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0. Introduction.

A continuous non singular flow $\phi_{t}$ : $Xarrow X$ on the metric space $X$ is said to
be exPanszve if $\forall\epsilon>0\exists\delta>0$ such that if $x,$ $y\in X$ satisfy $d(\phi_{t}(x), \phi_{h(t)}(y))<\delta$

$\forall t\in R$ for some continuous function $h:Rarrow R,$ $h(O)=0$ , then $y=\phi_{s}(x)$ for some
$s\in(-\epsilon, \epsilon)$ (see [B-W], where there are some other equivalent definitions). A
classical example of expansive flow is given by an Anosov flow $([Ano])$ ; another
example is the suspension of a pseudo-Anosov diffeomorphism ([F-L-P]).

We shall be concerned with expansive flows on a 3-dimensional closed
manifold $M$, and we will assume the transitivity of the flows under considera-
tion: $\Omega(\ovalbox{\tt\small REJECT}_{t})=M$, where $\Omega(\phi_{t})$ is the non-wandering set. We will suppose that
$M$ is connected, even if not explicitly stated.

In [Fri] D. Fried proved that any transitive Anosov flow $\phi_{t}$ on a closed 3-
manifold $M$ has a surface of section: there exists an embedding $j:\Sigma cM,$ $\Sigma=$

compact surface with boundary, such that $j(\partial\Sigma)$ is a union of closed orbits of
$\phi_{t},$ $j(int\Sigma)$ is transverse to $\phi_{t}$ , and every orbit of $\phi_{t}$ intersects $j(\Sigma)$ in a uni-
formly bounded time (the case $\partial\Sigma=\emptyset$ is allowed). The flow $\phi_{t}$ then induces
a first return map $f:\Sigmaarrow\Sigma$ , which is topologically conjugate to a pseudo-
Anosov diffeomorphism with 1-prong singularities on $\partial\Sigma$ ([F-L-P]).

We shall prove a similar statement in the case of expansive flows:

THEOREM 1. Any transitive exPansive flow on a closed 3-manifold $M$ has a
surface of section $\Sigma qM$ .

The first return map $f$ : $\Sigmaarrow\Sigma$ associated to such a surface of section is
then topologically conjugate to a pseudo-Anosov diffeomorphism, with l-prong
singularities on $\partial\Sigma$ and $k$ -prong singularities $(k\geqq 3)$ in int $\Sigma$ . Using the lan-
guage of [Fri] we could restate theorem 1 in terms of “surgery” along closed
orbits of suspensions of pseudo-Anosov diffeomorphisms.

The proof of Theorem 1 is very close to that of Fried, and the main tool
is the existence of stable and unstable foliations with circle-singularities, esta-
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blished by [I-M] and [Pat]. We recall in \S 1 such a result (which relies on
the theorem of Lewowicz and Hiraide, [Lew], [Hir] $)$ , and in \S 2 we prove
Theorem 1 and we verify that the first return map is conjugate to a pseudo-
Anosov one. Our construction of “local” surfaces of section has also some resem-
blance with the “daisy chains lemma” of J. Christy $([Chr])$ .

Using the fact that a pseudo-Anosov diffeomorphism has a Markov partition
([F-S]) and using Theorem 1, we will prove in \S 3 that any expansive transi-
tive flow on a closed three manifold has Markov partitions, and we will deduce
some consequences at the level of symbolic dynamics. Remark that D. Fried
assumes in [Fri] the existence of Markov partitions, however we shall see that
in order to prove the existence of surfaces of section it is sufficient only to
show the existence of a “local product structure” given by the stable and un-
stable foliations.

1. Stable and unstable foliations.

We will denote by $\mathcal{H}_{k}$ and $\overline{\mathcal{H}}_{k}$ the singular foliations on $D^{2}\subset C$ whose
leaves are respectively $\{\Re ez^{k/2}=constant\}$ and $\{Smz^{k/2}=constant\}$ , with $k\in Z$,
$k\geqq 3$ . We will consider the singular foliations on $D^{2}\cross(0,1)$ defined by $\mathcal{G}_{k}=$

$\mathcal{H}_{k}\cross(0,1)$ and $\overline{\mathcal{G}}_{k}=\overline{\mathcal{H}}_{k}\cross(0,1)$ .
Let $M$ be a closed 3-manifold and let $C_{1},$ $\cdots$ , $C_{N}\subset M$ be disjoint closed

curves.
DEFINITION ([I-M]). A foliation with circle-prong singularities $C_{1},$ $\cdots$ , $C_{N}$

is a singular $C^{0}$ foliation $\mathscr{F}$ on $M$ whose singular set is $S= \bigcup_{j}C_{j}$ and such that
$\forall x\in S$ there exist a neighborhood $U\subset M$ of $x$ and a homeomorphism $h:Uarrow D^{2}$

$\cross(0,1)$ such that $\mathscr{F}|_{U}=h^{*}(\mathcal{G}_{k})$ for some $k$ .

TWO foliations with circle-prong singularities $\mathscr{F}_{1},$ $\mathscr{F}_{2}$ are said to be transverse
if they have the same singular set $S$ , they are transverse (in the usual sense)

in $M\backslash S$ , and if $x\in S$ then there exist a neighborhood $U\subset M$ of $x$ and a homeo-
morphism $h$ : $Uarrow D^{2}\cross(0,1)$ such that $\mathscr{F}_{1}=h^{*}(\mathcal{G}_{k}),$ $\mathscr{F}_{2}=h^{*}(\overline{\mathcal{G}}_{k})$ , for some $k$ .

A separatrix at $C_{f}\subset S$ is a leaf with an end on $C_{j}$ ; the union of $C_{j}$ and all
the separatrices at $C_{j}$ is called extended leaf.

Let now $\phi_{t}$ : $Marrow Mbe$ an expansive flow of class $C^{r},$ $r\geqq 0$ . Define for any
$\epsilon>0$ and any $x\in M$ :

$W_{\epsilon}^{s}(x)=\{y\in M|\exists\omega\in Homeo([0, +\infty))s. t. d(\phi_{t}(x), \phi_{\omega(t)}(y))<\epsilon\forall t\geqq 0\}$

$W_{\epsilon}^{u}(x)=\{y\in M|\exists\omega\in Homeo((-\infty, 0])s. t. d(\phi_{t}(x), \phi_{\omega(t)}(y))<\epsilon\forall t\leqq 0\}$ .

If $\epsilon$ is sufficiently small then $y\in W_{\text{\’{e}}}^{s}(x)\Rightarrow\exists$ a homeomorphism $\omega:[0, +\infty)arrow$

$[0, +\infty)$ such that $d(\phi_{t}(x), \phi_{\omega(t)}(y))arrow 0$ as $t-+\circ\circ$ and $y\in W_{\epsilon}^{u}(x)\Rightarrow\exists$ a homeomor-
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phism $\omega:(-\infty, 0]arrow(-\infty, 0]$ such that $d(\phi_{t}(x), \phi_{\omega(t)}(y))arrow 0$ as $tarrow-\infty$ ([K-S]).

PROPOSITION ([I-M], [Pat]). There exist two transverse foliations with circle
prong singularities $\mathscr{F}^{s},$ $\mathscr{F}^{u}$ such that:

1) if $x\in M\backslash S$ and $L^{s}(x)\in \mathscr{F}^{s},$ $L^{u}(x)\in \mathscr{F}^{u}$ are the leaves through $x$ , then for
$\epsilon$ sufficiently small $W_{\epsilon}^{s}(x)$ is a neighborhood of $x$ in $L^{s}(x)$ and $W_{\epsilon}^{u}(x)$ is a neigh-
borhood of $x$ in $L^{u}(x)$ ;

2) if $x\in S$ and $L^{S}(x),$ $L^{u}(x)$ are the extended leaves of $\mathscr{F}^{s},$ $\mathscr{F}^{u}$ through $x$ ,

then for $\epsilon suffi\alpha ently$ small $W_{\epsilon}^{s}(x)$ is a neighborhood of $x$ in $L^{S}(x)$ and $W_{\epsilon}^{u}(x)$ is
a neighborhood of $x$ in $\overline{L}^{u}(x)$ .

Observe that $\mathscr{F}^{s}\cap \mathscr{F}^{u}$ defines a one dimensional foliation, coincident with
that given by the flow $\phi_{t}$ . The closed orbits of $\phi_{t}$ corresponding to the singular
circles of these foliations will be called singular closed orbits. The number of
prongs of a singular closed orbit is the number of separatrices of the singular
foliation induced by $\mathscr{F}^{s}$ (or $\mathscr{F}^{u}$ ) on a small disk transverse to the closed orbit $i$

this number may be greater than the number of separatrices of $\mathscr{F}^{s}$ (or $\mathscr{F}^{u}$ )

ending on the closed orbit.
$\mathscr{F}^{s}$ and $\mathscr{F}^{u}$ will be called stable and unstable foliations. The name is appro-

priate, because (for example) if $y\in L^{s}(x)\in \mathscr{F}^{s}$ (or $y\in L^{S}(x)$ ) then there exists a
homeomorphism $\omega:[0, +\infty)arrow[0, +\infty)$ such that $d(\phi_{t}(x), \phi_{\omega(t)}(y))arrow 0$ as $tarrow+\infty$ .

These foliations enjoy many properties of Anosov foliations: the leaves are
open cylinders or open Moebius strips or planes, every leaf injects its funda-
mental group ([I-M]), the holonomy representation of every leaf is injective,
etc..

If the flow is transitive, then the same argument as in the context of
Anosov flows shows that the periodic orbits are dense in $M$.

Let us also remark that in general an expansive flow has not strong stable
and unstable foliations, $i.e.$ , the sets

$W_{\epsilon}^{ss}(x)=(y\in B(x, \epsilon)|d(\phi_{t}(x), \phi_{t}(y))arrow 0$ as $tarrow+\infty$ } $\subset W^{s}(x)$

$W_{\epsilon}^{uu}(x)=$ { $y\in B(x,$ $\epsilon)|d(\phi_{t}(x),$ $\phi_{t}(y))arrow 0$ as $tarrow-\infty$ } $\subset W^{u}(x)$

are not parts of leaves of one-dimensional foliations (with singularities). For
example, an expansive flow may have a closed orbit 7 in a neighborhood of
which the flow is given by the differential equation

$\dot{\theta}=1+r^{2}+s^{2}$ $\dot{r}=-r^{3}$ $\dot{s}=s^{3}$ $\theta\in S^{1},$ $(r, s)\in R^{2}$

it is easy to see, $e$ . $g$ . by explicit integration $(\theta(t)=\theta(O)+t+(1/2)\ln[(1+2r(0)^{2}t\rangle\backslash$

$(1-2s(0)^{2}t)])$ , that the sets $W_{\epsilon}^{ss}((\theta, 0,0))$ and $W_{\epsilon}^{uu}((\theta, 0,0))$ are both reduced only
to $\{(\theta, 0,0)\}$ . Remark also that if we reparametrize this flow by multiplying
the corresponding vector field by $(1+r^{2}+s^{2})^{-1}$ we obtain
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$\dot{\theta}=1$ $\dot{r}=-\frac{r^{3}}{1+r^{2}+s^{2}}$ $\dot{s}=\frac{s^{3}}{1+r^{2}+s^{2}}$

and this flow has $W^{ss}((\theta, 0,0))=\{(\theta, r, O)|r\in R\}$ . $W^{uu}((\theta, 0,0))=\{(\theta, 0, s)|s\in R\}$ .
Briefly, the existence or not of strong stable and unstable foliations with
singularities strictly depends on the parametrization of the flow. As another
example, it is easy to reparametrize in a continuous way an Anosov flow to
obtain a flow without strong stable and unstable foliations; such a phenomenon
cannot appear if the reparametrization is a little more than continuous, for
example Holderian.

2. Proof of Theorem 1.

Let $\phi_{t}$ : $Marrow M$ be a transitive expansive flow and let $\mathscr{F}^{s},$ $\mathscr{F}^{u}$ be its stable
and unstable foliations, with singular set $S= \bigcup_{j=1}^{N}C_{j}$ . In order to simplify
statements about transversality we shall assume that $\phi_{t}$ is at least of class $C^{1}$ ,
even if this is not really necessary for the proof.

LEMMA. $\forall x\in M$ there exists an immersion $j:Darrow M$ of a compact surface
with boundary $D$ such that:

a) $j|_{\partial D}$ is injective and $j(\partial D)$ is a union of closed orbits of $\phi_{t}$

b) $j(intD)$ is transverse to the flow
c) $x\in j(intD)\backslash [](intD)\cap](\partial D)]$ .

PROOF. Suppose firstly that $x\in C_{j}\subset S$ , and let $i:D^{2}cM$ be an embedding
of the disk transverse to $\phi_{t}$ , with $i(O)=x$ . Choosing $i$ with image sufficiently
small, we may assume that the pair of singular foliations $i^{*}(\mathscr{F}^{s}),$ $i^{*}(\mathscr{F}^{u})$ is $C^{0_{-}}$

conjugate to the pair $\mathcal{H}_{k},\overline{\mathcal{H}}_{k}$ for some $k\in Z,$ $k\geqq 3$ (see \S 1 for the definitions
of $\mathcal{H}_{k}$ and $\overline{\mathcal{H}}_{k}$ ).

The separatrices of $\mathcal{H}_{k}$ and $\overline{\mathcal{H}}_{k}$ divide $D^{2}$ in $2k$ open regions $A_{1},$ $B_{1},$ $\cdots$ ,
$A_{k},$ $B_{k}$ (Fig. 1), with $(\overline{A}_{j}\cap\overline{B}_{j})=a$ separatrix of $\mathcal{H}_{k},$ $(\overline{B}_{j}\cap\overline{A}_{j+1})=a$ separatrix of
$\overline{\mathcal{H}}_{k},$ $\forall_{J}=1$ , – , $k(k+1=1)$ . Take points $p_{j}\in A_{j},$ $j=1,$ $k$ , such that $i(p_{j})$ is
a point on a closed orbit $\gamma_{j}$ of $\phi_{t}\forall_{J}=1$ , $\cdot$ .. , $k$ , and assume that $\gamma_{j}\neq\gamma_{i}$ for $j\neq i$ .
Assume also that the leaves $Lff_{k}(p_{j})$ and $\mathcal{H}_{k}(p_{j+1})$ intersect in a point $r_{j}\in B_{j}$ ,

V7’ $=1,$ $\cdots$ , $k$ . These choices are possible because of the transitivity of $\phi_{t}$ .
For any $j=1,$ $\cdots,$

$k$ let $\Xi_{j}$ : $9_{J}arrow\Phi_{j}$ be the first return map corresponding to
the closed orbit $\gamma_{j}$ and to the transversal $i:D^{2}arrow M;9_{j}$ and $\Phi_{j}$ are subset of
$D^{2},$ $g_{j}=maxima1$ connected domain of definition of $q_{j}$ on which the first return

time is continuous, $\Phi_{j}=9_{j}(9_{j})$ . We may assume that $9_{j}$ preserves the orienta-

tions of the stable and unstable leaves through $p_{j}$ , because the closed orbits

with this property are dense in $M$ ; we postpone the verification of this fact to

the end of the proof.
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Fig. 1. Fig. 2.

Clearly, the segment of $\mathcal{H}_{k}(p_{f})$ between $p_{j}$ and $r_{j- 1}$ is contained in $9_{j}$ , and
the segment of $\overline{\mathcal{H}}_{k}(p_{f})$ between $p_{f}$ and $r_{j}$ is contained $b_{j}$ . Moreover, $9_{j}^{-1}(r_{j})$

belongs to $A_{j}$ (and not to $B_{j}$), since otherwise the point $\overline{\mathcal{H}}_{k}(p_{j})\cap \mathcal{H}_{k}(0)$ would
belong to $9_{j}$ and would be mapped by $9_{j}$ to a point in $B_{j}$ , which is impossible
because points of $\mathcal{H}_{k}(0)$ correspond to orbits of $\phi_{t}$ positively asimptotic to the
closed orbit $C_{j}$ and so the positive semitrajectory $\phi_{I0}+\infty$ ) $(i(\overline{\mathcal{H}}_{k}(p_{j})\cap \mathcal{H}_{k}(0)))$ inter-
sects $i(D^{2})$ only in points belonging to $i(\mathcal{H}_{k}(0))$ . A similar argument (with

time reversed) show that $9_{j}(r_{j- 1})\in A_{j}$ .
We deduce the existence of a “rectangle” $R_{j}\subset 9_{j}$ , bounded by leaves of $\mathcal{H}_{k}$

and $\overline{\mathcal{H}}_{k}$ , and with $r_{j-1},$ $p_{j},$ $B_{j}^{-1}(r_{j})$ as vertices (see Fig. 2). Remark that $\forall_{J}=$

$1,$
$\cdots,$

$k9_{j}(R_{j})\cap R_{j\perp_{1}}$ is a non-empty rectangle.
Define:

$Q_{1}=9_{1}^{-1}(9_{1}(R_{1})\cap R_{2})$

and for $l=2,$ $\cdots,$
$k-1$ :

$Q_{l}=(9_{l}\circ 9_{l-1}\circ\cdots\circ 9_{1})^{-1}((B_{l}\circ 9_{l-1}\circ\cdots\circ 9_{1})(Q_{l- 1})\cap R_{l+1})$

then $Q_{k-1}$ is a non-empty subrectangle of $R_{1}$ and $9_{k}\circ\cdots\circ\Omega_{1}^{)}$ is defined on it.
Moreover, $(q_{k}\circ\cdots\circ g_{1})(Q_{k-1})$ is a subrectangle of $q_{k}(R_{k})$ whicb intersects $Q_{k-1}$

along a subrectangle $Q$ of $9_{k}(R_{k})\cap R_{1}$ as in Fig. 3.

Fig. 3. Fig. 4.
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We deduce the existence in $Q$ of a fixed point $q_{1}$ of $9_{k}\circ\cdots\circ 9_{1}$ . Let us
remark that $q_{j}=(9_{j- 1}\circ\cdots\circ 9_{1}^{)})(q_{1})$ belongs to $R_{j}\cap 9_{j-1}(R_{j- 1})\forall_{J}=1$ , – , $k$ and so,
intuitively, the closed orbit $\gamma$ of $\phi_{t}$ that corresponds to $q_{1}$ “follows” cyclically
$\gamma_{1},$ $\gamma_{k}$ .

NOW, as in [Fri], we consider segments $l_{j}\subset D^{2}$ joining $qj$ with $p_{j}$ , trans-
verse to $\mathcal{H}_{k}$ and $\overline{\mathcal{H}}_{k}$ , such that $l_{1}\cup 9_{1}(l_{1})\cup\cdots\cup l_{k}\cup 9_{k}(l_{k})$ bounds a $2k$ -gon $D_{0}\subset D^{2}$

(Fig. 4). The union of $i(D_{0})$ and the segments of trajectories of $\phi_{t}$ from $y\in i(l_{j})$

to $i(9_{j}(y))\in i(9_{f}(l_{j}))$ may be deformed to an immersed surface $Darrow M$ with the
required properties $([Fri])$ . Observe that $\partial D=\{\gamma_{1}, \cdots , \gamma_{k}, \gamma\}$ and $D$ is a disk
with $k$ holes.

This completes the proof in the case $x\in S$ ; the case $x\in M\backslash S$ is completely
similar (in fact, simpler), and formally corresponds to the case $k=2$ .

It remains only to prove the above statement about the density of closed
orbits with first return map which preserves the orientations of the stable and
unstable leaves. We repeat the above construction with only the following
changement: if $9_{j}$ : $9_{j}arrow\tilde{9}_{j}$ does not preserve the orientations of $\mathcal{H}_{k}(p_{j})$ and
$\overline{\mathcal{H}}_{k}(p_{j})$ , then we substitute it with $9_{j}^{2}$ . Then we obtain again a closed orbit 7
for $\phi_{t}$ , which “follows” 71, $\cdot$ .. , $\gamma_{k}$ but some $\gamma_{j}$ are now “followed” twice; this
orbit 7 has first return map with the desired property, and the arbitrarity in
the choice of the initial embedding $i:D^{2}arrow M$ shows the density of the orbits
of this type. $\triangle$

The proof of Theorem 1 is achieved as in [Fri]: we take, by compactness,
a finite union of immersed surfaces $D_{1},$ $\cdots$ $D_{m}$ as in the lemma, such that $\partial D_{j}$

are all disjoint and every flowline of $\phi_{t}$ intersects $U_{J=1}^{m}D_{j}$ in a uniformly
bounded time; $\bigcup_{j=1}^{m}D_{j}$ is then an “immersed surface of section”, and a surgery
along its self-intersections produces an embedded surface of section for $\phi_{t}$ . $\triangle$

Remark that by the above proof any non-singular closed orbit with first
return map preserving the orientations of the stable and unstable leaves $(i$ . $e.$ ,
any closed orbit with stable and unstable leaves of cilindrical type) may be a
component of the boundary of a surface of section. On the other hand, it is
easy to see that the boundary of a surface of section is formed only by closed
orbit with trivial normal bundle, and this gives some restriction.

The flow $\phi_{t}$ induces on the interior of any surface of section $\Sigma gM$ a first
return map, which extends to a homeomorphism $f$ : $\Sigmaarrow\Sigma$ . We may assume,
up to topological equivalence, that the stable and unstable manifolds of the closed
orbits in $\partial\Sigma$ are smooth near $\partial\Sigma$ and their different branches intersect trans-
versally, and that the angle of incidence between $\Sigma$ and these branches varies
with non-zero velocity along these closed orbits. Then the foliations $\mathscr{F}^{s},$ $\mathscr{F}^{u}$

restricted to $\Sigma$ give foliations $\mathcal{G}^{s},$
$\mathcal{G}^{u}$ with 1-prongs on $\partial\Sigma$ and $k$ -prongs $(k\geqq 3)$
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on int $\Sigma$ , transverse and invariant by $f$ . Any component of $\partial\Sigma$ contains at
least one 1-prong of $\mathcal{G}^{s}$ and of $\mathcal{G}^{u}$ ; it may happen the case where there is only
one 1-prong, if the stable and unstable manifolds of the corresponding closed
orbit are Moebius strips (we are considering here a general surface of section,
not necessarily the one constructed in the proof of Theorem 1). Observe that
$f|_{int\Sigma}$ is expansive with respect to a distance which degenerates on $\partial\Sigma$ .

PROPOSITION. The first return map $f:\Sigmaarrow\Sigma$ is topologically $con_{J}ugate$ to a
pseudo-Anosov diffeomorPhism.

PROOF. We first prove by a classical argument $([Fra])$ that $\mathcal{G}^{s}$ and $\mathcal{G}^{u}$ are
minimal, in the sense that every leaf in int $\Sigma$ is dense in $\Sigma$ . Let $L_{0}\in \mathcal{G}^{u}$ be
the unstable leaf through a periodic point of period $k$ and let $L_{j}=f^{j}(L_{0}),$ $L=$

$\bigcup_{j=0}^{k-1}L_{j}$ . Take $x\in\overline{L}$ a regular point and let $U\subset int\Sigma$ be a product neighbor-
hood for $\mathcal{G}^{s},$

$\mathcal{G}^{u}$ ; if $y\in U$ is $l$-periodic then its stable leaf $\mathcal{G}^{s}(y)$ intersects $\mathcal{G}^{u}(x)$

$\subset\overline{L}$ in a point $z\in U$ and the $f$-invariance of $\overline{L}$ , together with the property
$f^{ln}(z)arrow y$ as $narrow+\infty$ , implies that $y\in\overline{L}$ ; the density of periodic orbits and the
closedness of $\overline{L}$ imply that $U\subset\overline{L}$ , hence $\overline{L}\cap int\Sigma$ is open, $i$ . $e.$ , $\overline{L}=\Sigma$ . This
means that every $L_{j}$ is also dense in $\Sigma,$ $i.e.$ , the leaves of $\mathcal{G}^{u}$ through periodic
points are dense in $\Sigma$ . Similarly, the leaves of $\mathcal{G}^{s}$ through periodic points are
dense in $\Sigma$ .

Let now $V\subset int\Sigma$ be any open set and take $y\in Vk$ -periodic; let $l\subset \mathcal{G}^{s}(y)\cap V$

be a segment containing $y$ . Then for $N$ sufficiently large $f^{-kN}(l)$ is a segment
in $\mathcal{G}^{s}(y)$ with the property that every leaf of $\mathcal{G}^{u}|_{int\Sigma}$ intersects $f^{-kN}(l)$ (because
$\mathcal{G}^{s}(y)$ is dense in $\Sigma$ and $\mathcal{G}^{s}(y)=U_{n=1}^{+\infty}f^{-kn}(l))$ . For any $x\in int\Sigma,$ $\mathcal{G}^{u}(f^{-kN}(x))$

intersects $f^{-kN}(l)$ and hence $\mathcal{G}^{u}(x)$ intersects $l,$ $i$ . $e.,$ $\mathcal{G}^{u}(x)\cap V\neq\emptyset$ . This shows
that every leaf of $\mathcal{G}^{u}|_{int\Sigma}$ is dense in $\Sigma$ , and $\mathcal{G}^{u}$ is minimal. Similarly, $\mathcal{G}^{s}$ is
minimal.

Let now $\Sigma’$ denote the closed surface obtained from $\Sigma$ by collapsing to a
point every component of $\partial\Sigma$ , let $f’$ : $\Sigma’arrow\Sigma’$ be the homeomorphism naturally
induced by $f$ , and let $\mathcal{G}^{s\prime},$

$\mathcal{G}^{u\prime}$ be the $f’$-invariant foliations induced by $\mathcal{G}^{s},$
$\mathcal{G}^{u}$ .

Clearly every leaf of $\mathcal{G}^{s\prime},$
$\mathcal{G}^{u\prime}$ is dense in $\Sigma’$ . Let $\pi$ : $\Sigmaarrow\Sigma$ ’ be the natural

projection.
Remark that $f’$ is not necessarily expansive, because $\mathcal{G}^{s\prime}$ and $\mathcal{G}^{u\prime}$ may have

1-prong singularities in points of $\Sigma’$ arising from components of $\partial\Sigma$ ; however,
proposition $B$ of [Hir] applies also to this situation and gives two transverse
Borel measures $\mu^{s\prime},$ $\mu^{u\prime}$ on $\mathcal{G}^{SJ},$

$\mathcal{G}^{u;}$ , which are non-atomic, positive on open
non-empty sets, and such that for some $\lambda>1$ :

$f’(\mathcal{G}^{u\prime}, \mu^{u\prime})=(\mathcal{G}^{u\prime}, \lambda\mu^{u\prime})$ $f’(\mathcal{G}^{s\prime}, \mu^{s\prime})=(\mathcal{G}^{s\prime}, \lambda^{-1}\mu^{s\prime})$

$\mu^{s}=\pi^{*}(\mu^{s\prime})def$ and $\mu^{u}=\pi^{*}(\mu^{uJ})def$ are then transverse Borel measures on $\mathcal{G}^{s},$ $\mathcal{G}^{u}$ ,



498 M. BRUNELLA

non-atomic, positive on open non-empty sets, and such that:

$f(\mathcal{G}^{u}, \mu^{u})=(\mathcal{G}^{u}, \lambda\mu^{u})$ $f(\mathcal{G}^{s}, \mu^{s})=(\mathcal{G}^{s}, \lambda^{-1}\mu^{s})$

this implies easily that $f$ is topologically conjugate to a pseudo-Anosov diffeo-
morphism: the local $C^{0}$-coordinates given by $\mu^{s},$ $\mu^{u}$ define a smooth structure
on $\Sigma$ with respect to which $f$ is a pseudo-Anosov diffeomorphism. $\triangle$

Let us remark the following trivial corollary of Theorem 1: if the transi-
tive expansive flow $\phi_{t}$ : $Marrow M$ is without singular closed orbits, then it is
topologically equivalent to an Anosov flow.

Another simple consequence of Theorem 1 is that, starting from [G-K],
[Ger] and [L-L], we may construct smooth or analytic models (up to topological
equivalence) of transitive expansive flows, which moreover are conditionally
stable $([Ger])$ , i. e., they are structurally stable with respect to perturbations
with vanishing $k$ -jet along the singular closed orbits ( $k$ depending on the num-
ber of prongs of the closed orbit). These models admit strong stable and un-
stable foliations with singularities, the local models of which are given by the
foliations on $D^{2}\cross(0,1)$ whose leaves are $\{(z, t)|\Re ez^{k/2}=constant, t=constant\}$ ,
$k\in Z,$ $k\geqq 3$ .

3. Markov partitions and symbolic dynamics.

Let $\phi_{t}$ : $Marrow M$ be an expansive flow on a closed 3-manifold, with stable
and unstable foliations $\mathscr{F}^{s},$

$\mathscr{F}^{u}$ . The following definitions are given in analogy
with [F-S] and [Bow].

DEFINITION. A rectangle is a closed subset $R\subset M$, contained in the image
of an embedding $D^{2}c_{arrow}M$ transverse to $\phi_{t}$ , such that there exists a homeomor-
phism $h:[0,1]\cross[0,1]arrow R$ mapping $\{0\}\chi(0,1),$ $\{1\}\cross(0,1),$ $\{s\}\cross[0,1]\forall s\in(O, 1)$

to leaves of $\mathscr{F}^{s}$ , and $(0,1)\cross\{0\},$ $(0,1)\cross\{1\},$ $[0,1]\cross\{t\}\forall t\in(O, 1)$ to leaves of $\mathscr{F}^{u}$ .
If $R=h([0,1]\cross[0,1])$ is a rectangle, define $\mathring{R}=h((0,1)\cross(0,1))$ , and if $x=$

$h(s, t)\in R$ define $W^{s}(x, R)=h(\{s\}\cross[0,1]),$ $W^{u}(x, R)=h([0,1]\cross\{t\})$ .

DEFINITION. A Markov partition is a finite union of disjoint rectangles
$R=\{R_{1}\cdots R_{m}\}$ such that for some $\alpha>0$ :

1) $\phi_{[0.\alpha]}(U_{J}R_{j})=\phi_{[-\alpha.0]}(U_{j}R_{j})=M$

2) if $x\in\mathring{R}_{j}$ and $y=\phi_{t}(x)\in R_{i}^{o}$ for some $t>0$ , then there exists a continuous
function $\beta:W^{s}(x, R_{j})arrow R,$ $\beta(x)=t$ , such that $\phi_{\beta(z)}(z)\in W^{s}(y, R_{i})\forall z\in W^{s}(x, R_{j})$ ;

and there exists a continuous function $\gamma:W^{u}(y, R_{i})arrow R,$ $\gamma(y)=-t$ , such that
$\phi_{\gamma(z)}(z)\in W^{u}(x, R_{j})\forall z\in W^{u}(y, R_{i})$ .

THEOREM 2. Any transitive exPansive flow $\phi_{t}$ on a closed 3-manifold $M$ has
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a Markov partition.

PROOF. Let $\Sigma c_{arrow}^{j}M$ be a surface of section and let $f:\Sigmaarrow\Sigma$ be the first
return map. Because $f$ is conjugate to a pseudo-Anosov diffeomorphism, it
admits thank to [F-S] a Markov partition $R=\{R_{1} R_{m}\}$ (see [F-L-P], \’expos\’e
11, the modiPcations needed for the case of surfaces with boundary). Tbis
Markov partition is formed by rectangles in int $\Sigma$ and pentagons intersecting
$\partial\Sigma$ along one of their sides. Let $R_{i}$ be one of such pentagons, tben the em-
bedding $j:\Sigmaarrow M$ induces an embedding $j_{i}$ : $R_{i}arrow M$, which maps one side of $R_{t}$

to a segment of a closed orbit $\gamma$ and the two adiacent sides to two segments
contained in the stable and the unstable leaf through 7; moreover, $j_{i}(R_{i})$ is
transverse to $\phi_{t}$ except along 7. Clearly, we may move $j_{i}(R_{i})$ along the flow-
lines of $\phi_{t}$ in order to produce a rectangle $\overline{R}_{i}$ , see Fig. 5.

Fig. 5.

If, on the contrary, $R_{j}$ is a rectangle, then its image in $M$ is also a rect-
angle $\overline{R}_{f}$ . Deforming along the flowlines all the rectangles so obtained from
$R$ we obtain a disjoint collection of rectangles, which is the desired Markov
partition. $\triangle$

Let now $R=\{R_{1}\ldots R_{m}\}$ be a Markov partition for $\phi_{t}$ and let us consider
the matrix $A=(a_{ij})_{1\leq i,j^{g}m}$ defined by

$a_{ij}=\{$

1 if $\exists x\in R_{i}^{c}s$ . $t$ . $\phi_{t}(x)\in\mathring{R}_{j}$ for some $r>0$ and $\phi_{s}(x)\not\in\bigcup_{j}R_{j}\forall s\in(O, t)$

$0$ otherwise.

Let $\sigma_{A}$ : $\Sigma_{A}arrow\Sigma_{A}$ be the subshift of finite type associated to $A$ and if $\omega:\Sigma_{A}arrow R$

is a continuous positive function let $\psi_{t}$ : $\Sigma(\sigma_{A}, \omega)arrow\Sigma(\sigma_{A}, \omega)$ be the suspension
of $\sigma_{A}$ with first return time $\omega$, where $\Sigma(\sigma_{A}, \omega)=(\Sigma_{A}\cross R)/((x, t)\cong(\sigma_{A}(x), t+\omega(x)))$

with the usual metric, see [Bow] or [B-W]. Then the usual arguments

([BOW], [B-W], [F-S]) give:

COROLLARY. There exists for an appropriate $\omega$ a continuous, surjective,
finite-to-one map $h:\Sigma(\sigma_{A}, \omega)arrow M$ such that $ho\psi_{t}=\phi_{t^{O}}h\forall t\in R$ . $\triangle$



500 M. BRUNELLA

REMARK 1. $\omega$ and $h$ are not necessarily Llpschitz, as in the hyperbolic
case. This is related to the eventual non-existence of strong stable and unstable
foliations.

REMARK 2. We do not know if it is posslble to prove tbis corollary with-
out Markov partitions and directly from the existence of a surface of section
and the semiconjugacy results in [F-S]. The problem is that the surgery
needed to pass from the suspension of a pseudo-Anosov diffeomorphism to a
given expansive flow is a “discontinuous” operation. Observe also that the
semiconjugacy result in [F-S] does not hold in the case of surfaces with
boundary.

The above corollary is only an example. Most of the results proved in the
context of hyperbolic dynamics (minimal sets, recurrence properties, distribution
of closed orbits, zeta function, invariant measures and their ergodic properties $\cdots$ )

still hold in the context of transitive expansive flows on three-manifolds.
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