Standard generalized vectors for algebras of unbounded operators

By Atsushi INOUE

(Received Apr. 22, 1993) (Revised Aug. 11, 1993)

§ 1. Introduction.

In [7, 8] we defined the notion of generalized vectors for O^* -algebras which is a generalization of cyclic vectors to study the structure of O^* -algebras. In particular, we defined and studied the notion of (full) standard generalized vectors which makes it possible to develop the Tomita-Takesaki theory in O*algebras. In this paper we shall continue such a study for O*-algebras (called generalized von Neumann algebra) which are an unbounded generalization of von Neumann algebras. Let λ be a standard generalized vector for a generalized von Neumann algebra \mathcal{M} on \mathcal{D} . Then it has been shown in [7] that a oneparameter group $\{\sigma_t^{\lambda}\}_{t\in\mathbb{R}}$ of *-automorphisms of \mathcal{M} is defined and λ satisfies the KMS-condition with respect to $\{\sigma_t^{\lambda}\}$. We shall show a Radon-Nikodym type property which establishes a link between the modular automorphism groups $\{\sigma_t^{\lambda}\}$ and $\{\sigma_t^{\mu}\}$ of \mathcal{M} for two full standard generalized vectors λ and μ : There uniquely exists a strongly continuous map $t \in \mathbb{R} \to U_t \in \mathcal{M}_u \equiv \{U \in \mathcal{M}; \overline{U} \text{ is unitary}\}$ such that $U_{t+s}=U_t\sigma_s^{\lambda}(U_s)$ and $\sigma_t^{\mu}(X)=U_t\sigma_t^{\lambda}(X)U_t^*$ for all $s, t\in \mathbb{R}$ and $X\in \mathcal{M}$. The map $t \in \mathbb{R} \to U_t \in \mathcal{M}$ is called the cocycle associated with μ with respect to λ and denoted by $[D\mu:D\lambda]$. Further, we shall show that $\{[D\mu:D\lambda]_t\}_{t\in\mathbb{R}}$ is a oneparameter group if and only if the domain $D(\mu)$ of μ is $\{\sigma_t^{\lambda}\}$ -invariant and $\|\mu(\sigma_t^{\lambda}(X))\| = \|\mu(X)\|$ for all $X \in D(\mu)$ and $t \in \mathbb{R}$ if and only if $\{[D\mu : D\lambda]_t\} \subset \mathcal{M}_b^{\sigma\lambda}$ $\equiv \{A \in \mathcal{M}; \overline{A} \text{ is bounded and } \sigma_t^2(A) = A \text{ for all } t \in \mathbb{R}\}.$ Then, we say that μ commutes with λ . These results are generalization of the Connes cocycle theorem [1, 17] for von Neumann algebras. We shall extend the Pedersen-Takesaki Radon-Nikodym theorem [12, 17] for von Neumann algebras to generalized von Neumann algebras. Let λ be a full standard generalized vector for $\mathcal M$ and $\mathcal{M}_n^{\sigma^{\lambda}}$ the set of all non-singular positive self-adjoint operators A in \mathcal{H} satisfying $\{E_A(t); -\infty < t < \infty\}$ " $\cap \mathcal{D} \subset \mathcal{M}_b^{\sigma \lambda}$, where $\{E_A(t)\}$ is the spectral resolutions of A. For every $A \in \mathcal{M}_{\eta}^{\sigma^{\lambda}}$ we can define a standard generalized vector λ_{A} for \mathcal{M} satisfying $\sigma_t^{\lambda_A}(X) = A^{2it}\sigma_t^{\lambda}(X)A^{-2it}$ and $[D(\lambda_A)_{\sigma}: D\lambda]_t = A^{2it} \Gamma \mathcal{D}$ for all $X \in \mathcal{M}$ and $t \in \mathbb{R}$, and so $(\lambda_A)_{\sigma}$ commutes with λ , where $(\lambda_A)_{\sigma}$ is the full extension of λ_A . Con-

versely suppose a full standard generalized vector μ commutes with λ . By the Stone theorem there exists a non-singular positive self-adjoint operator $A_{\lambda,\mu}$ in \mathcal{H} such that $A_{\lambda,\mu}^{it} \upharpoonright \mathcal{D} = [D\mu:D\lambda]_t$ for all $t \in \mathbf{R}$. We remark that $A_{\lambda,\mu}^{it} \upharpoonright \mathcal{D} \in \mathcal{M}_b^{\sigma\lambda}$ for all $t \in \mathbf{R}$, but $A_{\lambda,\mu}$ does not necessarily belong to $\mathcal{M}_{\eta}^{\sigma\lambda}$. We shall show that if $A_{\lambda,\mu} \in \mathcal{M}_{\eta}^{\sigma\lambda}$ then μ is identical with the full extension $(\lambda_{A_{\lambda,\mu}})_{\sigma}$ of $\lambda_{A_{\lambda,\mu}}$. In particular, if \mathcal{M} is an EW*-algebra then μ commutes with λ if and only if $\mu = (\lambda_A)_{\sigma}$ for some non-singular positive self-adjoint operator A affiliated with the von Neumann algebra $\overline{\mathcal{M}_b^{\sigma\lambda}}$. Furthermore, we shall show that μ satisfies the KMS-condition with respect to $\{\sigma_t^{\lambda}\}$ if and only if $\sigma_t^{\mu} = \sigma_t^{\lambda}$ for all $t \in \mathbf{R}$ if and only if $\mu = (\lambda_A)_{\sigma}$ for some non-singular positive self-adjoint operator A affiliated with the center of the von Neumann algebra $(\mathcal{M}_w')'$ where \mathcal{M}_w' is the weak commutant of \mathcal{M} .

§ 2. Standard generalized vectors.

In this section we state some of definitions and the basic properties of generalized von Neumann algebras and the standard generalized vectors.

Let \mathcal{D} be a dense subspace in a Hilbert space \mathcal{H} with inner product (\mid) and $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ the set of all linear operators X from \mathcal{D} to \mathcal{H} satisfying $\mathcal{D}(X^*)$ $\supset \mathcal{D}$. $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ is a *-invariant vector space with the usual operations and the involution $X^{\dagger} \equiv X^* \upharpoonright \mathcal{D}$. We introduce the locally convex topology t^*_{ϵ} on $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ defined by the systems $\{p^*_{\xi}(\cdot); \xi \in \mathcal{D}\}$ of seminorms: $p^*_{\xi}(X) = \|X\xi\| + \|X^{\dagger}\xi\|$, $X \in \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$, and it is said to be the $strong^*$ topology. $(\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H}), t^*_{\epsilon})$ is a complete locally convex space. We put

$$\mathcal{L}^{\dagger}(\mathcal{D}) = \{ X \in \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H}) : X \mathcal{D} \subset \mathcal{D} \text{ and } X * \mathcal{D} \subset \mathcal{D} \}.$$

Then $\mathcal{L}^{\dagger}(\mathcal{D})$ is a *-algebra with the usual operations and the involution $X \rightarrow X^{\dagger} \equiv X^* \vdash \mathcal{D}$. A *-subalgebra of $\mathcal{L}^{\dagger}(\mathcal{D})$ is called an O^* -algebra on \mathcal{D} . Throughout this paper we assume that an O^* -algebra has always an identity operator. Let \mathcal{M} be an O^* -algebra on \mathcal{D} . A locally convex topology on \mathcal{D} defined by a family $\{\|\ \|_X \ ; \ X \in \mathcal{M}\}$ of the seminorms: $\|\xi\|_X = \|X\xi\|$ ($\xi \in \mathcal{D}$) is called the *induced topology* on \mathcal{D} , and denoted by $t_{\mathcal{M}}$. If the locally convex space (\mathcal{D} , $t_{\mathcal{M}}$) is complete, then \mathcal{M} is said to be *closed*. We put

$$\widetilde{\mathcal{D}}(\mathcal{M}) = \bigcap_{X \in \mathcal{M}} \mathcal{D}(\overline{X}) \quad \text{and} \quad \widetilde{X} = \overline{X} \cap \widetilde{\mathcal{D}}(\mathcal{M}) \quad (X \in \mathcal{M}).$$

Then $\widetilde{\mathcal{D}}(\mathcal{M})$ is identical with the completion of $(\mathcal{D}, t_{\mathcal{M}})$ and $\widetilde{\mathcal{M}} \equiv \{\widetilde{X}; X \in \mathcal{M}\}$ is a closed O^* -algebra on $\widetilde{\mathcal{D}}(\mathcal{M})$ which is the smallest closed extension of \mathcal{M} and it is called the *closure* of \mathcal{M} . Hense \mathcal{M} is closed if and only if $\mathcal{D} = \widetilde{\mathcal{D}}(\mathcal{M})$. If $\mathcal{D}^*(\mathcal{M}) \equiv \bigcap_{X \in \mathcal{M}} \mathcal{D}(X^*) = \widetilde{\mathcal{D}}(\mathcal{M})$, then \mathcal{M} is said to be *essentially self-adjoint*, and if $\mathcal{D}^*(\mathcal{M}) = \mathcal{D}$, then \mathcal{M} is said to be *self-adjoint*. We define the *weak commutant*

 \mathcal{M}_w' of †-invariant subset \mathcal{M} of $\mathcal{L}^{\dagger}(\mathcal{D})$ as follows:

$$\mathcal{M}'_w = \{ C \in \mathcal{B}(\mathcal{H}) ; (CX\xi|\eta) = (C\xi|X^{\dagger}\eta) \text{ for all } \xi, \eta \in \mathcal{D} \text{ and } X \in \mathcal{M} \},$$

where $\mathcal{B}(\mathcal{H})$ is the set of all bounded linear operators on \mathcal{H} . Then \mathcal{M}'_w is a *-invariant weakly closed subspace of $\mathcal{B}(\mathcal{H})$, but it is not necessarily an algebra. If \mathcal{M} is self-adjoint, then $\mathcal{M}'_w\mathcal{D}\subset\mathcal{D}$, and further $\mathcal{M}'_w\mathcal{D}\subset\mathcal{D}$ if and only if \mathcal{M}'_w is a von Neumann algebra and \overline{X} is affiliated with $(\mathcal{M}'_w)'$ for all $X\in\mathcal{M}$. For the general theory of O^* -algebra we refer to [2, 11, 13, 15].

We introduce two notions which are unbounded generalizations of von Neumann algebras. A closed O^* -algebra \mathcal{M} on \mathcal{D} is said to be a generalized von Neumann algebra if $\mathcal{M}'_w\mathcal{D}\subset\mathcal{D}$ and $\mathcal{M}=\mathcal{M}''_wc\equiv\{X\in\mathcal{L}^\dagger(\mathcal{D})\,;\,XC\xi=CX\xi,\,\,\forall C\in\mathcal{M}'_w,\,\,\forall\xi\in\mathcal{D}\}$. Suppose \mathcal{M} is a closed O^* -algebra on \mathcal{D} such that $\mathcal{M}'_w\mathcal{D}\subset\mathcal{D}$. Then \mathcal{M} is a generalized von Neumann algebra if and only if \mathcal{M} is t_s^* -closed if and only if $\mathcal{M}=\{X\in\mathcal{L}^\dagger(\mathcal{D})\,;\,\overline{X}\text{ is affiliated with }(\mathcal{M}'_w)'\}$ [5]. A generalized von Neumann algebra \mathcal{M} on \mathcal{D} is said to be an EW^* -algebra if $(\mathcal{M}'_w)'\mathcal{D}\subset\mathcal{D}$ [4].

We next introduce the notion of generalized vectors which is a generalization of cyclic vectors for O^* -algebras [7]. Let \mathcal{M} be an O^* -algebra on \mathcal{D} such that $\mathcal{M}'_{w}\mathcal{D} \subset \mathcal{D}$. A map λ of \mathcal{M} into \mathcal{D} is said to be a generalized vector for \mathcal{M} if the domain $D(\lambda)$ of λ is a left ideal of \mathcal{M} , λ is a linear map of $D(\lambda)$ into \mathcal{D} and $\lambda(XA)=X\lambda(A)$ for all $X\in\mathcal{M}$ and $A\in D(\lambda)$. Suppose that a generalized vector λ for \mathcal{M} satisfies the condition:

(i)
$$\lambda((D(\lambda) \cap D(\lambda)^{\dagger})^2)$$
 is total in \mathcal{H} .

Then we define the commutant λ^c of λ which is a generalized vector for the von Neumann algebra \mathcal{M}'_w as follows:

$$D(\lambda^c) = \{ K \in \mathcal{M}'_w ; \exists \xi_K \in \mathcal{D} \text{ s.t. } K\lambda(X) = X\xi_K \text{ for all } X \in D(\lambda) \},$$
$$\lambda^c(K) = \xi_K, \qquad K \in D(\lambda^c).$$

DEFINITION 2.1. A generalized vector λ for \mathcal{M} is said to be cyclic and separating if the above condition (i) and the following condition (ii) hold:

(ii)
$$\lambda^c((D(\lambda^c) \cap D(\lambda^c)^*)^2)$$
 is total in \mathcal{H} .

PROPOSITION 2.2. Suppose λ is a cyclic and separating generalized vector for \mathcal{M} . Put

$$D(\lambda_{\sigma}) = \{ X \in \mathcal{M} ; \exists \xi_{X} \in \mathcal{D} \text{ s.t. } X\lambda^{c}(K) = K\xi_{X} \text{ for all } K \in D(\lambda^{c}) \},$$
$$\lambda_{\sigma}(X) = \xi_{X}, \qquad X \in D(\lambda_{\sigma}).$$

Then λ_{σ} is a cyclic and separating vector for ${\mathcal M}$ satisfying

- (1) $\lambda \subset \lambda_{\sigma}$, that is $D(\lambda) \subset D(\lambda_{\sigma})$ and $\lambda(X) = \lambda_{\sigma}(X)$ for all $X \in D(\lambda)$,
- (2) λ is equivalent to λ_{σ} , that is, $\lambda^{c} = \lambda_{\sigma}^{c}$.

332 A. INOUE

This is easily shown and so we omit the proof.

DEFINITION 2.3. A cyclic and separating generalized vector λ for \mathcal{M} is said to be full if $\lambda = \lambda_{\sigma}$.

Suppose λ is a cyclic and separating generalized vector for \mathcal{M} and put

$$D(\lambda^{cc}) = \{A \in (\mathcal{M}'_w)'; \exists \xi_A \in \mathcal{H} \text{ s. t. } A\lambda^c(K) = K\xi_A \text{ for all } K \in D(\lambda^c)\},$$

 $\lambda^{cc}(A) = \xi_A, \qquad A \in D(\lambda^{cc}).$

Then λ^{cc} is a cyclic and separating generalized vector for the von Neumann algebra $(\mathcal{M}'_w)'$. So, the maps $\lambda(X) \to \lambda(X^{\dagger})$, $X \in D(\lambda)$ and $\lambda^{cc}(A) \to \lambda^{cc}(A^*)$, $A \in D(\lambda^{cc})$ are closable in \mathcal{H} and their closures are denoted by S_{λ} and S_{λ}^{cc} , respectively. Let $S_{\lambda} = J_{\lambda} \Delta_{\lambda}^{1/2}$ and $S_{\lambda}^{cc} = J_{\lambda}^{cc} \Delta_{\lambda}^{1/2}$ be the polar decompositions of S_{λ} and S_{λ}^{cc} , respectively. Then we see that $S_{\lambda} \subset S_{\lambda}^{cc}$, and $J_{\lambda}^{cc}(\mathcal{M}'_w)'J_{\lambda}^{cc}=\mathcal{M}'_w$ and $\Delta_{\lambda}^{it}(\mathcal{M}'_w)'$. $\Delta_{cc}^{-it} = (\mathcal{M}'_w)'$ for all $t \in \mathbb{R}$ by the Tomita fundamental theorem. But, we do not know how the unitary group $\{\Delta_{2cc}^{it}\}_{t\in \mathbb{R}}$ acts on the O^* -algebra \mathcal{M} and so we define a system which has the best condition:

DEFINITION 2.4. A generalized vector λ for \mathcal{M} is said to be standard if the following conditions hold:

- (i) λ is cyclic and separating.
- $\begin{array}{ll} \text{(ii)} & \Delta^{it}_{\lambda^{cc}}\mathcal{D} \subset \mathcal{D} \text{ and } \Delta^{it}_{\lambda^{cc}}\mathcal{M}\Delta^{-it}_{\lambda^{cc}} = \mathcal{M}, \ t \!\in\! \boldsymbol{R}. \\ \text{(iii)} & \Delta^{it}_{\lambda^{cc}}(D(\lambda) \!\cap\! D(\lambda)^\dagger) \Delta^{-it}_{\lambda^{cc}} \!=\! D(\lambda) \!\cap\! D(\lambda)^\dagger, \ t \!\in\! \boldsymbol{R}. \end{array}$

A standard generalized vector λ is said to be full if $\lambda = \lambda_{\sigma}$.

It follows from Proposition 2.2 that if λ is a standard generalized vector for \mathcal{M} , then λ_{σ} is a full standard generalized vector for \mathcal{M} such that $J_{\lambda} = J_{\lambda_{\sigma}}$ $=J_{\lambda}^{cc}$ and $\Delta_{\lambda}=\Delta_{\lambda_{\sigma}}=\Delta_{\lambda}^{cc}$.

THEOREM 2.5. Suppose λ is a standard generalized vector for \mathcal{M} . following statements hold:

- (1) $S_{\lambda} = S_{\lambda}^{cc}$, and so $J_{\lambda} = J_{\lambda}^{cc}$ and $\Delta_{\lambda} = \Delta_{\lambda}^{cc}$.
- (2) $\{\sigma_t^{\lambda}\}_{t\in \mathbb{R}}$ is a one-parameter group of *-automorphisms of \mathcal{M} , where $\sigma_t^{\lambda}(X)$ $=\Delta_{\lambda}^{it}X\Delta_{\lambda}^{-it}, X\in\mathcal{M}, t\in\mathbf{R}.$
- (3) λ satisfies the KMS-condition with respect to $\{\sigma_t^{\lambda}\}$, that is, for each X, Y $\in D(\lambda) \cap D(\lambda)^{\dagger}$ there exists an element $f_{X,Y}$ of A(0,1) such that

$$f_{X,Y}(t) = (\lambda(\sigma_t^{\lambda}(X))|\lambda(Y))$$
 and $f_{X,Y}(t+i) = (\lambda(Y^{\dagger})|\lambda(\sigma_t^{\lambda}(X^{\dagger}))$

for all $t \in \mathbb{R}$, where A(0, 1) is the set of all complex-valued functions, bounded and continuous on $0 \le \text{Im } z \le 1$ and analytic in the interior.

(4) Suppose λ is full. Then $\sigma_t^{\lambda}(D(\lambda)) \subset D(\lambda)$ and $\lambda(\sigma_t^{\lambda}(X)) = \Delta_{\lambda}^{it}\lambda(X)$ for all $X \in D(\lambda)$ and $t \in \mathbb{R}$.

PROOF. The statements (1), (2), and (3) follow from ([7] Theorem 5.5, 5.6). We show the statement (4). We put

$$\begin{split} D(\lambda') &= \{ K \in \mathcal{M}_w' \, ; \, \exists \xi_K \in \bigcap_{X \in D(\lambda)} \mathcal{D}(\overline{X}) \, \text{ s. t. } \, K \lambda(X) = \overline{X} \xi_K, \, \forall X \in D(\lambda) \} \, , \\ \lambda'(K) &= \xi_K \, , \qquad K \in D(\lambda') \, . \end{split}$$

By ([7] Proposition 4.1) λ' is a generalized vector for \mathcal{M}'_w satisfying $\lambda^c \subset \lambda'$ and we have by ([7] Lemma 5.1, Theorem 5.6)

$$\begin{split} \sigma_t^{\lambda}(X)\lambda^c(K) &= \Delta_{\lambda}^{it} X \Delta_{\lambda}^{-it} \lambda'(K) = \Delta_{\lambda}^{it} X \lambda'(\sigma_{-t}^{\lambda}(K)) \\ &= \Delta_{\lambda}^{it} \sigma_{-t}^{\lambda}(K)\lambda(X) \\ &= K \Delta_{\lambda}^{it} \lambda(X) \end{split}$$

for all $X \in D(\lambda)$ and $K \in D(\lambda^c)$. Since λ is full, it follows that $\sigma_t^{\lambda}(X) \in D(\lambda)$ and $\lambda(\sigma_t^{\lambda}(X)) = \Delta_{\lambda}^{it}\lambda(X)$ for all $X \in D(\lambda)$ and $t \in \mathbb{R}$. This completes the proof.

§ 3. Generalized Connes cocycle theorem.

In this section we generalize the Connes cocycle theorem for von Neumann algebras to generalized von Neumann algebras. Let \mathcal{M} be a generalized von Neumann algebra on \mathcal{D} in \mathcal{H} . Let \mathcal{K}_4 be a four-dimensional Hilbert space with an orthonormal basis $\{\eta_{ij}\}_{i,j=1,2}$ and \mathcal{G}_2 a 2×2 -matrix algebra generated by the matrices E_{ij} which are defined by $E_{ij}\eta_{kl}=\delta_{ik}\eta_{kl}$. Identifying $\zeta=\zeta_1\otimes\eta_{11}+\zeta_2\otimes\eta_{21}+\zeta_3\otimes\eta_{12}+\zeta_4\otimes\eta_{22}\in\mathcal{H}\otimes\mathcal{K}_4$ with $\zeta=(\zeta_1,\zeta_2,\zeta_3,\zeta_4)\in\mathcal{H}^4\equiv\mathcal{H}\oplus\mathcal{H}\oplus\mathcal{H}\oplus\mathcal{H}\oplus\mathcal{H},\ \mathcal{M}\otimes\mathcal{G}_2$ is regarded as the matrix algebra on $\mathcal{D}^4\equiv\mathcal{D}\oplus\mathcal{D}\oplus\mathcal{D}\oplus\mathcal{D}$:

$$\left\{ \begin{pmatrix} X_{11} & X_{12} & 0 & 0 \\ X_{21} & X_{22} & 0 & 0 \\ 0 & 0 & X_{11} & X_{12} \\ 0 & 0 & X_{21} & X_{22} \end{pmatrix}; X_{ij} \in \mathcal{M} \right\}.$$

Suppose λ and μ are cyclic and separating generalized vectors for \mathcal{M} . We put

$$D(\theta_{\lambda,\mu}) = \left\{ X = \begin{pmatrix} X_{11} & X_{12} & 0 & 0 \\ X_{21} & X_{22} & 0 & 0 \\ 0 & 0 & X_{11} & X_{12} \\ 0 & 0 & X_{21} & X_{22} \end{pmatrix}; \begin{array}{l} X_{11}, X_{21} \in D(\lambda) \\ X_{12}, X_{22} \in D(\mu) \end{array} \right\},$$

$$\theta_{\lambda,\mu}(X) = \begin{pmatrix} \lambda(X_{11}) \\ \lambda(X_{21}) \\ \mu(X_{12}) \\ \mu(X_{22}) \end{pmatrix}, \qquad X \in D(\theta_{\lambda,\mu}).$$

Then it is easily shown that $\theta_{\lambda,\mu}$ is a cyclic and separating generalized

vector for $\mathcal{M} \otimes \mathcal{F}_2$ satisfying

$$D(\theta_{\lambda,\mu}^{c}) = \begin{cases} K = \begin{pmatrix} K_{11} & 0 & K_{12} & 0 \\ 0 & K_{11} & 0 & K_{12} \\ K_{21} & 0 & K_{22} & 0 \\ 0 & K_{21} & 0 & K_{22} \end{pmatrix}; & K_{11}, K_{21} \in D(\lambda^{c}) \\ K_{12}, K_{22} \in D(\mu^{c}) \end{cases},$$

$$\theta_{\lambda,\mu}^{c}(K) = \begin{pmatrix} \lambda^{c}(K_{11}) \\ \mu^{c}(K_{21}) \\ \lambda^{c}(K_{12}) \\ \mu^{c}(K_{22}) \end{pmatrix}, \qquad K \in D(\theta_{\lambda,\mu}^{c});$$

$$D(\theta_{\lambda,\mu}^{cc}) = \begin{cases} A = \begin{pmatrix} A_{11} & A_{12} & 0 & 0 \\ A_{21} & A_{22} & 0 & 0 \\ 0 & 0 & A_{11} & A_{12} \\ 0 & 0 & A_{21} & A_{22} \end{cases}; & A_{11}, A_{21} \in D(\lambda^{cc}) \\ A_{12}, A_{22} \in D(\mu^{cc}) \end{cases},$$

$$A = D(\theta_{\lambda,\mu}^{cc}) = \begin{cases} \lambda^{cc}(A_{11}) \\ \lambda^{cc}(A_{21}) \end{pmatrix}, \qquad A = D(\theta_{\lambda,\mu}^{cc}) = 0.$$

$$\theta_{\lambda,\mu}^{cc}(A) = \begin{pmatrix} \chi^{cc}(A_{11}) \\ \chi^{cc}(A_{21}) \\ \mu^{cc}(A_{12}) \\ \mu^{cc}(A_{22}) \end{pmatrix}, \qquad A \in D(\theta_{\lambda,\mu}^{cc}).$$

$$(3.2)$$

PROPOSITION 3.1. Let λ and μ be cyclic and separating generalized vectors for \mathcal{M} . The following statements are equivalent.

- (1) λ and μ are (full) standard generalized vectors for \mathcal{M} .
- (2) $\theta_{\lambda,\mu}$ is a (full) standard generalized vector for $\mathfrak{M} \otimes \mathfrak{F}_2$.

PROOF. $(1) \Rightarrow (2)$ By (3.1) and (3.2) we have

$$S_{\theta_{\lambda,\mu}^{cc}} = \begin{pmatrix} S_{\lambda cc} & 0 & 0 & 0 \\ 0 & 0 & S_{\lambda cc\mu cc} & 0 \\ 0 & S_{\mu cc\lambda cc} & 0 & 0 \\ 0 & 0 & 0 & S_{\mu cc} \end{pmatrix},$$

and so

$$\Delta_{\theta_{\lambda,\mu}^{cc}} = \begin{pmatrix} \Delta_{\lambda cc} & 0 & 0 & 0\\ 0 & \Delta_{\mu cc\lambda cc} & 0 & 0\\ 0 & 0 & \Delta_{\lambda cc\mu cc} & 0\\ 0 & 0 & 0 & \Delta_{\mu cc} \end{pmatrix}, \tag{3.3}$$

where $S_{\lambda cc\mu cc}$ is the closure of the conjugate linear operator $\mu^{cc}(A) \rightarrow \lambda^{cc}(A^*)$, $A \in D(\mu^{cc}) \cap D(\lambda^{cc})^*$ and $S_{\lambda cc\mu cc} = J_{\lambda cc\mu cc} \Delta_{\lambda cc\mu cc}^{1/2}$ is the polar decomposition of $S_{\lambda cc\mu cc}$, and $S_{\mu cc\lambda cc}$, $J_{\mu cc\lambda cc}$ and $\Delta_{\mu cc\lambda cc}$ are operators defined similarly. Since

$$\Delta^{it}_{\theta^{cc}_{\lambda,\mu}}(\mathcal{M}'_w)' \otimes \mathcal{F}_2 \Delta^{-it}_{\theta^{cc}_{\lambda,\mu}} = (\mathcal{M}'_w)' \otimes \mathcal{F}_2, \qquad t \in \mathbf{R}$$

it follows from (3.3) that

$$\sigma_t^{\lambda cc}(A_{11}) = \Delta_{1cc,\mu cc}^{it} A_{11} \Delta_{1cc,\mu cc}^{-it}, \qquad (3.4)$$

$$\Delta_{1cc}^{it} A_{12} \Delta_{ncc}^{-it}{}_{1cc} = \Delta_{1cc}^{it}{}_{ncc} A_{12} \Delta_{ncc}^{-it}, \qquad (3.5)$$

$$\Delta_{ucc}^{it} = \Delta_{ucc}^{it} A_{21} \Delta_{cc}^{-it} = \Delta_{ucc}^{it} A_{21} \Delta_{ccucc}^{-it}, \qquad (3.6)$$

$$\sigma_t^{\mu cc}(A_{22}) = \Delta_{\mu cc_1 cc}^{it} A_{22} \Delta_{\mu cc_1 cc}^{-it}$$

$$\tag{3.7}$$

for all A_{11} , A_{12} , A_{21} , $A_{22} \in (\mathcal{M}'_w)'$ and $t \in \mathbb{R}$. We now denote by $[D\mu^{cc}: D\lambda^{cc}]_t$ the Connes cocycle associated with the weight $\varphi_{\mu cc}$ with respect to the weight $\varphi_{\lambda cc}$, that is,

$$[D\mu^{cc}:D\lambda^{cc}]_t = \Delta^{it}_{\mu cc}\Delta^{-it}_{\mu cc\mu cc}, \qquad t \in \mathbf{R}.$$
(3.8)

By (3.6) we have

$$[D\mu^{cc}: D\lambda^{cc}]_t = \Delta^{it}_{\mu^{cc}\lambda^{cc}}\Delta^{-it}_{\lambda^{cc}} \in (\mathcal{M}'_w)', \qquad t \in \mathbf{R}$$
(3.9)

and by (3.4) and (3.7)

$$\Delta^{it}_{\lambda^{cc}} \Delta^{-it}_{\lambda^{cc}\mu^{cc}}, \qquad \Delta^{it}_{\mu^{cc}} \Delta^{-it}_{\mu^{cc}\lambda^{cc}} \in \mathcal{M}'_w, \qquad t \in \mathbf{R}.$$
 (3.10)

Since $\Delta^{it}_{\lambda^{cc}}\mathcal{D}\subset\mathcal{D}$, $\Delta^{it}_{\mu^{cc}}\mathcal{D}\subset\mathcal{D}$ $(\forall t\in\mathbf{R})$ and $\mathcal{M}'_w\mathcal{D}\subset\mathcal{D}$, it follows from (3.10) that

$$\Delta^{it}_{u^{cc}\lambda^{cc}}\mathcal{D} = \Delta^{it}_{u^{cc}}\Delta^{-it}_{u^{cc}}\Delta^{it}_{u^{cc}\lambda^{cc}}\mathcal{D} \subset \Delta^{it}_{u^{cc}}\mathcal{M}'_{w}\mathcal{D} \subset \mathcal{D}, \tag{3.11}$$

and similarly

$$\Delta^{it}_{\lambda^{cc}\mu^{cc}}\mathcal{D} \subset \mathcal{D} , \qquad (3.12)$$

which implies by (3.8), (3.9) and (3.3) that

$$[D\mu^{cc}:D\lambda^{cc}]_t \Gamma \mathcal{D} \in \mathcal{M} \quad \text{and} \quad \Delta^{it}_{\theta^{it}_{\lambda u}} \mathcal{D}^4 \subset \mathcal{D}^4, \qquad t \in \mathbb{R}.$$
 (3.13)

Furthermore, it follows from (3.4) \sim (3.7), (3.11) and (3.12) that

$$\begin{split} \sigma_t^{\lambda cc}(X_{11}) &= \Delta_{\lambda^c c_\mu cc}^{it} X_{11} \Delta_{\lambda^c c_\mu cc}^{-it} \,, \\ \Delta_{\lambda^c c}^{it} X_{12} \Delta_{\mu^c c_\lambda cc}^{-it} &= \Delta_{\lambda^c c_\mu cc}^{it} X_{12} \Delta_{\mu^c c}^{-it} \,, \\ \Delta_{\mu^c c_\lambda cc}^{it} X_{21} \Delta_{\lambda^c c}^{-it} &= \Delta_{\mu^c c}^{it} X_{21} \Delta_{\lambda^c c_\mu cc}^{-it} \,, \\ \sigma_t^{\mu^c c}(X_{22}) &= \Delta_{\mu^c c_\lambda cc}^{it} X_{22} \Delta_{\mu^c c_\lambda cc}^{-it} \end{split}$$

for each X_{11} , X_{12} , X_{21} , $X_{22} \in \mathcal{M}$ and $t \in \mathbb{R}$, and they belong to \mathcal{M} since \mathcal{M} is a generalized von Neumann algebra. Hence we have

$$\sigma_t^{\mu^{cc}}(X_{11}) = [D\mu^{cc} : D\lambda^{cc}]_t \sigma_t^{\lambda^{cc}}(X_{11})[D\mu^{cc} : D\lambda^{cc}]_t^*$$

$$X_{11} \in \mathcal{M}, \quad t \in \mathbf{R},$$
(3.14)

and so

$$\sigma_{t}^{\theta_{\lambda}^{cc}}(X) = \begin{pmatrix} \sigma_{t}^{\lambda cc}(X_{11}) & [D\mu^{cc}:D\lambda^{cc}]_{t}^{*}\sigma_{t}^{\mu cc}(X_{12}) & 0 & 0 \\ D\mu^{cc}:D\lambda^{cc}]_{t}\sigma_{t}^{\lambda cc}(X_{21}) & \sigma_{t}^{\mu cc}(X_{22}) & 0 & 0 \\ 0 & 0 & \sigma_{t}^{\lambda cc}(X_{11}) & \sigma_{t}^{\lambda cc}(X_{12})[D\mu^{cc}:D\lambda^{cc}]_{t}^{*} \\ 0 & 0 & \sigma_{t}^{\mu cc}(X_{21})[D\mu^{cc}:D\lambda^{cc}]_{t} & \sigma_{t}^{\mu cc}(X_{22}) \end{pmatrix}$$

$$= \begin{pmatrix} \sigma_{t}^{\lambda cc}(X_{11}) & [D\mu^{cc}:D\lambda^{cc}]_{t}^{*}\sigma_{t}^{\mu cc}(X_{12}) & 0 & 0 \\ 0 & 0 & \sigma_{t}^{\mu cc}(X_{12}) & 0 & 0 \\ 0 & 0 & \sigma_{t}^{\mu cc}(X_{11}) & [D\mu^{cc}:D\lambda^{cc}]_{t}^{*}\sigma_{t}^{\mu cc}(X_{12}) \\ 0 & 0 & \sigma_{t}^{\mu cc}(X_{11}) & [D\mu^{cc}:D\lambda^{cc}]_{t}^{*}\sigma_{t}^{\mu cc}(X_{12}) \\ 0 & 0 & [D\mu^{cc}:D\lambda^{cc}]_{t}\sigma_{t}^{\lambda cc}(X_{21}) & \sigma_{t}^{\mu cc}(X_{22}) \end{pmatrix}$$

$$\in \mathcal{M} \otimes \mathcal{F}_{2} \qquad (3.15)$$

for each $X \in \mathcal{M} \otimes \mathcal{F}_2$ and $t \in \mathbf{R}$. Therefore $\theta_{\lambda, \mu}$ is a standard generalized vector for $\mathcal{M} \otimes \mathcal{F}_2$.

 $(2) \Rightarrow (1)$ This is trivial.

It is easily shown by (3.1) that $\theta_{\lambda,\mu}$ is full if and only if λ and μ are full.

Remark 3.2. Suppose λ and μ are standard generalized vectors for $\mathcal{M}.$ We put

$$egin{aligned} S_{\mu\lambda}\lambda(X) &= \mu(X^\dagger) \ , & X \in D(\lambda) \cap D(\mu)^\dagger \ , \ \\ S_{\lambda\mu}\mu(X) &= \lambda(X^\dagger) \ , & X \in D(\lambda) \cap D(\mu)^\dagger \ . \end{aligned}$$

Then $S_{\lambda\mu}$ and $S_{\lambda\mu}$ are closable operators in $\mathcal H$ whose closures denoted by the same $S_{\mu\lambda}$ and $S_{\lambda\mu}$, respectively. Let $S_{\mu\lambda}=J_{\mu\lambda}\Delta_{\mu\lambda}^{1/2}$ and $S_{\lambda\mu}=J_{\lambda\mu}\Delta_{\lambda\mu}^{1/2}$ be polar decompositions of $S_{\mu\lambda}$ and $S_{\lambda\mu}$, respectively. By Proposition 3.1 $\theta_{\lambda,\mu}$ is a standard generalized vector for $\mathcal M \otimes \mathcal F_2$, and so by ([7] Theorem 5.5) $S_{\theta_{\lambda,\mu}}^{cc} = S_{\theta_{\lambda,\mu}}$. Therefore, we have

$$S_{\lambda cc} = S_{\lambda}$$
, $S_{\mu cc} = S_{\mu}$, $S_{\mu cc\lambda cc} = S_{\mu\lambda}$, $S_{\lambda cc\mu cc} = S_{\lambda\mu}$

and so

$$\Delta_{\lambda}cc = \Delta_{\lambda}, \quad \Delta_{\mu}cc = \Delta_{\mu}, \quad \Delta_{\mu}cc_{\lambda}cc = \Delta_{\mu\lambda}, \quad \Delta_{\lambda}cc_{\mu}cc = \Delta_{\lambda\mu}.$$

Hence we have

$$[D\mu^{cc}:D\lambda^{cc}]_t = \Delta^{it}_{\mu}\Delta^{-it}_{\lambda\mu} = \Delta^{it}_{\mu\lambda}\Delta^{-it}_{\lambda}, \qquad t \in \mathbf{R}.$$
 (3.16)

Theorem 3.3. Suppose λ and μ are full standard generalized vectors for \mathcal{M} . Then there uniquely exists a strongly continuous map $t \in \mathbb{R} \to U_t \in \mathcal{M}$ such that

- (i) \overline{U}_t is unitary, $t \in \mathbb{R}$;
- (ii) $U_{t+s}=U_t\sigma_t^{\lambda}(U_s)$, s, $t\in \mathbb{R}$;
- (iii) $\sigma_t^{\mu}(X) = U_t \sigma_t^{\lambda}(X) U_t^{\dagger}, X \in \mathcal{M}, t \in \mathbb{R}$;
- (iv) for each $X \in D(\mu) \cap D(\lambda)^{\dagger}$ and $Y \in D(\lambda) \cap D(\mu)^{\dagger}$ there exists an element $F_{X,Y} \in A(0, 1)$ such that

$$\begin{split} F_{X,Y}(t) &= (\lambda(U_t\sigma_t^\lambda(Y)) \,|\, \lambda(X^\dagger)), \, F_{X,Y}(t+i) = (\mu(X) \,|\, \mu(U_t^\dagger\sigma_t^\mu(Y^\dagger))) \\ & \qquad \qquad \text{for all } t \!\in\! \! R \,. \end{split}$$

PROOF. We put

$$U_t = [D\mu^{cc} : D\lambda^{cc}]_t \Gamma \mathcal{D}, \quad t \in \mathbf{R}.$$

Then it follows from Proposition 3.1, (3.14), (3.15) and ([17] Theorem 3.1) that $t \in \mathbf{R} \to U_t \in \mathcal{M}$ is a strongly continuous map satisfying (i) \sim (iv). We show the uniqueness of $\{U_t\}_{t \in \mathbf{R}}$. Let $t \in \mathbf{R} \to V_t \in \mathcal{M}$ be a strongly continuous map satisfying (i) \sim (iv). We put

$$egin{align*} oldsymbol{\delta_t} \left(egin{align*} X_{11} & X_{12} & 0 & 0 \ X_{21} & X_{22} & 0 & 0 \ 0 & 0 & X_{11} & X_{12} \ 0 & 0 & X_{21} & X_{22} \ \end{pmatrix}
ight) \ &= egin{pmatrix} \sigma_t^{\lambda}(X_{11}) & V_t^* \sigma_t^{\mu}(X_{12}) & 0 & 0 \ V_t \sigma_t^{\lambda}(X_{21}) & \sigma_t^{\mu}(X_{22}) & 0 & 0 \ 0 & 0 & \sigma_t^{\lambda}(X_{11}) & V_t^* \sigma_t^{\mu}(X_{12}) \ 0 & 0 & V_t \sigma_t^{\lambda}(X_{21}) & \sigma_t^{\mu}(X_{22}) \ \end{pmatrix}, \ & X \in \mathcal{M} \otimes \mathcal{T}_2, \quad t \in \mathbf{R}. \end{split}$$

Then $\{\delta_t\}$ is a strongly continuous one-parameter group of *-automorphisms of $\mathcal{M} \otimes \mathcal{F}_2$ such that $\delta_t(D(\theta) \cap D(\theta)^\dagger) \subset D(\theta) \cap D(\theta)^\dagger$ for each $t \in \mathbf{R}$, where $\theta \equiv \theta_{\lambda,\mu}$, and θ satisfies the KMS-condition with respect to $\{\delta_t\}$. By ([7] Theorem 5.5) we have $\delta_t = \sigma_t^\theta$ for all $t \in \mathbf{R}$, which implies by (3.15) that $V_t = [D\mu^{cc}: D\lambda^{cc}]_t \cap \mathcal{D} = U_t$ for all $t \in \mathbf{R}$. This completes the proof.

Let λ and μ be full standard generalized vectors for \mathcal{M} . The map $t \in \mathbf{R} \to U_t \in \mathcal{M}$, uniquely determined by the above theorem, is called the cocycle associated with μ with respect to λ , and is denoted by $[D\mu:D\lambda]$. Suppose standard generalized vectors λ and μ are not necessarily full, then we put $[D\mu:D\lambda]_t = [D\mu_\sigma:D\lambda_\sigma]_t$, $t \in \mathbf{R}$. Then $t \to [D\mu:D\lambda]_t$ is a strongly continuous map satisfying the conditions (i) \sim (iv) in Theorem 3.3 and it is called the cocycle associated with μ with respect to λ . This equals the Connes cocycle $[D\mu^{cc}:D\lambda^{cc}]$ associated with μ^{cc} with respect to λ^{cc} .

§ 4. Generalized Pedersen and Takesaki Radon-Nikodym theorem.

In this section we construct the standard generalized vector λ_A associated with a given full standard generalized vector λ and a given positive self-adjoint operator A affiliated with the centralizer of λ , and consider when a full standard generalized vector μ is represented as the full extension of such a λ_A .

Let \mathcal{M} be a generalized von Neumann algebra on \mathcal{D} in a Hilbert space \mathcal{H} and λ a standard generalized vector for \mathcal{M} . We put

$$\mathcal{M}^{\sigma\lambda} = \{A \in \mathcal{M} : A\Delta_{\lambda}^{it} \supset \Delta_{\lambda}^{it} A, \forall t \in \mathbf{R}\}, \qquad \mathcal{M}_{b}^{\sigma\lambda} = \mathcal{M}_{b} \cap \mathcal{M}^{\sigma\lambda}.$$

Then $\mathcal{M}^{\sigma\lambda}$ and $\mathcal{M}^{\sigma\lambda}_b$ are O^* -subalgebras of \mathcal{M} .

LEMMA 4.1. Let λ be a full standard generalized vector for \mathcal{M} . Then the following statements hold.

- (1) Suppose $A \in \mathcal{M}_b$ such that $\Delta_{\lambda}^{1/2} A^{\dagger} \Delta_{\lambda}^{-1/2}$ is bounded. Then $XA \in D(\lambda) \cap D(\lambda)^{\dagger}$ and $\lambda(XA) = J_{\lambda} \Delta_{\lambda}^{1/2} A^{\dagger} \Delta_{\lambda}^{-1/2} J_{\lambda} \lambda(X)$ for each $X \in D(\lambda) \cap D(\lambda)^{\dagger}$.
- (2) Suppose $X \in D(\lambda) \cap D(\lambda)^{\dagger}$ and $A \in \mathcal{M}$ such that $XA \in D(\lambda) \cap D(\lambda)^{\dagger}$. Then $\lambda(XA) = \int_{\lambda} \Delta_{\lambda}^{1/2} A^{\dagger} \Delta_{\lambda}^{-1/2} J_{\lambda} \lambda(X)$.
- (3) Suppose $A \in \mathcal{M}_b^{a\lambda}$. Then $XA \in D(\lambda)$ and $\lambda(XA) = J_{\lambda}A * J_{\lambda}\lambda(X)$ for each $X \in D(\lambda)$.

PROOF. (1) Since $\Delta_{\lambda}^{1/2} A^{\dagger} \Delta_{\lambda}^{-1/2}$ is bounded, it follows that

$$A^{\dagger}\lambda(X^{\dagger}) \in \mathcal{D}(S_{\lambda})$$
 and $S_{\lambda}A^{\dagger}\lambda(X^{\dagger}) = J_{\lambda}\Delta_{\lambda}^{1/2}A^{\dagger}\Delta_{\lambda}^{-1/2}J_{\lambda}\lambda(X)$,

which implies

$$(XA\lambda^{c}(K)|\lambda^{c}(K_{1})) = (\lambda^{c}(K)|A^{\dagger}X^{\dagger}\lambda^{c}(K_{1}))$$

$$= (\lambda^{c}(K)|K_{1}\lambda(A^{\dagger}X^{\dagger}))$$

$$= (\lambda^{c}(K_{1}^{*}K)|\lambda(A^{\dagger}X^{\dagger}))$$

$$= (S_{\lambda}^{*}\lambda^{c}(K^{*}K_{1})|\lambda(A^{\dagger}X^{\dagger}))$$

$$= (S_{\lambda}\lambda(A^{\dagger}X^{\dagger})|\lambda^{c}(K^{*}K_{1}))$$

$$= (KI_{\lambda}\lambda_{1}^{2/2}A^{\dagger}\lambda_{2}^{-1/2}I_{\lambda}\lambda(X)|\lambda^{c}(K_{1}))$$

for each K, $K_1 \in D(\lambda^c) \cap D(\lambda^c)^*$. Hence we have

$$XA\lambda^{c}(K) = KI_{\lambda}\Delta_{\lambda}^{1/2}A^{\dagger}\Delta_{\lambda}^{-1/2}I_{\lambda}\lambda(X)$$

for each $K \in D(\lambda^c) \cap D(\lambda^c)^*$. Since λ is full, it follows that $XA \in D(\lambda)$ and $\lambda(XA) = J_{\lambda} \Delta_{\lambda}^{1/2} A^{\dagger} \Delta_{\lambda}^{-1/2} J_{\lambda} \lambda(X)$.

(2) This follows from

$$(\lambda(XA)|\lambda^{c}(K^{*}K_{1})) = (XA\lambda^{c}(K)|\lambda^{c}(K_{1}))$$

$$= (\lambda^{c}(K^{*}K)|A^{\dagger}\lambda(X^{\dagger}))$$

$$= (S^{*}_{\lambda}\lambda^{c}(K^{*}K_{1})|A^{\dagger}\lambda(X^{\dagger}))$$

$$= (S_{\lambda}A^{\dagger}\lambda(X^{\dagger})|\lambda^{c}(K^{*}K_{1}))$$

$$= (J_{\lambda}\Delta^{1/2}_{\lambda}A^{\dagger}\Delta^{-1/2}_{\lambda}J_{\lambda}\lambda(X)|\lambda^{c}(K^{*}K_{1}))$$

for each $X \in D(\lambda) \cap D(\lambda)^{\dagger}$ and $K, K_1 \in D(\lambda^c) \cap D(\lambda^c)^*$.

(3) We first show

$$A\lambda^{c}(K) \in \mathcal{D}(S_{\lambda}^{*}) \text{ and } S_{\lambda}^{*}A\lambda^{c}(K) = J_{\lambda}\overline{A}\lambda_{\lambda}\lambda^{c}(K^{*})$$
 (4.1)

for each $K \in D(\lambda^c) \cap D(\lambda^c)^*$. This follows from

$$(S_{\lambda}\lambda(Y)|A\lambda^{c}(K)) = (A*\Delta_{\lambda}^{-1/2}J_{\lambda}\lambda(Y)|\lambda^{c}(K))$$

$$= (\Delta_{\lambda}^{-1/2}A*J_{\lambda}\lambda(Y)|\lambda^{c}(K))$$

$$= (\lambda^{c}(K*)|J_{\lambda}A*J_{\lambda}\lambda(Y))$$

$$= (J_{\lambda}\overline{A}J_{\lambda}\lambda^{c}(K*)|\lambda(Y))$$

for each $Y \in D(\lambda) \cap D(\lambda)^{\dagger}$. By (4.1) we have

$$(XA\lambda^{c}(K)|\lambda(Y)) = (A\lambda^{c}(K)|\lambda(X^{\dagger}Y))$$

$$= (\lambda(Y^{\dagger}X)|S_{\lambda}^{*}A\lambda^{c}(K))$$

$$= (\lambda(Y^{\dagger}X)|J_{\lambda}\overline{A}J_{\lambda}\lambda^{c}(K^{*}))$$

$$= (\lambda(X)|J_{\lambda}\overline{A}J_{\lambda}K^{*}\lambda(Y))$$

$$= (KJ_{\lambda}A^{*}J_{\lambda}\lambda(X)|\lambda(Y))$$

for each $K \in D(\lambda^c) \cap D(\lambda^c)^*$ and $Y \in D(\lambda) \cap D(\lambda)^{\dagger}$, which implies by the fullness of λ that $XA \in D(\lambda)$ and $\lambda(XA) = J_{\lambda}A^*J_{\lambda}\lambda(X)$.

Theorem 4.2. Let $\mathcal M$ be a generalized von Neumann algebra on $\mathcal D$ in $\mathcal H$ and λ and μ full standard generalized vectors for $\mathcal M$. Then the following statements are equivalent.

- (1) $D(\mu)$ is $\{\sigma_t^{\lambda}\}$ -invariant and $\|\mu(\sigma_t^{\lambda}(X))\| = \|\mu(X)\|$ for all $X \in D(\mu)$.
- (1)' $D(\lambda)$ is $\{\sigma_t^{\mu}\}$ -invariant and $\|\lambda(\sigma_t^{\mu}(X))\| = \|\lambda(X)\|$ for all $X \in D(\lambda)$.
- (2) $[D\mu: D\lambda]_t \in \mathcal{M}^{\sigma\mu}, \ \forall t \in \mathbf{R}.$
- (2)' $[D\mu: D\lambda]_t \in \mathcal{M}^{\sigma\lambda}, \forall t \in \mathbb{R}.$
- (3) $\{[D\mu:D\lambda]_t\}_{t\in\mathbb{R}}$ is a strongly continuous one-parameter group of unitary elements of \mathcal{M} .

PROOF. The equivalence of (2), (2)' and (3) follows from Theorem 3.3.

(1) \Rightarrow (2) We now put $U_t = [D\mu : D\lambda]_t$, $t \in \mathbb{R}$. Take an arbitrary $t \in \mathbb{R}$ and put $A = \sigma_t^{\mu}(U_t)$. Then it follows from the assumption (1) that

$$XA \in D(\mu) \cap D(\mu)^{\dagger}$$
 and $(\mu(X) \mid \mu(Y)) = (\mu(XA) \mid \mu(YA))$ (4.2)

for all $X, Y \in D(\mu) \cap D(\mu)^{\dagger}$, and further by Lemma 4.1, (2)

$$\begin{split} \|\mu(X)\| &= \|\mu(\sigma_t^{\lambda}(X))\| = \|\mu(U_t^*\sigma_t^{\mu}(X)U_t)\| \\ &= \|\mu(XA)\| \\ &= \|J_{\mu}\Delta_{\mu}^{1/2}A^{\dagger}\Delta_{\mu}^{-1/2}J_{\mu}\mu(X)\| \end{split}$$

for all $X \in D(\mu) \cap D(\mu)^{\dagger}$. Hence, $J_{\mu} \Delta_{\mu}^{1/2} A^{\dagger} \Delta_{\mu}^{-1/2} J_{\mu}$ is bounded. Furthermore, since $D(\mu) \cap D(\mu)^{\dagger}$ is $\{\sigma_t^{\mu}\}$ -invariant and $\{\sigma_t^2\}$ -invariant, it follows from Theorem 3.3 that

$$XU_s^* = U_s^* \sigma_s^{\mu}(\sigma_{-s}^{\lambda}(X)) \in D(\mu) \cap D(\mu)^{\dagger}$$

for all $X \in D(\mu) \cap D(\mu)^{\dagger}$ and $s \in \mathbb{R}$, which implies

$$X\sigma_s^{\mu}(U_s^*) \in D(\mu) \cap D(\mu)^{\dagger}$$

for all $X \in D(\mu) \cap D(\mu)^{\dagger}$ and $s \in \mathbb{R}$. Hence, by (4.2) we have

$$XA^{\dagger} \in D(\mu) \cap D(\mu)^{\dagger}$$
 and $(\mu(X) | \mu(YA)) = (\mu(XA^{\dagger}) | \mu(Y))$

for all $X, Y \in D(\mu) \cap D(\mu)^{\dagger}$, which implies by Lemma 4.1, (2) that

$$\begin{split} (\mu(X) | \, J_{\mu} \Delta_{\mu}^{1/2} A^{\dagger} \Delta_{\mu}^{-1/2} J_{\mu} \mu(Y)) &= (\mu(X) | \, \mu(YA)) \\ &= (\mu(XA^{\dagger}) | \, \mu(Y)) \\ &= (J_{\mu} \Delta_{\mu}^{1/2} A \Delta_{\mu}^{-1/2} J_{\mu} \mu(X) | \, \mu(Y)) \\ &= (\mu(X) | \, (J_{\mu} \Delta_{\mu}^{1/2} A \Delta_{\mu}^{-1/2} J_{\mu})^{*} \mu(Y)) \end{split}$$

for each X, $Y \in D(\mu) \cap D(\mu)^{\dagger}$. Hence we have

$$\overline{J_{\mu}\Delta_{\mu}^{1/2}A^{\dagger}\Delta_{\mu}^{-1/2}J_{\mu}}=(J_{\mu}\Delta_{\mu}^{1/2}A\Delta_{\mu}^{-1/2}J_{\mu})^{*}$$
 ,

which implies $\overline{A}\Delta_{\mu}\subset\Delta_{\mu}\overline{A}$. Therefore it follows that $U_t\in\mathcal{M}^{\sigma\mu}$ for all $t\in\mathbf{R}$. (2) \Rightarrow (1) It follows from Theorem 3.3 and Lemma 4.1, (3) that

$$\sigma_t^{\lambda}(X) = U_t^* \sigma_t^{\mu}(X) U_t \in D(\mu)$$

and

$$\begin{split} \|\mu(\sigma_t^{\lambda}(X))\| &= \|\mu(U_t^* \sigma_t^{\mu}(X) U_t)\| \\ &= \|J_{\mu} U_t^* J_{\mu} \mu(\sigma_t^{\mu}(X))\| \\ &= \|\mu(X)\| \end{split}$$

for each $X \in D(\mu)$ and $t \in \mathbb{R}$.

 $(1)' \Leftrightarrow (2)$ This is proved in similar to the equivalence of (1) and (2). This completes the proof.

If the equivalent conditions in Theorem 4.2 are satisfied, we say that μ commutes with λ . If μ commutes with λ , then

$$\sigma_t^{\lambda} \circ \sigma_t^{\mu} = \sigma_t^{\mu} \circ \sigma_t^{\lambda}, \quad t \in \mathbb{R}.$$

But, the converse is not necessarily true even in the bounded case ([17] 4.15). We next present the canonical construction and the properties of the generalized vector λ_A associated with a given full standard generalized vector λ and a given positive self-adjoint operator A affiliated with the centralizer of λ . We investigate when a full standard generalized vector μ for \mathcal{M} which commutes with λ is represented as $(\lambda_A)_{\sigma}$.

Let λ be a full standard generalized vector for \mathcal{M} and $\mathcal{M}_{\eta}^{\sigma\lambda}$ the set of all non-singular positive self-adjoint operators A in \mathcal{H} satisfying $\{E_A(t); -\infty < t < \infty\}^{\prime\prime} \lceil \mathcal{D} \subset \mathcal{M}_b^{\sigma\lambda}$, where $\{E_A(t)\}$ is the spectral resolutions of A. Let $A \in \mathcal{M}_{\eta}^{\sigma\lambda}$ and put

$$D(\lambda_A) = \{X \in D(\lambda); \lambda(YX) \in \mathcal{D}(J_\lambda A J_\lambda) \text{ for all } Y \in \mathcal{M}\},$$
$$\lambda_A(X) = J_\lambda A J_\lambda \lambda(X), \qquad X \in D(\lambda_A).$$

Then we have the following

LEMMA 4.3. λ_A is a standard generalized vector for \mathcal{M} satisfying

$$\sigma_t^{\lambda_A}(X) = A^{2it}\sigma_t^{\lambda}(X)A^{-2it}$$
,

$$[D\lambda_A:D\lambda]_t \equiv [D(\lambda_A)_\sigma:D\lambda]_t = A^{2it} \upharpoonright \mathcal{D}, \quad X \in \mathcal{M}, \quad t \in \mathbf{R}.$$

PROOF. It is clear that λ_A is generalized vector for \mathfrak{M} . Since

$$\{E_{A}(n')YE_{A}(m')E_{A}(n)XA^{-1}E_{A}(m); X, Y \in D(\lambda) \cap D(\lambda)^{\dagger}, m, n, m', n' \in N\}$$

$$\subset (D(\lambda_{A}) \cap D(\lambda_{A})^{\dagger})^{2}$$

and

$$\lambda_{A}(E_{A}(n')YE_{A}(m')E_{A}(n)XA^{-1}E_{A}(m)) = E_{A}(n')YE_{A}(m')E_{A}(n)J_{\lambda}E_{A}(m)J_{\lambda}\lambda(X)$$

$$\longrightarrow Y\lambda(X), \qquad (m, n, m', n' \to \infty)$$

it follows that

$$\lambda_A((D(\lambda_A) \cap D(\lambda_A)^{\dagger})^2)$$
 is dense in \mathcal{H} . (4.3)

We put

$$\mathcal{K} = \{K \in D(\lambda^c); \lambda^c(K) \in \mathcal{D}(A) \cap \mathcal{D}(J_{\lambda}A^{-1}J_{\lambda}) \text{ and } A\lambda^c(K) \in \mathcal{D}\}.$$

Then we have

$$\mathcal{K} \subset D(\lambda_A^c)$$
 and $\lambda_A^c(K) = A\lambda^c(K)$, $\forall K \in \mathcal{K}$. (4.4)

In fact, this follows from

$$K\lambda_{\mathbf{A}}(X) = KJ_{\lambda}AJ_{\lambda}\lambda(X) = \lim_{n \to \infty} KJ_{\lambda}AE_{\mathbf{A}}(n)J_{\lambda}\lambda(X)$$

$$= \lim_{n \to \infty} K\lambda(XAE_{\mathbf{A}}(n))$$

$$= \lim_{n \to \infty} XAE_{\mathbf{A}}(n)\lambda^{c}(K)$$

$$= XA\lambda^{c}(K)$$

for each $X \in D(\lambda_A)$ and $K \in \mathcal{K}$. We put

$$K_{mn} = J_{\lambda} E_{A}(m) J_{\lambda} K J_{\lambda} E_{A}(n) J_{\lambda}$$

for $K \in D(\lambda^c) \cap D(\lambda^c)^*$ and $m, n \in \mathbb{N}$. Then we have

$$K_{mn}\lambda(X) = (J_{\lambda}E_{A}(m)J_{\lambda})K(J_{\lambda}E_{A}(n)J_{\lambda})\lambda(X)$$

$$= (J_{\lambda}E_{A}(m)J_{\lambda})K\lambda(XE_{A}(n))$$

$$= (J_{\lambda}E_{A}(m)J_{\lambda})XE_{A}(n)\lambda^{c}(K)$$

$$= X(J_{\lambda}E_{A}(m)J_{\lambda})E_{A}(n)\lambda^{c}(K)$$

and

$$K_{mn}^*\lambda(X) = X(J_{\lambda}E_{A}(n)J_{\lambda})E_{A}(m)\lambda^{c}(K^*)$$

for each $X \in D(\lambda)$, and so

$$K_{mn} \in \mathcal{K} \cap \mathcal{K}^*,$$

$$\lambda^c(K_{mn}) = (J_{\lambda}E_{A}(m)J_{\lambda})E_{A}(n)\lambda^c(K),$$

$$\lambda^c(K_{mn}^*) = (J_{\lambda}E_{A}(n)J_{\lambda})E_{A}(m)\lambda^c(K^*).$$
(4.5)

Hence we have

$$C_{mn}K_{mn} \in \mathcal{K} \cap \mathcal{K}^*,$$

$$\lim_{m,n\to\infty} \lambda^c(C_{mn}K_{mn}) = \lim_{m,n\to\infty} C_{mn}\lambda^c(K_{mn})$$

$$= \lim_{m,n\to\infty} C_{mn}(J_{\lambda}E_{A}(m)J_{\lambda})E_{A}(n)\lambda^c(K)$$

$$= C\lambda^c(K) = \lambda^c(CK),$$

$$\lim_{m,n\to\infty} \lambda^c((C_{mn}K_{mn})^*) = \lambda^c((CK)^*)$$

for each C, $K \in D(\lambda^c) \cap D(\lambda^c)^*$, which implies that

$$\lambda^{c}((\mathcal{K} \cap \mathcal{K}^{*})^{2})$$
 is dense in the Hilbert space $\mathcal{D}(S_{\lambda}^{*})$. (4.6)

For each $K \in \mathcal{K} \cap \mathcal{K}^*$ and $n \in N$ we have

$$K_n \equiv K J_{\lambda} A^{-1} E_A(n) J_{\lambda} \in \mathcal{K} \cap \mathcal{K}^*$$
,

$$\lambda^c(K_n) = A^{-1}E_A(n)\lambda^c(K)$$
 , $\lambda^c(K_n^*) = \int_{\lambda}A^{-1}E_A(n)\int_{\lambda}\lambda^c(K^*)$

and so by (4.4)

$$\lim_{n\to\infty} \lambda_A^c(CK_n) = \lim_{n\to\infty} C\lambda_A^c(K_n) = \lim_{n\to\infty} CE_A(n)\lambda^c(K)$$
$$= C\lambda^c(K)$$

for each $C \in \mathcal{K} \cap \mathcal{K}^*$. Hence it follows from (4.6) that $\lambda_A^c((\mathcal{K} \cap \mathcal{K}^*)^2)$ is dense in \mathcal{H} , which implies by (4.4) that

$$\lambda_A^c((D(\lambda_A^c) \cap D(\lambda_A^c)^*)^2)$$
 is dense in \mathcal{H} . (4.7)

By (4.3) and (4.7) λ_A is a cyclic and separating vector for \mathcal{M} . For each $K \in \mathcal{K} \cap \mathcal{K}^*$ we have by (4.4) and (4.5)

$$\begin{split} \lim_{m, n \to \infty} \lambda_A^c(K_{mn}) &= \lim_{m, n \to \infty} AE_A(n) J_\lambda E_A(m) J_\lambda \lambda^c(K) \\ &= A \lambda^c(K) = \lambda_A^c(K) , \\ \lim_{m, n \to \infty} \lambda_A^c(K_{mn}^*) &= \lim_{m, n \to \infty} AE_A(m) J_\lambda E_A(n) J_\lambda \lambda^c(K^*) \\ &= \lambda_A^c(K^*) . \end{split}$$

Furthermore, for each $C \in D(\lambda_A^c) \cap D(\lambda_A^c)^*$ and $m, n \in N$ we put

$$C_{mn} = (J_{\lambda}E_{A}(m)J_{\lambda})C(J_{\lambda}E_{A}(n)J_{\lambda}).$$

Then we have

$$\begin{split} C_{mn}\lambda(X) &= (J_{\lambda}E_{A}(m)J_{\lambda})C\lambda_{A}(XA^{-1}E_{A}(n)) \\ &= (J_{\lambda}E_{A}(m)J_{\lambda})XA^{-1}E_{A}(n)\lambda_{A}^{c}(C) \\ &= X(J_{\lambda}E_{A}(m)J_{\lambda})A^{-1}E_{A}(n)\lambda_{A}^{c}(C) , \\ C_{mn}^{*}\lambda(X) &= X(J_{\lambda}E_{A}(n)J_{\lambda})A^{-1}E_{A}(m)\lambda_{A}^{c}(C^{*}) , \end{split}$$

and so by (4.4) and (4.5)

$$\begin{split} C_{mn} &\in \mathcal{K} \cap \mathcal{K}^*, \\ \lim_{m, n \to \infty} \lambda_A^c(C_{mn}) &= \lim_{m, n \to \infty} (J_\lambda E_A(m) J_\lambda) E_A(n) \lambda_A^c(C) \\ &= \lambda_A^c(C) \\ \lim_{m, n \to \infty} \lambda_A^c(C_{mn}^*) &= \lambda_A^c(C^*). \end{split}$$

Therefore it follows that

$$\{\lambda_A^c(K_{mn}): K \in \mathcal{K} \cap \mathcal{K}^*, m, n \in N\}$$

is dense in the Hilbert space
$$\mathcal{D}(S_{\lambda}^*c_{\lambda})$$
. (4.8)

For each $K \in \mathcal{K} \cap \mathcal{K}^*$ and $m, n \in N$ we have by (4.4) and (4.5)

$$S_{\lambda A}^{*} c \lambda_{A}^{c}(K_{mn}) = A E_{A}(n) J_{\lambda} E_{A}(m) J_{\lambda} \lambda^{c}(K^{*})$$

$$= A E_{A}(n) J_{\lambda} E_{A}(m) J_{\lambda} S_{\lambda}^{*} \lambda^{c}(K)$$

$$= S_{\lambda}^{*} J_{\lambda} A E_{A}(n) J_{\lambda} E_{A}(m) \lambda^{c}(K)$$

$$= S_{\lambda}^{*} J_{\lambda} A E_{A}(n) J_{\lambda} A^{-1} E_{A}(m) \lambda_{\lambda}^{c}(K),$$

and so

$$\lambda^c_A(K) \in \mathcal{D}(\overline{S^*_{\lambda}J_{\lambda}AJ_{\lambda}A^{-1}})$$
 and $\overline{S^*_{\lambda}J_{\lambda}AJ_{\lambda}A^{-1}}\lambda^c_A(K) = S^*_{\lambda^c_A}\lambda^c_A(K)$

for each $K \in \mathcal{K} \cap \mathcal{K}^*$. By (4.8) we have

$$S_{\lambda A}^{*cc} \subset \overline{S_{\lambda}^{*} J_{\lambda} A J_{\lambda} A^{-1}} \,. \tag{4.9}$$

Similarly we have

$$S_{\lambda}^{*} \subset \overline{S_{\lambda A}^{*cc} J_{\lambda} A^{-1} J_{\lambda} A} . \tag{4.10}$$

By (4.9) and (4.10) we have

$$S_{\lambda A}^{*cc} = \overline{S_{\lambda}^{*} J_{\lambda} A J_{\lambda} A^{-1}} = \overline{J_{\lambda} \Delta_{\lambda}^{-1/2} J_{\lambda} A J_{\lambda} A^{-1}}. \tag{4.11}$$

Since A is affiliated with $(\mathcal{M}''_w)^{\sigma^{\lambda}}$, it follows that the two self-adjoint operators $\Delta_{\lambda}^{-1/2}$ and $\overline{J_{\lambda}AJ_{\lambda}A^{-1}}$ are strongly commuting, that is, the spectral projections of the two self-adjoint operators are mutually commuting, and so $\overline{\Delta_{\lambda}^{-1/2}J_{\lambda}AJ_{\lambda}A^{-1}}$ is self-adjoint and it equals $\overline{J_{\lambda}AJ_{\lambda}A^{-1}\Delta_{\lambda}^{-1/2}}$. Hence, it follows from (4.11) and the uniqueness of the polar decomposition of S_{λ}^{*c} , it follows that

$$J_{\lambda_A^{cc}}=J_{\lambda}$$
 and $\Delta_{\lambda_A^{cc}}^{-1/2}=\overline{\Delta_{\lambda}^{-1/2}J_{\lambda}AJ_{\lambda}A^{-1}}=\overline{J_{\lambda}AJ_{\lambda}A^{-1}\Delta_{\lambda}^{-1/2}}$,

which implies

$$\Delta^{it}_{\lambda^{cc}_A} = J_\lambda A^{-2it} J_\lambda A^{2it} \Delta^{it}_\lambda \quad \text{and} \quad \sigma^{\lambda^{cc}_t}_t(X) = A^{2it} \sigma^\lambda_t(X) A^{-2it}$$

for $X \in \mathcal{M}$ and $t \in \mathbb{R}$. Hence it follows from Lemma 4.1, (3) that

$$\sigma_{t,A}^{\lambda cc}(D(\lambda_A) \cap D(\lambda_A)^{\dagger}) \subset D(\lambda_A) \cap D(\lambda_A)^{\dagger}, \quad t \in \mathbb{R}$$

Therefore λ_A is a standard generalized vector for \mathcal{M} . Further, it follows from Theorem 3.3 that $[D\lambda_A:D\lambda]_t \equiv [D(\lambda_A)_{\sigma}:D\lambda]_t = A^{2it} \upharpoonright \mathcal{D}$ for $t \in \mathbb{R}$. This completes the proof.

LEMMA 4.4. Let λ , μ_1 and μ_2 be full standard generalized vectors for \mathcal{M} . Suppose $[D\mu_1:D\lambda]_t=[D\mu_2:D\lambda]_t$ for all $t\in \mathbb{R}$. Then $\mu_1=\mu_2$.

PROOF. By ([17] Corollary 3.6) we have $\mu_1^{cc} = \mu_2^{cc}$, and so $\mu_1^c = \mu_2^c$. Take an arbitrary $X \in D(\mu_1)$. By ([7] Proposition 4.3) there exists a sequence $\{X_n\}$ in $D(\mu_1^{cc}) = D(\mu_2^{cc})$ such that $\lim_{n \to \infty} X_n \xi = X \xi$ for each $\xi \in D$ and $\lim_{n \to \infty} \mu_2^{cc}(X_n) = \lim_{n \to \infty} \mu_1^{cc}(X_n) = \mu_1(X)$. Hence we have

$$K\mu_1(X) = \lim_{n \to \infty} K\mu_2^{cc}(X_n) = \lim_{n \to \infty} X_n\mu_2^c(K)$$
$$= X\mu_2^c(K)$$

for all $K \in D(\mu_2^c) \cap D(\mu_2^c)^*$, which implies by the fullness of μ_2 that $\mu_1 \subset \mu_2$. Similarly we can show $\mu_2 \subset \mu_1$.

Let λ and μ be full standard generalized vectors for \mathcal{M} . Suppose μ commutes with λ . Then it follows from Theorem 4.2 that $\{[D\mu:D\lambda]_t\}_{t\in R}$ is a strongly continuous one-parameter group of unitary operators in $(\mathcal{M}''_w)^{\sigma^{\lambda}}$, and so by the Stone theorem there exists a unique non-singular positive self-adjoint operator $A_{\lambda,\mu}$ affiliated with $(\mathcal{M}''_w)^{\sigma^{\lambda}}$ such that $[D\mu;D\lambda]_t = A^{it}_{\lambda,\mu} \cap \mathcal{D}$ for all $t\in R$. By Lemma 4.3, 4.4 we have the following

THEOREM 4.5. Let \mathcal{M} be a generalized von Neumann algebra on \mathcal{D} in \mathcal{H} and λ and μ full standard generalized vectors for \mathcal{M} . Suppose $A_{\lambda, \mu} \in \mathcal{M}_{\eta}^{\sigma^{\lambda}}$. Then $\mu = (\lambda_{A_{\lambda, \mu}})_{\sigma}$.

COROLLARY 4.6. Let \mathcal{M} be an EW^* -algebra on \mathcal{D} in \mathcal{H} and λ and μ full standard generalized vectors for \mathcal{M} . Then μ commutes with λ if and only if $\mu=(\lambda_A)_\sigma$ for some non-singular positive self-adjoint operator A affiliated with $(\mathcal{M}''_w)^{\sigma^{\lambda}}$.

PROOF. Suppose μ commutes with λ . Since \mathcal{M} is an EW^* -algebra on \mathcal{D} in \mathcal{H} , we have $A_{\lambda,\,\mu} \in \mathcal{M}^{\sigma^{\lambda}}_{\eta}$, and so $\mu = (\lambda_{A_{\lambda,\,\mu}})_{\sigma}$ by Theorem 4.5. The converse follows from Lemma 4.3.

Theorem 4.7. Let $\mathcal M$ be a generalized von Neumann algebra on $\mathcal D$ in $\mathcal H$ and λ and μ full standard generalized vectors for $\mathcal M$. Then the following statements are equivalent.

- (1) μ satisfies the KMS-condition with respect to $\{\sigma_t^{\lambda}\}$.
- (2) $\sigma_t^{\mu} = \sigma_t^{\lambda}$ for each $t \in \mathbb{R}$.
- (3) There exists a non-singular positive self-adjoint operator A affiliated with the center of $(\mathcal{M}'_w)'$ such that $\mu = (\lambda_A)_{\sigma}$.

PROOF. (1) \Rightarrow (2) This follows from ([17] Corollary 4.11).

- $(2) \Rightarrow (1)$ This is trivial.
- $(2) \Rightarrow (3)$ This follows from

$$\sigma_t^{\lambda}(X) = \sigma_t^{\mu}(X) = A_{\lambda,\mu}^{2it} \sigma_t^{\lambda}(X) A_{\lambda,\mu}^{-2it}, \quad X \in \mathcal{M}, \ t \in \mathbb{R}.$$

 $(3) \Rightarrow (2)$ Since A is affiliated with the center of $(\mathcal{M}'_w)'$, it follows that $A \in \mathcal{M}_{\eta}^{\sigma^{\lambda}}$, which implies by Lemma 4.3 that λ_{A} is well-defined and

$$\sigma_t^{\mu}(X) = \sigma_t^{(\lambda_A)\sigma}(X) = A^{2it}\sigma_t^{\lambda}(X)A^{-2it} = \sigma_t^{\lambda}(X)$$

for all $X \in \mathcal{M}$ and $t \in \mathbb{R}$. This completes the proof.

Let \mathcal{M} be a generalized von Neumann algebra on \mathcal{D} in \mathcal{H} . A generalized vector λ for \mathcal{M} is said to be tracial if $\|\lambda(X)\| = \|\lambda(X^{\dagger})\|$ for all $X \in D(\lambda) \cap D(\lambda)^{\dagger}$. It is clear that a cyclic and separating tracial generalized vector λ is standard and $\Delta_{\lambda}=1$. If there exists a cyclic and separating tracial generalized vector λ for \mathcal{M} , then \mathcal{M} is said to be spatially semifinite.

PROPOSITION 4.8. Let $\mathcal M$ be a generalized von Neumann algebra on $\mathcal D$ in $\mathcal H$. The following statements hold.

- (1) Suppose $\mathcal M$ is spatially semifinite. Then, for each full standard generalized vector λ for $\mathcal M$ there exists a non-singular positive self-adjoint operator A affiliated with $(\mathcal M''_w)^{\sigma^{\lambda}}$ such that $\sigma^{\lambda}_{t}(X) = A^{2it}XA^{-2it}$ for all $X \in \mathcal M$ and $t \in \mathbf R$.
- (2) Conversely suppose there exist a full standard generalized vector λ for \mathcal{M} and a non-singular positive self-adjoint operator $A \in \mathcal{M}_{\eta}^{\sigma \lambda}$ such that $\sigma_t^{\lambda}(X) = A^{2it}XA^{-2it}$ for all $X \in \mathcal{M}$ and $t \in \mathbf{R}$. Then \mathcal{M} is spatially semifinite.
- PROOF. (1) Since \mathcal{M} is spatially semifinite, there exists a full standard generalized vector $\boldsymbol{\mu}$ for \mathcal{M} such that $\Delta_{\boldsymbol{\mu}} = 1$. Hence it follows from Theorem 4.2 that $\sigma_t^{\lambda}(X) = A_{\mu,\lambda}^{2it} \sigma_t^{\boldsymbol{\mu}}(X) A_{\mu,\lambda}^{-2it} = A_{\mu,\lambda}^{2it} X A_{\mu,\lambda}^{-2it}$ for all $X \in \mathcal{M}$ and $t \in \mathbf{R}$.
- (2) Since $A^{-1} \in \mathcal{M}_{\eta}^{\sigma^{\lambda}}$, it follows from Lemma 4.3 that $\mu \equiv \lambda_{A^{-1}}$ is well-defined and $\sigma_t^{\mu}(X) = A^{-2it}\sigma_t^{\lambda}(X)A^{2it} = X$ for all $X \in \mathcal{M}$ and $t \in \mathbf{R}$. Therefore, μ is tracial, and so \mathcal{M} is spatially semifinite.

COROLLARY 4.9. An EW*-algebra \mathcal{M} is spatially semifinite if and only if there exist a standard generalized vector λ for \mathcal{M} and a non-singular positive self-adjoint operator A affiliated with $(\mathcal{M}'_w)'$ such that $\sigma_t^{\lambda}(X) = A^{2it}XA^{-2it}$ for all $X \in \mathcal{M}$ and $t \in \mathbb{R}$.

PROOF. This follows from $(\mathcal{M}'_w)'\mathcal{D} \subset \mathcal{D}$ and Proposition 4.8.

References

- [1] A. Connes, Une classification de facteurs de type III, Ann. Sci. École Norm. Sup., 4-ieme Sér., 6 (1973), 133-252.
- [2] S.P. Gudder and W. Scruggs, Unbounded representations of *-algebras, Pacific J. Math., 70 (1977), 369-382.
- [3] S.P. Gudder and R.L. Hudson, A noncommutative probability theory, Trans. Amer. Math. Soc., 245 (1978), 1-41.
- [4] A. Inoue, On a class of unbounded operator algebras, Pacific J. Math., 65 (1976),

77-95.

- [5] A. Inoue, An unbounded generalization of the Tomita-Takesaki theory I, II, Publ. Res. Inst. Math. Soc., Kyoto Univ., 22 (1986), 725-765: Publ. Res. Inst. Math. Soc., Kyoto Univ., 23 (1987), 673-726.
- [6] A. Inoue, Modular structure of algebras of unbounded operators, Math. Proc. Cambridge Philos. Soc., 111 (1992), 369-386.
- [7] A. Inoue and W. Karwowski, Cyclic generalized vectors for algebras of unbounded operators, Publ. Res. Inst. Math. Soc., Kyoto Univ., 30 (1994), 577-601.
- [8] A. Inoue, O*-algebras in standard system, to appear in Math. Nachr..
- [9] K. Katavolos and I. Koch, Extension of Tomita-Takesaki theory to the unbounded algebra of the canonical commutation relations, Rep. Math. Phys., 16 (1979), 335-352
- [10] K. Kurose and H. Ogi, On a generalization of the Tomita-Takesaki theorem for a quasifree state on a self-dual CCR-algebra, Nihonkai Math. J., 1 (1990), 19-42.
- [11] G. Lassner, Topological algebras of operators, Rep. Math. Phys., 3 (1972), 279-293.
- [12] G. Pedersen and M. Takesaki, The Radon-Nikodym theorem for von Neumann algebra, Acta Math., 130 (1973), 53-88.
- [13] R.T. Powers, Self-adjoint algebras of unbounded operators, Comm. Math. Phys., 21 (1971), 85-124.
- [14] M. A. Rieffel and A. Van Daele, A bounded operator approach to Tomita-Takesaki theory, Pacific J. Math., 69 (1977), 187-221.
- [15] K. Schmüdgen, Unbounded Operator Algebras and Representation Theory, Akademie-Verlag, Berlin, 1990.
- [16] S. Stratila and L. Zsido, Lectures on von Neumann algebras, Abacus Press, Tunbridge Wells, 1979.
- [17] S. Stratila, Modular Theory in Operator Algebras, Abacus Press, Tunbridge Wells, 1981.

Atsushi INOUE

Department of Applied Mathematics Fukuoka University Fukuoka Japan