$ and $f(\Gamma_{n+3,8k-1})\cup f(\Gamma_{n+3.8k})\subset D(0,8\delta_{n+3})$ . Hence

$|f(z)-f(z’)| \leqq\int_{\Gamma_{n+2.4i}}\vee|f’(z)||dz|$

$\leqq(\frac{192M}{Y_{n}}+\frac{32Mn+2}{Y_{n+1}}+\frac{256M\xi_{n+3}}{Y_{n+2}})2\pi Y_{n+2}$

$=32\pi M(3\xi_{n+1}\xi_{n+2}+\xi_{n+2}^{2}+16\xi_{n+\})$

$<2^{\epsilon}\cdot 3\pi M\xi_{n+1}\xi_{n+z}\equiv M’\xi_{n+1}\xi_{n+2}\equiv\check{\delta}_{n+2}$ ,

because $\xi_{n+2}^{2}=o(\xi_{n+1}\xi_{n+2})$ and $\xi_{n+3}=o(\xi_{n^{0}+2}^{r})=o(\xi_{n^{0}+1}^{r(r_{0}-1)}\xi_{n+2})=o(\xi_{n+1}\xi_{n+2})$ . This
implies that the diameter of the image $f(\check{\Gamma}_{n+2.4k})$ is contained in a disc $\check{D}_{n+2.4k}$

of radius at most $\check{\delta}_{n+2}$ . We note here that if $\Delta_{n+2.4k-1}$ is degenerate$(f)$ , the
curve $\check{\Gamma}_{n+2,4k-1}$ has the same Property.

3.3. TO show that $f(\check{\Gamma}_{n+2.4k})\subset D(0,8\check{\delta}_{n+2})$ , we shall prove first

LEMMA 5. If $\Delta_{m,l}$ belongs to the class (23), $f$ has no zeros in the doubly
connected domain bounded by $\hat{\Gamma}_{m.l}$ and $\check{\gamma}_{m,l}$ and $f(\hat{\Gamma}_{m.l})\subset D(0, \xi_{m-1})$ , then the
image of the curve $\tilde{\Gamma}_{m,l}=\{z;|z-z_{m.l}|=(1/\sqrt{6})\xi_{m}^{1/2}Y_{m-1}\xi_{m-1}^{-1/4}\}$ is contained in
$D(0,24\pi^{2}\xi_{m-1}^{1/2}\xi_{m})$ .

PROOF. For small $d>0$ , we denote by $S_{d}$ the covering surface of class (23)
over $\hat{C}-\overline{D}(0, d)$ . When $d=4\delta_{m},$ $S_{f}$

( is the Riemannian image $S_{m.l}$ of the sub-
domain $\Delta m;,$

$l$ of $\Delta_{m,l}$ . As the limit surface as $darrow 0$ , we have a six-sheeted
covering surface of $\hat{C}-\{0\}$ having three pinholes over $0$ . We stop up these
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holes and obtain a six-sheeted covering surface $\Phi$ of $\hat{C}$ , which is planar and
has three branch points of multiplicity 2 over $w_{1}=\infty$ , two branch points of
multiplicity 3 over $w_{2}=1$ and three branch points of multiplicity 2 over $w_{3}=0$ .
Let $w=\varphi(\omega)$ be a conformal mapping of the extended $\omega$-plane onto $\Phi$ with $\varphi(0)$

$=\varphi(1)=\varphi(\infty)=0$ . Consider $S_{d},$ $d=4\delta_{m}$ , as a subdomain of $\Phi$ . Its inverse
image $\varphi^{-1}(S_{d})$ is a triply connected domain $\hat{C}-\bigcup_{i=1}^{3}B_{i}$ , where $\partial B_{1}=\varphi^{-1_{\circ}}$

$f(\hat{\gamma}_{m+1.2l-1}),$ $\partial B_{2}=\varphi^{-1}\circ f(\hat{\gamma}_{m+1.2l})$ and $\partial B_{3}=\varphi^{-1}\circ f(\check{\gamma}_{m.l})$ . We may assume that $B_{1}$

$\ni\omega_{1}=0,$ $B_{2}\ni\omega_{2}=1$ and $B_{3}\ni\omega_{3}=\infty$ . If $m$ is sufficiently large, that is, $d$ is
sufficiently small, for each $i,$ $\partial B_{i}$ is nearly a circle of chordal radius $\alpha_{i}\sqrt{d}$ and
with center at $\omega_{i}$ , where $\{\alpha_{i}\}_{i=1,2}.$

’ are positive constants not depending on $d$

and hence on $m$ . The annulus $R=\{\omega;2\alpha_{s}\sqrt{}\overline{d}<\chi(\omega, \infty)<1/\sqrt{5}\}$ separates
$B_{1}\cup B_{2}$ from $B_{3}$ , so that its image $f^{-1}\circ\varphi(R)$ is a ring domain in $\Delta_{m.l}’\subset\Delta_{m.l}$

separating $\Gamma_{m+1.2l-1}\cup\Gamma_{m+1.2l}$ from $\Gamma_{m,t}$ and has the same harmonic modulus as
$R$ . We set

$r= \min\{|z-z_{m,l}| ; z\in\check{\gamma}_{m.l}\}$ .
By Lemma 4, we have

$\log(16\frac{r}{Y_{m}/2}+8)\geqq$ har. $mod$ . $R$

$= \log\frac{\sqrt{1-(2\alpha_{3}\sqrt{d})^{2}}/2\alpha_{3}Jd}{2}$ .

Hence
$32r/Y_{m}\geqq(1/8\alpha_{3}\sqrt{d})-8\geqq 1/16\alpha_{3}\sqrt{}\overline{d}$ ,

so that we have

$r\geqq Y_{m}/2^{9}\alpha_{3}\sqrt{}\overline{d}=KY_{m-1}\xi_{m}^{3/4}$

with a constant $K$ not depending on $m$ . Similarly we have $r_{i}\leqq K_{i}Y_{m}\xi_{m}^{1/4}$ with
constants $K_{i}$ not dePending on $m$ , where $r_{i}= \max\{|z-z_{m+1.2l-i}| ; z\in\hat{\gamma}_{m+1.2l-i}\}$ ,
$i=0,1$ . Therefore the ring domain $\{z;Y_{m}<-1|z-z_{m.l}|<KY_{m-1}\xi_{m}^{3/4}\}\subset\Delta_{7n.l}’$ for
sufficiently large $m$ and its image under $\varphi$

$\circ f$ separates $B_{1}\cup B_{2}$ from $B_{3}$ . Thus
we have again by Lemma 4

16 $\min\{|\omega| ; \omega\in\varphi^{-1}\circ f(\gamma_{m.l})\}\geqq K/\xi_{m}^{1/4}=K’/\sqrt{}\overline{d}$ ,

where $\gamma_{m.l}$ denotes the circle $|z-z_{m.l}|=KY_{m-1}\xi_{m}^{3/4}$ . This means that $|f(z)|\leqq$

$\alpha d=4\alpha\delta_{m}$ on $\gamma_{m.l}$ , where $\alpha$ does not depend on $m$ .
Since $f$ has no zeros and no poles in the domain bounded by $\hat{\Gamma}_{m.l}$ and $\gamma_{m,l}$

and $s(\check{\gamma}_{m.l})=2$ , the image curve of any closed curve in this domain being homo-
topic to $\Gamma_{m.l}$ winds twice around $0$ . Therefore $f^{1/2}$ is single-valued there. By
the Cauchy integral formula,
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$\frac{df^{1/2}}{dz}(z)=\frac{1}{2\pi i}(\int_{\hat{\Gamma}_{m.l}}-\int_{\gamma m.l})\frac{f^{1/2}(\zeta)}{(\zeta-z)^{2}}d\zeta$ , $z\in\tilde{\Gamma}_{m,l}$ .

We have

$| \frac{df^{1/2}}{dz}(z)|\leqq\frac{1}{2\pi}(_{\overline{(Y_{m-1}/3}}\frac{(2\xi_{m-1})^{1/2}}{-(1/\sqrt{6})\xi_{m}^{1/2}Y_{m-1}\xi_{m-1}^{-1/4})^{2}}\cdot 2\pi\frac{Y_{m-1}}{3}$

$+ \frac{(4\alpha\delta_{m})^{1/2}}{((1/\sqrt{}\overline{6})\xi_{m}^{1/2}Y_{m-1}\xi_{m-1}^{-1/4}-KY_{m-1}\xi_{m}^{3/4})^{2}}\cdot 2\pi KY_{m-1}\xi_{m}^{3/4})$

$\leqq\frac{6}{Y_{m-1}}\xi_{m-1}^{1/2}$ ,

for sufficiently large $m$ . Thus the length of the curve $f^{1/2}(\tilde{\Gamma}_{m,l})$ is dominated
by

$\int_{\Gamma_{m.l}}\sim|\frac{df^{1/2}}{dz}(z)||dz|\leqq\frac{6}{Y_{m-1}}\xi_{m-1}^{1/2}\cdot 2\pi\frac{1}{\sqrt 6^{-}}\xi_{m}^{1/2}Y_{m-1}\xi_{m-1}^{-1/4}$

$=2\sqrt{}\overline{6}\pi\xi_{m-1}^{1/4}\xi_{m}^{1/2}$

Since the curve $f^{1/2}(\tilde{\Gamma}_{m.l})$ winds once around $0$, we see that $|f^{1/2}(z)|\leqq$

$2\sqrt{}\overline{6}\pi\xi_{7n-1}^{1/4}\xi_{m}^{1/2}$ and hence $|f(z)|\leqq 24\pi^{2}\xi_{m-1}^{1/2}\xi_{m}$ on $\tilde{\Gamma}_{m.l}$ . Thus $f(\tilde{\Gamma}_{m,l})\subset$

$D(O, 24\pi^{2}\xi_{m-1}^{1/2}\xi_{m})$ . Our proof is complete.
NOW we can show that $f(\check{\Gamma}_{n+2.4k})\subset D(0,8\check{\delta}_{n+2}),\check{\delta}_{n+2}=M’\xi_{n+1}\xi_{n+2}$ . Contrary

$suPpose$ that $f(\check{\Gamma}_{n+2.4k})\not\subset D(0,8\check{\delta}_{n+2})$ . Then $\check{D}_{n+2.4k}\cap D(0,4\check{\delta}_{n+2})=\emptyset$ , where
$\check{D}_{n+2.4k}\supset f(\check{\Gamma}_{n+2.4k})$ is a disc of radius at most $\check{\delta}_{n+2}$ . Obviously $s(\check{\Gamma}_{n+2.4k})=0$ and
we see similarly as before that one of $\Delta_{n+3,8k-1}$ and $\Delta_{n+3,8k}$ , say $\Delta_{n+3.8k}$ , is de-
generate$(f)$ and $f(\check{\Gamma}_{n+3.8k})$ is contained in a disc $\check{D}_{n+3.8k}$ of radius at most $\check{\delta}_{n+3}$

$=M’\xi_{n+2}\xi_{n+3}$ . Assume that $\Delta_{n+3.8k-1}$ is $non-\deg enerate(f)$ and of class (23).

Then $f$ has no poles in the domain $\Delta$ bounded by $\check{\Gamma}_{n+2.4k},\check{\gamma}_{n+3,8k-1}(f(\check{\gamma}_{n+3,8k-1})$

$=\partial D(O, 4\delta_{n+3}),$ $\delta_{n+3}=\sqrt{}\overline{3/2}M\xi_{n+3}^{1/2})$ and $\check{\Gamma}_{n+3.8k}$ , because $\Delta_{n+2,4k}$ and $\Delta_{n+3,8k}$ are
degenerate$(f)$ and $f$ has no poles in the domain bounded by $\Gamma_{n+3,8k-1}$ and
$\check{\gamma}_{n+3.8k-1}$ by Lemma 1. If $\check{D}_{n+3.8k}\geq 0$ , then $s(\check{\Gamma}_{n+3,8k})=0$ , so that $f$ has two
zeros of order 1 or a $ze$ro of order 2 in $\Delta$ , while $w_{3}=0$ is a totally ramified
value of $f$ with $v_{3}=7$ . Hence $0\in\check{D}_{n+3.8k}\subset D(0,4\check{\delta}_{n+2})\cap D(0,4\delta_{n+3})$ . We take the
component $\Delta’$ of $f^{-1}(\hat{C}-\check{D}_{n+8.8k})\cap\Delta$ having $\check{\Gamma}_{n+2.4k}$ as a boundary component.
The boundary $\partial\Delta’$ has a boundary component $\check{\Gamma}$ with $f(\check{\Gamma})=\partial D_{n+3.8k}$ , which
separates $\check{\Gamma}_{n+2.4k}$ from $\check{\Gamma}_{n+3.8k}$ in $\Delta$ . We orientate $\check{\Gamma}$ positively with respect to
the domain $\Delta’$ . Then $f(\check{\Gamma})$ winds around $0$ in the negative direction, so that,
if $\check{\Gamma}$ separates $\check{\Gamma}_{n+2,4k}$ from $\check{\gamma}_{n+3.8k-1}$ too and $\Delta’$ is bounded by $\check{\Gamma}_{n+2.4k}$ and $\check{\Gamma}$,

then $f$ has at least one pole in $\Delta’$ , because the winding number of $\check{\Gamma}_{n+2.4k}$ is $0$ .
Hence it is only possible that $\partial\Delta’$ consists of $\check{\Gamma}_{n+2.4k},\check{\gamma}_{n+3.8k-1}$ and $\check{\Gamma}$ with
winding numbers $0,2$ and $-2$ around $0$ , respectively, and $f$ has no zeros in
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$\Delta’$ . Since $\Delta_{n+2.4k}$ is $\deg enerate(f)$ , $f(\hat{\Gamma}_{n+3.8k-1})\subset D(0, \xi_{n+2})$ and we see from
Lemma 5 that $f(\tilde{\Gamma}_{n+3,8k-1})\subset D(0,24\pi^{2}\xi_{n+2}^{1/2}\xi_{n+3})\subset D(0,4\check{\delta}_{n+2})$ . Thus $f(\check{\Gamma}_{n+2.4k})\subset$

$\check{D}_{n+2.4k},\check{D}_{n+2.4k}\cap D(0,4\check{\delta}_{n+2})=\emptyset$ and $f(\check{\Gamma}\cup\tilde{\Gamma}_{n+3.8k-1})\subset D(0,4\check{\delta}_{n+2})$ . Hence $f$ is
not bounded in $\Delta’\subset\Delta$ , while $f$ has no poles in $\Delta$ . Thus $\Delta_{n+3,8k-1}$ must be
degenerate$(f)$ , so that $f(\check{\Gamma}_{n+3,8k-1})$ is contained in a disc $\check{D}_{n+3.8k-1}$ of radius at
most $\check{\delta}_{n+3}$ and $\check{D}_{n+2.4k}\cup\check{D}_{n+3.8k-1}\cup\check{D}_{n+3.8k}$ is connected. Hence $f(\check{\Gamma}_{n+3.8k-1})\not\subset$

$D(O, 8\check{\delta}_{n+3})$ and $f(\check{\Gamma}_{n+3.8k})\not\subset D(0,8\check{\delta}_{n+3})$ . By induction, we see that $f$ is bounded
in the part of $G=\hat{C}-E$ surrounded with $\check{I}_{n+2.4k}$ . This contradicts our assump-
tion $f\in M_{E}$ . We have now that $f(\check{\Gamma}_{n+2.4k})\subset D(0,8\check{\delta}_{n+2})$ .

3.4. Recall that $\Delta_{n.k}$ is non-degenerate $(f)$ and of class (23), $\Delta_{n+1,2k}$ and
$\Delta_{n+2,4k}$ are degenerate $(f)$ so that $f(\check{\Gamma}_{n+2,4k})\subset D(0,8\check{\delta}_{n+2}),\check{\delta}_{n+2}=M’\xi_{n+1}\xi_{n+2}$ , and
$\Delta_{n+2,4k-1}$ is degenerate$(f)$ so that $f(\check{\Gamma}_{n+2,4k-1})\subset D(0,8\check{\delta}_{n+2})$ , or non-degenerate$(f)$

and of class (23). We denote by 7 the curve in $\Delta_{n,k}$ such that $f(\hat{\gamma})=\{w$ ; $|w|$

$=1/2\}$ and it is homotopic to $\hat{\gamma}_{n+1,2k}$ , and by $\Delta$ the domain bounded by $\hat{\gamma},$ $\Gamma_{1}=$

$\check{\Gamma}_{n+2.4k-1}$ and $\Gamma_{2}=\check{\Gamma}_{n+2,4k}$ if $\Delta_{n+2,4k-1}$ is degenerate$(f)$ , or the domain bounded
by $\hat{\gamma},\check{\gamma}_{n+2.4k-1}$ and $\Gamma_{2}=\check{I}_{n+2.4k}$ if $\Delta_{n+2,4k-1}$ is of class (23). Assuming that
$\Delta_{n+2.4k-1}$ is of class (23), we consider the component $\Delta’$ of $f^{-1}(\hat{C}-D(O, 8\check{\delta}_{n+2}))\cap\Delta$

having $\hat{\gamma}$ as a boundary component. The boundary $\partial\Delta’$ has a boundary com-
ponent $\Gamma’$ with $f(\Gamma’)=\partial D(O, 8\check{\delta}_{n+2})$ which separates $f$ and $\check{\gamma}_{n+2,4k-1}$ from $\Gamma_{2}$ or
$\hat{\gamma}$ from $\check{\gamma}_{n+2.4k-1}$ and $\Gamma_{2}$ . In the latter case, $\Delta’$ is the ring domain bounded by
$\hat{\gamma}$ and $\Gamma’$ and its Riemannian image under $f$ covers divalently the ring domain
$R=\{w;8\check{\delta}_{n+2}<\chi(0, w)<1/\sqrt{}\overline{5}\}$ , so that its harmonic modulus is equal to one
half of that of $R$ , that is, (1/2) $\log(^{\sqrt{1-(8\check{\delta})^{2}}}n+2/16\check{\delta}_{n+2})$ . Since $\Delta’$ separates
$\{z_{n+2,4k-1}, z_{n+2,4k}\}$ from $\{z_{n+1.2h-1}, \infty\}$ , we have by Lemma 4

$\log(16\frac{Y_{n}(1-\eta_{n+1})}{Y_{n+1}(1-\eta_{n+2})}+8)\geqq\frac{1}{2}\log\frac{\sqrt 1-}{16}\check{\delta}_{n+2}(\underline{8\check{\delta}_{n+2})^{2}}$

so that $2^{12}/\xi_{n+1}^{2}\geqq 1/2^{5}M’\xi_{n+1}\xi_{n+2}$ , that is, $o(\xi_{n+1}^{r_{0^{-1}}})\geqq 1/2$ ‘ $7M’$ . It is impossible for
sufficiently large $n$ . Therefore only the former case is possible and $\Delta’$ is
bounded by $\rho$ , $\check{\gamma}_{n+2,4k-1}$ and $\Gamma’$ with winding numbers 2, 2 and $-4$ around $0$ ,

respectively, and $f$ has no zeros there. Since $\Delta_{n+1,2k}$ is $\deg enerate(f)$ ,
$f(\hat{\Gamma}_{n+2.4k-1})\subset D(O, \xi_{n+1})$ and we see from Lemma 5 that $f(\tilde{\Gamma}_{n+2.4k-1})\subset$

$D(O, 24\pi^{2}\xi_{n+1}^{1/2}\xi_{n+2})$ . We set $\Gamma_{1}=\tilde{\Gamma}_{n+2,4k-1}$ in the case that $\Delta_{n+2.4k-1}$ is of class
(23). Noting that $f(\Gamma_{1})\cup f(\Gamma_{2})\subset D(0,24\pi^{2}\xi_{n+1}^{1/2}\xi_{n+2})$ , we consider the component
$\Delta’$ of $f^{-1}(\hat{C}-D(O, 24\pi^{2}\xi_{n+1}^{1/2}\xi_{n+2}))\cap\Delta$ having $\gamma$ as a boundary component. The
boundary $\partial\Delta’$ has two boundary components $\Gamma_{1}’’$ and $\Gamma_{2}’’$ with $f(\Gamma_{1}’’)=f(\Gamma_{2}’’)=$

$\partial D(O, 24\pi^{2}\xi_{n+1}^{1l2}\xi_{\mathcal{R}+2})$ , being homotopic to $\Gamma_{1}$ and $\Gamma_{2}$ , respectively, or a boundary
component $\Gamma’$ with $f(\Gamma’’)=\partial D(O, 24\pi^{2}\xi_{n+1}^{1/2}\xi_{n+2})$ separating $\hat{r}$ from $\Gamma_{1}$ and $\Gamma_{2}$ .
Quite similarly as before we see that only the former case is possible. Then
$\Delta’$ is bounded by $f,$ $\Gamma_{1}’’$ and $\Gamma_{2}’’$ and its Riemannian image $R$ under $f$ covers
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the ring domain $R’=\{w;24\pi^{2}\xi_{n+1}^{1/z}\xi_{n+2}<\chi(0, w)<1/\sqrt{}\overline{5}\}$ divalently. By the
Hurwitz formula, fi has just one branch point of orde $r2$ , whose projection we
denote by $w^{*}$ . Since the part of $\tilde{R}$ over $\{w;|w^{*}|<|w|<1/2\}$ is doubly con-
nected, we have by Lemma 4

$\log(16\frac{Y_{n}(1-\eta_{n+1})}{Y_{n+1}(1-\eta_{n+2})}+8)\geqq\frac{1}{2}\log(1/2|w^{*}|)$ ,

that is,

$|w^{*}|>\xi_{n+1}^{2}/2^{13}$ .
The inverse image of the circle $\{w;|w|=|w^{*}|\}$ in $\Delta’’$ is an eightshaped closed
curve crossing at the point $z^{*}$ with $f(z^{*})=w^{*}$ , that is, it consists of two simple
closed curves $C_{1}$ and $C_{2}$ with $C_{1}\cap C_{2}=\{z^{*}\}$ , being homotopic to $\Gamma_{1}$ and $\Gamma_{2}$ ,

respectively. Since $s(C_{2})=s(\Gamma_{2})=1$ , one of $\Delta_{n+3.8k-1}$ and $\Delta_{n+3.8k}$ , say $\Delta_{n+3,8k}$ , is
degenerate$(f)$ so that $f(\check{\Gamma}_{n+3.8k})\subset D(0,8\check{\delta}_{n+3}),\check{\delta}_{n+3}=M’\xi_{n+2}\xi_{n+3}$ , and $\Delta_{n+3.8k-1}$ is
$\deg enerate(f)$ so that $f(\check{\Gamma}_{n+3.8k-1})\subset D(0,8\check{\delta}_{n+3})$ , or non-degenerate $(f)$ and of class
(23). We denote by $D$ the domain bounded by $C_{2},$ $C=\check{\Gamma}_{n+3.8k-1}$ and $C’=\check{\Gamma}_{n+3.8k}$

if $\Delta_{n+3,8k-1}$ is degenerate$(f)$ , or the domain bounded by $C_{2},\check{\gamma}_{n+3.8k-1}$ and $C’=$

$\check{\Gamma}_{n+3.8k}$ if $\Delta_{n+8.8k-1}$ is of class (23). Assuming that $\Delta_{n+3.8k-1}$ is of class (23), we
consider the component $D’$ of $f^{-1}(\hat{C}-D(O, 8\check{\delta}_{n+3}))\cap D$ having $C_{2}$ as a boundary

comPonent. The boundary $\partial D’$ has a boundary comPonent $\tilde{C}$ with $f(\tilde{C})=$

$\partial D(O, 8\check{\delta}_{n+\S})$ which separates $C_{2}$ and $\check{\gamma}_{n+3.8k-1}$ from $C’$ or $C_{2}$ from $\check{\gamma}_{n+3.8k-1}$ and
$C’$ . In the latter case, $D’$ is the ring domain bounded by $C_{2}$ and $\tilde{C}$ and its
Riemannian image under $f$ covers univalently the ring domain $\{w;8\check{\delta}_{n+3}<\chi(0, w)$

$<|w^{*}|/ \frac{1+w^{*2}}{||}\}$ . Since $D’$ separates $\{z_{n+3.8k-1}, z_{n+3.8k}\}$ from $\{z_{n+2.4k-1}, \infty\}$ ,
we have by Lemma 4

$\log(16\frac{Y_{n+1}(1-\eta_{n+2})}{Y_{n+2}(1-\eta_{n+3})}+8)\geqq\log\frac{|w^{*}|^{\frac{-2}{1(8\check{\delta}_{n+3})}}}{8\check{\delta}_{n+3}}$ ,

so that
$2^{\epsilon}/\xi_{n+2}\geqq|w^{*}|/2^{4}M’\xi_{n+2}\xi_{n+3}\geqq\xi_{n+1}^{2}/2^{17}M’\xi_{n+2}\xi_{n+3}$ .

Hence we have $o(\xi_{n+1}^{r_{0}^{2}-2})>1/2^{23}M’$ , where $r_{0}^{2}-2>0$ . It is absurd.
Thus $\tilde{C}$ separates $C_{2}$ and $\check{\gamma}_{n+3.8k-1}$ from $C’,$ $D’$ is bounded by $C_{2},\check{\gamma}_{n+3.8k-1}$

and $\tilde{C}$ with winding numbers 1, 2 and $-3$ around $0$ , respectively, and $f$ has no
zeros there. Since $\Delta_{n+2.4k}$ is degenerate$(f),$ $f(\hat{\Gamma}_{n+3.8k-1})\subset D(0, \xi_{n+2})$ and we see
from Lemma 5 that $f(\tilde{\Gamma}_{n+3.8k-1})\subset D(0,24\pi^{2}\xi_{n+2}^{1/z}\xi_{n+3})$ . We set $C=\tilde{\Gamma}_{n+3.8k-1}$ in
the case that $\Delta_{n+3.8k-1}$ is of class (23).

Noting that $f(C)\cup f(C’)\subset D(0,24\pi^{2}\xi_{n+2}^{1/2}\xi_{n+3})$ , we consider $D^{\chi}$ of $f^{-1}(\hat{C}-$

$D(O, 24\pi^{2}\xi_{n+2}^{1/2}\xi_{n+3}))\cap D$ having $C_{2}$ as a boundary component. The Riemannian
image of $D’’$ under $f$ covers univalently th $e$ ring domain $\{w;24\pi^{2}\xi_{n+2}^{1\prime 2}\xi_{n+3}<$

$\chi(0, w)<|w^{*}|/\sqrt 1+|w^{*}|^{2}\}$ , so that $D’’$ is a ring domain with harmonic modulus
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$\log(|w^{*}|\sqrt 1-(24\pi^{2}\xi_{n+2}^{1/}\xi_{n+3})^{2}/24\pi^{2}\xi_{n+2}^{1/2}\xi_{n+3})$ . Since $D’’$ separates $\{z_{n+3.8k-1}, z_{n+3.8k}\}$

from $\{z_{n+2,4k-1}, \infty\}$ , we have by Lemma 4

$2^{\epsilon}/\xi_{n+2}\geqq|w^{*}|/48\pi^{2}\xi_{n+2}^{1/2}\xi_{n+3}\geqq\xi_{n+1}^{s}/2^{17}\cdot 3\xi_{n+2}^{1/2}\xi_{n+3}$ ,

so that $o(\xi_{n+1}^{r_{0}tr_{0}-(1/2)-2})\geqq 1/2^{23}\cdot 3$ , where $r_{0}\{r_{0}-(1/2)\}-2=0$ . It is absurd and now
our proof of the theorem is complete.
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