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   § 1. Introduction. 

   We are inspired by Masani-Wiener's work ([4]) of the non-linear prediction 

problem of a one-dimensional discrete time strictly stationary process. The 
purpose of the present paper is to give computable algorithms for the non-linear 
predictor by applying the theory of KM20-Langevin equations. 

   We have already applied in [7] the theory of KM20-Langevin equations to 
the linear prediction problem for the multi-dimensional weakly stationary time 
series and given a refinement of Wiener-Masani's work in [13], [14] and [3] 
by obtaining computable algorithms for the linear predictor. The results in [7] 

play supplementary but useful roles in the present approach to the non-linear 

problem, as will be explained. 
   Let X =(X(n) ; n E Z) be a real-valued strictly stationary time series on a 

probability space (Q, ~, P) with mean zero. We shall impose the following 
two hypotheses which are the same as in [4] : 

   (H.1) X is essentially bounded, i. e., there exists a positive constant C>0 
such that I X(n)(cu) I <_ C for any n EZ and almost all WESl ; 

   (H.2) For any distinct integers nl, n2i nk (kEN) the spectrum of the 
distribution function of the k-dimensional random variable t(X (nl), X (n2), ..•, X(n k)) 
has positive Lebesguue measure. 

   The non-linear predictor X(v) of the future X(v), v>0, on the basis of the 

present and past X (l ), l <_ Q, is defined by 

               X(v) = E(X (v) I o(X(l) ; l0)). 

   Masani and Wiener ([4]) have obtained a representation for the non-linear 
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predictor as follows : 

(1.1) E(X(v) I Q(X(l) ; 1O)) = l.i.m. Qn(X(0), X(-1), , X(-m)) , 
                                                                          n-+oo 

where, for each n N, mn is a nonnegative integer depending on n, and Qn is 

a real polynomial in mn+1 variables whose coefficients can be: theoretically 

calculated in terms of the moments of the time series X. 
   However, as Kallianpur has given some comments in [12], the representa-

tion (1.1) of the non-linear predictor lacks for computable algorithm which is 

fit for the application to applied science, because the determination of the co-

efficients of the polynomials Q n involves the calculation of the determinants of 

matrices of different sizes, coming from their method of Schmidt's orthogonali-
zation. On the other hand, Masani and Wiener have suggested in [4] that 

certain computable algorithm for the non-linear predictor may be obtained by 

means of the linear predictor for a suitably defined, infinite-dimensional, weakly 

stationary time series. 

   Following their suggestion, we shall derive an R°°-valued weakly stationary 

time series ~'=(~'(n) ; n E Z) and consider the dq+l-dimensional subprocesses 

X () =(X (q)(n) ; n E Z) generated by the first dq+ l-components of ~'. We remark 

that d1=o, dq is increasing to c as q-~oo and X~1~=X. According to the 

theory of KM20-Langevin equations ([5], [6], [9]), for each qEN, the linear 

predictor for the dq+1-dimensional subprocess X~q> can be calculated from the 
KM20-Langevin data £ D(X~q>) which, corresponding to the fluctuation-dissipa-

tion theorem, is obtained from the computable algorithm in terms of the corre-

lation function of Xcq~. By obtaining a new algorithm computing the KM20-

Langevin data £ D(X) from the KM20-Langevin data J X1) (q=2, 3, •••), 

we can practically solve the non-linear prediction problem for the original time 

series X, because the non-linear predictor for X can be obtained as the limit 
as q-~oo of the first component of the linear predictors for Xcq~. 

   Now we shall explain the contents of this paper. In § 2, according to [5] 

and [9], we shall recall and rearrange the theory of KM20-Langevin equations 

for a d-dimensional weakly stationary time series Z=(Z(n); n I <_N), where d, 

N are fixed natural numbers. In particular, we shall introduce the KM20-

Langevin data £ D(Z) associated with the time series Z which consists of the 

triplet of the forward and backward KM20-Langevin delay functions, the forward 

and backward KM20-Langevin partial correlation functions, and the forward and 
backward KM20-Langevin , fluctuation functions. The KM20-Langevin data 
C D(Z), together with the forward and backward KM20-Langevin forces, will 

determine the forward and backward KM20-Langevin equations describing the 
time evolution of the time series Z. We can obtain a concrete expression for 

the linear predictor for the time series Z in terms of the KM20-Langevin data
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£.D(Z). Furthermore, associated with a d-dimensional weakly stationary time 

series Z=(Z(n) ; nEZ), we can construct the KM20-Langevin data £ D(Z). 

   § 3 will develop the theory of the KM20-Langevin equations and obtain a 
new formula between the KM20-Langevin data £ D(Z) and the KM20-Langevin 

data £ ~D(Y), where the time series Y is a d"-dimensional local and weakly 

stationary time series generated by the first d'-components of the series Z 

(1d" <d). 
   In the last section, we shall return to the real-valued strictly stationary 

time series X=(X(n) ; n E Z) with mean zero satisfying conditions (H.1) and (H.2). 

By modifying the idea in Masani and Wiener ([4]), we shall derive an R°°-

valued weakly stationary time series X=((n) ; n E Z) and consider the dq+l-

dimensional subprocesses X =(X (n) ; n E Z) generated by the first dq+l-

components of 2'. We remark that the first components of X(n) are equal 

to X(n) (qEN, nEZ) and the construction of the time series Xwith dimen-

sion dq+l is fit for the application to data analysis. Applying the results in 

§ 3 to these time series X, we shall obtain an algorithm computing the 
KM20-Langevin data £~D(X ) from the KM20-Langevin data £ ~D(X') (q= 

2, 3, •.). •Thus the non-linear prediction problem for the original real valued 

strictly stationary time series X can be practically solved as follows : 

(1.2) E(X(v) I Q(X(l) ; l <_ 0)) 

N 

      = the first component of l.i.m. Q+(X )(N+v, N; N-k)X (-k), 
                                                              N,q-.oo k=0 

where, for each q E N, the M (dq+ 1; R)-valued function Q+(X (q')(•, * ; *) is 

called the forward prediction function associated with the time series Xin 
the theory of the KM20-Langevin equations, which can be recursively calculated 

from the KM20-Langevin data £ ~D(X ). By using the results in [7], further-

more, we can theoretically obtain an algorithm for the limit as N-->oa of the 

forward prediction functions Q+(X (q')(N+v, N; N- k) for any fixed q, v E N, 

k N* (-Nu {O} ). 

   As the application of the theory of KM20-Langevin equations to data analysis, 
we are going to develop a new project of the stationary, causal and prediction 

analysis ([9], [8], [10]). 

   The authors would like to thank the referee for valuable advices.

   § 2. The theory of KM20-Langevin equations. 

  We shall recall the theory of KM20-Langevin equations from [5], [9]. 

   [2.1] Let d and N be any natural numbers. Let Z=(Z(n); n <_N) be 
any d-dimensional real-valued local and weakly stationary time series on a
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probability space (Q, 2, P) with covariance matrix function RZ : 

(2.1) RZ(n) = R(Z(n)tZ(O)) (I n I <N) . 

Then we define, for each n N, 1 n <_ N, two block Toeplitz matrices T n(Z ), 
T n(Z)EM(nd ;1R) by 

                   RZ(O) Rz(±1) ... RZ(±(n-1)) 

(2.2±) T (Z) = RZ(1) Rz(O) ; .. RZ(+ (n -2)) 

                 RZ(+(n-1)) Rz(+(n-2)) ... Rz(O) 

   It is to be noted that 

(2.3) tRZ(n) = RZ(-n) (I n I ~N) , 

(2.4) Tt(Z) = Ti(Z) = RZ(0). 

In this subsection, we treat the case where the following condition holds : 

(2.5) T (Z), T (Z) E GL(nd ; R) (1 <_ n _<N) . 

We remark that condition (2.5) is equivalent to 

(2.6) { Z;(n) ;1 _< j < d, I n I <_ N } is linearly independent in L2(Q, 2, P), 

where Z(n)=t(Z1(n), ..., Zd(n)). 
   For any d-dimensional square-integrable stochastic process Y=(Y(n) ; l <_ n <_ r) 

with a discrete time parameter space defined on the probability space (Q, 2, P) 

(l, r~ Z, 1<r), we define, for any m, n E Z, l <m < n < r, a real closed subspace 
£(Y) of L2(Q, 2, P) by 

(2.7) £(Y) = the closed linear hull of {Y;(k) ;1 < j < d, m _< k <_ n } . 

   According to the method of innovation, we introduce the d-dimensional 
forward (resp. backward) KM20-Langevin force v+(Z)=(v+(Z)(n); 0<n<_N) (resp. 
v_(Z)=(v_(Z)(m); -N_<m<0)) as follows: 

(2.8+) v+(Z)(n) = Z(n)-P.c -i(z)Z(n) (O~n~N) 

(2.8-) v-(Z)(m) = Z(m)-P.c0+1(z)Z(m) (-N<m<O), 

where £ o 1(Z)=LI(Z)= {O}. 
   For each n~N*, 0_<n_<N, let V+(Z)(n) (resp. V_(Z)(n)) be the covariance 
matrix of v+(Z)(n) (resp. v_(Z)(-n)). We call the function V+(Z)(•) (resp. 
V_(Z)(~ )) the forward (resp. backward) KM20-Langevin fluctuation function. 

The following causal relation holds among Z, v+(Z) and Z):
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  CAUSAL RELATION ([5], [9]). 

(2.9) v+(Z)(O) = i.-(Z)(0) = Z(0) . 

(2.10±) E(v±(Z)(±m)`v±(Z)(±n)) _ omnV±(Z)(n) (O~m, n__N) 

(2.11+) £o(Z) _ -Co(z+(Z)) (O~nCN) 

(2.11_) £°n(Z) _ £°-n(v-(Z)) (O~n~N) 

   Let the system £f(Z) of elements in M(d ; )R) be the KM2O-Langevin data 

associated with the process Z : 

  .CD(Z) _ {r+(Z)(n, k), r-(Z)(n, k), o+(Z)(m), t3-(Z)(m), V (Z)(1), V _(Z)(l) ; 

            k, m, nEN, l<_k<nSN, l<_m<N, IEN*, 0<_l<N}. 

We know that Z satisfies the forward (resp. backward) KM2O-Langevin equa-

tion (2.12+) (resp. (2.12_)) : 

   KM2O-LANGEVIN EQUATIONS ([5], [9]). 

                          n-i 

(2.12±) Z(± n) _ - 7±(Z)(n, k)Z(± k)-8±(Z)(n)Z(0)+v±(Z)(± n) (1 <_ n <_N). 
                          k=1 

   In the sequal we adopt a convention to make the summation running the 

empty set 0. We call the function r+(Z)(•, *) (resp. 7_(Z)(•, *)) the forward 

(resp. backward) KM2O-Langevin delay function associated with the process Z. 
The function 8+(Z)(•) (resp. 8_(Z)(•)) is said to be the forward (resp. backward) 

KM2O-Langevin partial correlation function associated with the process Z. 

   Concerning the relation between the Toeplitz matrices and the KM20-
Langevin fluctuation functions, we can use the KM2O-Langevin equations to see 

that 
                                           n-1 

(2.13±) det T(Z) = II det V ±(Z)(k) (1 <_ n <_N) .                                   k=0 

If follows from (2.5) and (2.13±) that 

(2.14) V+(Z)(n), V_(Z)(n) GL(d; ]R) (0nN). 

   The fluctuation-dissipation theorem (FDT) stated in § 1 is the following: 

   FDT ([2], [1], [11], [15], [5], [9]). For any n, k EN, 1 <_ k <n <N, 

(2.15±) r±(Z)(n, k) = r±(Z)(n-1, k-1)+b±(Z)(n)r+(Z)(n-1, n--k-1); 

(2.16±) V ±(Z)(n) _ (1-5±(Z)(n)8}(Z)(n))V ±(Z)(n-1) ; 

(2.1?) b_(Z)(n)V +(Z)(n-1) = V _(Z)(n-1)`a+(Z)(n) ; 

(2.18) + _(Z)(n)V +(Z)(n) = V _(Z)(n)`S+(Z)(n) , 

where we put
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(2.19) r+(Z)(m, 0) = b+(Z)(m) and r-(Z)(m, 0) = 6-(Z)(m) (1~m~N) 

   The relations (2.16±) and (2.17) in FDT come from the following relation : 

   BURG'S RELATION ([11], [15], [5], [9]). For any n N, 1 <_ n <_N, 

                      n-1 n-1 

(2.20) r+(Z)(n, k)Rz(k+1) = j Rz(k+1)tr-(Z)(n, k)                       k=0 k=0 

   FDT implies that both the KM20-Langevin delay and fluctuation functions 
can be recursively calculated from the KM20-Langevin partial correlation func-
tions. On the other hand, the latter can be obtained from the correlation func-
tion Rz by the following formulae : 

   KM20-LANGEVIN PARTIAL CORRELATION FUNCTIONS ([2], [1], [11], [15], [5], 
[9]). For any nEN, 1<n<N, 

                                         n-

(2.21±) o±(Z)(n) = -(Rz(±n)+2                        2 r±(Z)(n-1, k)Rz(±(k+1)))V±(Z)(n-1)-1• 
                                             k=0 

   For any m, n EST *, 0<n <_m<_N, we define P+(Z)(m, n), P~(Z)(m, n) and 
e+(Z)(m, n), e_(Z)(m, n) by 

(2.22±) P±(Z)(m, n) = E(Z(±m)tv±(Z)(±n)}V±(Z)(n)-1~2 

and 

(2.23+) e+(Z)(m, n) = E((Z(m)-PLf(Z)Z(m))t(Z(m)-P.co (Z) Z(m))), 

(2.23_) e-(Z)(m, n) = E((Z(--m)-P1o n(z)Z(-m))t(Z(--m)-Pro n(z)Z(-m))). 

We call the function P+(Z)(•, *) (resp. P_(Z)(., *)) the forward (resp. backward) 

prediction function and the function e+(Z)(., *) (resp. e_(Z)(., *)) the forward 
(resp. backward) prediction error function. Then we know 

   PREDICTION FORMULAE ([5], [9]). (i) For any m, nEN*, 0<n<m<_N, 

n (2.24+) P,co (z)Z(m) = P+(Z)(m, k)V +(Z)(k)-"2v+(Z)(k) 

n (2.24_) Plo n(z)Z(--m) = P (Z)(m, k)V:(Z)(k)-1(Z)(--k) . 

   (ii) For any m, nEN*, 0<n<m<_N, 

n (2.25+) P.co (z)Z(m) = Q+(Z)(m, n ; k)Z(k); 

n (2.25-) Pro n(z)Z(-.m) = Q-(Z)(m, n ; k)Z(-k). 
                                                k=0 

   Here the M(d ; ]R)-valued prediction functions P±(Z)(•, *) and Q±(Z)(•, * ; *)



             Application of the theory of KM2O-Langevin equations 355 

can be determined by the following algorithms : 

   PREDICTION ALGORITHMS ([5], [9]). (i) For any m, k EN*, 0<_ k <_m<_N, 

                   V±(Z)(k)if2 if m=k 
(2.26±) P±(Z)(m, k) _                    -~ kl r±(Z)(m , l)P±(Z)(l, k) if m>_k+;i, 

   (ii) For any m, n, kEN*, 0<_k<n<m<_N, 

                                   m-1 

(2.27±) Q±(Z)(m, n ; k) _ - r±(Z)(m, l)Q±(Z)(l, n ; k)--r±(Z)(m, k). 
                                              1=n+1 

   Finally the prediction error functions can be calculated by the following 

formulae : 

   PREDICTION ERROR FORMULAE ([5], [9]). (i) For any m, n N*, 0<_ n < 

m<_N, 

m (2.28±) e±(Z)(m, n) _ P±(Z)(m, k) 1P±(Z)(m, k). 
                                            k=n+1 

   (ii) In particular, for any n E N, 1 <_ n <N, 

(2.29±) e±(Z)(n, n-1) _ (I -o±(Z)(n)o+(Z)(n)) ... (I_~+(Z)(1)o+(Z)(1))RZ(0) . 

   [2.2] Let Z=(Z(n) ; n E Z) be any d-dimensional real-valued weakly 
stationary time series on a probability space (Q, .B, P) with covariance function 
Rz. In this subsection, we treat the case where the following condition holds: 

(2.30) {Z;(n) ;1 < j <_ d, n E Z } is linearly independent in L2(Q, .cB, P), 

where Z(n)=t(Z1(n), •.., Zd(n)). 
   By restricting the time parameter space, we have a d-dimensional real-valued 

local and weakly stationary time series ZN=(Z(n); I n I <_N) (NEST). It then 
can be seen that the system {J'cD(ZN); NN} of the KM20-Langevin data 
.f D(ZN) (NN) satisfies the following consistency condition : 

           7±(ZN+1)(n, k) = r±(ZN)(n, k) (1~k<n~N) 

               ±(Zw+1)(n) _ o±(ZN)(n) (1 n N)1 

              V ±(ZN+l)(n) = V +(ZN)(n) (0~ n N) 

Therefore, we can construct a KM20-Langevin data £ D(Z) associated with the 

process Z : 

    £ D(Z) _ {r±(Z)(n, k), o±(Z)(m), V ±(Z)(l) ; k, m, n E N, k <n, l E N*} .
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    3. A new formula for the KM20-Langevin data. 

   Let d, d", d (2', N be any natural numbers such that d = d (1' + d c2' and let 
Z=(Z(n); I n (<_N) be any d-dimensional local and weakly stationary time series 

satisfying condition (2.6). We divide the components of Z(n) into two blocks 

Y(n) and W(n), i, e., 

                     Y(n) 
(3.1) Z(n) _ (I n I ~N), 

                      W(n) 

where Y(n)=t(Z1(n), ... , Zdcl)(n)) and W(n)=t(Zdcl)+1(n), ... , Zdcl)+dC2)(n)). It is 

to be noted that Y=(Y(n) ; J n <_ N) (resp. W=(W (n) ; 1 n I <_ N) is a d"-dimen-

sional (resp, d (2'-dimensional) weakly stationary time series satisfying condition 

(2.6). 
   In this section, we discuss how the KM20-Langevin data associated with Z 

is calculated by those associated with Y and W. We define the mutual corre-

lation function RYW of Y and W: 

(3.2) R" "(n) = E(Y(n)tW (0)) (I n I <_ N). 

   Let £.D(Z) (resp. £~(Y) and £,l(W)) be the KM20-Langevin data associated 

with Z (resp. Y and W). We divide the components of matrices r+(Z)(n, k) 
and 8+(Z)(n) into four blocks rpq(Z)(n, k), and bpq(Z)(n), for p, qEN, 1<_p, 

           e., q<2, i, 

                       rt1(Z)(n, k) r2(Z)(n, k) 
               r+(Z)(n, k) = 21 22 

                       r+ (Z)(n, k) rt (Z)(n, k) 
and 

                     b+1(Z)(n) 8+2(Z)(n) 

                     ~tl(Z)(n) ot2(Z)(n) 

where rtq(Z)(n, k)_((r±(Z)(n, k))ij)d(p-1)+1s1 acp-1)+a(p).d(q-1)+1~f~d(q-1)+d(q) with 
d° =0 and btq(Z)(n)=rtq(Z)(n, 0). 
   Furthermore, we divide the components of v±.(Z)(n) into two blocks vl(Z)(n) 

and , (Z)(n), i. e., 

                          vt(Z)(n) 
                    v+(Z)(n) = , 

                       \(Z )(n) 

where vt(Z)(n)=t(v+1(Z)(n), ... , v+d(l)(Z)(n)) and i4(Z)(n)=t(v+(dcl)+l)(Z)(n), 
v+(dcl)+dc2))(Z)(n)). Then, for any nEN, 1<n<_N, the KM20-Langevin equa-

tions (2.12+) for Z are represented as follows :
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                 n-1 rti(Z)(n, k) Yt2(Z)(n, k) Y(± k) 
(3.3±) Z(± n) _ -                k=1 Y?1(Z)(n

, k) 722(Z)(n, k) W(±k) 

               3t1(Z)(n) o±2(Z)(n) Y(0) vt(Z)(±n) 
                    -I II I•-I-I 

                ~t'(Z)(n) U22(Z)(n) W(0) v2(Z)(+n) 

  Byenoting (3.1),;we have 

                                   n-1 n-1 

(3.4±) Y(±n) _ -- y+1(Z)(n, k)Y(±k)- 7 2(Z)(n, k)W(±k) 
                                 k=1 k=1 

             -a+1(Z)(n)Y(0)-et2(Z)(n)W (0)+vt(Z)(± n) 

                                   n-1 n-1 

(3.5±) W(±n) _ - 7'(Z)(n, k)Y(±k)- rt2(Z)(n, k)W(±k) 
                                  k=~ k=1 

             -ati(Z)(n)Y(0)-bt2(Z)(n)W (0)+vt(Z)(± n) . 

   We shall obtain other formulae, different from (2.21±), by which the KM20-

Langevin partial correlation functions o+(Z)(•) and o_(Z)(.) are recursively cal-

culated from .C.D(Y), £f(W) and R''" together with (2.15±). For this purpose, 

we define B+(Y) W)(l, k), B_(YJ W)(l, k), B+(WI Y)(l, k) and B_(WI Y)(l, k) by 

                                                        k-2 

(3.6±) B±(YI W)(l, k) = R"0'(±l)+ ~; RY "(±(l-k+j+1))t7±(W)(k-1, j) 
                                                j=0 

and 

                                                        k-2 
(3.7±) B+(W I Y)(l, k) = R"'(+l)+ ~, R "(±(l-k+j+1))t1+(Y)(k-1, j) 

                                                  j=o 

for any k,1 N*, 1_<k<_N, 0_<l<_N. 

   THEOREM 3.1. For any n EN, 1 <_ n <N, 

            ~t(Y)(n)V t(Y)(n-1) 0 
   b±(Z)(n) _ 

                   0 o±(W)(n)V+(W)(n-1) 

     n-1 0 B±(Y) W)(k+1, n) 
    - y±(Z)(n-1 , k) V +(Z)(n-1)-1, 

                B±(WI Y)(k+1, n) 0 

where 

(3.8) r+(Z)(j, j) =1 and 1_(Z)(j, j) =1 (0<_j<N). 

   PROOF. We prove the plus part. We shall rewrite the first term F of the 
right-hand side of the plus part of (2.21±) for any fixed n E N, 1 <_ n <_ N: 

                                                   -2 

           F= - RZ(±n)+ny±(Z)(n-1, k)RZ(±(k+1)) .
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We divide the components of matrix F into four blocks Fpq for p, q~ N, 1 <_ p, 

q<_2, i. e., 
                           IF" F 12 

                   F= , 
                         \F" F 22 

Where Fpq=((F)ij)d (p-1)+15i5d (p-1>+d (p>, d (q-1)+1~j5d (q-1)+d (q). 
   At first we rewrite the (1, 1)-block F11 of F as follows : 

                             n-2 n-2 

  F11= - RY(n)+ F r+(Z)(n-1, k)RY(k+1)+ y+(Z)(n-l, k)RWY(k+l) . 
                             k=0 k=0 

We shall rewrite the second term of the equation above ; by using equation 

(2.12_), we see from (2.10_) and (2.11_) that 

               n -2 

         r+(Z)(n-1, k)RY(k+l) 
               k=0 

                n -2 

                  k)E(Y(k-n+2)'Y(-n+l)) 
                k=0 

                 n-2 n-2 

      = r+(Z)(n-1, k)E Y(k-n+2)t(-
j: r-(Y)(n-1, j)Y(-j))                  k=0 =0 

                  n-2 

        + r+(Z)(n-1, k)E(Y(k-n+2)`y-(Y)(-(n-1))) 
                  k=0 

                    n-2 n-2 

      = - r+(Z)(n-1, k)RY(k-n+j+2)tr-(Y)(n-1, j) 
                   k=0 j=0 

                   n-2 n-2 

      = - r+(Z)(n-1, k)E(Y(k)'Y(n-j-2))tr_(Y)(n-1, j) 
                   k=0 j=0 

                 n-2 n-2 
     _ E - r+(Z)(n-1, k)Y(k) tY(n-j-2) _j-2))t(Y)(n-1, j). 

                j=0 k=0 

On the other hand, by using equation (3.4+), we see from (2.10+) and (2.11+) 
that 

                     n-2 

      E - r+(Z)(n-1, k)Y(k) 'Y(n-j-2) 
                      k =0 

                                                  n-2 

    = E(Y(n-1)'Y(n-j-2))+E r+(Z)(n-1 , k)W(k) tY(n-j-2) 

      -E(i4(Z)(n-1)'Y(n-j-2)) 

                          n-2 

    = RY(j+1)+ r+(Z)(n-1, k)RWY(k_n+ j+2). 
                          k=0 

Further, by virtue of Burg's relation (2.20), we see
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                  n-2 

         for+(Z)(n--1, k)R1'(k+l) 
                  n-z 

        = F r+(Y)(n--1 , k)RY(k+l) 
                 k=0 

                     n-2 n-2 

          + r+(Z)(n--l, k)R0"(k--n+j+2)`r-(Y)(n--1, j) 
                     j=0 k=0 

According to the definition of B+(W I Y)(., *), we see from (2.20+) that 

                                n-2 

    F11= -. RY(n)+ F r+(v)Cn--1, j)RY(k+I) 
                               k=o 

                     n-2 n-2 

          for+(Z)Cn-1, k) RwY(k+l)+ RWY(k-n+j+2)tr-(Y)(n--l, j) 
                                             n-2 

      = 8+(Y)(n)V-(Y)(n-l)-- r+(Z)(n-1, k)B+(WI Y)(k+l, n). 
                                                k=0 

Therefore, according to (3.8), we get 
                                               n-

(a) F" = 8+(Y)(n)V-(Y)(n--1)_ ' ~ r+(Z)(n-1, k)B+(WI Y)(k+l, n). 
                                                      k=0 

   Secondly, we rewrite the (2, 1)-block F2z of F as follows : 

                               n-2 n-2 

   F" _ _ RWY(n)+ 0 0r+CZ)(n--1, k)RY(k+l)+ r+(Z)(n--1, k)Rw'(k+l) .                                k= k=0 

We shall rewrite the second term of the equation above ; by using equation 

(2.12_), we see from (2.10_) and (2.11_) that 

                   n-2 

         ~r+(Z)(n--l, k)RY(k+1) 
                  k=0 

                   n-2 n-2 

        = E -- r+(Z)Cn--1 , k)Y(k) `Y(n-j-2) t7-(Y)(n_1, j) 
                   j=0 k=0 

On the other hand, by using equation (3.5+), we have from (2,10+) and (2.11+) 

that 
                                 n-2             E ((- r+(Z)(n--1, k)y(k) ty(n-1-2)) 

                                   k=0 

                                            n-2 

           = RWY(j+1)+ r+(Z)(n-1, k)RWY(k_n+j+2). 

Therefore, we obtain 

                             n-

   F2' _ _ RWY(n)+2 L RWY(k+1)ty-(Y)(n--1, j) 
                              k=0 

                  n-2 n-2 

       - 
kOr+(Z)(f-1, k) RWY(k+l)+ s' RWY(k--n+ j+2)tr-(Y)(n-1, j)
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According to the definition of B+( WI Y)(•, *) in (3.7+) and (3.8), we get 

                                     n-1 

(b) F" = - 7 (Z)(n-1, k)B+(WI Y)(k+l, n). 
                                   k=0 

   Similarly, we can show 

                                   n-1 

(c) F12 = - y+(Z)(n-1, k)B+(YI W)(k+1, n) 
                                     k=0 

and 

                                                 n-

(d) F22 = o+(W)(n)V -(W)(n-1)- 1' 7+(Z)(n-1, k)B+(YI W)(k+1, n)• 
                                                     k=0 

Thus we can conclude from (a), (b), (c) and (d) that the plus part holds. In the 

same way, the minus part is proved. (Q. E. D.) 

   As stated in § 2, V+(Z)(•) and V_(Z)(•) are recursively calculated from 

b+(Z)(•) and &(Z)(•) by (2.16±). However, we can obtain other formulae for 
the KM20-Langevin fluctuation functions V±(Z)(• ), similar to Theorem 3.1. 

   THEOREM 3.2. For any n~N, 0<_n<N, 

            V ±(Y)(n) 0 
    V ±(Z)(n) _ 

               0 V ±(W)(n) 

               n 0 B+(YI W)(k, n+1) 
              + -±(Z)(n, n-k) , 

                          B+(WI Y)(k, n+1) 0 

   PROOF. We divide the components of matrices V±(Z)(n) into four blocks 

V tq(Z)(n) for p, q~N, 1<_p, q<_2, i.e., 

                     V tl(Z)(iz) V t2(Z)(n) 
              V ±(Z)(n) = , 

                     V tl(Z)(n) V t2(Z)(n) 

where V Y(Z)(n)=((V ±(Z)(n))ij)d gyp-,)+1Si5 d ~P-,)+d gyp), d (q-1)+15 js d (q-1)+d (q)• 

   We prove only the plus part, because the minus part is proved in the same 

way. By using equation (3.4+) for Z, it follows from (2.10+) and (2.11+) that 

                                                                        n-

     V+(Z)(n) = E(4(Z)(n)tY(n))+E v+(Z)(n)t 1 7'(Z )(n, k)Y(k) 

                                              n-            +E v+((Zxn)'(J''(ZXn, ?'k)W(k) 
          = E(v+(Z)(n)tY(n)). 

Further, by using equation (2.12+) for Y and noting (2.10+) and (2.11+) that
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                                           n-   V+(Z)(n) = E v+((Z)(n)t(_1 F r+(Y)(n, k)Y(k) +E(v+(Z)(n)ty+(Y)(n)) 
                                               k=0 

          = E(v+(Z)(n)ty+(Y)(n)) 

By using equation (3.4+) for Z, we see that 

                                                            n-    V + (Z)(n) = E(Y(n)ty+( Y)(n))+E ((1 7'(Z )(n, k)Y(k) )tJ+( Y)(n) 
                                                          k=0 

                                    n-

             +E 1r+ (Z)(n, k)W (k) ty+(Y)(n) 

                                            n-1 

                  *+(Z)(n, k)E(W(k)ty+(Y)(n)).              = V+(Y)(n)+ 
k=0 

On the other hand, by using equation (2.12+) for Y, 

n 

      V+(Z)(n) = V+(Y)(n)+ r+(Z)(n, n--l)E(W(n-l)tv+(Y)(n)) 

n 

            = V+(Y)(n)+ r+(Z)(n, n -l)E(W(n -l)tY(n)) 
                                                  t=1 

                                 n n-1 

              + 12(Z )(n, n -l)E W (n -l)t r+( Y)(n, J)Y(j) 

                                 n n-1 

              + 7(Z )(n, n-l)E W(n-l)t r+(Y)(n, j)Y(j) 

n 

              = V+(Y)(n)+ r+(Z)(n , n-l)RWY(-l) 
                                                    l=1 

                                 n n-i 

               + r+(Z)(n, n-l) Rw'(-(l-n+j))tr+(Y)(n, j). 
                                l=1 j=0 

Therefore, according to the definition of B_(W I Y)(., *) in (3.7_) and (3.8), 

n (e) V (Z)(n) = V+(Y)(n)+ r+(Z)(n, n-l)B-(WI Y)(k, n+1). 
                                               k=0 

In the same way as in V+(Z)(n), it follows from (3.4+), (3.5+), (2.10+), (2,11+) 

and (2.12+) that 

    V+1(Z)(n) = E(v+(Z)(n)tY(n)) 

          = E(v+(Z)(n)ty+(Y)(n)) 

                                                   n-1 

          = E(W (n)tv+( Y)(n))+ 7!(Z )(n , k)E(W (k)tv+( Y)(n)) 
                                                     k=0 

                                     n- n 

            = R"Y(0)+1 ' RwY(n-l)tr+(Y)(n, l)+ r+(Z)(n, n-l)RwY(-l) 
                                      t=o ~=1 

                             n n-1 

             + r+(Z)(n, n-l) RWY(-(l-n+j))tr+(Y)(n, j). 
                            l=1 j=0
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Therefore, according to the definition of B_(W I Y)(•, *) in (3.7_) and (3.8), 

n (f) V+(Z)(n) = 7 (Z)(n, n--k)B_(W I Y)(k, n+1) 
                                        k=0 

   Similarly, we obtain 

n (g) V+(Z)(n) = 7 (Z)(n, n-k)B-(YI W)(k, n+1) 
                                       k=0 

and 

n (h) V+(Z)(n) = V+(Z)(n)+ +(Z )(n, n--k)B_(Y W)(k, n+1). 
                                              k =0 

   Thus we can conclude from (e), (f), (g) and (h) that the plus part holds. 

                                                             (Q. E. D. ) 

   § 4. The non-linear prediction problem. 

   Let X =(X (n) ; n E Z) be a one-dimensional strictly stationary time series 

on a probability space (Q, 2, P) with mean zero. Moreover we impose the 

same hypotheses as in Masani-Wiener [4] : 

   (H.1) X is essentially bounded ; 

   (H.2) for any distinct integers (n1, • • • , n,) the spectrum of the distribution 

function o f the k-dimensional random variable t(X (nl), X (n k)) has positive 
Lebesgue measure. 

   For any subset of L2(Q, 2, P), we denote by [A] the closed subspace of 
L2(Q, 2, P), generated by all elements of A. 

   To obtain the non-linear predictor X(v)=E(X(v)1 Q(X(l) ; l <O)) is reduced to 

getting a projection of X(v) (vEN) as follows: 

   LEMMA 4.1 (Masami-Wiener [4]). 

(i) E(X(v) I o'(X(l) ; l ~ O)) = P, j o ~X (v) (,.N), 

where 

m 

       = [i, jJX(nk)k; pmEN*, pkEN, nkEZ (O~k~m), no<...<nm<0 . 

m (ii) {i, HX(nk)pk; mEN*, pkEN, nkEZ (O~k~m), no< ... <nm<0 
is linearly independent in L2(Q, Q, P). 

   We shall obtain certain computable algorithm for X(v). For that purpose, 

we shall show the following lemma.
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   LEMMA 4.2. 

           E(X(u) o'(X(l) ; 1O)) = Pjco~X(u) (u N), 
where 

         JC°_~ = [I X(n-k)pk_E IJ X(n-kY k ; mEN*, n<0, 
                            k=0 k=0 

                             p0EN, pkEN* (1<kSm) . 

   PROOF. By Lemma 4.1(i), what we need to prove is that P ,o,,X(u) 
P~o ~X(u) for any i N. For any mEN*, n<_0, p0EN, pkEN* (1<k<_m), 
there exist MEN*, g1EN, n1EZ (0<lM), n0< <nM<0 such that 

                        m M 

                   IIX (n-k)pk = IIX(nl)gl,                                      k=0 l=0 
it can be seen that 

                           _ [1]. 

Therefore, we see that Pro,,e jca,X(v)=PCj3X(u)=E(X(u))=0. Thus, it follows 

that Lemma 4.2 holds. (Q. E. D.) 

   For the purpose of parametrizing the infinite-dimensional subspace JC°OO, we 

define a subset A of {0, 1, 2, • • • } N* by 

       A = {p=(po, p1, p2, )~ {0, 1, 2, ...}N*; po>_1 and there exists 
          mEN* such that pm*0, pk=0 (k>_m+1)}. 

For any pE A, a one-dimensional strictly stationary time series SP p=(cp p(n) ; 

n E Z) is introduced by 

                     ~op(n) = II X (n-k)pk                                                   k=0 
and we set 

           G = {q'1; pEA}. 

We shall order the elements of G to arrange them in a sequence { So j ; j E N*} . 
For each q E N, we define a subset Aq of A and a subset G of G by 

a 

     Aq _ {p-(po, pi, ...)EA; q= (k+1). pk} and Gcq~ _ {gyp; pEAq}. 
                                               k=0 

Then we have the disjoint union 

                     G=UG. 
                                        qEN 

Now we shall order the elements of G. For any T p E G (q' and T o,' we 

say that cop precedes T pif and only if q<q' or q=q' and in addition, there
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exists k0EN* such that Pk=pk (0<k<k0-1) and pko>pko. Then we have 

                     G = {SPA ; j END} 
and 

                         G cq> --                                       Odq_1+1, SOdq_1+2~ "' , ~dq 

where 

q                   d q = the number of U G('}-1 
                                                               r=1 

and 

              (Sod q_1+1(n), Sodq_1+2(n), ... , ~d q(n)} 

             = (X (n), X (n)q-2X(n-1), ... , X(n)X(n-q+2)) 

For example, 

                       (d1, d2, d3, d4) = (0, 1, 3, 6) 
and 

    (~o0(n), SP1(n), So2(n), ~o3(n), ~o4(n), cp5(n), cp6(n)) 

    = (X(n), X(n)2, X(n)3, X(n)X(n-1), X(n)4, X(n)2X(n-1), X(n)X(n-2)). 

By using the system G= {Sp, ; j N*}, we define X (q~ = (X (q~(n) ; n E L) and 

ycq~=(ycq~(n); nE L) by 

                            ~o0(n)-E(cp0(n)) 

                    X(q~(n) = p1(n)-E(co1(n)) 

                           Wdq(n)-E(SPdq(n)) 
and 

                             cod q_1+1(n)-E(Sod q_1+1(n)) 

                   y(q)(n) = ~aq_1+2(n)-E(pdq_1+2(n)) 

                           Sod q(n)-E(Wd q(n)) 

Then, by virtue of Lemma 4.1(ii), we have the following lemma. 

   LEMMA 4.3. 

(i) For any qEN, X(q' is a dq+1-dimensional weakly stationary time series 
    satisfying condition (2.30). 

(ii) X~1~ = X. 
                   cq-1'(n) 

(iii) X(q)(n) = X ycq>(n) (q=2, 3, .,.). 

(iv) U U C 00-N(X cq~) = ic°L 
         N=0 q=1 

   We shall show how the non-linear predictor of X is expressed by using the
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linear predictor of Xcq'. 

   THEOREM 4.1. For any u>O, 

   E(X(y) l 6(X (l) ; l O)) 

N 

     = the first component of l.i.m. ( Q+(Xcq')(N+v, N; N-k)Xcq'(-k) . 
                                               N.q-.= k=0 

   PROOF. By Lemmas 4.2 and 4.3(iv), we have 

      E(X(u)) q(X(l); l<0)) = l.i.m. PcoN(x(q))X(v) 
                                                     N q-.oo 

                         = the first component of 1. i. m. Pc o N (x (q) )Xcq' (v) .                                                                                                     N, q-'oo 

By applying the prediction formula (2.25+) to the time series Xcq', we have 

         P(0N(x(q))Xcq)(y) = U(_N)P1a (x(q))Xcq)(N+v) 

N 

                    = U(-N)( ~, Q+(Xcq))(N+v, N; k)Xcq)(k) 
                                                     k=0 

N 

                       = F Q+(Xcq))(N-I-v, N• k)X(q)(k_N) 
                                         k =0 

N 
                      = J Q+(X cq))(N+y , N; N_k)X(q)(_k) 

                                           k=0 

where U(-N) is a unitary operator from £o (Xcq') to £N(X) such that 

U(-N)Xcq'(n)=Xcq'(n-N) (0<_n<_N). Therefore, we get Theorem 4.1. (Q.E.D.) 

   We shall explain the structure of algorithm computing the coefficients 

Q+(Xcq')(, * ; *) (qEN) in Theorem 4.1. Let £D(X) (resp. £V(X1) and 
£( Y)) be the KM20-Langevin data associated with Xcq' (resp. Xcq-1' and 
Ycq' ). By (2.27+), 

                                  m-1 

(4.1) Q±(Xcq))(m, n ; k) = - y+(Xcq))(m, l)Q±(X cq))(l, n ; k)-7±(Xcq))(m, k), 
                                              1=n+1 

which implies that, for each fixed q N, Q±(Xcq')(•, * ; *) can be calculated from 

.C~(X(q'). By virtue of FDT, £(X) can be recursively calculated from the 

KM20-Langevin partial correlation functions 8±(X)(.). By applying Theorem 
3.1 to the time series Xcq', we obtain an algorithm computing 8(X)(.) in 

Theorem 4.2. The crux is that the 8±(Xcq')(•) can be calculated from £D(Xcq-1'), 

£(Ycq)) and Rxcq-1)Ycq) (q=2, 3, ...). 

   THEOREM 4.2. For any n, qEN, 2<_q,
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              ±(X cq-1')(n)V -(X cQ-1')(n-1) 0 o
±(X cQ~)(n) _ 

                    0 8+(Ycq~)(n)V+(Y)(n-1) 

                   n-i           - 7±(Xcq~)(n-1, k). 

                    0 B.(Xcq-1~I y(q))(k+1, n) 

          \B(y) ±cqIX`~-1')(k+1, n) 0 
where 

          7 (X c~')(j, j) =1 and 7(X )(j, j) = 1 (jEN*) 

   Finally we shall make a comment concerning the global behavior of the 

prediction functions Q±(X(q))(N+v, N; N-k) as N->oo in order to complete the 
representation for the non-linear predictor in Theorem 4.1. For that purpose, 

we need the following stronger condition (H.3) than (H.2), besides (H.1) : 

   (H.3) For each qEN, the weakly stationary process X cq~ has the spectral 
density matrix function ~(X(q))(B) defined on [-it, it) such that 

(4.2) log (det (Q(Xcq'))) E L1(---ic, it). 

   By Theorems 4.2, 5.1 and 5.2 in [7], we find that, for each q~N, the fol-

lowing limits exist : 

(4.3±) V ±(X cq>) - lim V ±(X cq))(n) ; 
                                                                        n-.oo 

(4.4±) 7 (X cq>)(k) - lim 7±(Xcq')(n, n-k) (kEN*); 

(4.5±) P±(X(q~)(k) - lim P±(X )(n, n-k) (k EST*) . 
                                                      n-.o 

Moreover they satisfy the following recursive relations : for any k E N, 

             P±(Xc' )(O) = V (X cq~)1,2 
(4.6±)              P

±(X c4')(k) = -~Ji-o r+(Xcq~)(k _l) p+(X(4))(l) , 

   By virtue of Theorem 6.5 in [7], we can theoretically obtain the algorithms 

for the limits as N-*oc of the prediction functions Q±(X cq~)(N+v, N; N-k) for 

any q, v E N, k N*: the limits 

(4.7±) Q±(Xc4')(v, k) lim Q±(Xcq~)(N+v, N; N-k) 
                                                        N-. o0 

exist and they satisfy the following recursive relations : 

                                           y-1 

(4.8±) Q±(Xcq~)(v, k) = - 7±(X)(v--l)Q+(X c4~)(l, k)_7 (X(q~)(v+k) , 
                                               t=1
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