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Introduction.

Let $R_{g,n}$ be a Riemann surface of genus $g\geqq 0$ with $n\geqq 0$ Punctures, and
$\Gamma_{g,n}$ be the pure mapping class group of $R_{g.n}$ . As is well known, $\Gamma_{g,n}$ is
isomorphic to a certain subgroup of the outer automorphism group of the
topological fundamental group $\pi_{g.n}$ of $R_{g,n}$ . The group $\pi_{g,n}$ has a natural
filtration $\{\pi_{g}n(m)\}_{m=1}^{\infty}$ called the weight filtration, which is introduced by T.
Oda. This filtration naturally induces a filtration $\{\Gamma_{g.n}[m]\}_{m=0}^{\infty}$ of $\Gamma_{gn}$ . The
aim of this paper is to serve some basic results about this filtration. In this
paper, we assume that $2-2g-n<0$ , which is equivalent to that the group $\pi_{g.n}$

is non-abelian.
TO explain our first result, let us recall that there exists a canonical exact

sequence
$d_{*}$ $p_{*}$

$1arrow\pi_{g,n-1}arrow\Gamma_{g,n}arrow\Gamma_{g.n-1}arrow 1$ .

The homomorphism $P*$ is induced from “forgetting” the n-th puncture and the
homomorphism $d_{*}$ can be explicitly described by a result of Birman. Then, lt
can be shown that the homomorphisms $d_{*}$ and $P*preserve$ the filtrations, hence
we have a complex

$(^{*})$ $0arrow gr(\pi_{g.n- 1})arrow gr(\Gamma_{g.n}[1])arrow gr(\Gamma_{g.n- 1}[1])arrow 0$ .
Here, each associated graded module $gr()$ has a structure of a graded Lie
algebra. Moreover, if $g\geqq 1$ , the Siegel modular group $Sp(2g;Z)$ naturally acts
on them.

THEOREM A. If $n\geqq 2$ , the complex $(^{*})$ is an exact sequence of graded Lie
algebras with $Sp(2g;Z)$-action.

Our second result is about the comparison of $\Gamma_{g,n}$ with the pro-l mapping
class group, 1 being a fixed prime number. Using the pro-l completion $\pi_{g.n}^{pro.l}$

of $\pi_{g,n}$ instead of $\pi_{g,n}$ , we can define the pro-l mapping class group purely
algebraically, which is denoted by $\Gamma_{g.n}^{(l)}$ . (For the definition, see \S 4-1.) The
group $\Gamma_{g.n}^{(l)}$ also has a filtration induced from the weight filtration of $\pi_{\sigma.n}^{pro\cdot l}$ .
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Then we have the canonical homomorphism

$\varphi_{l}$ : $\Gamma_{g.n}arrow\Gamma_{g.n}^{(l)}$

and $\varphi_{l}$ preserves the filtration of $\Gamma_{g.n}$ and $\Gamma_{g.n}^{tl)}$ . Hence $\varphi_{l}$ induces the homo-
morphism

$gr^{m}(\varphi_{l}):gr^{m}(\Gamma_{g,n})arrow gr^{m}(\Gamma_{g^{l)}n})$ $(m\geqq 1)$ .
If $g\geqq 1$ , the group $Sp(2g;Z_{\iota})$ naturally acts on $gr^{m}(\Gamma_{g.n}^{(l})$ and $gr^{m}(\varphi_{l})$ is
$Sp(2g)$-equivariant.

Let $1_{g,n}$ denote the topological closure of $\varphi_{\iota}(\Gamma_{g,n})$ in $\Gamma_{g.n}^{(l)}$ . Then $\overline{\Gamma}_{g,n}$ is
a profinite group and has two filtrations. The first one is $\{\overline{\Gamma_{g.n}[m]}\}$ induced
from $\{\Gamma_{g,n}[m]\}$ and the second one is $\{\overline{\Gamma}_{g,n}[m]\}$ induced from { $\Gamma$ ZE$)n[m]$ }. We
shall study the homomorphism $gr^{m}(\varphi_{l})$ . Our results are summarized as the
following

THEOREM B. (i) For each $m\geqq 1$ , the $Z$-module $gr^{m}(\Gamma_{g.n})$ and the $Z_{l}$ -module
$gr^{m}(\overline{\Gamma}_{g.n})$ are free of finite rank and $gr^{m}(\varphi_{l})$ induces an $in_{J}ective$ homomorphism

$(^{*})$ $gr^{m}(\Gamma_{g,n})\bigotimes_{Z}Z_{\iota}arrow gr^{m}(\overline{\Gamma}_{g.n})$ .

If $g\geqq 1$ , this homomorphism is $Sp(2g)$-equivariant.
(ii) Assume that $g\neq 1$ . Then we have

$\overline{\Gamma_{g.n}[m]}=\overline{\Gamma}_{g.n}[m]$ $(m\geqq 0)$ ,

hence the homomorphism $(^{*})$ is an isomorphism.

There are two crucial points for the proof of our results. One of them is
tbat the graded Lie algebras $gr(\pi_{g.n})$ and $gr(\pi_{g,n})\bigotimes_{Z}F_{p}$ ( $p$ : prime) have trivial
center. Another one, which is for the proof of Theorem $B$ (ii), is some prop-
erties of the symplectic group, especially the congruence subgroup property of
$Sp(2g;Z)(g\geqq 2)$ . In fact, in tbe case that $g=1$ (and $n=1$ ), analogous result
does not hold.

The motivation of the present work is some observations by T. Oda (cf.
$e$ . $g.,$ $[O_{1}])$ , which we shall briefly explain. Let us consider a pair $(C, S)$ ,
wbere $C$ is a complete non-singular curve defined over a finite algebraic number
field $k\subset C$ and $S$ be a finite set of $k$ -rational points on $C$ with its cardinality
$n$ . Then the absolute Galois group $Ga1(\overline{k}/k)$ acts naturally on the pro-l funda-
mental group $\pi_{1}^{oro\cdot l}(C\bigotimes_{k}\overline{k}\backslash S)$ and we have a Galois representation

$\rho_{l}$ : $Ga1(\overline{k}/k)arrow Out(\pi_{1}^{pro- l}(C\bigotimes_{k}\overline{k}\backslash S))$ .
The image of this representation is contained in $\Gamma_{g,n}^{(l)}$ , provided that the
generators of $\pi_{1}^{pro\cdot l}(C\bigotimes_{k}\overline{k}\backslash S)$ are suitably chosen. Moreover Oda has observed
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that (i) the image is contained in the normalizer $N(\overline{\Gamma}_{g.n})$ of $\overline{\Gamma}_{g.n}$ in $\Gamma_{g.n}^{(l)}$ and
that (ii) the composite of $\rho_{l}$ with the canonical projection $N(\overline{\Gamma}_{g.n})arrow N(\overline{\Gamma}_{g.n})/\overline{\Gamma}_{g.n}$

does not depend on $(C, S)$ and is determined only by $g,$ $n$ and 1. And he has
proposed to investigate the groups $N(\overline{\Gamma}_{g,n})$ and $N(\overline{\Gamma}_{g.n})/\overline{\Gamma}_{g,n}$ . Since we have
little knowledge about these groups, to establish some basic properties of $\overline{\Gamma}_{g,n}$

seems to be useful in further investigations.
The organization of this paper is as follows. In \S 1, we shall give some

preparations for the proof of main results. The aim of \S 2 is to establish some
basic properties of the homomorphisms $d_{*}$ and $P*\cdot$ \S 3 is devoted to the proof
of $’\Gamma heoren$ A. In \S 4, we first summarize some known facts about the pro-l
fundamental groups and the pro-l mapping class groups. Then the proof of
Theorem $B$ is given. In the last section, we shall summarize some open problems
and discuss them.

The author wishes to express his sincere gratitude to Professor Takayuki
Oda for drawing his attension to the subject treated in this paper. He is also
very grateful to Professor K. Hashimoto and Doctor H. Nakamura for belpful
communications and stimulating discussions.

\S 1. Preliminaries for the proof of results.

1-1. Weight filtration of the fundamental group and its associated
graded Lie algebra.

In this subsection, we shall recall the weight filtration of the topological
fundamental group of a punctured Riemann surface introduced by T. Oda and
summarize some basic properties of its associated graded Lie algebra. (Cf.

Asada-Matsumoto-Oda [AMO], Kaneko [K].)

Let $\pi_{g,n}$ denote the group defined by the following generators and a defining
relation:

generators: $\chi_{1}\ldots$ $x_{2g},$ $z_{1},$
$\cdots$ , $z_{n}$

relation : $[x_{1}, x_{g+1}]\ldots[x_{g}, x_{2g}]z_{1}\cdots z_{n}=1$ .
ere the bracket $[, ]$ denotes the commutator; $[a, b]=aba^{-1}b^{-1}$ .

The weight filtration $\{\pi_{g.n}(m)\}_{m=1}^{\infty}$ of $\pi_{g.n}$ is defined as follows:

$\pi_{g,n}(1)=\pi_{g,n}$

$\pi_{g.n}(2)=\langle[\pi_{g.n\prime}\pi_{g.n}], z_{1}, \cdots, z_{n}\rangle_{norma1}$

$\pi_{g.n}(m)=\langle[\pi_{g.n}(m_{1}), \pi_{g,n}(m_{2})]|m_{1}+m_{2}=m\rangle_{norma1}$ $(m\geqq 3)$ .
Here $\langle$ $\rangle_{norma1}$ denotes the smallest normal subgroup of $\pi_{g,n}$ containing all
elements inside.

Then, $\{\pi_{g.n}(m)\}_{m=1}^{\infty}$ is a decreasing sequence of normal subgroups of $\pi_{g.n}$ .
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Moreover, it is a central filtration, i. e.,

$[\pi_{g.n}(m), \pi_{g.n}(m’)]\subset\pi_{g,n}(m+m’)$

holds for all $m,$ $m’\geqq 1$ .

REMARK. We note that in the case of $n=0$ and 1, the weight filtration
coincides with the (usual) lower central filtration. But in the case of $n\geqq 2$ ,

they are different and should be distinguished.

AS is well known, the graded module

$gr(\pi_{g,n})=\bigoplus_{m=1}^{\infty}gr^{m}(\pi_{g,n})$ $(gr^{m}(\pi_{g.n})=\pi_{g.n}(m)/\pi_{g.n}(m+1))$

has a structure of a graded Lie algebra, the Lie bracket being naturally induced
by the commutator (cf. $e$ . $g.$ , Bourbaki [Bo, Ch. 2]). By theorems of Witt [W]

and Labute [La], the generators and a defining relation of the Lie algebra
$gr(\pi_{g,n})$ are given as follows:

generators: $X_{1},$ $\cdots$ , $X_{2g},$ $Z_{1},$ $\cdots$ , $Z_{n}$

relation : $\sum_{i=1}^{g}[X_{i}, X_{g+i}]+\sum_{j=1}^{n}Z_{j}=0$ ,

where $X_{i}=x_{i}mod \pi_{g.n}(2)(1\leqq i\leqq 2g)$ and $Z_{j}=z_{j}mod \pi_{g.n}(3)(1\leqq j\leqq n)$ .
The basic facts we shall use throughout this paper about the Lie algebra

$gr(\pi_{g,n})$ is summarized as the following

THEOREM 1 (Witt [W], Labute [La]). (i) As a $Z$-module, $gr(\pi_{g,n})$ is free.
(ii) The Lie algebra $gr(\pi_{g.n})$ has tnvial center.
(iii) The Lie algebra $gr(\pi_{g,n})\bigotimes_{Z}F_{p}$ has tnmal center for all pmme number $p$ .

For the proof of (ii) and (iii) in the case of $n=0$ , cf. Asada [As]. See also
Bass-Lubotzky [BL].

1-2. Induced filtration of the mapping class group.
In this subsection, we shall start with an algebraic definition of the pure

mapping class group and recall its filtration induced from the weight filtration
of the fundamental group.

Let us denote tbe automorphism group of $\pi_{g,n}$ by $Aut(\pi_{g.n})$ and put

$Aut_{\{z_{i^{I}i}}(\pi_{g.n})=\{\sigma\in Aut(\pi_{g.n})|\sigma(z_{j})\sim z_{j}\forall_{J\}}$

where $\sim$ denotes the conjugacy in $\pi_{g.n}$ . Then, $Aut_{tz_{i^{\}}i}}(\pi_{g,n})$ is a subgroup of
$Aut(\pi_{g,n})$ , stabilizes the filrration $\{\pi_{g.n}(m)\}_{m\geqq 1}$ , and contains the inner auto-
morphism group Int$(\pi_{g.n})$ of $\pi_{g,n}$ .

Assume that $g\geqq 1$ . Then, the group $Aut_{\{z_{i^{I}i}}(\pi_{g.n})$ acts naturally on $gr^{1}(\pi_{g,n})$ ,

which is a free $Z$-module of rank $2g$ with a basis $\{x_{i}mod \pi_{g.n}(2)\}_{lgi\leqq 2g}$ . This
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gives a representation

$\rho:Aut_{iz_{i^{\}}t}}(\pi_{g.n})arrow GL(2g;Z)$ ,
$\sigma-(\rho_{ij})$

where $\sigma(x_{i})=\Pi_{k=1}^{2g}x_{k^{ki}}^{\rho}mod \pi_{g.n}(2)$ . Then, it can be verified that the image of
$\rho$ is contained in the group

$GSp(2g;Z)=\{A\in GL(2g;Z)|{}^{t}AJ_{g}A=\chi(A)J_{g}, \chi(A)=\pm 1\}$ ,

with $J_{g}=(_{1_{g}0^{g}}^{0-1})$ .
We define the group $\tilde{\Gamma}_{g.n}$ by

$\tilde{\Gamma}_{g,n}=\{\sigma\in Aut_{\{z_{i}\}_{i}}(\pi_{g.\eta})|\chi(\rho(\sigma))=1\}$

$=\{\sigma\in Aut(\pi_{g,n})|\sigma(z_{j})\sim z_{j}\forall_{j}\chi(\rho(\sigma))=1\}$ .

(If $g=0$ , the condition that $\chi(\rho(\sigma))=1$ is empty.) The quotient group of $\tilde{\Gamma}_{g,n}$

by Int $(\pi_{g,n})$ is denoted by $\Gamma_{g.n}$ ;

$\Gamma_{g,n}=\tilde{\Gamma}_{g.n}/Int(\pi_{g.n})$ ,

and is called the pure mapping class group of $R_{g,n}$ .
NOW, for each non-negative integer $m$ , set

$\tilde{\Gamma}_{g,n}[m]=\{\sigma\in\tilde{\Gamma}_{g}n|x_{i}^{\sigma}x_{i}^{-1}\in\pi_{g,n}(m+1)\forall_{i}\nearrow j$

hf $z_{j}\forall_{j\}}$

Here,
$\sim m$ denotes conjugacy by an element of $\pi_{g,n}(m)$ . Then, $\{l_{g}^{\sim_{7}}n[m]Im_{=}^{-}0$

gives a decreasing sequence of normal subgroups of $\tilde{\Gamma}_{g.n}$ ;

$\tilde{\Gamma}_{g.n}=\tilde{\Gamma}_{g,n}[0]\supset\tilde{\Gamma}_{g.n}[1]\supset\cdots\supset\tilde{\Gamma}_{g.n}[m]\supset\tilde{\Gamma}_{g.n}[m+1]\supset\cdots$

If $g=0$ , $\tilde{\Gamma}_{g.n}=\tilde{\Gamma}_{g.n}[1]$ . If $g\geqq 1$ , $\tilde{\Gamma}_{g.n}[1]$ is nothing but the kernel of $\rho$ .
According to a classical result of Nielsen (cf. $e$ . $g.$ , Magnus-Karrass-Solitar
[MKS, \S 3.7] $)$ , we have the following

THEOREM 2. The representation $\rho$ induces an isomorPhism
$\tilde{\Gamma}_{g,n}[0]/\tilde{\Gamma}_{g,n}[1]\cong Sp(2g;Z)$ .

REMARK. The original Nielsen’s result is the cases that $n=0$ and $n=1$ .
The case that $n\geqq 2$ is easily reduced to the case that $n=1$ by using the
forgetful homomorphism $\tilde{\Gamma}_{g,n}arrow\tilde{\Gamma}_{g.1}$ , which is surjective (cf. \S 3-1).

The following proposition is basic.

PROPOSITION 1. We have

$[\tilde{\Gamma}_{g,n}[m],\tilde{\Gamma}_{g.n}[m’]]\subset\tilde{\Gamma}_{g.n}[m+m’]$ for all $m,$ $m’$ ) $0$ .
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In particular, $\Gamma\sim_{g,n}[m]$ is a normal subgroup of $\tilde{\Gamma}$ ,, $n(m\geqq 0)$ and
$\Gamma\sim_{g,n}[m]/\sim\Gamma_{g.n}[m+1]$ is an abelian group if $m\geqq 1$ .

For the proof, see $e$ . $g.,$ $[K]$ (in the context of pro-l groups) or [Bo, Ch. 2,
Exercises \S 4.3] in a more general setting.

The filtration $\{\tilde{\Gamma}_{g.n}[m]\}_{m\geq 0}$ of $\tilde{\Gamma}_{g.n}$ naturally induces a filtration of $\Gamma_{g,n}$ ,

namely, we put

$\Gamma_{g.n}[m]=\tilde{\Gamma}_{g.n}[m]Int(\pi_{g,n})/Int(\pi_{g.n})$ $(m\geqq 0)$ .
By Proposition 1, $\{\Gamma_{g,n}[m]\}_{m\geq 0}$ is a decreasing sequence of subgroups of $\Gamma_{g,n}$

and satisfies the same properties stated in Proposition 1 for $\{\tilde{\Gamma}_{g.n}[m]\}_{m\geq 0}$ .
We note that, since $\{\tilde{\Gamma}_{g,n}[m]\}_{\tau n\geq 1}$ (resp. $\{\Gamma_{g,n}[m]\}_{m\geqq 1}$ ) is a central filtration

of $\tilde{\Gamma}_{g,n}[1]$ (resp. $\Gamma_{g,n}[1]$ ), the associated graded modules

$gr(\tilde{\Gamma}_{g.n}[1])=\bigoplus_{m=1}^{\infty}gr^{m}(\tilde{\Gamma}_{g,n})$ $(gr^{m}(\tilde{\Gamma}_{g,n})=\tilde{\Gamma}_{g,n}[m]/\tilde{\Gamma}_{g.n}[m+1])$

$gr(\Gamma_{g,n}[1])=\bigoplus_{m=1}^{\infty}gr^{m}(\Gamma_{g.n})$ $(gr^{m}(\Gamma_{g,n})=\Gamma_{g,n}[m]/\Gamma_{g,n}[m+1])$

have a natural structure of a graded Lie algebra. Moreover, in the case that
$g\geqq 1$ , the conjugate action of $\tilde{\Gamma}_{g.n}$ (resp. $\Gamma_{g.n}$ ) on $gr^{m}(\tilde{\Gamma}_{g.n})$ (resp. $gr^{m}$ ( $\Gamma_{g}$

, .))

factors through $\tilde{\Gamma}_{g.n}/\tilde{\Gamma}_{g.n}[1]$ (resp. $\Gamma_{g,n}/\Gamma_{g,n}[1]$ ). Hence $gr^{m}(\tilde{\Gamma}_{g.n})$ and
$gr^{m}(\Gamma_{g.n})$ are naturally $Sp(2g;Z)$-modules. For the structure of modules
$gr^{\tau n}(\Gamma_{g.n})\bigotimes_{Z}Q(1\leqq m\leqq 3)$ , see Asada-Nakamura [AN].

For the intersection of the filtration $\{\Gamma_{g,n}[m]\}_{m\geqq 0}$ , we have the following

PROPOSITION 2. $\bigcap_{m=1}^{\infty}\Gamma_{g,n}[m]=\{1\}$ if $(g, n)\neq(2,0)$ .

For the proof, cf. [BL, \S 11]. Whether Proposition 2 holds also in the case of
$(g, n)=(2,0)$ seems to be unknown.

We shall see in the next section that $gr^{m}(\Gamma_{g.n})$ is a free $Z$-module of finite
rank (Proposition Bl). Combining this with Proposition 2, we conclude that, if
$(g, n)\neq(2,0)$ , the group $\Gamma_{g.n}[1]$ is torsion-free. But this is well known for all
$(g, n)$ (cf. Serre $[Se_{1}]$ ).

1-3. Coordinate module and its submodules.
TO describe the module $gr^{m}(\Gamma_{g.n})(m\geqq 1)$ , let us recall the coordinate module

and its submodules (cf. Nakamura-Tsunogai [NT]).
First, the coordinate module $C_{m}(2g, n)$ (mlllll) is defined by

$C_{m}(2g, n)=\{$

$(gr^{m+1}(\pi_{g,n}))^{\oplus 2g}\oplus(gr^{m}(\pi_{g.n}))^{\oplus n}$ $m\neq 2$

$( gr^{m+1}(\pi_{g.n}))^{\oplus 2g}\oplus\bigoplus_{j=1}^{n}(gr^{m}(\pi_{g,n})/Z\overline{z}_{j})$ $m=2$ .

Here $-$ denotes the image in the quotient.
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Secondly, let $f_{m}$ denote the following $Z$-llnear homomorphism

$F_{m}$ : $C_{m}(2g, n)arrow gr^{m+2}(\pi_{g.n})$

$(S_{i}) \cross(T_{j})arrow\sum_{\mathfrak{i}=1}^{g}([x_{i}, S_{g+i}]+[S_{i}, x_{g+i}])+\sum_{j=1}^{n}[T_{j}, z_{j}]$

and denote the kernel of $\tilde{f}_{m}$ by $M_{m}(2g, n)$ .
Thirdly, we define the mapping

$c_{m}(2g, n):\tilde{\Gamma}_{g.n}[m]arrow C_{m}(2g, n)$

as follows. For $\sigma\in\tilde{\Gamma}$ ,, $n[m]$ , put $s_{i}(\sigma)=\sigma(x_{i})x_{i}^{-1}(1\leqq i\leqq g)$, and let $t_{j}$ be an
element of $\pi,,$ $n(m)$ such that $\sigma(z_{j})=t_{j}z_{j}t_{j}^{-1}(1\leqq j\leqq n)$ . Since the centralizer of
$z_{j}$ in $\pi_{g.\hslash}$ is the infinite cyclic group generated by $z_{j},$ $t_{j}$ is uniquely determined
if $m\neq 2$ and $\overline{t}_{j}mod Z\overline{z}_{j}$ is uniquely determined if $m=2$ . We define

$c_{m}(2g, n)(\sigma)=(\overline{s_{i}(\sigma}))_{1\leq t_{=}^{r}2g}\cross(\overline{t}_{j})_{1\leq J\leqq n}$ .

Since we have $s_{i}(\sigma\tau)=\sigma(s_{t}(\tau))s_{i}(\sigma)(\sigma, \tau\in I_{g.n}^{\sim}[m])$ and $\tilde{\Gamma}_{g.n}[m]$ acts trivially
on $gr^{m+1}(\pi_{g.n}),$ $c_{m}(2g, n)$ induces an injective homomorphism

$\sim c_{m}(2g, n):gr^{m}(\tilde{\Gamma}_{g.n})arrow C_{m}(2g, n)$ .

We denote the image of $\sim c_{m}(2g, n)$ by $N_{m}(2g, n)$ .
The following lemma is basic. See e. g., [K] (in the context of pro-l

groups), Morita $[M_{1}]$ (in the case of $n=1$ ).

LEMMA 1. $M_{m}(2g, n)\supset N_{m}(2g, n)$ .
Let $g_{m}(2g, n)$ denote the following $Z$-linear homomorphism

$g_{m}(2g, n):gr^{m}(\pi_{g.n})arrow C_{m}(2g, n)$

$\overline{t}arrow([\overline{t,x_{i}]})_{1\leq ig2g}\cross(\overline{t}_{j})_{1\leq jsn-1}$

and denote the image of $g_{m}(2g, n)$ by $I_{m}(2g, n)$ .
The module $I_{m}(2g, n)$ is contained in $N_{m}(2g, n)$ . In fact, for each $t\in\pi_{g,n}(m)$ ,

we have
$\sim c_{m}(2g, n)(Int(t)mod \tilde{\Gamma}_{g.n}[m+1])=g_{\tau n}(2g, n)(\overline{t})$ .

Here, Int$(t)$ is the inner automorphism of $\pi_{g.n}$ induced from conjugation by $t$ ;
Int$(l)(x)=txt^{-1}(x\in\pi_{g.n})$ , which belongs to $\tilde{\Gamma}_{g.n}[m]$ .

LEMMA 2. The $Z$-module $C_{m}(2g, n)/I_{m}(2g, n)$ is free.
PROOF. By Theorem 1 (ii), $g_{m}(2g, n)_{\otimes^{F_{p}}}$ is injective for all prime number

$p$ . Since $gr^{m}(\pi_{g,n})$ and $C_{m}(2g, n)$ are both free $Z$-modules of finite rank, by
the theory of elementary divisors, it follows that $C_{m}(2g, n)/I_{m}(2g, n)$ is free.
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PROPOSITION Bl. The group $gr^{m}(\Gamma_{g.n})$ is a free $Z$-module of finite rank
for $m\geqq 1$ .

In the case of $n=0$ , this is proved in [As] (cf. also [BL]). In the case of
$n\geqq 1$ , in the pro-l context, corresponding result is proved in [K] (cf. also
[NT] $)$ . Although the discrete case can be treated almost in the same way, we
shall give a proof for the sake of completeness.

PROOF. For each positive integer $m$ , set

Int. $g,$
$n(\pi_{g,n}(m))=$ { $\sigma\in Int(\pi_{g.n})|\sigma=Int(t)$ with $t\in\pi_{g.n}(m)$ }.

Let us consider the following homomorphism;

$Int_{m}$ : $gr^{m}(\pi_{g,n})arrow Int_{\pi_{g.n}}(\pi_{g.n}(m))/Int_{\pi_{g.n}}(\pi_{g.n}(m+1))$

$\overline{t}arrow the$ class of Int $(t)$ .
Then, by Theorem 1 (ii), it follows that $Int_{m}$ is an isomorphism and

(1.3.1) $\tilde{\Gamma}_{g,n}[m]\cap Int(\pi_{g,n})=Int_{n_{g.n}}(\pi_{g.n}(m))$ for all $m\geqq 1$ .

(See [As, Lemma 4].) Hence, we have the following commutative diagram;

$0arrow Int_{\pi_{g}}n(\pi_{g.n}(m))/Int_{\pi_{g,n}}(\pi_{g.n}(m+1))arrow gr^{m}(\tilde{\Gamma}_{g.n})arrow gr^{m}(\Gamma_{g}n)arrow 0$

$Int_{m}\uparrow$

$g_{m}(2g, n)$
$\downarrow\sim c_{m}(2g, n)$

(exact)

$gr^{m}(\pi_{g,n})--$ $C_{m}(2g, n)$ .
Thus, $\sim c_{n\iota}(2g, n)$ induces an injective homomorphism

$\iota_{m}(2g, n):gr^{m}(\Gamma_{g.n})arrow C_{m}(2g, n)/I_{m}(2g, n)$ .

The proposition follows from Lemma 2.

REMARK 1. By (1.3.1), we have an exact sequence

(1.3.2) $1arrow Int_{\pi_{g,n}}(\pi_{g,n}(m))arrow\tilde{\Gamma}_{g}n[m]arrow\Gamma_{g.n}[m]-1$ .

REMARK 2. It seems to be a difficult problem to determine the image of
the homomorphism $c_{m}(2g, n)$ . In the case of $m=1$ (and $n=0$ or 1), it is deter-
mined by Johnson [J]. (Using this, we shall determine the image of $c_{m}(2g, n)$

for all $n\geqq 0$ in \S 3-1.) The case of $m=2$ has been treated by Morita $[M_{1}]$ and
he gives a new restriction on the image of $\iota_{m}(2g, 1)$ for odd $m$ in Morita [M2].

In particular, it gives an upper bound for the rank of $gr^{m}(\Gamma_{g.1})$ . By using his
result, the case of $m=3$ has been treated in [AN]. Recently, a lower bound
for the rank of $gr^{m}(\Gamma_{g.0})$ has also been obtained by Oda $[O_{2}]$ .
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\S 2. Forgetful homomorphism.

2-1. Forgetful homomorphism.
Let $\pi_{g}n$ and $\pi_{g,n-1}$ be the group defined by the following generators and

relations:

$\pi_{g,n}$ $\{$

generators: $x_{1},$
$\cdots$ , $x_{2g},$ $z_{1},$ $\cdots,$ $z_{n}$

relation : $[x_{1}, x_{g+1}]\cdots[x_{g}, x_{2g}]z_{1}\cdots z_{n}=1$

$\pi_{g.n-1}$ $\{$

generators: $\xi_{1},$ $\cdots$ , $\xi_{2g},$ $\zeta_{1},$
$\cdots,$

$\zeta_{n-1}$

relation : $[\xi_{1}, \xi_{g+1}]\ldots[\xi_{g}, \xi_{2g}]\zeta_{1}\cdots\zeta_{n-1}=1$ .
Then, there exists uniquely a homomorphism

$p:\pi,,$ $narrow\pi_{g.n-1}$

satisfying
$p(x_{t})=\xi_{i}$ $(1\leqq i\leqq 2g)$ ,

$p(z_{j})=\zeta_{j}$ $(1\leqq j\leqq n-1)$ ,

$p(z_{n})=1$ .
Obviously, $P$ is surjective and it follows easily that $p$ preserves the weight
filtrations, $i$ . $e.,$ $p(\pi_{g.n}(m))\subset\pi_{g.n-1}(m)(m\geqq 1)$ . Since an element of $\Gamma\sim_{g,n}$ preserves
the conjugacy class determined by $z_{n},$ $p$ induces homomorphisms

$\tilde{p}_{*}:$ $\tilde{\Gamma}_{g.n}arrow\tilde{\Gamma}_{g.n-1}$ ,

$p_{*}:$ $\Gamma_{g.n}arrow\Gamma_{g.n-1}$ .
It is well known that $p_{*}$ is surjective. In the case of $n\geqq 2$, this can be

proved rather easily. In fact, we shall prove a more precise result in \S 3-1.
In the case of $n=1$ , this is obtained by Nielsen. (Cf. $e$ . $g.$ , [MKS, \S 3.7 Theorem
N10].)

NOW, by a result of Birman $[Bi_{1}, \S 3]$ , the kernel of $p_{*}$ is isomorpbic to
$\pi_{g,n-1}$ ;

$d_{*}$ $p_{*}$

$1arrow\pi_{g,n-1}arrow\Gamma_{g.n}arrow\Gamma_{g.n-1}arrow 1$ (exact),

and tbe homomorphism $d_{*}$ is described explicitly as we shall explain below.
Let us choose a base point of $R,.n$ sufficiently close to the n-th puncture

and let the generators $\chi_{1}\cdots$ , $x_{zg},$ $z_{1},$
$\cdots$ , $z_{n}$ be represented by the simple closed

curves in Figure 1. Let $U_{i}$ be a cylindrical neighborhood of $x_{i}$ containing the
n-th puncture. The boundary of $U_{i}$ consists of two simple closed curves $c_{0}^{(i)}$

and $c_{1}^{(i)}$ . Then, $d_{*}(\xi_{i})$ is the product of a pair of Dehn twists, in opposite
directions, about these curves. The case of $\zeta_{j}$ is described in the same way,
although one of the Dehn twists is trivial.
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Figure 1.

Easy calculations show that these Dehn twists are represented by the
following automorphisms of $\pi,.n$ :

$\sigma_{0}^{(i)}$ $(1\leqq i\leqq g)$

$x_{g+?}arrow x_{g+i}x_{i}^{-1}$

$\sigma_{1}^{(i)}$ $(1\leqq i\leqq g)$

$X_{\iota}arrow(z_{n}x_{t})x_{i}(z_{n}x_{l})^{-1}$

$x_{g+i}arrow x_{g+i}(z_{n}x_{i})^{-1}$

$z_{n}arrow(z_{n}x_{i})z_{n}(z_{n}x_{i})^{-1}$

$x_{j}arrow[z_{n}, x_{i}]x_{j}[z_{n}, x_{i}]^{-1}$ $(1 \leqq j\leqq i-1, g+1\leqq j\leqq g+i-1)$

$\sigma_{0}^{(i)}$ $(g+1\leqq i\leqq 2g)$

$X_{i}arrow X_{i}X_{g+i}$

$\sigma_{1}^{(i)}$ $(g+1\leqq i\leqq 2g)$

$x_{i}arrow[z_{n}, x_{g+i}^{-1}]x_{i}(z_{n}x_{g+i}^{-1})^{-1}$

$x_{g+i}arrow(z_{n}x_{g+\ell}^{-1})x_{g+i}(z_{n}x_{g+i}^{-1})^{-1}$

$z_{n}arrow(z_{n}x_{g+i}^{-1})z_{n}(z_{n}x_{g+i}^{-1})^{-1}$

$x_{j}arrow[z_{n}, x_{g+i}^{-1}]x_{j}[z_{n}, x_{+i}^{-1}]^{-1}$ $(1 \leqq j\leqq i-1, g+1\leqq j\leqq g+i-1)$

$\tau^{(i)}$ $(1\leqq i\leqq n-1)$

$x_{j}arrow[z_{n}, z_{i}]x_{j}[z_{n}, z_{i}]^{-1}$ $(1\leqq_{J}\leqq 2g)$
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$z_{j}arrow[z_{n}, z_{i}]z_{j}[z_{n}, z_{i}]^{-1}$ $(1\leqq j\leqq i-1)$

$z_{i}arrow(z_{n}z_{i})z_{i}(z_{n}z_{i})^{-1}$

$z_{n}-(z_{n}z_{i})z_{n}(z_{n}z_{i})^{-1}$

(The generators not written explicitly above should be regarded as being fixed.)

Thus, we can summarize a result of Birman as the following

THEOREM 3 (Birman $[Bi_{1}$ , \S 3]). For suitably chosen generators $\xi_{1},$ $\cdots$ , $\xi_{8},$ ,
$\zeta_{1},$ $\cdots$ , $\zeta_{n-1}$ of $\pi,.n-1$ ’ the homomorphism $d_{*}$ satisfies

$d_{*}(\xi_{i})=\sigma_{1}^{(i)}(\sigma_{0}^{(i)})^{-1}$ mod Int$(\pi,.n)$ $(1 \leqq i\leqq 2g)$ ,

$d_{*}(\zeta_{j})=\tau^{(!)}$ mod Int $(\pi_{g,n})$ $(1 \leqq j\leqq n-1)$ .

COROLLARY. $d_{*}(\pi,.n-1)\subset\Gamma_{g.n}[1]$ .
PROPOSITION 3. The homomorphisms $d_{*}$ and $p_{*}$ preserve the filtrations and

the associated Lie algebra homomorphisms

$gr(d_{*}):gr(\pi_{g.n-1})arrow gr(\Gamma_{g.n}[1])$

$gr(p_{*}):gr(\Gamma_{g.n}[1])arrow gr(\Gamma_{g,n-1}[1])$

are $Sp(2g;Z)$-equivariant (in the case that $g\geqq 1$ ).

PROOF. That the homomorphism $p_{*}$ preserves the filtrations and $gr(p_{*})$ is
$Sp(2g;Z)$-equivariant follows immediately from the definition.

Let us show that $d_{*}$ preserves the filtrations. By Corollary to Theorem 3,
$d_{*}(\pi_{g.n-1})\subset\Gamma_{g.n}[1]$ holds. If we can show that

(2.1.1) $d_{*}(\pi_{g,n-1}(2))c\Gamma,.n[2]$ ,

then, by using Proposition 1, $d_{*}(\pi_{g,n-1}(m))\subset\Gamma_{g.n}[m]$ follows by induction on
$m$ . TO show (2.1.1), it suffices to verify that $d_{*}(\zeta_{j})=\tau^{(j)}(1\leqq j\leqq n-1)$ belongs
to $\Gamma_{g,n}[2]$ . But this is obvious.

TO see that $gr(d_{*})$ is $Sp(2g;Z)$-equivariant, we first note that

$gr(d_{*})(A\overline{\xi}_{i})=Agr(d_{*})(\overline{\xi}_{i})$ $(1 \leqq i\leqq 2g)$

$gr(d_{*})(A\overline{\zeta}_{j})=Agr(d_{*})(\overline{\zeta}_{j})$ $(1 \leqq j\leqq n-1)$

holds for all $A\in Sp(2g;Z)$ . Here, $\overline{\xi}_{i}=\xi_{i}mod \pi_{g.n-1}(2)$ and $\overline{\zeta}_{j}=\zeta_{Jn-1}mod \pi,.(2)$ .
This follows from Theorem 3 and the well known fact that if $c$ is a simple
closed curve on $R_{g.n}$ and $D_{c}$ is the Dehn twist about $c,$ $\rho D_{c}\rho^{-1}=D_{\rho^{(c)}}$ holds
for all $\rho\in\Gamma_{g,n}$ . Now, set

$L=\{W\in gr(\pi_{g,n-1})|gr(d_{*})(AW)=Agr(d_{*})(W)\forall_{A}\in Sp(2g;Z)\}$ .
Then $L$ is a Lie subalgebra of $gr(\pi_{g.n-1})$ and contains its generators $\overline{\hat{\sigma}}_{i}(1\leqq i\leqq 2g)$
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and $\overline{\zeta}_{j}(1\leqq j\leqq n-1)$ . Hence $L=gr$( $\pi,.$ n-l), which shows the $Sp(2g; Z)$-equivari-
ance of $gr(d_{*})$ .

2-2. A lemma.
In this section, we assume that $g\geqq 1$ . We shall prove a lemma which

determines the image of the homomorphism

$c_{1}(2g, n)\circ gr^{1}(d_{*}):gr^{1}(\pi,.n-1)arrow C_{1}(2g, n)/I_{1}(2g, n)$ .

This will be used to give a mild generalization of a result of Johnson in the
next section.

The homomorphism $p$ induces naturally a homomorphism from the coordinate
module $C_{m}(2g, n)$ to $C_{m}(2g, n-1)$ for each $m\geqq 1$ , the last component of $C_{m}(2g, n)$

being forgotten. This induces a homomorphism

$p_{m}$ : $M_{m}(2g, n)arrow M_{m}(2g, n-1)$ .
Let $K_{m}(2g, n)$ denote the kernel of $p_{m}$ and consider the case $m=1$ . Then we
have the following commutative diagram:

$gr^{1}$ ( $\pi,.$ n-l) $gr^{1}(\Gamma,, n)gr^{1}(\Gamma_{g,\mathcal{R}-1})$

$\underline{gr^{1}(d_{*})}\underline{gr^{1}(p_{*})}$

$\overline{K_{1}(2g,n)}-f_{1}(2c_{1}(2g\frac{g,n)\downarrow}{M_{1}(2g,n)}\underline{\overline{p}_{1_{\frac{n-1)\downarrow}{M_{1}(2g,n-1)}}}}$

.
Here, $-$ denotes the image in $C_{1}(2g, n)/I_{1}(2g, n)$ and the image of $c_{1}(2g, n)\circ gr^{1}(d_{*})$

is contained in $\overline{K_{1}(2g,n)}$ .

LEMMA 3. The image of $c_{1}(2g, n)\circ gr^{1}(d_{*})$ coincides with $K_{1}(2g, n)$ .

For the proof, we need the following sublemma whose proof is an easy exercise.

SUBLEMMA. The $Z$-module $K_{1}(2g, n)$ is free of rank $2g$ with a basis

$(-z_{n},$ $0$ , $\cdot$ .................... , $0)\cross(0, \cdots 0, -x_{g+1})=v_{1}$

$(0,$ $-z_{n},$ $0$ , $\cdot$ ................. , $0)\cross(0, \cdots, 0, -x_{g+2})=v_{2}$

:
$(0, \cdots 0, -z_{n}, 0, \cdots\cdots\cdots 0)\cross(0, \cdots 0, -x_{2g})=v_{g}$

$(0, \cdots\cdots\cdots, 0, -z_{n}, 0, \cdot .. , 0)\cross(0, \cdots, 0, -x_{1})=v,+1$

:.
$(0$ , $\cdot$ .................... , $0,$ $-z_{n})\cross(0, \cdots 0, -x_{g})=v_{2},$ .

PROOF OF LEMMA 3. By Theorem 3, the image of $c_{1}(2g, n)ogr^{1}(d_{*})$ is
generated by the classes of $c_{1}(2g, n)(\sigma_{1}^{(i)}\{\sigma_{0}^{(i)}\}^{-1})(1\leqq i\leqq 2g)$ . Easy calculations
show that
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$c_{1}(2g, n)(\sigma_{1}^{(i)}\{\sigma_{0}^{(i)}\})^{-1}=\{$

$v_{g+i}$ $(1\leqq i\leqq g)$

$v_{i}$ $(g+1\leqq i\leqq 2g)$

which proves the lemma.

COROLLARY. The homomorphism $gr^{1}(d_{*})$ is injective.

PROOF. By Sublemma, we have $K_{1}(2g, n)\cap I_{1}(2g, n)=\{0\}$ . Hence the Z-
modules $K_{1}(2g, n)$ and $gr^{1}$ ( $\pi,,$ n-l) are both free of rank $2g$ . Since $c_{1}(2g, n)$ is
injective (Proof of Proposition Bl), the corollary follows.

\S 3. Proof of Theorem A.

3-1. Surjectivity of $p_{*}$ .
PROPOSITION Al. For each $m\geqq 0$ , the homomorphis $m$

$\tilde{p}_{*}|_{\Gamma_{g.n^{[m]}}}$ : $\tilde{\Gamma}_{g,n}[m]arrow\tilde{\Gamma}_{g.n-1}[m]$

is $sur_{J}$ ective if $n_{=}2$ .

PROOF. We first define a section $s$ of the homomorphism $p$ . Since $\pi_{g,n-1}$ is
a free group on $\xi_{1}$ , , $\xi_{2g},$ $\zeta_{1}$ , , , $\zeta_{n-2}$ , there exists uniquely a homomorphism

$s:\pi_{g,n-1}arrow\pi_{g.n}$

satisfying
$s(\xi_{i})=x_{t}$ $(1\leqq i\leqq 2g)$

$s(\zeta_{j})=z_{j}$ $(1\leqq j\leqq n-2)$ .
Then, $s(\zeta_{n-1})=z_{n-1}z_{n}$ and $s$ is a section of $p$ . Moreover, $s$ preserves the filtra-
tions, $i$ . $e.,$ $s(\pi_{g}, .-1(m))\subset\pi$ ,, $n(m)$ . We regard $\pi_{g.n-1}\subset\pi_{g,n}$ via $s$ .

Let $\sigma$ be an element of $\tilde{\Gamma}_{g.n-1}[m]$ such that

$\sigma(\zeta_{j})=t_{j}\zeta_{j}t_{j}^{-1}$ $(1\leqq j\leqq n-1)$ .

Since $\pi_{g}n$ is a free group on $x_{1}$ , , $x_{zg},$ $z_{1}$ , , $z_{n-1}$ , there exists uniquely a
bomomorphism

$\tilde{\sigma}$ : $\pi_{g.n}arrow\pi_{g.n}$

satisfying
$\tilde{\sigma}(x_{i})=\sigma(x_{i})$ $(1\leqq i\leqq 2g)$

$\tilde{\sigma}(z_{j})=t_{j}z_{j}t_{j}^{-1}$ $(1\leqq j\leqq n-1)$ .

Then, $\tilde{\sigma}$ is an automorphism of $\pi_{g,n}$ . In fact, since $\sigma$ is surjective, the image
of $\tilde{\sigma}$ contains $x_{1},$ $\cdots,$ $x_{2g},$ $Z_{1},$

$\cdot$ . , $z_{n- 2}$ . As $\tilde{\sigma}(\sigma^{-1}(t_{n-1}^{-1})z_{n-1}\sigma^{-1}(t_{n-1}))=z_{n-1}$ , the
image of a contains $z_{n-1}$ . Hence, $\tilde{\sigma}$ is surjective. Since $\pi_{g.n}$ is a free group,

$\tilde{\sigma}$ is bijective.
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Easy calculations show that $\tilde{\sigma}(z_{n})=t_{n-1}z_{n}t_{n-1}^{-1}$ . Hence, $\tilde{\sigma}$ belongs to $\tilde{\Gamma}_{g.n}$ .
Since $\pi_{g.n-1}(m)\subset\pi_{g.n}(m),\tilde{\sigma}$ belongs to $\tilde{\Gamma}_{g.n}[m]$ . Obviously, $\tilde{p}_{*}(\tilde{\sigma})=\sigma$ . Hence,
the proof is completed.

COROLLARY. For each $m\geqq 0$ , the homomorphism

$p_{*}|_{\Gamma_{g.n^{[m]}}}$ : $\Gamma_{g.n}[m]arrow\Gamma,,$ n-l $[m]$

is surjective if $n\geqq 2$ .

Assume that $g\geqq 1$ . By using Proposition Al and a result in \S 2-2, we can
give a mild generalization of a result of Johnson [J], that is, the determination
of the image of $c_{1}(2g, n)$ for all $n\geqq 0$ .

PROPOSITION 4. (i) The complex of $Sp(2g;Z)$-modules

$0arrow gr^{1}(\pi_{g.n- 1})gr^{1}(\Gamma_{g.n})gr^{1}(\Gamma_{g}\underline{gr^{1}(d_{*})}\underline{gr^{1}(p_{*})}n- 1)arrow 0$

is exact for all $n\geqq 1$ .
(ii) The image of $c_{1}(2g, n)$ coincides with $\overline{M_{1}(2g,n)}$ for all $n\geqq 0$ .

PROOF. (i) By Lemma 3 and its corollary, it suffices to show that $gr^{1}(p_{*})$

is surjective. In the case that $n\geqq 2$, this follows from Proposition Al. In the
case that $n=1$ , this is a consequence of a result of Nielsen as follows.

It suffices to show that $\tilde{P}*|_{\tilde{\Gamma}},.1^{[1]}$ : $\tilde{\Gamma}_{g.1}[1]arrow\tilde{\Gamma}_{g.0}[1]$ is surjective. Let $\sigma$ be
an element of $\tilde{\Gamma}_{g,0}[1]$ . By a result of Nielsen (cf. $e$ . $g.$ , [MKS, \S 3.7 Theorem
N10]), there exists $\tilde{\sigma}\in\tilde{\Gamma}_{g.1}$ such that $\tilde{p}_{*}(\tilde{\sigma})=\sigma$ . Since the homomorphism $P$

induces an isomorphism $gr^{1}(\pi_{g,1})\cong gr^{1}(\pi_{g}0)$ and $\sigma$ acts trivially on $gr^{1}(\pi_{g.0})$ , it
follows that $\tilde{\sigma}$ acts trivially on $gr^{1}(\pi,.1)$ , i. e., $\tilde{\sigma}\in\tilde{\Gamma},.1[1]$ . This shows that
$\tilde{P}*|_{\Gamma_{g,1^{[1]}}}^{\sim}$ IS surJectlve.

(ii) We note that in the cases of $n=0$ and 1 this has been proved in [J].

Then this can be proved by induction on $n$ , using (i) and the diagram (2.2.1).

3-2. Injectivity of $gr(d_{*})$ .
PROPOSITION A2. The Lie algebra homomorphism

$gr(d_{*}):gr(\pi_{g,n- 1})arrow gr(\Gamma_{g,n}[1])$ $(n\geqq 1)$

induced from $d_{*}$ is $in_{j}$ ective.

For the proof, we need the following

LEMMA 4 (Ihara). Let $G$ be a group and $N$ be a normal subgroup of $G$ .
Let $\{G_{m}\}_{m=1}^{\infty}$ (resp. $\{N_{m}\}_{m=1}^{\infty}$ ) be a central filtration of $G$ (resp. $N$ ) satisfying
$N_{m}\subset G_{m}$ for all $m\geqq 1$ . Assume that the following $f\iota$ old:
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(i) The centralizer of $gr^{1}(N)$ in $gr(N)$ reduces to $\{0\}$ .
(ii) The conjugate action of $G$ on $N$ stabilizes the filtration $\{N_{m}\}_{m=1}^{\infty}$ and

induces the trivial action on $gr(N)$ .
Then, the canonical Lie algebra homomorphism

$gr(N)arrow gr(G)$

is injective.

This is a slight modification of a lemma of Ihara [I, Lemma 3.1.1]. The above
lemma can be proved completely in the same way.

PROOF OF PROPOSITION A2. Assume that $g\geqq 1$ . Then this can be proved
by applying Lemma 4 to the case of $G=\Gamma,.n$ and $N=d_{*}(\pi,.n-1)$ . The condition
(i) is satisfied by Theorem 1 (ii). Since the homomorphism $\Gamma_{g,n-1}arrow Out(\pi_{g,n-1})$

induced from the conjugate action of $\Gamma,.n$ on $d_{*}(\pi_{g.n=1})$ is nothing but the
inclusion, the condition (ii) is also satisfied. In the case that $g=0$ , noting that
the weight filtration is essentially the lower central filtration, this can be proved
by applying original Ihara’s lemma.

3-3. Proof of Theorem A.
By Corollary to Propositiom Al and Proposition A2, we have an exact

sequence

(3.3.1) $1arrow\pi_{g,n-1}(m)arrow\Gamma_{g.n}[m]arrow\Gamma_{g.n-1}[m]arrow 1$ .
The theorem follows immediately from this.

\S 4. Comparison with the pro-l case.

4-1. Pro-l fundamental groups and pro-l mapping class groups.
Let 1 be a fixed prime number. Let $\pi_{g.n}^{prol}$ denote the pro-l completion of

$\pi_{g,n},$
$i$ . $e.,$ $\pi_{g.n}^{pro- l}=\varliminf\pi_{g.n}/N$, where $N$ runs over all normal subgroups of $\pi_{g,n}$

with indices powers of $l$ . The weight filtration of $\pi_{g.n}^{prol}$ is defined in the same
way as that of $\pi_{g.n}$ . The associated graded module $gr(\pi_{g,n}^{prol})$ has a natural
structure of a Lie algebra over $Z_{\iota}$ . The following proposition is more or less
well known. (Cf. Lubotzky [Lu, 2.6].) We shall give a proof here for the
convenience of the readers.

PROPOSITION 5. The canonical homomorphism $gr(\pi,, n)arrow gr(\pi_{g,n}^{prol})$ induces an
isomorphism

$gr(\pi_{g.n})\bigotimes_{I_{d}}Z_{\iota}\cong gr(\pi_{g.n}^{prol})$ .

PROOF. Fix a positive integer $m$ and consider the nilpotent group $G_{m}$

$=\pi_{g.n}/\pi,.n(m+1)$ . By Theorem 1 (ii), it follows easily that the center of $G_{m}$
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coincides with $\pi_{g.n}(m)/\pi,.n(m+1)$ . (Cf. $e$ . $g.$ , [As, Lemma 4].) Hence, it follows
that the lower central series of $G_{m}$ coincides with the upper central series of
$G_{m}$ . Then, the assertion follows from a result of Warfield [Wa, Theorem 7.4].

We put

$\tilde{\Gamma}_{g.n}^{(l)}=\{\tilde{\sigma}\in Aut(\pi_{g.n}^{prol})|\tilde{\sigma}(z_{j})\sim z_{j}^{\alpha}, \alpha\in Z_{l}^{*}(1\leqq J\leqq n)\}$ ,

$\Gamma_{n}^{(l)}=\tilde{\Gamma}_{g.n}^{(l}/Int(\pi_{g,n}^{prol})$ ,

and call $\Gamma_{n}^{(l)}$ the pro-l mapping class group. The group $\Gamma_{g}\sim(_{n}^{l)}$ is a closed
subgroup of $Aut(\pi_{n}^{prol})$ , which is naturally a profinite group. Hence $\tilde{\Gamma}_{g,n}^{(l)}$ and
its quotient group $\Gamma_{g.n}^{(l)}$ are both profinite groups. The weight filtration of
$\pi_{g.n}^{pro\cdot l}$ induces a filtration $\{\Gamma_{g,n}^{(l)}[m]\}_{m\Rightarrow 1}^{\infty}$ of $\Gamma_{g.n}^{(l)}$ in the same way as the case
of $\pi_{g.n}$ and $\Gamma_{g.n}$ . Then, we have the following

THEOREM 4. (i) Assume that $g\geqq 1$ . Then the natural action of $\Gamma_{g}^{l)}$. on
$gr^{1}(\pi_{g.n}^{prol})$ induces an isomorphism

$\Gamma_{g.n}^{(l)}/\Gamma_{g.n}^{(l)}[1]\cong GSp(2g;Z_{l})$ .

Here, $GSp(2g;Z_{l})=\{A\in GL(2g;Z_{l})|{}^{t}AJ_{g}A=\mu(A)J_{g}, \mu(A)\in Zf\}$ .
(ii) For each $m\geqq 1$ , the image of the homomorphism

$t_{m}^{(l)}(2g, n): gr^{m}(\Gamma_{n}^{(l)})arrow C_{m}(2g, n)\bigotimes_{Z}Z_{l}/I_{m}(2g, n)\bigotimes_{Z}Z_{(}$

$c(nncides$ with $M_{m}(2g, n) \bigotimes_{Z}Z_{l}/I_{m}(2g, n)\bigotimes_{Z}Z_{\iota}$ . Here, $c_{m}^{(l)}(2g, n)$ is defined in the

same way as $c.(2g, n)$ is. In particular, $gr^{m}(\Gamma_{g.n}^{(l)})$ is a free $Z_{l}$ -module of
finite rank $r_{m}$ , where $r_{m}$ can be calculated explicitly by a formula of Labute.

(iii) We have $\bigcap_{m=1}^{\infty}\Gamma_{g.n}^{(l)}[m]=\{0\}$ .
For the proof cf. [As], Asada-Kanedo [AK], and [K]. See also [NT]. In
[AS], the proof of (iii) is given in the case of $n=0$ . The proof in the case of
$n\geqq 1$ can be done completely in the same way.

4-2. The image of $\Gamma_{g,n}$ in $\Gamma_{g.n}^{(l)}$ .
Since an element of $\tilde{\Gamma}_{g.n}$ induces naturally an element of $\tilde{\Gamma}_{g.n}^{(l)}$ and an

inner automorphism of $\pi_{g.n}$ induces that of $\pi_{g.n}^{(l)}$ , we have the canonical homo-
morphism

$\varphi_{l}$ : $\Gamma_{g,n}arrow\Gamma_{g,n}^{(\downarrow}$ .
It is easily verified that $\varphi_{l}$ preserves the filtrations.

Let $\overline{\Gamma}_{g,n}$ denote the closure of $\varphi_{l}(\Gamma_{g.n})$ in $\Gamma_{g.n}^{(l)}$ . Then, $\overline{\Gamma}_{g.n}$ is a profinite
group and we define its filtration $\{\overline{\Gamma}_{g.n}[m]\}_{n\iota=0}^{\infty}$ by

$\overline{\Gamma},.n[m]=\overline{\Gamma}_{g.n}\cap\Gamma_{g,n}^{(l)}[m]$ $(m\geqq 0)$ .
Then, we have
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$\varphi_{l}(\Gamma_{g.n}[m])\subset\overline{\Gamma}_{g.n}[m]\subset\Gamma_{g.n}^{(t)}[m]$ $(m\geqq 0)$ ,

and this induces a sequence

$gr^{m}(\Gamma_{g.n})gr^{m}(\overline{\Gamma}_{g.n})\underline{gr^{m}(\varphi_{l})}arrow gr^{m}(\Gamma_{g,n}^{(l)})$

$(m\geqq 0)$ .
Here, the right homomorphism is induced from the inclusion and is obviously
injective.

We first prove the following

PROPOSITION B2. For each $m\geqq 1,$ $gr^{m}(\varphi_{l})$ is injective and the closure of the
image is isomorphic to $gr^{m}(\Gamma_{g,n})\mathfrak{H}^{z_{\iota}}$ .

PROOF. We have a commutative diagram

$gr^{m}(\Gamma,.n)-\underline{gr^{m}(\varphi_{l})}gr^{m}(\Gamma_{g.n}^{(t)})$

$\downarrow c_{m}(2g, n)$

$\otimes Z_{l}$

$\downarrow c_{m^{l)}}^{(}(2g, n)$

$N_{nt}(2g, n)/I_{m}(2g, n)-C_{m}(2g, n) \bigotimes_{Z}Z_{l}/I_{m}(2g, n)\bigotimes_{Z}Z_{l}$ .

Here, $c_{m}(2g, n)$ and $c_{m}^{(l)}(2g, n)$ are both injective. (Cf. Proof of Proposition Bl.)

It follows from Lemma 2 that the canonical homomorphism $\otimes Z_{l}$ is injective
and the closure of the image is isomorphic to $(N_{m}(2g, n)/I_{m}(2g, n)) \bigotimes_{z}Z_{t}$ . From
this, the proposition follows immediately.

COROLLARY 1. For each $m\geqq 1$ , the homomorphism

$\Gamma_{g.n}/\Gamma_{g.n}[m]arrow\Gamma_{g.n}^{(l)}/\Gamma_{g,n}^{(l)}[m]$

induced from $\varphi_{l}$ is injective.

By Proposition 2, we have the following

COROLLARY 2. The homomorphism $\varphi_{l}$ is injective if $(g, n)\neq(2,0)$ .

Let $\overline{\Gamma_{g.n}[m]}$ denote the closure of $\varphi_{l}(\Gamma_{g.n}[m])$ for each $m\geqq 0$ , so that we
have

$\overline{\Gamma_{g.n}[m]}\subset\overline{\Gamma}_{g.n}[m]$ .

PROPOSITION B3. Assume that $g\neq 1$ . Then, for each $m\geqq 0$ , we have

$\overline{\Gamma,.n[m]}=\overline{\Gamma}_{g.n}[m]$ .

PROOF. We shall prove this by induction on $m$ , the case $m=0$ being trivial.
If $g=0$ , the case $m=1$ is also trivial.

Assume that $m=1$ and $g\geqq 2$ . We have a sequence

$\Gamma,.n/\Gamma_{g.n}[1]\overline{\Gamma}_{g,n}/\overline{\Gamma_{g.n}[1]}\underline{gr^{0}(\varphi_{l}^{)}}arrow\overline{\Gamma}_{g.n}/\overline{\Gamma}_{g,n}[1]\subset\Gamma_{g.n}^{(t)}/\Gamma_{g.n}^{(l)}[1]$ .
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Here, $\Gamma_{g.n}/\Gamma_{g.n}[1J$ is isomorphic to $Sp(2g;Z)$ by Theorem 2 and it follows
that $F_{g.n}/\overline{\Gamma}_{g.n}[1]$ is isomorphic to $Sp(2g;Z_{\iota})$ . Since $\overline{\Gamma}_{g.n}/\overline{\Gamma,.n[1]}$ is a profinite
group, $gr^{0}(\varphi\iota)$ factors through the profinite completion $(\Gamma_{g.n}/\Gamma_{g.n}[1])^{profjnite}$ of
$\Gamma_{g.n}/\Gamma_{g.n}[1]$ . AS is well known, the group $Sp(2g;Z)$ has the congruence
subgroup property if $g\geqq 2$ (cf. Serre $[Se_{2}]$ ) and the strong approximation theorem
holds for it (Shimura [Sh]). Thus, we have an isomorphism

$(\Gamma_{g,n}/\Gamma_{g.n}[1])^{profinite}\cong$ II $Sp(2g;Z_{p})$

and the commutative diagram;

$pr_{\iota}$ being the projection to the 1-component. Therefore, we have a surjective
homomorphism

$\prod_{p\neq l}Sp(2g;Z_{p})arrow\overline{\Gamma}_{g.n}[1]/\overline{\Gamma_{g.n}[1]}$ .
By Theorem 4, $F_{g.n}[1]/\overline{\Gamma,,n[1]}$ is a pro-l group, hence the identity group by
the following

LEMMA 5. The group $Sp(2g;Z_{p})$ has no finite abelian quotient of order
prime to $p$ .

PROOF. Let $G$ be a finite abelian group of order prime to $p$ and
$f:Sp(2g;Z_{p})arrow G$ be a homomorphism. Let $N$ be the subgroup of $Sp(2g;Z_{p})$

consisting of all matrices in $Sp(2g;Z_{p})$ which are congruent to the unit
matrix modulo $p$ . Then $N$ is a pro-p group and normal. Thus, $f$ induces a
homomorphism $\overline{f}:Sp(2g;F_{p})arrow G$ . It follows from a well known property
of $Sp(2g;F_{p})$ that $\overline{f}(A)=1$ for all $A\in Sp(2g;F_{p})$ (cf. e. g., Artin [Ar, Th.
5.1]).

Assume that $m\geqq 1$ and that we have $\overline{\Gamma_{e.n}[m]}=\overline{\Gamma}_{g.n}[m]$ . Then we have a
sequence

$gr^{m}(\Gamma_{g.n})\overline{\Gamma}_{g.n}[m]/\overline{\Gamma_{g.n}[m+1]}\underline{gr^{m}(\varphi_{l})}arrow\overline{\Gamma}_{g,n}[m]/\overline{\Gamma}_{g.n}[m+1]$ .
By the induction assumption, $gr^{m}(\varphi_{l})$ has dense image. Since $\overline{\Gamma},.n[m]/\overline{\Gamma,.n[m+1]}$

is a pro-l group, $gr^{m}(\varphi_{l})$ factors through the pro-l completion of $gr^{m}(\Gamma_{g.n}),$ $i$ . $e.$ ,
$gr^{m}(\Gamma,, n)\ovalbox{\tt\small REJECT} Z_{\iota}$ ;

$\overline{Z}$
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Since $pr\circ gr^{m}(\varphi_{l})_{l}$ is an isomorphism by Proposition B2, $pr$ is an isomorphism.
Hence we have $\overline{\Gamma_{gn}[m+1}$] $=\overline{\Gamma}_{g.n}[m+1]$ and the proof is completed.

4-3. Proof of Theorem B.
That $\overline{\Gamma}_{g,n}/\overline{\Gamma}_{g,n}[1]\cong Sp(2g;Z_{l})$ follows from Theorem 2 and the $Sp(2g)-$

equivariance of $(^{*})$ is obvious. The rest follows from Propositions Bl, B2, B3
and Theorem 4 (iii).

4-4. Pro-l monodromy representation associated with the configuration
space.

Let us consider the homomorphism

(4.4.1) $\varphi_{l}\circ d_{*}:\pi_{g.n-1}arrow\Gamma l)n[1]$ .

Since $\Gamma_{g,n}^{(l)}[1]$ is a pro-l group, $\varphi_{l^{\circ}}d_{*}$ factors through $\pi_{n-1}^{prol}$ ;

Note that all homomorphisms in the above diagram preserve filtrations.
Then we have the following

PROPOSITION 6. The induced homomorphism

(4.4.2) $\pi_{g.n-1}^{pro\sim l}arrow\Gamma_{g,n}^{(l)}[1]$

is injective. In other words, the closure of the image of the homomorphism
(4.4.1) is isomorphic to $\pi_{g.n-1}^{prol}$ .

PROOF. It suffices to show that the induced homomorphism

(4.4.2) $gr^{m}(\pi_{n1}^{P^{r}\prime}\circ\iota)arrow gr^{m}(\Gamma_{g.n}^{(\iota)})$

is injective for all $m\geqq 1$ .
Let us consider the sequence

$gr^{m}(\pi_{g.n-1})gr^{m}(\Gamma_{g,n})-gr^{m}(\Gamma_{g.n}^{tl)})\underline{gr^{m}(d_{*})}g\underline{r^{m}(_{\varphi\iota})}$ .
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By Proposition A2, $gr^{m}(d_{*})$ is injective. Thus, by Proposition B2, the induced
homomorphism

$gr^{m}(\pi_{g,n-1})\bigotimes_{Z}Z_{\iota}arrow gr^{n\iota}(\Gamma_{g.n}^{(\iota)})$

is injective. Therefore, by Proposition 5, the homomorphism $(4.4.2)_{m}$ is injective
and the proof is completed.

We shall explain the implication of Proposition 6. As before, let $R_{g.n}$ denote
a Riemann surface of genus $g$ with $n$ punctures. Let $\Delta$ be the diagonal subset
of $R_{g,n-1}xR_{g,n-1}$ and consider the fibration

$pr_{1}$ : $R_{g.n-1}\cross R_{g.n-1}\backslash \Deltaarrow R,.n-1$

$pr_{1}$ being the projection to the first component. The homotopy exact sequence
of this fibration gives an exact sequence

(4.4.3) $1arrow\pi_{g,n}arrow\pi_{1}(R_{g.n}\cross R_{g.n}\backslash \Delta)arrow\pi_{g,n-1}arrow 1$

(Birman $[Bi_{2}$ , Prop. 1.3]). Then, the conjugate action of $\pi_{1}(R_{g,n-1}\cross R_{g.n-1}\backslash \Delta)$

on the normal subgroup $\pi_{g,n}$ induces a non-abelian monodromy representation of
the group $\pi_{g,n-1}$ ;

$\pi_{g.n-1}arrow Out(\pi_{g,n})$ .
AS is well known, this is nothing but the homomorphism $d_{*}$ (Birman $[Bi_{1}$ ,

Corollary 1.4]). In particular, this representation is faithful.
Let us apply the pro-l completion functor to the exact sequence (4.4.3).

Since $\pi_{g.n}^{pro- l}$ has trivial center, and the image of $\varphi_{\iota}\circ d_{*}$ is contained in $\Gamma_{g.n}^{(l)}[1]$

which is a pro-l group (Theorem 4 (ii), (iii)), we obtain an exact sequence

$1arrow\pi_{g.n}^{prol}arrow\pi_{1}(R_{g,n}\cross R_{g.n}\backslash \Delta)^{pro.l}arrow\pi_{g.n-1}^{pro_{\sim}l}arrow 1$

(Anderson [An]; cf. also Ihara-Kaneko [IK, (1.2.2)]). Then, the associated
non-abelian monodromy representation

(4.4.4) $\pi_{g.n-1}^{prol}\simarrow Out(\pi_{g.n}^{pro-\iota})$

is nothing but the homomorphism (4.4.2). Hence, Proposition 6 implies that the
associated pro-l monodromy representation (4.4.4) is faithful.

\S 5. Problems and discussions.

5-1. Pl. If $g\geqq 2$, is the homomorphism

(5.1.1) $p_{*}|_{\Gamma_{9\cdot 1}[m]}:\Gamma_{g.1}[m]arrow\Gamma_{g.0}[m]$ $(m\geqq 1)$

surjective $P$
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A closely related problem is

P2. If $g\geqq 2$ , is the sequence of $Sp(2g;Z)$-modules

(5.1.2)
$0arrow gr^{m}(\pi_{g,0})gr^{m}(\Gamma_{g,1})gr^{m}(\Gamma_{g.0})\underline{gr^{m}(d_{*})}\underline{gr^{m}(p_{*})}arrow 0$

exact ?

TO investigate these problems, as before, let $K_{m}(2g, 1)$ denote the kernel of
the homomorphism $p_{m}$ : $M_{m}(2g, 1)arrow M_{m}(2g, 0)$ (cf. \S 2-2). Then we have the
following commutative diagram:

$gr^{m}(d_{*})$ $gr^{m}(p_{*})$

(5.1.2) $0arrow gr^{m}(\pi_{g.0})-gr^{m}(\Gamma_{g.1})-gr^{m}(\Gamma_{g,0})arrow 0$

(5.1.3)
$0 arrow\frac{\downarrow}{m(2g,1)}-\frac{1)\downarrow}{M_{m}(2g,1)}\underline{\overline{p}_{m_{\frac{g,0)\downarrow}{M_{m}(2g,0)}}}}c_{m}(2g,c_{m}(2arrow 0$

.
Here, $-denotes$ the image in $C_{m}(2g, *)/I_{m}(2g, *)$ . Recall that $c_{m}(2g, *)$ and
$gr^{m}(d_{*})$ are both injective (Proof of Proposition 3, Proposition A2). The sur-
jectivity of $-m$ is proved in [K] (in the context of pro-l groups). We easily
obtain the following

LEMMA 6. (i) If $(5.1.1)_{m}$ and $(5.1.1)_{m+1}$ are both surjective, then $(5.1.2)_{m}$

is exact.
(ii) If $(5.1.1)_{m}$ is surjective and the homomorphism $gr^{m}(\pi_{g.0})arrow\overline{K_{m}(2g,1)}$ is

surjective, then $(5.1.2)_{m}$ is exact.
(iii) If $(5.1.2)_{m}$ is exact, then $(5.1.1)_{m+1}$ is surjective.

At present, we can show the following

PROPOSITION 7. (i) If $m=1,2$ , $p_{*}|_{\Gamma.[m]}1$ is surjective. The complex
(5.1.2) is exact.

(ii) If $m=3,4$ , the image of $p_{*}|_{\Gamma_{g,1}[m]}$ is of finite index.
(iii) If $1\leqq m\leqq 3$ , we have an exact sequence of $Sp(2g;Z)$-modules

$0 arrow gr^{m}(\pi_{g,0})\bigotimes_{Z}Qarrow gr^{m}(\Gamma_{g,1})\bigotimes_{Z}Qarrow gr^{m}(\Gamma_{g.0})\bigotimes_{Z}Qarrow 0$ .

PROOF. (i) The surjectivity of $p_{*}|\Gamma_{g}1^{[1]}$ and the exactness of $(5.1.2)_{1}$ are
verified in Proposition 4. The surjectivity of $p_{*}|\Gamma_{g}1^{[2]}$ follows from Lemma 3
and Lemma 6 (ii).

(ii) It suffices to show that

$gr^{m}(p_{*})\bigotimes_{Z}Q:gr^{m}(\Gamma_{g,1})\bigotimes_{Z}Q-gr^{m}(\Gamma_{g.0})\ovalbox{\tt\small REJECT}^{Q}$

is surjective for $m=3,4$ . If we replace each $Z$-module in the diagram $(5.1.2)_{m}$ ,
(5.1.3) with its tensor product with $Q$ , we still have the commutative diagram,
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$gr^{m}(p_{*})\bigotimes_{Z}Q$ and $c_{m}(2g, *) \bigotimes_{Z}Q$ being injective. Since $gr^{2}(p_{*})\bigotimes_{Z}Q$ is surjective, it
suffices to show that $gr^{m}(\pi_{g.0})\bigotimes_{Z}Qarrow\overline{K_{m}(2g,1)}\bigotimes_{Z}Q$ is surjective for $m=2,3$ . By

using Labute’s formula ([L] cf. also [K]), we have

rank $gr^{m}(\pi_{g.0})=rank\overline{M_{m}(2g,1)}$ –rank $\overline{M_{m}(2g,0)}$

for $m=2,3$ . Hence the proof is completed.
(iii) This follows from Proposition Al and (i), (ii).

5-2. AS is indicated in [NT, \S 2], two exact sequences (1.3.2) and (3.3.1)

can be related by a certain homomorphism

$\delta_{g.n-1}$ : $\Gamma_{g.n}arrow\tilde{\Gamma}_{g.n-1}$ .

Let us recall the definition of $\delta_{g.n-1}$ . For $\sigma\in\Gamma_{g.n}$ , let $\tilde{\sigma}\in\tilde{\Gamma}_{g.n}$ be a represen-
tative such that $\tilde{\sigma}(z_{n})=z_{n}$ . Since the centralizer of $z_{n}$ in $\pi_{g.n}$ is the infinite
cyclic group generated by $z_{n},\tilde{\sigma}$ is unique up to right multiplications by Int $(z_{n}^{a})$

$(a\in Z)$ . The homomorphism $\delta_{g,n-1}$ is defined by

$\delta_{g.n-1}(\sigma)=\tilde{p}_{*}(\tilde{\sigma})$ .

It is easy to see that $\delta_{g,n-1}$ preserves the filtrations and that the diagram

$1-\pi_{g,n-1}[m]-\Gamma_{g.n}[m]-\Gamma_{g.n-1}[m]arrow 1$

$\downarrow Int$ $\downarrow\delta_{g,n-1}$ $\downarrow id$ .
$1arrow Int_{n_{g.n}-1}(\pi_{g,n-1}[m])arrow F,.$ n-l $[m]arrow\Gamma_{g.n-1}[m]arrow 1$

is commutative. By Corollary to Proposition Al, we have the following

PROPOSITION 8. If $n\geqq 2$ , the homomorphism $\delta_{g,n-1}|_{\Gamma}.,$
$n^{[m]}$ is $h_{J^{eC}}tive$ .

5-3. It seems to be an interesting problem to cbaracterize the closure of
$\varphi_{l}(\Gamma_{g.n}[1])$ (or that of $\varphi\downarrow(\Gamma_{g.n})$ , which seems to be much more difficult). Since
$\Gamma_{g.n}^{(l)}[1]$ is a pro-l group, the closure of $\varphi_{\iota}(\Gamma_{g.n}[1])$ is a pro-l group. Then a
natural problem is

P3. IS the closure of $\varphi\downarrow(\Gamma_{g.n}[1])$ isomorphic to the pro-l completion of
$\Gamma_{g,n}[1]i$

For the group $\overline{\Gamma}_{g,n}$ , let us consider the case $g=n=1$ . Then $\Gamma_{1.1}[1]=\{1\}$

and $\Gamma_{1,1}$ is isomorphic to $Sp(2;Z)=SL(2;Z)$ . A result of Bloch [B1] and a
recent result of Nakamura [N] indicate that $\overline{\Gamma_{1.1}}[1]\neq\{1\}$ , which means that
Proposition B3 does not hold in this case. In other words, the topology of $\Gamma_{1,1}$

$(=SL(2;Z))$ induced from $\Gamma_{1.1}^{(l)}$ (via $\varphi_{l}$ ) is “stronger” than the topology induced
from the congruence subgroups with $l$-power levels. It seems to be an inter-
esting problem to determine what this topology is.
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