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Introduction.

Let (X, $d$ ) be a complete metric space and let $f_{1},$ $f_{2},$ $\cdots$ , $f_{N}$ be contractions
from $X$ to itself, that is,

$\sup_{xy\in X}\frac{d(f_{i}(x),f_{i}(y))}{d(x,y)}<1$ .

Then it follows that

THEOREM 1.1 (Hutchinson [Hu]). There exists a unique non-empty compact
set $K$ such that

$K= \bigcup_{i=1}^{N}f_{i}(K)$ .

$K$ is called a self-srmilar set with respect to $((X, d),$ $\{f_{i}\}_{i=1}^{N})$ .

This paper contains two main subjects. First in \S 2, we will study the
Hausdorff dimension of a self-similar set. For the case that $X$ is an Euclidian
space $R^{n}$ and $f_{i}’ s$ are similitudes, there is a well-known result by Moran [M].

THEOREM 1.2. Let $X=R^{n}$ and let $f_{i}$ be an $r_{i}$-srmilitude of $R^{n}$ for $i=1,2$ ,

, $N$ ; that is, for all $x,$ $y\in R^{n}$ ,

$d(f_{i}(x), f_{i}(y))=r_{i}d(x, y)$ ,

where $d$ is the ordinary Euclidean distance on $R^{n}$ . If there exists an open set
$O\subset R^{n}$ such that

$i=1Uf_{i}(O)N\subset O$ and $f_{i}(O)\cap f_{j}(O)=\emptyset$ for $i\neq j$ ,

then the Hausdorff dimension of the self-srmilar set $(K, d)$ with resPect to $((R^{n}, d)$ ,
$\{f_{i}\}_{i=1}^{N})$ is the unique number $a$ that satisfies

(1.1) $\sum_{t=1}^{N}r_{\iota^{a}}=1$ .
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Furthermore, $0<\mathcal{H}^{\alpha}(K)<\infty$ , where $\mathcal{H}^{\alpha}$ is the $\alpha$-dimensional Hausdorff measure.

REMARK. It is not known whether the converse of the above theorem is
true or not. Recently, Bandt and Graf [BG] obtained a necessary and sufficient
condition for the consequence of the above theorem.

The condition on the open set $O$ in the above theorem is called tbe open
set condition by Hutchinson [Hu].

By this result we can calculate the Hausdorff dimensions of typical self-
similar sets, for example, the Sierpinski gasket, the Sierpinski carpet and the
Koch curve.

Recently, however, some metrics on self-similar sets that are different from
the restriction of Euclidean metrics are introduced from the viewpoint of analysis
on self-similar sets such as the interior distance by Bandt et al. [BS, BK] and
the effective resistance metric by Kigami [Ki3]. In [Ki3], the self-similar
sets are not embedded in Euclidean spaces and the contractions are no longer
similitudes under effective resistance metrics in general. In these cases, the
open set condition does not work, because in the proof of Theorem 1.2, we
should use some special properties of the Euclidean spaces.

In the present paper we will give a result on the Hausdorff dimension of
self-similar sets under general metric. For the simplest case, our result is

COROLLARY 1.3. Let $K$ be a self-similar set with respect to $((X, d),$ $\{f_{i}\}_{i=1}^{N})$ .
If there exist constants $0<r<l,$ $0<c_{1},$ $c_{2}$ and $M>0$ such that

(1) for all $w=w_{1}w_{2}\cdots w_{m}\in\{1,2, \cdots , N\}^{m}$ ,

$d(K_{w})\leqq c_{1}r^{m}$ ,

where $K_{w}=f_{w}(K),$ $f_{w}=f_{w_{1}}\circ f_{w_{2}}\circ\cdots\circ f_{w_{m}}$ and $d(A)= \sup_{x,y\in A}d(x, y)$ for $A\subset K$,
(2) for all $x\in K$ and all $m\geqq 0$ ,

$\#\{w : w\in\{1,2, \cdots , N\}^{m}, d(x, K_{w})\leqq c_{2}r^{m}\}\leqq M$ ,

where $d(x, K_{w})= \inf_{y\in K_{w}}d(x, y)$ , then for $\alpha=-\log N/\log r$ ,

$0<\mathcal{H}^{\alpha}(K)<\infty$ ,

where $\mathcal{H}^{\alpha}$ is the $\alpha$-dimensional Hausdorff measure. Especially, the Hausdorff
dimension of the compact metric space $(K, d)$ is $-\log N/\log r$ .

We will state the complete version of our main theorem in \S 2. Our main
theorem, Theorem 2.4 is used to calculate Hausdorff dimensions of self-similar
sets under the effective resistance metrics in [Ki3].

Of course, our result covers the case of ordinary self-similar sets with the
Euclidean metrics. In general, it is shown in Proposition 2.8 that our main
result, Theorem 2.4 includes Theorem 1.2 as a special case. Furthermore, it
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is easy to verify directly the conditions (1) and (2) in Corollary 1.3 for well-
known self-similar sets as the Sierpinski gasket, the Sierpinski carpet and the
Koch curve. Moreover, we can apply the above result to the L\’evy curve defined
by L\’evy [Le], which is a self-similar set with respect to $(C, \{f_{1}, f_{2}\})$ where

$f_{1}(z)= \frac{1+i}{2}z$ and $f_{2}(z)= \frac{1-i}{2}z+\frac{1+i}{2}$ .

See Figure 1. It is known that $0<\mathcal{H}^{2}(K)<\infty$ and so $\dim_{H}K=2$ . In this case,
however, it is quite difficult to find an open set that satisfies the open set con-
dition. See the appendix for details.

Figure 1. L\’evy curve.

The second subject is shortest path metrics on $p$ . $c$ . $f$ . self-similar sets. The
notion of p. c. $f$ . self-similar sets is a mathematical formulation of finitely
ramified self-similar sets and it includes nested fractals introduced by $Lindstr\emptyset m$

[Li]. ( $p$ . $c$ . $f$ . is an abbreviation of “post critically finite”.) In \S 3, we give
the definition of p. c. $f$ . self-similar sets. See also the examples in \S 4.

DEFINITION 1.4. Let (X, $d$ ) be a metric space. Then a continuous injection
$g:[0, d(p, q)]arrow X$ is called a geodesic between $P$ and $q$ if and only if, for all
OSs$t\leqq d(p, $q$),

$d(g(s), g(t))=t-s$ .
A metric $d$ is called a shortest path metric if and only if, for all $p,$ $q\in X$ , there
exists a geodesic between $P$ and $q$ .

We will study a special kind of shortest path metrics on $p$ . $c$ . $f$ . self-similar
sets wbere tbe contraction mappings become similitudes. Precisely let $K$ be a
self-similar sets with respect to $((X, \rho),$ $\{f_{i}\}_{i=1}^{N})$ , we focus on a metric $d$ on $K$

that satisfies

(B.1) $d$ is a shortest path metric

and there exist $0<r_{1},$ $r_{2}$ , , $r_{N}<1$ such that

(B.2) $d(f_{i}(x), f_{t}(y))=r_{i}d(x, y)$
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for all $i=1,2,$ $\cdots$ , $N$ and for all $x,$ $y\in K$.
The interior distances introduced by Bandt et al. [BK, BS] are metrics that

satisfies (B.1), (B.2) and some additional conditions. We will show in Theorem
3.2 that the Hausdorff dimension of a $p$ . $c$ . $f$ . self-similar set under a metric
wbich satisfies (B.1) and (B.2) is given by the unique positive number $\alpha$ such
that

$\sum_{i=1}^{N}r_{t}^{\alpha}=1$ .

In Theorem 4.3, we will give a necessary and sufficient condition for existence
of a metric on $p$ . $c$ . $f$ . self-similar sets which satisfy (B.1) and (B.2).

In the rest of this section we will recall the definitions of Hausdorff meas-
ures and Hausdorff dimensions.

DEFINITION 1.5. Let (X, $d$ ) be a metric space and $A$ is a subset of $X$ .
Then we define

$\mathcal{H}_{\delta}^{\alpha}(A)=$ lnf $\Sigma d(U_{i})^{\alpha}$

$tU_{i}\}$ is a $\delta$ covering of $A$ $i$

where $d(U)= \sup_{x,y\in U}d(x, y)$ is the diameter of the set $U$ and $\{U_{t}\}$ is a $\delta-$

covering of $A$ if and only if

$UU_{i}i\supset A$ and $d(U_{i})-\delta$ .

Also the $\alpha$-dimensional Hausdorff measure of $A,$ $\mathcal{H}^{\alpha}(A)$ is defined by

$\mathcal{H}^{\alpha}(A)=\lim_{\deltaarrow 0}\mathcal{H}_{\delta}^{\alpha}(A)$ .

It is well-known that $\mathcal{H}^{\alpha}$ becomes a Borel measure on $X$ . See Rogers [R] or
Falconer [F].

DEFINITION 1.6. For $A\subset X$ , the Hausdorff dimension of $A$ with respect to
the metric $d$ denoted by $\dim_{H}(A, d)$ is defined by

$\dim_{H}(A, d)=\sup\{a:\mathcal{H}^{\alpha}(A)=\infty\}=\inf\{\alpha:\mathcal{H}^{\alpha}(A)=0\}$ .

In particular, if $0<\mathcal{H}^{\alpha}(A)<\infty$ , then $\dim_{H}(A, d)=\alpha$ .

\S 2. Hausdorff dimension of self-similar sets.

In this section, we will state and prove our main result on Hausdorff dimen-
sions of self-similar sets.

First, we introduce the notion of self-similar structure, which is a purely
topological formulation of self-similar sets defined by [Ki2].

DEFINITION 2.1. Let $K$ be a compact metrizable topological space and $S$ be
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a finite set1. Also, let $F_{i}$ , for $i\in S$ , be a continuous injection from $K$ to itself.
Then, $(K, S, \{F_{i}\}_{i\in S})$ is called a self-similar structure if there exists a con-
tinuous surjection $\pi$ : $\Sigmaarrow K$, where $\Sigma=S^{N}$ is the one-sided shift space, such that
$F_{i^{\circ\pi=\pi 0}}i$ for every $i\in S$ , where $i:\Sigmaarrow\Sigma$ is defined by $i(w_{1}w_{2}w_{3}\cdots)=iw_{1}w_{2}w_{3}\cdots$ .

NOTATION. $W_{m}=S^{m}$ is the collection of words with length $m$ . For $w=$

$w_{1}w_{2}\cdots w_{m}\in W_{m}$ , we define $F_{w}$ : $Karrow K$ by $F_{w}=F_{w_{1}}\circ F_{w_{2}}\circ\cdots\circ F_{w_{m}}$ and $K_{w}=F_{w}(K)$ .
Also we define

$W_{*}= \bigcup_{m\geqq 0}W_{m}$ .

If $(K, S, \{F_{i}\}_{i=S})$ is a self-similar structure, then it was shown in [Ki2]

that for all $\omega=\omega_{1}\omega_{2}\cdots\in\Sigma$ ,

$\bigcap_{m\geqq 1}K_{\omega_{1}\omega_{2}\cdots\omega_{m}}=\{\pi(\omega)\}$ ,

$And_{-}^{\vee}so$ , tbe map $\pi$ is uniquely determined. Conversely, it is easy to see that

PROPOSITION 2.2. $(K, S, \{F_{t}\}_{i\in S})$ is a self-similar structure if and only if $K$ is
a compact metrizable space, $F_{i}’s$ are continuous, $K= \bigcup_{i=1}^{N}F_{i}(K)$ and $\bigcap_{m\geqq 1}K_{\omega_{1}\omega_{2}\cdots\omega_{m}}$

consists of a single point for all $\omega=\omega_{1}\omega_{2}\cdots\in\Sigma$ .
By the above proposition, a self-similar set in the sense of Theorem 1.1 is

a self-similar structure. A self-similar structure is, however, purely topological
object and so without specifying a metric $d$ on $K$ that is compatible with the
original topology of $K$, we cannot think about its Hausdorff dimension. For
example, let $f_{1}^{\beta}$ and $f_{2}^{\beta}$ be contractions from $C$ to itself defined by

$f \not\in(z)=\frac{1+\beta i}{2}\overline{z}$ and $f_{2}^{\beta}(z)= \frac{1-\beta i}{2}\overline{z}+\frac{1+\beta i}{2}$ ,

where $0beta<1$ , then the corresponding self-similar sets $K(\beta)$ have different
Hausdorff dimensions under the Euclidean metric on $C$ . Precisely $\dim_{H}K(\beta)=$

$-\log 2/\log(\sqrt{1+\beta^{2}}/2)$ . Especially $K(O)=[0,1]$ and $K(\sqrt{3}/6)$ is the Koch curve.
NOW let $p_{\beta}$ : $K(O)arrow K(\beta)$ be the natural parametrization and let $\pi_{\beta}$ : $\{$ 1, 2 $\}^{N}arrow$

$K(\beta)$ be the natural map defined by

$\{\pi_{\beta}(\omega)\}=\bigcap_{m\geqq 0}K_{w}(\beta)$

then $p_{\beta}$ is obviously a homeomorphism and we have $p_{\beta}\circ\pi_{0}=\pi_{\beta}$ and, for $i=1,2$ ,
$f_{i}^{\beta}\circ p_{\beta}=p_{\beta}\circ f_{i}^{0}$ on $K(O)$ . In this manner, we can identify $(K(\beta), \{1,2\}, \{f_{1}^{\beta}, f\xi\})$

with $(K(O), \{1,2\}, \{f_{1}^{0}, f_{2}^{0}\})$ as a self-similar structure.
Hereafter, we will fix a self-similar structure $(K, \{1,2, \cdots , N\}, \{F_{i}\}_{i\Leftarrow 1}^{N})$ .

DEFINITION 2.3. For $r=(r_{1}, r_{2}, \cdots , r_{N})$ where $0<r_{i}<1$ and for $0<a<1$ ,

1 In this paper, $S=\{1,2, \cdot. , N\}$ except for Appendix.
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$\Lambda(r, a)=\{w : w=w_{1}w_{2}\cdots w_{m}\in W_{*}, r_{w_{1}w_{2}\cdots w_{m-1}}>a\geqq r_{w}\}$ ,

where $r_{v}=r_{v_{1}}r_{v_{2}}\cdots r_{v_{k}}$ for $v=v_{1}v_{2}\cdots v_{k}\in W_{k}$ .

NOW the following is our main theorem.

THEOREM 2.4. Let $d$ be a metric on $K$ which is compatible with the original
topology of K. If there exist $r=(r_{1}, r_{2}, \cdots , r_{N})$ where $0<r_{i}<1$ and positive con-
stants $c_{1},$ $c_{2},$ $c_{*}$ and $M$ such that

(A. 1) $d(K_{w})\leqq c_{1}r_{w}$

for all $w\in W_{*}$ and

(A.2) $\#\{w : w\in\Lambda(\gamma a), d(x, K_{w})\leqq c_{2}a\}$ :El $M$

for any $x\in K$ and any $a\in(O, c_{*})$ , then, there exist constants $0<c_{3},$ $c_{4}$ such that
for all $w\in W_{*}$ ,

$c_{3}r_{w}^{\alpha}<\mathcal{H}^{\alpha}(K_{w})<c_{4}r_{w^{\alpha}}$

where $a$ is the unique Posrtive number that satisfies
$\sum_{i=1}^{N}r_{t^{\alpha}}=1$ .

In panicular, $0<\mathcal{H}^{a}(K)<\infty$ and $\dim_{H}(K, d)=\alpha$ .

REMARK 1. If the conditions (A.1) and (A.2) in Theorem 2.4 hold, then it
is easy to see that, for any $x\in K$,

$\#(\pi^{-1}(x))\leqq M$ .
REMARK 2. By the proofs of Lemma 2.5 and Theorem 2.4, we can easily

see that the assumptions of the above theorem, (A.1) and (A.2), can be replaced
by the following weaker assumptions (A.la) and $(A.2a)$ . Let $c$ and $a$ be posi-
tive constants less than 1.

(A. la) $d(K_{w})\leqq c_{1}a^{n}$

for all $n\geqq 0$ and $w\in\Lambda(r, ca^{n})$ ,

$(A.2a)$ $\#$ { $w:w\in\Lambda(r,$ $ca^{n}),$ $d(x,$ $K_{w})\leqq c_{2}$ a} $\leqq M$

for any $x\in K$ and $n\geqq 0$ .
Corollary 1.3 is the case when $r=r_{1}=r_{2}=$ $=r_{N}$ and $a=r$ . In several

points, the proof of the above theorem depends on the same ideas as Moran’s
proof of Theorem 1.2. For convenience of the readers, however, we will give
the whole proof. First we will recall the following well-known lemma about
Hausdorff measures. See Moran [M] and also Hutchinson [Hu].
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LEMMA 2.5. Let $(K, d)$ be a compact metric space. If $\mathcal{H}^{\alpha}(K)<\infty$ and there
exists a probability measure $\mu$ on $K$ such that, for a constant $c>0$ ,

$\mu(B(x, l))\leqq cl^{\alpha}$

for all $x\in K$ and $suffi\alpha ently$ small $l>0$ , where $B(x, l)=\{y : y\in K, d(x, y)\leqq l\}_{r}$

then for each Borel set $A\subset K$,

$\mu(A)\leqq c\mathcal{H}^{a}(A)$ .
In particular, $0<\mathcal{H}^{a}(K)<\infty$ .

REMARK. According to the discussion of Moran [M], the converse of the
above lemma is true: If $0<\mathcal{H}^{\alpha}(K)<\infty$ , then there exists a probability measure
$u$ on $K$ such that, for some $c>0$ ,

$\mu(B(x, l))\leqq cl^{\alpha}$

for all $x\in K$ and $l>0$ .

PROOF OF LEMMA 2.5. For $U\subset K$ and $x\in U$ , note that $U\subset B(x, d(U))$ .

Let $\{U_{i}\}$ be a covering of a Borel set $A\subset K$, then

$\sum_{l}\mu(B(x_{i}, d(U_{\ell})))\leqq c\sum_{i}d(U_{i})^{\alpha}$ ,

where $x_{i}\in U_{i}$ . As $A \subset\bigcup_{i}B(x_{i}, d(U_{i}))$ , we have

$\mu(A)\leqq c\sum_{i}d(U_{i})^{\alpha}$

Hence by Definition 1.5, $\mu(A)\leqq c\mathcal{H}_{l}^{\alpha}(A)$ . Letting $larrow 0$ , it follows that $\mu(A)\leqq$

$c\mathcal{H}^{\alpha}(A)$ .

For the proof of Theorem 2.4, we also need some facts on the one-sided
shift space $\Sigma$ .

DEFINITION 2.6. A subset $\Lambda\subset W_{*}$ is called a partition if and only if

$\bigcup_{w\in\Lambda}\Sigma_{w}=\Sigma$ and $\Sigma_{w}\cap\Sigma_{v}=\emptyset$ for $w\neq v\in A$ ,

where, for $w=w_{1}w_{2}\cdots w_{m}\in W_{m}$ ,

$\Sigma_{w}=\{\omega:\omega=\omega_{1}\omega_{2}\cdots\in\Sigma, \omega_{1}\omega_{2}\cdots\omega_{m}=w_{1}w_{2}\cdots w_{m}\}$

LEMMA 2.7. For $a_{1},$ $a_{2}$ , , $a_{N}\geqq 0$ satisfying $\sum_{i=1}^{N}a_{i}=1$ , if $\Lambda$ be a Partition.
then

$\sum_{w_{1}w_{2}\cdots w_{m}\in\Lambda}a_{w_{1}}a_{w_{2}}\cdots a_{w_{m}}=1$ .
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The proof of the above lemma is exactly the same as that of Lemma 2.7
of [KL].

PROOF OF THEOREM 2.4. We write $\Lambda_{\alpha}=\Lambda(r, a)$ and $R= \min\{r_{1}, r_{2}, \cdots, r_{N}\}$ .
First we will show that $\mathcal{H}^{\alpha}(K_{w})\leqq(c_{1}/R)^{\alpha}r_{w}^{\alpha}$ for all $w\in W_{*}$ .

For $w=w_{1}w_{2}\cdots w_{m}\in W_{*}$ , we define

$\Lambda_{a}(w)=\{v=v_{1}v_{2}\cdots v_{k} : wv\in A_{a}\}$ ,

where $wv=w_{1}w_{2}\cdots w_{m}v_{1}v_{2}\cdots v_{k}$ . Then we can see that $A.(w)$ is a partition for
sufficiently small $a$ . Hence by Lemma 2.7,

$\langle$2.1)
$r_{w}^{\alpha}= \sum_{v\in\Lambda_{a^{(w)}}}r_{wv^{\alpha}}$

.

AS $\{K_{wv}\}_{v\in\Lambda_{a^{(w)}}}$ is a $c_{1}a$ -covering of $K_{w}$ , we have

$\mathcal{H}_{c_{1}a}^{\alpha}(K_{w})\leqq c_{1}^{\alpha}\sum_{v\in\Lambda_{a^{(w)}}}$
a.

Note that $r_{wv}>aR$ for $v\in\Lambda_{a}$ , it follows

$\mathcal{H}_{c_{1}a}^{\alpha}(K)\leqq(c_{1}/R)^{a}\sum_{v\in\Lambda_{a}(w)}r_{wv^{\alpha}}$ .

Using (2.1) and letting $aarrow 0$ , we obtain

$\mathcal{H}^{\alpha}(K_{w})\leqq(c_{1}/R)^{\alpha}r_{w}^{\alpha}$

Next we show that $r_{w}^{a}\leqq Mc_{2}^{-\alpha}\mathcal{H}^{\alpha}(K_{w})$ . Let $\overline{\mu}$ be the unique probability Borel
measure on $\Sigma$ satisfying

$\tilde{\mu}(\Sigma_{w})=r_{w}^{\alpha}$ .
Then we define a probability Borel measure $\mu$ on $K$ by, for any Borel set
$A\subset K$,

$\mu(A)=\overline{\mu}(\pi^{-1}(A))$ .
NOW for every $x\in K$,

$\pi^{-1}(B(x, c_{2}a))\subset\bigcup_{w\in\Lambda_{a.x}}\Sigma_{w}$
,

where $\Lambda_{a,x}=\{w:w\in\Lambda_{a}, d(x, K_{w})\leqq c_{2}a\}$ . Hence

$\mu(B(x, c_{2}a))\leqq\sum_{w\in\Lambda_{a,x}}\rho(\Sigma_{w})$ .

Note that $\overline{u}(\Sigma_{w})=r_{w}^{\alpha}\leqq a^{\alpha}$ and $\#(A., .):SM$, we have

$\mu(B(x, c_{2}a))-Mc_{2}^{-\alpha}(c_{2}a)^{\alpha}$

Thus using Lemma 2.5,

$r_{w}^{\alpha}\leqq\mu(K_{w})\leqq Mc_{2}^{-\alpha}\mathcal{H}^{\alpha}(K_{w})$ .
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Hence we have completed the proof of Theorem 2.4.

In the rest of this section, we show that the open set condition implies
(A.1) and (A.2) of Theorem 2.4.

PROPOSITION 2.8. Let $f_{i}$ : $R^{k}arrow R^{k}$ be $r_{i}$-similitude for $i=1,2$ , $\cdot$ .. , N. And
let $K$ be the self-srmilar set with respect to $(R^{k}, \{f_{i}\}_{i=1}^{N})$ . If the open set condi-
tion holds; there exists an open set $O\subset R^{k}$ such that

$\bigcup_{i=1}^{N}f_{i}(O)\subset O$ and $f_{i}(O)\cap f_{j}(O)=\emptyset$ for $i\neq j$ ,

then there exist constants $c_{1},$ $c_{2},$ $M>0$ such that

(A.1) $d(K_{w})\leqq c_{1}r_{w}$

for all $w\in W_{*}$

(A.2) $\#\{w : w\in\Lambda(\gamma a), d(x, K_{w})\leqq c_{2}a\}\leqq M$

for all $0<a<1$ and $x\in K$.

PROOF. We can see that $K_{w}\subset\overline{O}_{w}$ where $O_{w}=F_{w}(O)$ . Without loss of
generality, we may assume that $d(O)\leqq 1$ . Then obviously, for all $w\in W_{*}$ ,

$d(K_{w})\leqq d(\overline{O}_{w})\leqq r_{w}$ .
NOW let $\mathfrak{m}$ be the $k$ -dimensional Lesbegue measure and let

$\Lambda_{a.x}=\{w : w\in\Lambda(r, a), d(x, K_{w})\leqq a\}$ .

Then $U_{w\in\Lambda_{a,x}}O_{w}\subset B(x, 2a)$ . Since $O_{w}’ s$ are mutually disjoint, we have

$\sum_{w\in\Lambda_{ax}}.\mathfrak{m}(O_{w})\leqq \mathfrak{m}(B(x, 2a))$
.

Hence we have
$\#(\Lambda_{a.x})r_{w^{k}}\mathfrak{m}(O)\leqq 2^{k}Ca^{k}$

where $C=\mathfrak{m}$ (unit ball). Since $r_{w}\geqq aR$ where $R= \min\{r_{1}, r_{2}, \cdots , r_{N}\}$ ,

$\#(\Lambda_{a.x})\leqq 2^{k}CR^{-k}\mathfrak{m}(O)^{-1}$ .

\S 3. Shortest path metrics on p.c. $f$ . self-similar sets.

In this section, we will apply Theorem 2.4 to shortest path metrics on
p.c. $f$ . self-similar sets. The notion of p. c. $f$ . self-similar sets introduced by

[Ki2] is a mathematical justification of the “finitely ramified” self-similar sets.
Roughly speaking, a self-similar set $K$ is finitely ramified if $\#(\bigcup_{i\neq j}(K_{i}\cap K_{j}))$

is finite.
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DEFINITION 3.1. Let $(K, \{1,2, , N\} , \{F_{i}\}_{i=1}^{N})$ be a self-similar structure.
We define the critical set $C\subset\Sigma$ and the post critical set $9\subset\Sigma$ by

$c= \pi^{-1}(\bigcup_{i\neq j}(K_{i}\cap K_{j}))$ and $g= \bigcup_{n\geqq 1}\sigma^{n}(C)$ ,

where $\sigma$ is the shift map from $\Sigma$ to itself defined by $\sigma(\omega_{1}\omega_{2}\omega_{3}\cdots)=\omega_{2}\omega_{3}\omega_{4}\cdots$ .
A self-similar structure is called post critically finite ( $p$ . $c$ . $f$ . for short) if and
only if $\#(9)$ is finite. Moreover if $(K, \{1,2, \cdot.. , N\}, \{F_{i}\}_{i=1}^{N})$ is p. c. $f.$ , then $K$

is called a $p$ . $c$ . $f$ . self-similar set.

EXAMPLE (Sierpinski Gasket): Figure 2. Let $p_{1},$ $p_{2},$ $p_{3}$ be the vertices of a
regular triangle in $C$. Then we define, for $i=1,2,3$ ,

$F_{i}(z)= \frac{1}{2}(z-p_{i})+p_{t}$ .

The Sierpinski gasket $K$ is the self-similar set with respect to $(C, \{F_{1}, F_{2}, F_{3}\})$ .
The self-similar structure associated with the Sierpinski gasket is post critically
finite. In fact,

$C=\{1\dot{2}, 2i, 1\dot{3}, 3i, 2\dot{3}, 3\dot{2}\}$ and $\varphi=\{i,\dot{2},\dot{3}\}$ ,

where $k=kkkk\ldots$

$pl$

Figure 2. $a$ . Sierpinski Gasket. Figure 2. $b$ . Sierpinski Gasket.

One can Pnd other examples of $p$ . $c$ . $f$ . self-similar sets in \S 4. Moreover,
the nested fractals introduced by $Lindstr\emptyset m$ [Li] are $p$ . $c$ . $f$ . self-similar sets.

The following is the main result of this section.
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THEOREM 3.2. Let $(K, \{1,2, \cdot.. , N\}, \{F_{i}\}_{i=1}^{N})$ be a p.c.f. self-similar struc-
ture. If a metric $d$ on $K$ satisfies:
(B.1) $d$ is a shortest path metric.
(B.2) There exist $0<r_{1},$ $r_{2}$ , $\cdot$ .. , $r_{N}<1$ such that, for all $x,$ $y\in K$,

$d(F_{i}(x), F_{i}(y))=r_{i}d(x, y)$ ,

then there exists a constant $c>0$ such that

$\mathcal{H}^{\alpha}(K_{w})=cr_{w^{\alpha}}$

for all $w\in W_{*}$ , where $\alpha$ is the unique constant that satisfies
$\sum_{i=1}^{N}r_{i}^{\alpha}=1$ .

In particular, $\dim_{H}(K, d)=a$ .

In the next section, we will establish a necessary and sufficient condition
for the existence of metrics satisfying the above assumptions (B.1) and (B.2)

and give some examples.
For the proof of Theorem 3.2, we will use

LEMMA 3.3. Let $\Lambda\subset W_{*}$ be a partition of $\Sigma$ . Then, for $w\neq v\in\Lambda$ ,

(1) $K_{w}\cap K_{v}=F_{w}(V_{0})\cap F_{v}(V_{0})$ ,

where $V_{0}=\pi(9)$ . Also for all $w\in\Lambda$ ,

(2) $\#\{v : v\neq w\in\Lambda, K_{w}\cap K_{v}\neq\emptyset\}\leqq\#(C)\#(V_{0})$ .

PROOF. (1) is obvious by the definition of 9 and $C$ . For (2), it is enough
to show that, for all $p\in K$,

(3.1) $\#(\pi^{-1}(p))\leqq\#(C)$ .
Let $k=\#(C)$ and suppose $\pi^{-1}(p)$ contains $k+1$ elements, that is,

$\pi^{-1}(p)\supset\{\omega^{1}, \omega^{2}, \omega^{k+1}\}$ ,

where $\omega^{n}=\omega_{1}^{n}\omega_{2}^{n}\cdots$ . Then, there exists $m\geqq 1$ such that

$\omega_{1}^{1}\omega_{2}^{1}$ ... $\omega_{m-1}^{1}=\omega_{1}^{2}\omega_{2}^{2}\cdots\omega_{m-1}^{2}=..$ . $=\omega_{1}^{k+1}\omega_{2}^{k+1}\cdots\omega_{m-1}^{k+1}$

and $\omega_{m}^{i}\neq\omega_{m}^{f}$ for some $i\neq j$ . Let $q=F_{\omega_{1}^{1}\omega_{2}^{1}\cdots\omega_{m-1}^{1}}^{-1}(p)$ , then $q\in K_{i}\cap K_{f}$ and

$\pi^{-1}(q)\supset\{\omega_{*}^{1}, \omega_{*}^{2}, \omega_{*}^{k+1}\}$ ,

where $\omega_{*}^{n}=\omega_{m}^{n}\omega_{m+1}^{n}\cdots$ .

On the other hand, $\pi^{-1}(q)\subset C$ , hence $\#(\pi^{-1}(q))\leqq k$ . Thus we have a con-
tradiction.
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PROOF OF THEOREM 3.2. Obviously by (B.2), we have, for all $w\in W_{*}$ ,

(A.1) $d(K_{w})=r_{w}d(K)$ .

NOW for $x\in K$, there exists $w\in\Lambda(r, a)$ such that $x\in K_{w}$ . If $K_{w}\cap K_{v}=\emptyset$ , then
for $y\in K_{v}$, a geodesic between $x$ and $y$ must intersect some $K_{s}$ for some $s\in$

$\Lambda(r, a)\backslash \{w, v\}$ . Using Lemma 3.3-(1), we have

$d(x, y) \geqq\min_{p\neq q\in F_{S}(V_{0})}d(p, q)$ .

By (B.2), we have $d(x, y)\geqq r_{s}b\geqq aRb$ , where $R= \min\{r_{1}, r_{2}, , r_{N}\}$ and $b=$

$\min\{d(p, q):p\neq q\in V_{0}\}$ . Hence let $c_{2}=Rb/2$, then

$\{t:t\in\Lambda(r, a), d(x, K_{l})\leqq c_{2}a\}\subset\{t:t\in\Lambda(r, a), K_{t}\cap K_{w}\neq\emptyset\}$ .

Using Lemma 3.3-(2), we have

(A.2) $\#\{t:t\in\Lambda(r, a), d(x, K_{t})\leqq c_{2}a\}\leqq M$ ,

where $M=\#(C)\#(V_{0})+1$ . Thus applying Theorem 2.4 we have $0<\mathcal{H}^{\alpha}(K)<\infty$ .
By (B.2), we can see that, for all $w\in W_{*}$ ,

$\mathcal{H}^{\alpha}(K_{w})=r_{w}^{\alpha}\mathcal{H}^{\alpha}(K)$ .

Thus we have completed the proof of Theorem 3.2.

\S 4. Existence of shortest path metric.

In this section, we will give a necessary and sufficient condition for exist-
ence of metrics on p. c. $f$ . self-similar sets that satisfy the assumptions of
Theorem 3.2, (B.1) and (B.2). First we introduce several notions.

DEFINITION 4.1. Let $V$ be a finite set. A family of $\#(V)\cross\#(V)$-matrices,
$9=\{D_{1}, D_{2}, , D_{n}\}$ is called a family of paths on $V$ if and only if, for every
$i=1,2,$ $\cdots$ , $n$ ,

(1) $D_{l}$ is symmetric,
(2) $D_{i}(p, q)\geqq 0$ for all $p,$ $q\in V$ and $D_{i}(p, p)=0$ for all $p\in V$ , where $D_{i}=$

$(D_{i}(p, q))_{p.q\in V}$ .
A sequence $\{(p_{k}, p_{k+1} : i_{k})\}_{k=1}^{m}$ where $p_{k},$ $p_{k+1}\in v$ and $i_{k}\in\{1,2, \cdots , n\}$

is called a 9-path between $p_{1}$ and $p_{m+1}$ if and only if, for all $k=1,2$ , , $m$ ,
$D_{t_{k}}(p_{k}, p_{k+1})>0$ . Further a family of paths on $V,$ $9$ is said to be irreducible
if tbere exists a 9-path between $p$ and $q$ for all $p,$ $q\in V$ .

NOTATION. For two $9$-paths $p=\{(p_{k}, p_{k+1} : f_{k})\}_{k=1}^{m_{1}}$ and $q=\{(q_{k}, q_{k+1} : j_{k})\}m=21$ ,

if $p_{m_{1}+1}=q_{1}$ , we define a 9-path between $p_{1}$ and $q_{m_{2}+1},$ $h=\{(h_{k}, h_{k+1} : l_{k})\}_{k=1}^{m_{1}+m_{2}}$ ,

by
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$h_{k}=\{$

$p_{k}$ for $1\leqq k\leqq m_{1}$

$q_{k-m_{1}}$ for $m_{1}+1\leqq k\leqq m_{1}+m_{2}+1$

$l_{k}=\{$

$i_{k}$ for $1\leqq k\leqq m_{1}$

$j_{k-m_{1}}$ for $m_{1}+1\leqq k\leqq m_{1}+m_{2}$

we will denote $h=p\vee q$ .

The next proposition follows immediately by Definition 4.1.

PROPOSITION 4.2. Let $V$ be a finite set and let 9 be $a$ irreducible family
of paths on $V$ , then $d_{9}$ is a metric on $V$ where $d_{9}$ is defined by

$d_{9}(p,$ $q)=$ $\min$ $\sum mD_{i_{k}}(p_{k},$ $p_{k+1})$ .
$t(p_{k}, p_{k+_{1}}\cdot t_{k})\}_{k=1}$

$m$ is a $i=1$

9-path between $p$ and $q$

A 9-path between $p$ and $q$ that attains the minimum of the above definition is
called a minimal 9-path between $p$ and $q$ .

NOW the main result of this section is

THEOREM 4.3. Let $(K, \{1,2, \cdots , N\}, \{F_{i}\}_{\ell=1}^{N})$ be a $p.c.f$ . self-similar struc-
ture where $K$ is connected. For given $0<r_{1},$ $r_{2},$

$\cdots$ , $r_{N}<1$ , there exists a metric
on $K$ such that

(B.1) $d$ is a shortest path metnc,

(B.2) $d(F_{i}(x), F_{i}(y))=r_{i}d(x, y)$ ,

for all $x,$ $y\in K$ if and only if there exists a metric $d_{0}$ on $V_{0}=\pi(9)$ such that,

for all $p,$ $q\in V_{0}$ ,

(C.1) $d_{g}(p, q)=d_{0}(p, q)$ ,

where $9=\{D_{1}, D_{2}, \cdots , D_{N}\}$ is a family of paths2 on $V_{1}= \bigcup_{i=1}^{N}F_{i}(V_{0})$ defined by

$D_{i}(p, q)=\{$

$r_{i}d_{0}(F_{t^{-1}}(p), F_{\ell^{-1}}(q))$ if $p,$ $q\in F_{i}(V_{0})$ ,

$0$ otherwise
and

(C.2) $d_{9}(p, q)=D_{i}(p, q)$ ,

for all $p,$ $q\in F_{t}(V_{0})$ .

REMARK 1. In [BS], they studied the existence problem of interior dis-
tances on $p$ . $c$ . $f$ . self-similar sets where the contractions are similitudes of a

$g$ If $K$ is connected, we can easily see that 9 is irreducible.
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Euclidean space $R^{n}$ . The interior distances satisfy (B.1) and (B.2). They get
a condition which corresponds to (C.1) of the above theorem. In their restricted
situation, however, the condition (C.2) will not appear. We will give an ex-
ample where (C.2) becomes really a constraint. See Example 2 below.

REMARK 2. By the proof of Theorem 4.3, we can see that if (C.1) and
(C.2) is satisfied then we can find a set of geodesics $\{g_{pq}\}_{pq\in V_{0}}$ such that

$g_{pq}(t)=g_{pq}(d(p, q)-t)$ .

Moreover let $[t_{1}, t_{2}]=\{t:g_{pq}(t)\in K_{i}\}$ , then

$F_{i}(g_{\overline{p}\overline{q}}(t))=g_{pq}(r_{i}t+d(p, p_{1}))$ ,

where $p_{1}=g_{pq}(t_{1})$ , $q_{1}=g_{pq}(i_{2}),\overline{p}=F_{i^{-1}}(p_{1})$ and $\overline{q}=F_{i^{-1}}(q_{1})$ . Hence $\{g_{pq}\}_{p,q\in V_{0}}$

forms a frame of this self-similar sets. The concept of frames of self-similar
sets was introduced by Kameyama [Ka].

Before proving our theorem, we apply it to several examples.

EXAMPLE 1 (Hata’s tree-like set): Figure 3. This tree-like set was intro-
duced by Hata [Ha]. For $\beta\in C$ that satisfies

$|\beta|<1,$ $|\beta-1|<1$ and ${\rm Im}\beta\neq 0$ ,

we define contractions $F_{1}$ and $F_{2}$ from $C$ to itself by

$F_{1}(z)=\beta\overline{z}$ and $F_{2}(z)=(1-|\beta|^{2})\overline{z}+|\beta|^{2}$ .
The Hata’s tree-like set is the self-similar set associated with $(C, \{F_{1}, F_{2}\})$ .
The corresponding self-similar structure is independent of $\beta$ and it is post
critically finite. In fact

$c=\{11\dot{2}, 2i\}$ , $q=\pi(11\dot{2})=\pi(2i)$ ,

$9=\{i,\dot{2}, 1\dot{2}\}$ , $p_{1}=\pi(j)$ , $p_{2}=\pi(\dot{2})$ , $p_{3}=\pi(1\dot{2})$ .

NOW let $d_{0}$ be a metric on $V_{0}=\{p_{1}, p_{2}, p_{3}\}$ and let

Figure 3. Hata’s tree-like set.
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$a=d_{0}(p_{1}, p_{3})$ , $b=d_{0}(p_{1}, p_{2})$ and $c=d_{0}(p_{2}, p_{3})$ .

Then the condition (C.1) becomes

(4.1) $br_{1}=a$ , $ar_{1}+br_{2}=b$ , $br_{1}+ar_{1}+br_{2}=c$ .

In this case, (C.2) is satisfied under (4.1). By (4.1), we have, for $0<r<1$ ,

$r_{1}=r$ , $r_{2}=1-r^{2}$ , $a=br$ and $c=a+b$ .
Hence by Theorem 4.3, we can construct a shortest path metric on the Hata’s
tree-like set for each choice of $r$ . By Theorem 3.2, the corresponding Hausdorff
dimension is the unique number $\alpha$ that satisfies

$r^{\alpha}+(1-r^{2})^{\alpha}=1$ .

For the Hata’s tree-like set, the contraction ratio $|\beta|$ naturally corresponds to
the ratio of the shortest path metric $r$ .

EXAMPLE 2: Figure 4. Let $\{p_{1}, p_{2}, p_{3}\}$ be the vertices of a regular triangle
in $C$ and let

$p_{4}= \frac{1}{2}(p_{2}+p_{3})$ , $p_{5}= \frac{1}{2}(p_{1}+p_{3})$ , $p_{6}= \frac{1}{2}(p_{1}+p_{2})$ , $p_{7}= \frac{1}{3}(p_{1}+p_{2}+p_{3})$ .

Further, for $i=1,2$ , , 7, let $F_{i}$ be a contraction from $C$ to itself defined by

$F_{i}(z)=\beta_{\ell}(z-p_{i})+p_{i}$ ,

where $\beta_{1}=\beta_{2}=\beta_{3}=\beta,$ $\beta_{4}=\beta_{5}=\beta_{6}=1-2\beta,$ $\beta_{7}=1-3\beta$ for $1/3<\beta<1/2$ .
$p_{1}$

Figure 4. $a$ . Figure 4. $b$ .

The self-similar structure associated with the self-similar set with respect
to $(C, \{F_{i}\}_{i=1}^{7})$ is independent of the value of $\beta$ and it is post critically finite.
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In fact
$c=k=1U\{7\dot{k}3(k+3)\dot{k}\}\cup$

$\bigcup_{k<\iota<m,k+l+m=9}\{ki, m\dot{k}, mi, l\dot{k}\}$
,

$q_{k}=\pi(7\dot{k})=\pi((k+3)\dot{k})$ for $k=1,2,3$ ,

$q_{lm}=\pi(mi)=\pi(l\dot{k})$ , $q_{km}=\pi(ki)=\pi(m\dot{k})$ ,

for $(k, 1, m)$ such that $k<l<m$ and $k+l+m=9$ . Also

$9=\{i,\dot{2},\dot{3}\}$ and $p_{k}=\pi(\dot{k})$

for $k=1,2,3$ .
In this case, taking symmetries into account, we assume that $d_{0}(p_{i}, p_{j})=1$

for all $i\neq j\in\{1,2,3\}$ where $d_{0}$ is a metric on $V_{0}=\{p_{1}, p_{2}, p_{3}\}$ and that $r_{1}=r_{2}$

$=r_{3}=r,$ $r_{4}=r_{5}=r_{6}=s$ and $r_{7}=t$ . Then the condition (C.1) and (C.2) becomes

$2r+s=1$ and $2s+t\geqq r$

respectively. Here the condition (C.2) is really a constraint. For example, for
$r=3/7$ and $s=1/7$ , we have $t\geqq 1/7$ by (C.2).

EXAMPLE 3 (Pentakun): Figure 5. Let $\{p_{1}, p_{2}, \cdot .. , p_{5}\}$ be the vertices of a
regular pentagon in $C$ . Then for $i=1,2,$ $\cdots,$

$5$ , we define a contraction $F_{\iota}$

by

$F_{i}(z)= \frac{3-\sqrt{5}}{2}(z-p_{t})+p_{\iota}$ .

The pentakun3 is the self-similar set with respect to $(C, \{F_{i}\}_{i=1}^{5})$ . The self-
$p_{1}$

Figure 5. $a$ . Pentakun. Figure 5. $b$ . Pentakun.

$s$ In the same way, we can also define hexakun, heptakun, octakun and so on. ‘kun’
is a Japanese which means ‘Mr.’.
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similar structure that corresponds to the pentakun is post critically finite. In
fact

$c= \bigcup_{k=1}^{5}\{[k-2][k\dotplus 1], [k+2][k-1]\}$ ,

$q_{k}=\pi([k-2][k\dotplus 1])=\pi([k+2][k-1])$ ,

if $=\{i,\dot{2}, \dot{5}\}$ and $p_{k}=\pi(\dot{k})$

for $k=1,2,$ $\cdots$ , 5, where $[i]\in\{1,2, \cdots , 5\}$ is defined by $[i]\equiv imod 5$ .
The pentakun has a strong symmetry and it is a nested fractal. Here we

will focus on shortest path metrics that have the same symmetry as the shape
of the pentakun. Therefore, we assume that a metric $d_{0}$ on $V_{0}=\{p_{1}, p_{2}, \cdots , p_{s}\}$

satisfies

$d_{0}(p_{i}, p_{j})=\{$

$a$ if $‘-j|=$ tl $mod 5$

$b$ if $|i-j|=\pm 2mod 5$

and also $r=r_{i}$ for $i=1,2,$ $\cdots$ , 5. Then the condition (C.1) becomes

(4.2) $2br=a$ and $2br+ar=b$ .

(C.2) is satisfied if (4.2) holds. By (4.2), we have

$r= \frac{\sqrt{3}-1}{2}$ and $a=(\sqrt{3}-1)b$ .

Hence by Theorem 4.3, the shortest path metrics with the above symmetry are
essentially unique up to constant multiple. The Hausdorff dimension under this
shortest path metric is $-\log 5/\log r$ .

In the rest of this section, we will prove Theorem 4.3 in several steps.
First we show that (B.1) and (B.2) imply (C.1) and (C.2).

LEMMA 4.4. If (B.1) and (B.2) hold, then we have (C.1) and (C.2).

PROOF. Let $d_{0}=d|_{V_{0^{\cross}}V_{0}}$ . By virtue of (B.2), $d(p, q)=D_{i}(p, q)$ if $p,$ $q\in$

$F_{i}(V_{0})$ . Hence by the triangle inequality, we have (C.2) and, for $p,$ $q\in V_{0}$ ,

$d_{9}(p, q)\geqq d_{0}(p, q)$ .
By (B.1), there is a geodesic $g:[0, d(p, q)]arrow K$ between $p$ and $q$ for $p,$ $q\in V_{0}$ .
Let $\{t_{1}, t_{2}, \cdots , t_{m+1}\}=\{t:g(t)\in V_{1}\}$ where $0=t_{1}<t_{2}<\ldots<t_{m+1}=d(p, q)$ , then
$\{(g(t_{k}), g(t_{k+1}):i_{k})\}_{k=1}^{m_{1}}$ is a 9-path between $p$ and $q$ for some $i_{1},$ $i_{2},$ $i_{m}$ . As
$g$ is a geodesic,

$d(p, q)= \sum_{i=1}^{m}d(g(t_{k}), g(t_{k+1}))$ .
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Hence we have
$d_{9}(p, q)=d_{0}(p, q)$ .

Next we prove the counter direction. From now on, we assume (C.1) and
$\langle C.2)$ .

DEFINITION 4.5. Let $V_{m}=U_{w\in W_{m}}F_{w}(V_{0})$ . $9_{m}=\{D_{w}\}_{w\in W_{m}}$ is a family of
paths on $V_{m}$ defined by

$D_{w}(p, q)=\{$

$r_{w}d_{0}(F_{w}^{-1}(p), F_{w}^{-1}(q))$ if $p,$ $q\in F_{w}(V_{0})$ ,

$0$ otherwise.

We write $d_{m}=d_{9_{m}}$ . Note that $E^{)}=9_{1}$ .
AS $K$ is connected we can see that $9_{m}$ is irreducible. Now, for each pair

$(p, q)\in V_{0}\chi V_{0}$ , we fix a minimal 9-path between $p$ and $q,$ $p(p, q)=\{(p_{k}(p, q)$ ,
$p_{k+1}(p, q):i_{k}(p, q))\}_{k=1}^{m(p,q)}$ . Then using (C.2) inductively, we can see that

LEMMA 4.6. For $w\in W_{m}$ and $p,$ $q\in F_{w}(V_{0})$ , we define a $9_{m+1}$-path between
$p$ and $q,$ $p_{w}(p, q)$ by

$p_{w}(P, q)=\{(F_{w}(p_{k}(\overline{p},\overline{q})), F_{w}(p_{k+1}(\overline{p},\overline{q})):wi_{k}(\overline{p},\overline{q}))\}_{k1}^{m(\overline{p},\overline{q})}=$
’

where $\overline{p}=F_{w^{-1}}(p)$ and $\overline{q}=F_{w^{-1}}(q)$ . Then $p_{w}(p, q)$ is a minimal $9_{m+1}$-path between
$p$ and $q$ .

LEMMA 4.7. For $p,$ $q\in V_{m}$ , let $p=\{(p_{k}, p_{k+1} : w^{(k)})\}_{k=1}^{m}$ be a minimal 9. -

path between $p$ and $q$ . Then

$\mathscr{F}(p)=p_{w^{(1)}}(p_{1}, p_{2})p_{w^{(2)}}(p_{2}, p_{3})$ $p_{w^{(m)(p_{m}}},$ $p_{m+1})$

is a minimal $9_{m+1}$-path between $p$ and $q$ .
By the above lemma, we can easily see that

$d_{m+1}(p, q)=d_{m}(p, q)$

for all $p,$ $q\in V_{m}$ . Hence we can define a metric $d$ on $V_{*}=U_{m\geqq 0}V_{m}$ by $d(p, q)$

$=d_{m}(p, q)$ for $p,$ $q\in V_{m}$ . Next we will extend this metric $d$ to a metric on $K$.

LEMMA 4.8. Define $d(p, q)$ for $p,$ $q\in K$ by

$d(p, q)= \lim_{narrow\infty}d(p_{n}, q_{n})$ ,

where $p_{n},$ $q_{n}\in V_{*}$ and $p_{n}arrow p,$ $q_{n}arrow q$ as $narrow\infty$ . Then $d$ is well-defined and it is a
metric on $K$ that satisfies (B.2).

REMARK. The notion of the convergence of a sequence in $K$ is equivalent
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to the following. A sequence in $K,$ $\{p_{n}\}_{n=1}^{\infty}$ , converges to $p\in K$ if and only if,
for each $m$ , there exists $n(m)$ such that, for all $n>n(m),$ $p_{n}\in U_{m,p}$ where

$U_{m}p= \bigcup_{w:p\in K_{w},w\in W_{m}}K_{w}$ .

PROOF OF LEMMA 4.8. Let $p_{n}arrow p,$ $p_{n}’arrow p$ as $narrow\infty$ where $\{p_{n}\},$ $\{p_{n}’\}\subset V_{*}$ .
Note that, for $w\in W_{m}$ ,

$d(K_{w})=x \max_{y\in K_{w\cap}V_{*}}d(x, y)\leqq R^{m}M$

where $R= \max\{r_{1}, r_{2}, \cdots , r_{N}\}$ and $M= \max_{p}q\in V_{0}d_{0}(p, q)$ . Hence by (3.1), we
have, for sufficient large $n$ ,

$d(p_{n}, p_{n}’) \leqq\sum_{w\in U_{mp}},d(K_{w})\leqq\#(C)R^{m}M$ .

Therefore $d(p_{n}, p_{n}’)arrow 0$ as $narrow\infty$ .
NOW by the triangle inequality,

$|d(p_{n}, q_{n})-d(p_{m}, q_{m})|\leqq d(p_{n}, p_{m})+d(q_{n}, q_{m})$ .
By the above fact, we have $d(p_{n}, p_{m}),$ $d(q_{n}, q_{m})arrow 0$ as $m,$ $narrow\infty$ . Hence there
exists a limit of $d(p_{n}, q_{n})$ as $narrow\infty$ . We can show that this $d$ is a well-defined
on $K$ by the same discussion. It is obvious that $d$ is a metric on $K$ and it
satisfies (B.2).

The final step of the proof of Theorem 4.3 is to construct geodesics for $d$ .
First we construct a geodesic between $p$ and $q$ for $p,$ $q\in V_{*}$ . For $p,$ $q\in V_{*}$ ,

there is some $m$ such that $p,$ $q\in V_{m}$ . Let $p$ be a minimal $9_{m}$-path between $p$

and $q$ . We define $p^{n}=\mathscr{F}^{n}(p)$ , theh by Lemma 4.7, $p^{n}$ is a minimal $9_{m+n}$-path
between $p$ and $q$ . Let

$p^{n}=\{(p_{k}^{n}, p_{k+1}^{n} : w^{n}(k))\}_{k=1}^{mtn)}$ ,

then define $T_{n}=\{t_{1}^{n}, t_{2}^{n}, , t_{m(n)+1}^{n}\}\subset[0, d(p, q)]$ by $t_{k}^{n}=d_{m+n}(p, p_{k}^{n})$ , where $t_{1}^{n}=0$

and $t_{m(n)+1}^{n}=d(p, q)$ . We can see that $T_{n}\subset T_{n+1}$ and $T_{*}= \bigcup_{n\geqq 0}T_{n}$ is a dense sub-
set of $[0, d(p, q)]$ . Now define $g_{pq}$ : $T_{*}arrow[O, d(p, q)]$ by, for $t_{k}^{n}\in T_{n},$ $g_{pq}(t_{k}^{n})=p_{k}^{n}$ ,

then this is well-defined and we can extend $g_{pq}$ to a continuous function
$g_{pq}$ : $[0, d(p, q)]arrow K$ . It is obvious by the method of construction that $g_{pq}$ is a
geodesic between $p$ and $q$ .

Next, we construct a geodesic between $p\in V_{0}$ and $q\in K\backslash V_{*}$ . Let $n=\#(V_{0})$ ,
$\pi^{-1}(q)=\omega_{1}\omega_{2}\omega_{3}$ and $F_{\omega_{1}\omega_{2}\cdots\omega_{m}}(V_{0})=\{g_{1}^{m}, g_{2}^{m}, \cdots, g_{n}^{m}\}$ . By Lemma 3.3-(1), every
geodesic between $p$ and $q_{i}^{m}$ intersects $F_{\omega_{1}\omega_{2}\cdots\omega_{m-1}}(V_{0})$ . Hence we can choose a
family of geodesics $g(p, q_{i}^{m} : \cdot)$ such that $g(p, q_{i}^{m} : )$ is a geodesic between $p$

and $q_{i}^{m}$ and, for some $j,$ $g(p, q_{i}^{m} : t)=g(p, q_{j}^{m-1} : t)$ on $[0, d(p, q_{j}^{m-1})]$ .
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LEMMA 4.9. There exists a sequence $\{i_{m}\}_{m=12}\ldots$ where $1\leqq i_{k}\leqq n$ such that

$g(p, q_{i_{m}}^{m} : t)=g(p, q_{i_{k}}^{k} : t)$

on $[0, d(p, q_{i_{k}}^{k})]$ for all $m>k$ .

PROOF. We can choose $i_{1}$ such that for all $k>1$ , there exists $j_{k}$ that
satisfies

$g(p, q_{J_{k}}^{k} : t)=g(p, q_{t_{1}}^{1} : t)$

on $[0, d(p, q_{i_{1}}^{1})]$ . Now suppose that we can choose $i_{1},$ $i_{2}$ , $\cdot$ .. , $i_{m}$ such that for
all $k>m$ , there exists $j_{k}$ satisfying

$g(p, q_{J_{k}}^{k} : t)=g(p, q_{i_{l}}^{\iota} : t)$

on $[0, d(p, q_{\iota_{l}}^{l})]$ for $l=1,2,$ $\cdots$ , $m$ . Then let

$U_{i}=\{k:k\geqq m+1, g(p, q_{J_{k}}^{k} : d(p, q_{i}^{m+1}))=q_{l}^{m+1}\}$ .

Choosing $i_{m+1}$ so that $\#(U_{i_{m+1}})=\infty$ , we can find $j_{m+2}’,$ $]_{m+3}’,$ $\cdot$ . satisfying

$g(p, q_{J_{k}’}^{k} : t)=g(p, q_{t_{l}}^{\iota} : t)$

on $[0, d(p, q_{t_{l}}^{l})]$ for $l=1,2$ , $\cdot$ , $m+1$ . Hence we can inductively construct a
sequence $\{i_{m}\}_{m=1,2},\cdots$ that satisfies Lemma 4.9.

Since $q_{i_{m}}^{m}arrow q$ as $marrow\infty$ , we can define $g_{pq}$ : $[0, d(p, q)]arrow K$ by

$g_{pq}(t)=\{$

$g(p, q_{i_{m}}^{m} : t)$ on $[0, d(p, q_{t_{m}}^{m})]$

$q$ for $t=d(p, q)$ .

Then $g_{p,q}$ is a geodesic between $p$ and $q$ .
Finally we construct a geodesic between $p$ and $q$ for $p,$ $q\in K$. For suffici-

ently large $m$ , we can choose $w\neq v\in W_{m}$ so that $p\in K_{w}$ and $q\in K_{v}$ . Then there
exist $p_{1}\in F_{w}(V_{0})$ and $q_{1}\in F_{v}(V_{0})$ such that

$d(p, q)=d(p, p_{1})+d(p_{1}, q_{1})+d(q_{1}, q)$ .

Let $\overline{p}=F_{w}^{-1}(p)$ , $\overline{p}_{1}=F_{w}^{-1}(p_{1})$ , $\overline{q}=F_{\overline{v}^{1}}(q)$ and $\overline{q}_{1}=F_{v}^{-1}(q_{1})$ and let $g_{p_{1}p},$ $g_{pq}$ and
$g_{\overline{q}_{1}\overline{q}}$ be geodesics constructed in the previous steps. We define

$g_{pq}(t)=\{$

$g_{\overline{p}_{1}\overline{p}}((d(p, p_{1})-t)/r_{w})$ on $[0, d(p, p_{1})]$

$g_{p_{1}q_{1}}(t-d(p, p_{1}))$ on $[d(p, p_{1}), d(p, q_{1})]$

$g_{\overline{q}_{1}\overline{q}}((t-d(p, q_{1}))/r_{v})$ on $[d(p, q_{1}), d(p, q)]$ .
It follows easily that $g_{pq}$ is a geodesic between $p$ and $q$ . Thus we have shown
that $d$ is a shortest path metric.
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Appendix. The Hausdorff dimension of the L\’evy curve.

At the beginning, we recall the definition of the L\’evy curve.
Let $F_{0}$ and $F_{1}$ be contractions4 from $C$ to itself defined by, for $b=(1+i)/2$ ,

$F_{0}(z)=\beta z$ and $F_{1}(z)=\overline{\beta}z+\beta$ ,

The L\’evy curve $K$ is the self-similar set with respect to $(C, \{F_{0}, F_{1}\})$ .
First, we explain the difficulty in applying Theorem 1.2 (the open set con-

dition) to the L\’evy curve. The following fact was pointed out by Hata in a
private communication.

PROPOSITION A.1. If there is an open set $0$ that satisfies the open set con-
dition for the Lbvy cume $K$, then $O\subset K$.

This means that if we try to find an open set that satisfies the open set
condition, then we should prove that the L\’evy curve $K$ contains an open ball
of $C$ . However, if we could find an open ball which contained in $K$, it proved
that $0<\mathcal{H}^{2}(K)<\infty$ , because $K$ is a bounded subset of $C$ . As a consequence, it
seems quite difficult to show the open set condition before proving that
$\dim_{H}K=2$ . In fact, we can show that the L\’evy curve contains an open ball
of $C$ and then int $(K)$ is the unique open set that satisfies the open set condi-
tion.

NOW we will show that Corollary 1.3 can be applied to the L\’evy curve.

PROPOSITION A.2. For the L\’evy curve $K$, let $r=|\beta|=\sqrt{1/2}$, then

(1) $d(K_{w})\leqq r^{m}d(K)$

for all $m\geqq 1$ and all $w\in W_{m}$ . Also there exists a positive constant $M$ such that

(2) $\#\{w : w\in W_{m}, d(x, K_{w})\leqq r^{m}d(K)\}\leqq M$

for all $m\geqq 1$ and $x\in K$.
By Corollary 1.3, the above proposition implies

$0<\mathcal{H}^{2}(K)<\infty$

and so $\dim_{H}K=2$ .
We will prove Proposition A.2 hereafter. (1) is obvious because $d(K_{w})=$

$r^{m}d(K)$ for all $w\in\{0,1\}^{m}$ . For (2), we will construct a series of broken lines
which approximates the L\’evy curve as in [Kil].

DEFINITION. For $n\geqq 0,$ $a_{n}=\{a_{n}(i)\}_{i=1}^{2^{n}}$ is defined inductively by

4 We change the notation of contractions for convenience of the following discussion.
In \S 1, we used $f_{1}$ and $f_{2}$ where $f_{1}=F_{0}$ and $f_{2}=F_{1}$ .
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$a_{0}(1)=1$ and $\{$

$a_{n+1}(2k-1)=\beta a_{n}(k)$

$a_{n+1}(2k)=\beta a_{n}(k)$ .

We think of $a_{n}$ as a broken line whose turning points are $z_{n}=\{z_{n}(k)\}_{k=0}^{2^{n}}$

where $z(k)s$ are defined inductively by

$z_{n}(0)=0$ and $z_{n}(k)=z_{n}(k-1)+a_{n}(k)$ .

See Figure 6. It is easy to see that

LEMMA A.3.

(a) $z_{n+1}(2k)=z_{n}(k)$ . In particular, $z_{n}(2^{n})=1$ .

(b) $z_{n+1}=F_{0}(z_{n})\cup F_{1}(z_{n})$ .

(c) $z_{n}\subset\beta^{n}Z^{2}$

$z_{n}(2k-1)$

Figure 6. $a$ . Figure 6. $b$ . $Z_{10}$ .

By (b) of the above lemma, it follows that the L\’evy curve is the closure of
$\bigcup_{n\geqq 0}z_{n}$ . For each $(z_{n}(k), z_{n}(k+1))$ , there exists $w\in\{0,1\}^{n}$ such that $F_{w}(0)=$

$z_{n}(k)$ and $F_{w}(1)=z_{n}(k+1)$ . We denote this $w$ by $w(n, k)$ . Precisely, $w(n, k)=$

$w_{1}w_{2}$ $w_{n}\in\{0,1\}^{n}$ where

$k= \sum_{i=1}^{n}w_{i}2^{n-i}$ .

LEMMA A.4. If $k\neq l$ then $(z_{n}(k), z_{n}(k+1))\neq(z_{n}(l), z_{n}(l+1))$ .

PROOF. For $n=0$ , Lemma A.4 holds obviously. Now let’s suppose that
Lemma A.4 is true for $n$ . Let $x,$ $y\in\beta^{n+1}Z^{2}$ satisfy $|x-y|=|\beta|^{n+1}$ . Then we
define $(x, y)^{-1}=(X, Y)$ where $X,$ $Y\in\beta^{n}Z^{2}$ and $|X-Y|=|\beta|^{n}$ by

(X, $Y$ ) $=\{$

$(x, x+\beta^{-1}(y-x))$ if $x\in\beta^{n}Z^{2}$ ,

$(y-\overline{\beta}^{-1}(x-y), y)$ if $y\in\beta^{n}Z^{2}$

For $(z_{n+1}(k), z_{n+1}(k+1))$ , there exists $m$ such that $(z_{n+1}(k), z_{n+1}(k+1))^{-1}=(z_{n}(m)$ ,
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$z_{n}(m+1))$ . Precisely, $m=k/2$ if $k$ is even and $m=(k-1)/2$ if $k$ is odd. Now
if $(z_{n+1}(k), z_{n+1}(k+1))=(z_{n+1}(l), z_{n+1}(l+1))$ , then $(z_{n+1}(k), z_{n+1}(k+1))^{-1}=(z_{n+1}(t)$ ,
$z_{n+1}(l+1))^{-1}$ . This is impossible because Lemma A.4 holds for $n$ . Hence we
have shown that Lemma A.4 is true for $n+1$ . This completes the proof of
Lemma A.4.

NOTATION. For $x,$ $y\in\beta^{n}Z^{2}$ satisfying $|x-y|=|\beta|^{n}$ , we define the edge
of the square lattice $\beta^{n}Z^{2}$ whose vertices are $x$ and $y$ by

$e(x, y)=\{x+t(y-x):0\leqq t\leqq 1\}$ .

Further we denote the collection of the edges of the square lattice $\beta^{n}Z^{2}$ by $E_{n}$ .
PROOF OF (2) OF PROPOSITION A.2. AS $d(K_{w})=r^{m}d(K)$ for $w\in W_{m}$ , we

have
$\Lambda_{m.x}\subset A_{m,x}$ ,

where $\Lambda_{m.x}=\{w:w\in W_{m}, d(x, K_{w})\leqq d(K)r^{m}\}$ and

$A_{m,x}=\{w(m, k):B(x, 2d(K)r^{m})\cap e(z_{m}(k), z_{m}(k+1))\neq\emptyset\}$ .

By Lemma A.4, each edge $e(x, y)$ of $\beta^{n}Z^{2}$ corresponds at most two $w(m, k)s$

such as $(x, y)=(z_{m}(k), z_{m}(k+1))$ and $(y, x)=(z_{m}(l), z_{m}(l+1))$ . Hence we have

$\#(A_{m.x})\leqq 2\#(\{e:e\in E_{m}, B(x, 2d(K)r^{7n})\cap e\neq\emptyset\})$

$\leqq 2\#(\{e:e\in E_{0}, B(\beta^{-m}x, 2d(K))\cap e\neq\emptyset\})$ .
Obviously there exists $M>0$ such that the last value of the above inequality is
not larger than $M$ for all $x$ and $m$ . Hence we have

$\#(\Lambda_{m.x})\leqq M$

for all $x\in K$ and all $m\geqq 1$ .
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