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§1. Introduction.

In [7, 8] we defined the notion of generalized vectors for O*-algebras which
is a generalization of cyclic vectors to study the structure of O*-algebras. In
particular, we defined and studied the notion of (full) standard generalized vec-
tors which makes it possible to develop the Tomita-Takesaki theory in O*-
algebras. In this paper we shall continue such a study for O*-algebras (called
generalized von Neumann algebra) which are an unbounded generalization of
von Neumann algebras. Let A be a standard generalized vector for a generalized
von Neumann algebra # on 9. Then it has been shown in that a one-
parameter group {of}:;cr Of *-automorphisms of .# is defined and A satisfies the
KMS-condition with respect to {gf{}. We shall show a Radon-Nikodym type
property which establishes a link between the modular automorphism groups
{of} and {g#} of M for two full standard generalized vectors 2 and g: There
uniquely exists a strongly continuous map t€ R—U;e M,={Ucs M ; U is unitary}
such that U.,,=U,0}U,) and ¢4(X)=U,c¥X)U¥ for all s, tcR and X&#. The
map t€ R—U,=H is called the cocycle associated with g with respect to 4 and
denoted by [Dy: DA]. Further, we shall show that {[Dg: DAl:i}:cr is a one-
parameter group if and only if the domain D(y) of g is {¢f}-invariant and
(o XN=)wX)| for all XeD(y) and teR if and only if {[Dp: DAy comg?
={Aes#; A is bounded and o¢¥A)=A for all teR}. Then, we say that g
commutes with 4. These results are generalization of the Connes cocycle theo-
rem [1, 17] for von Neumann algebras. We shall extend the Pedersen-Takesaki
Radon-Nikodym theorem [12, 17] for von Neumann algebras to generalized von
Neumann algebras. Let A be a full standard generalized vector for # and
ﬂ;z the set of all non-singular positive self-adjoint operators A in 4 satisfying
{Elt); —co<t<oo}” [ DM, where {E4(t)} is the spectral resolutions of A.
For every Ae 34;‘ we can define a standard generalized vector A4 for M satis-
fying gfa(X)=A%*"6}X)A~?" and [D(A4),: DA];=A**T @ for all X H and =R,
and so (44), commutes with A, where (1,), is the full extension of 44. Con-
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versely suppose a full standard generalized vector p commutes with 4. By the
Stone theorem there exists a non-singular positive self-adjoint operator A, , in
& such that A¥,T 9=[Dp: DA], for all teR. We remark that A¥,[ 9< M3
for all teR, but A;,, does not necessarily belong to JM‘;Z. We shall show that
if Az ,E 5" then g is identical with the full extension (44, )o Of 44, ,. In
particular, if < is an EW*-algebra then g commutes with 1 if and only if p=
(A4)s for some non—singu_la_lz positive self-adjoint operator A affiliated with the
von Neumann algebra 3*. Furthermore, we shall show that g satisfies the
KMS-condition with respect to {o?} if and only if ¢¢=0} for all t=R if and
only if p=(44), for some non-singular positive self-adjoint operator A affiliated
with the center of the von Neumann algebra (,,) where M, is the weak
commutant of M.

§ 2. Standard generalized vectors.

In this section we state some of definitions and the basic properties of
generalized von Neumann algebras and the standard generalized vectors.

Let @ be a dense subspace in a Hilbert space 4 with inner product (|)
and LYD, 4) the set of all linear operators X from 9 to 4 satisfying D(X*)
D9, LYD, H) is a *-invariant vector space with the usual operations and the
involution Xt=X*[ 9. We introduce the locally convex topology t¥ on L9, X)
defined by the systems {p¥(-); =9} of seminorms: p¥X)=[X&[|+|X¢|, X
LD, A), and it is said to be the strong* topology. (LYD, 4), t¥) is a complete
locally convex space. We put :

LYD) = {(XeLND, 4£); X9C D and X*DC 9D}.

Then L1(9D) is a *-algebra with the usual operations and the involution X—X*
=X*[ 9. A *-subalgebra of £1(9D) is called an O*-algebra on 9. Throughout
this paper we assume that an O*-algebra has always an identity operator. Let
M be an O*-algebra on 9. A locally convex topology on 9 defined by a family
{l lx; XM} of the seminorms: [§|x =[X§| (¢=9) is called the induced
topology on @, and denoted by t«. If the locally convex space (9, t4) is complete,
then . is said to be closed. We put
P(H) = Xmﬂ_co(X) and X=XTJ(m) Xen).
€

Then &(H) is identical with the completion of (9, t) and F={X; XeH} is
a closed O*-algebra on P(H#) which is the smallest closed extension of .# and
it is called the closure of M. Hense M is closed if and only if 9=P(H). If
DM =Nxen DX¥)=D(M), then H is said to be essentially self-adjoint, and
if 9¥(H)=9, then M is said to be self-adjoint. We define the weak commutant
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My, of t-invariant subset M of L1(9D) as follows:
My = {CE B(H); (CXE|9)=(CE| Xtyp) for all & =9 and XM},

where B(4) is the set of all bounded linear operators on 4. Then .H} is a
*-invariant weakly closed subspace of @(4(), but it is not necessarily an algebra.
If o is self-adjoint, then M, 9C 9, and further H,9C 9D if and only if M) is
a von Neumann algebra and X is affiliated with ()’ for all Xe. . For the
general theory of O*-algebra we refer to [2, 11, 13, 15].

We introduce two notions which are unbounded generalizations of von
Neumann algebras. A closed O*-algebra # on 9 is said to be a generalized
von Neumann algebra if M,9C9D and H=M).={XeL'(D); XCE=CXE, VC
&My, VS D). Suppose M is a closed O*-algebra on 9 such that H,9C9D.
Then 4 is a generalized von Neumann algebra if and only if K is t¥-closed if
and only if H={Xe.L1(9); X is affiliated with (H,)’} [5]. A generalized von
Neumann algebra <# on 9 is said to be an EW*-algebra if (M,)2CD [4].

We next introduce the notion of generalized vectors which is a generaliza-
tion of cyclic vectors for O*-algebras [7]. Let # be an O*-algebra on 9 such
that ML,9C 9. A map A of M into D is said to be a generalized vector for M
if the domain D(4) of A is a left ideal of K, 4 is a linear map of D(A) into @
and A(XA)=XA(A) for all XM and A=D(A). Suppose that a generalized
vector A for M satisfies the condition:

i) ADADADDNY is total in 4.

Then we define the commutant 4° of 4 which is a generalized vector for the
von Neumann algebra #,, as follows:

D) = {Ke My, ; IExED s.t. KAX)=X&x for all Xe D)},
HK)=E&x, KeD&).

DEFINITION 2.1. A generalized vector 4 for  is said to be cyclic and
separating if the above condition (i) and the following condition (ii) hold:

(ii) 2°((DAYNDA*)?) is total in 4.

PROPOSITION 2.2. Suppose A is a cyclic and separating generalized vector for
M. Put
DA, = {(XeM; excD s.t. XAK)=Kéx for all KD},

A(X) =E&x, XED('za)

Then 2, is a cyclic and separating vector for M satisfying
(1) ACA4,, that is DQACD(A,) and A(X)=AL(X) for all X D),
(2) A is equivalent to 2, that is, A°=2S.
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Proor. This is easily shown and so we omit the proof.

DEFINITION 2.3. A cyclic and separating generalized vector 4 for i is said
to be full if 1=4,.

Suppose 4 is a cyclic and separating generalized vector for ¢ and put
D) = {As (M) ; A8 9 s.t. AX(K)=K¢&, for all Ke D(A%},
AA) =64  AEDEA).

Then A°° is a cyclic and separating generalized vector for the von Neumann
algebra (Hy)’. So, the maps A(X)—A(X"), X& D() and A°(A)—A¢(A*), Ae D(A°)
are closable in 4 and their closures are denoted by S; and S;cc, respectively.
Let S;=/:AY® and Sjce=J;ccAY% be the polar decompositions of S; and Sjee,
respectively. Then we see that S;CS;¢¢, and Jiee(Mi,)’ J2ce=M;, and A¥o( M) -
A é=(My,) for all teR by the Tomita fundamental theorem. But, we do not
know how the unitary group {A%%.}.cr acts on the O*-algebra i and so we
define a system which has the best condition:

DEFINITION 2.4. A generalized vector A for % is said to be standard if
the following conditions hold :

(i) A is cyclic and separating.

(ii) A%.9C9D and A% . MATU=2H, t=R.

(iii) A%(D@ANDAMATE=D@A)NDA)!, tER.

A standard generalized vector 4 is said to be full if 41=4,.

It follows from Proposition 2.2 that if 4 is a standard generalized vector
for “#, then 4, is a full standard generalized vector for . such that ;=]
=] e and A;ZA,QU—_—AXCC.

THEOREM 2.5. Suppose A is a standard generalized vector for M. Then the
following statements hold :

(1) S;=S;cc, and so J,=]zcc and A=A ce.

(2) {of}ier is a one-parameter group of x-automorphisms of M, where a¥(X)
=AiXA7Y, XewHu, teR.

(3) A satisfies the KMS-condition with respect to {af}, that is, for each X,Y
e DA)ND(A)! there exists an element fx vy of A0, 1) such that

fxr® = A@AX)IAY) and  fx y(t+i) =AY AeHX)

for all te R, where A0, 1) is the set of all complex-valued functions, bounded and
continuous on 0<Im z<1 and analytic in the interior.

(4) Suppose A is full. Then ¢¥DQRA)CD(A) and Ak X))=Ay¥AX) for all
Xe D) and teR.
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PrOOF. The statements (1), (2), and (3) follow from ([7] Theorem 5.5, 5.6).
We show the statement (4). We put
DAY = {KeM,; e N DX) s.t. KAX)=Xtg, VX D)},

XeD()
Y(K)=¢k, KeDX).

By ([7] Proposition 4.1) A’ is a generalized vector for ¥/, satisfying A°CA’ and
we have by ([7] Lemma 5.1, Theorem 5.6)

ol X)2(K) = APXATH(K) = AP X2 (6 (K))
= Ao (K)AX)
= KAFA(X)

for all XeD(2) and KeD(2°). Since 4 is full, it follows that ¢} X)=D(1) and
A(e¥(X)=A¥A(X) for all X&D(A) and t=R. This completes the proof.

§3. Generalized Connes cocycle theorem.

In this section we generalize the Connes cocycle theorem for von Neumann
algebras to generalized von Neumann algebras. Let i be a generalized von
Neumann algebra on @ in 4. Let X, be a four-dimensional Hilbert space with
an orthonormal basis {5:;}: j-1.. and F, a 2X2-matrix algebra generated by the
matrices E;; which are defined by E;9::=0::9::.. Identifying {={:Q9.,+L&
721+ L@ 12+ LB € HQ K, With {=(Cy, £y &, LIEH ' =HDHDHADH, HOF»
is regarded as the matrix algebra on 9‘=9PI9PIPD:

Xy X O 0
Xor Xo 0 0
0 0 X, X
0 0 Xs Xoo

;Xingﬂ’l .

Suppose 4 and p are cyclic and separating generalized vectors for #. We put

Xy X O 0
Xoo Xoe O 0 | Xu, Xon€ D)

D =1X=|"y" X Xl X, Xeoe D(p) [’
0 0 Xo X
AX 1)
A(Xay)
X) = XeD :
01,y( ) [I(X12) s = (01'#)
;,l(Xn)

Then it is easily shown that 6, , is a cyclic and separating generalized
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vector for HRF, satisfying

Ky, 0 Ky 0

0 Ku 0 K| Ky Kn€ D(4°)
Ko 0 Ko 0" Kp, Ko D(/Jc> ’
0 Ky 0 Ka

A(Ky)
65 J(K) = f;g%g . Ke D85 3.1

\#c(Kzz)

Ay Ap 0 0
Ay A 0 0. An, Az € D(A)

0 0 Ay Ap|’ An, Aw e D))’
0 0 A A

D@65.,)=1K=

D(#s,) = {A=

A°(A)
A°6(Aqy)
‘ucc<A 12) ’
#cc(Azz)

wu(A) = Ae D%, . (3.2)

PROPOSITION 3.1. Let X and p be cyclic and separating generalized vectors
for M. The following statements are equivalent.

(1) 2 and p are (full) standard generalized vectors for M.

(2) 01, is a (full) standard generalized vector for MQF,.

Proor. (1)= (2) By and we have

Sice 0 0 0
s [0 0 S 0
fa.p ™ 0 S‘ucc,zcc" 0 0/
0 0 0 Spe
and so
Ajee 0 0 0
0 A‘ucc,{cc 0 0
0 0 Ageegee 0]
0 0 0 A

cc p—
A%, =

3.3)

where Sjccucc is the closure of the conjugate linear operator pf‘(A)—2°(A*),
Ae D(pf)ND(A°°)* and Smycc:]mpccAa’fc#cc is the polar decomposition of S;ccyec,
and Sjccace, Jyuceaco and Apcezec are operators defined similarly. Since

Ale (M) QF A7 = (M) RF., IER,
Ap ALp

it follows from that
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ACC(AH) = ch ccAllA;cc cc s 3.4)
A;ccAle;gcxcc = A]CC ccAle_cc ’ 3.5)
AzlcclccA21A;zé = AjfccAnA;cc#cc ) 3.6)
O.I;CC(AQZ) = AitcczccAzzA;gglcc 3.7

for all A, A, Asn, Ans(H,) and t=R. We now denote by [Dpc: DA,
the Connes cocycle associated with the weight ¢,cc with respect to the weight
Qace that iS,

[Dpcc: DA, = Ai A;éé ccs teR. 3.8)
By we have
[Duse: DA< = A% At € (ML), (ER (3.9)
and by and
AL AT .o, ALAYE .9, tER. (3.10)

Since A%, 9C 9, A”CQ)CQ (VteR) and HM,9C D, it follows from [3.10) that

AlfeceeD = AUecALEA Voc 10eD T Ajec MWD C D, (3.11)
and similarly
Alec e C D, 3.12)
which implies by [3.8), [3.9)] and [3.3) that
[(Dpt: DA*].T D€ M and Ag‘}-z@“ C 9, teR. (3.13)

Furthermore, it follows from (3.4)~(3.7), (3.11) and that

ZCC(XH) = jcc chuA}%é cc s
A;chmA;zcicc = Axcc ceX1 2A—cc ’
A;tcclchﬂA;zf: = A ch21A;cc cc s
o_élcc(Xn) - ccichZZA ceyee

for each X,;, X1, Xi, XM and ¢t R, and they belong to # since H is a
generalized von Neumann algebra. Hence we have

ot (X1) = [Dp: DXNeof™ (X[ Dy : DA T¥

X11 E (.% y tER y (3.14)
and so



336 A, INoUE

ol rX)
oi“(X1)  [Dpe: DA*TFat* (X 1) 0 0
D Do K)ot (K 0 0
0 0 0 (X)) o (Xw)[Dpe: DX]¥
0 0 U%CC(XM)[D#CC : D], G#CC(XM)
ot (X1y) [Dﬂcc s DA TFot (X 1) 0 0
_ [ DD DA Teot™(Xe) 04" (Xao) 0 0
0 0 ot (Xw) LDy D2 T¥o4* (X 2)
0 0 [Dpe: D101 (X)) 04 (Xna)
e MRF, (3.15)

for each Xe HQYF, and teR. Therefore #,,, is a standard generalized vector
for HRF,.

(2)= (1) This is trivial.

It is easily shown by that 6; , is full if and only if 42 and p are full.

REMARK 3.2. Suppose 4 and p are standard generalized vectors for .
We put
S AX) = p(X1), X e DA)ND(w',

SipX) = XY, X & DD .

Then S;, and S;, are closable operators in 4 whose closures denoted by the
same S,; and S;,, respectively. Let S,,=/,A}7 and Si,=]1,4A%" be polar
decompositions of S,; and S;,, respectively. By Proposition 3.1 §;,, is a
standard generalized vector for X%, and so by ([7] Theorem 5.5) Sy =
S op Therefore, we have

S,{cc:Sg, Sycc:S#, Syccgcc:S/d, Sgcc#cc:SMl
and so
Alcc:Az, A‘ucc:A‘u, Aycclcc:Aﬂx, Alcc#cC:Az,‘.

Hence we have
[Dpe: DA*], = AfA7 = AlhAT tER. (3.16)

THEOREM 3.3. Suppose A and p are full standard generalized vectors for
M. Then there uniquely exists a strongly continuous map t€ R—U.= M such that
(i) U, is unitary, teR;
(i) U.s=U.0¥Uy), s, teR;
(i) e#X)=U.e X)U!, X& MU, tcR;
(iv) for each XeD(wNDQA)?' and Y EDAND(p)' there exists an element
Fy v A, 1) such that
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Fx y() = QUai¥ NIAXY), Fx y(t+i) = (uX)| p(Ula (Y1)
for all teR.

Proor. We put
Ur=[Dp*“: D2 T 9, teR.

Then it follows from [Proposition 3.1, [3.14), [3.15) and ([T7] Theorem 3.1) that
teR—U,s M is a strongly continuous map satisfying (i)~(iv). We show the
uniqueness of {U.}:.cr. Let te R—V.,=. M be a strongly continuous map satis-
fying (i)~(iv). We put

X Xi 0 0
Xoy Xoeo 0O

8 0 0 X, Xo
0 0 X, X,
i (X1) VEot(X.2) 0 0
V.04 Xs1) 64(X22) 0 0
- 0 0 ol X.y) Vioi(Xw) |’
0 0 Vio¥(Xs) 04(X3)

X € HRXRT,, IeR.

Then {d.} is a strongly continuous one-parameter group of %-automorphisms of
MRF. such that 6.(D(@)ND@ONCTD@)ND(G) for each teR, where =0, ,,
and @ satisfies the KMS-condition with respect to {0;}. By ([7] Theorem 5.5)
we have d;=¢? for all t=R, which implies by that V,=[Dp: DA*1.[ 9
=U, for all tR. This completes the proof.

Let 2 and g be full standard generalized vectors for #. The map tcsR—
U.M, uniquely determined by the above theorem, is called the cocycle asso-
ciated with p with respect to 4, and is denoted by [Dy: DA]. Suppose standard
generalized vectors 4 and p are not necessarily full, then we put [Dy: DA],=
[Dy,: DA,]:, teR. Then t—[Dp: D2]. is a strongly continuous map satisfying
the conditions (i)~(iv) in and it is called the cocycle associated
with p with respect to 4. This equals the Connes cocycle [Dp: DA*°] asso-
ciated with p® with respect to A°.

§4. Generalized Pedersen and Takesaki Radon-Nikodym theorem.

In this section we construct the standard generalized vector A, associated
with a given full standard generalized vector A and a given positive self-adjoint
operator A affiliated with the centralizer of 4, and consider when a full standard
generalized vector p is represented as the full extension of such a 24.
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Let 1 be a generalized von Neumann algebra on @ in a Hilbert space 4
and’ a standard generalized vector for #. We put
Mot = {AeH; AAYDAYA, VIER), MY = SHpnu°’.
Then #°* and u§* are O*-subalgebras of ..

LEMMA 4.1. Let 2 be a full standard generalized vector for M. Then the
following statements hold.

(1) Suppose A M, such that AY2A'A7*% is bounded. Then XAe D(A)ND(A)!
and A(XA)=J;AY*AYA7Y? [, A(X) for each X D(A)NDA)'.

(2) Suppose XeDANDQA) and A= M such that XA D(ANDQA). Then
AX A)=J A2 AMA7V2 ] A(X).

(3) Suppose A M. Then XA= D) and A(XA)= J,A*]J,2X) for each
Xe D).

PrOOF. (1) Since AY2A'A7'/? is bounded, it follows that
AAXY) € 9(S;) and S;AN(XY) = JAYRANATVR]A(X),

which implies
(XAZ(K)|2(KY) = A (K)| ATX12(KY)

= (A(K) | K,A(ATX)
= (A(KTK)|4(A'X"))
= (SFA(K*K)| A(AXY))
= (SR (AT XN | 2(K*K)))
= (K242 ATATY? [1A(X) 1 24(KL))
for each K, K, DQA)N\D(A%)*. Hence we have
XAX(K) = K] AV AA72 [, 2(X)

for each KeDUA)ND(A)*. Since A is full, it follows that XA D(A) and A(XA)
=] AVPANATY? ] A(X).
(2) This follows from

AXA) | X(K*K,)) = (XA (K)| 2°(KY)
= (A(KTK)| AMA(X")
= (SFA(K*K,)| ATA(XT)
= (S1ANXN | 2(K*K,))
= (LAY ATAV2 J2 A X) | (K *K))
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for each Xe D(A)ND(A)* and K, K, D(A°)N\D(A°)*.
3) We first show
AX(K) € 9(SY) and SFAX(K) = JALA(K*)
for each K& DQA)N\D(A°)*. This follows from
(S24)[AL(K)) = (A*A7V2 J14(Y )1 2°(K)
= (A7 A* JAX) | 2°(K))
= (A(K*)[ ]2 A*]24(Y))
= (JAALL (K9 X))
for each Y& DQA)ND(A)!'. By \x}e have
(XAZ(K)[AY) = (AZ(K)| AXTY))
=AY X)|STAX(K))
= A X)| J2 AT 22°(K*))
= AX)| 2 AT K*AY))
= (KJ2A* 24X A(Y)

339

“4.1)

for each K& DAYNDA)* and Y € D(A)ND(A), which implies by the fullness of

A that XAe D(2) and A(XA)=] 1 A*],4(X).

THEOREM 4.2. Let M be a generalized von Neumann algebra on @ in 4 and
A and p full standard generalized vectors for M. Then the following statements

are equivalent.
(1) D(p) is {of}-invariant and ||p(ad X)) =1 pX)| for all X< D(p).
1) D(R) is {c¥}-invariant and [|A(@{(X)|=[AX)] for all X= D(A).
(2) [Dp:DaJ.e M, VieR.
@) [Dp:Dil.eu’’, VteR.

(3) {[Dy: D2]:}icr ¢s a strongly continuous one-parameter group of unitary

elements of M.

PROOF. The equivalence of (2), (2)’ and (3) follows from [Theorem 3.3.
(1)=(2) We now put U,=[Dy: D], t€R. Take an arbitrary tR and

put A=a#,(U;). Then it follows from the assumption (1) that
XA e DND(p)t and (X)) p(Y)) = (u(XA)| pu(Y A))
for all X, YeD(p)ND(p)', and further by Lemma 4.1, (2)

4.2)
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12Ol = (et XN = lpUtat XU
= [|(X A
= | J AP ATAL ] wp (X

for all XeD(p)ND(p)'. Hence, J,A})/*?A'A;V?], is bounded. Furthermore, since
D(p)N\D(p)t is {o#}-invariant and {g?}-invariant, it follows from
that

XU¥ = U¥ot(e2y(X)e D()ND(p)!
for all XeD(up)ND(p)t and s€R, which implies
Xof(U¥) € D()N\D(p)!
for all XeD(p)N\D(p)' and seR. Hence, by we have
XAte D(p)ND(p)t and (u(X)|p(Y A)) = (u(XAN|w(Y))
for all X, YeD(u)N\D(p)!, which implies by Lemma 4.1, (2) that

(X1 J A ATAL [, (V) = (u(X) | (Y A))
= (X AN p(Y)
= (JuAuPAAL 2 ] p (X)) | (V)
= (X (J L ALPALL 2 ] W)*u(Y)
for each X, YeD(p)ND(p)!. Hence we have
TETARTT, = (AL AN )%,

which implies AA,CA,A. Therefore it follows that U,c " for all teR.
(2)= (1) It follows from [Theorem 3.3 and Lemma 4.1, (3) that

oi(X) = UFot(X)U. & D(p)

and
I (@d XN = [ pUtet(X)U )|

= 1 uU¥J upe(af (X))

= (Xl
for each XeD(p) and teR.
(1Y @ (2) This is proved in similar to the equivalence of (1) and (2).
This completes the proof.

If the equivalent conditions in [Theorem 42 are satisfied, we say that p
commutes with 2. If p commutes with 4, then
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gloglt = gteg}, t=R.

But, the converse is not necessarily true even in the bounded case ([17] 4.15).
We next present the canonical construction and the properties of the generalized
vector A4 associated with a given full standard generalized vector 4 and a given
positive self-adjoint operator A affiliated with the centralizer of 4. We investi-
gate when a full standard generalized vector g for # which commutes with 2
is represented as (44),.

Let 4 be a full standard generalized vector for % and ‘_‘M;z the set of all
non-singular positive self-adjoint operators A in 4 satisfying {E(f); —co <t
<W}”F@Cﬂ‘a1, where {E 4()} is the spectral resolutions of A. Let Aejig2
and put

D@y = {X€DQ); A¥Y X)e D(J1AJ ;) for all Y €},
2X) = J2ALAX), Xe€Da).

Then we have the following

LEMMA 4.3. 24 is a standard generalized vector for M satisfying
ol(X) = AalX)A,
[DAs: DAY =[DA4),: DA = A [ 9, XeH, teR.
ProoF. It is clear that A4 is generalized vector for . Since
{Esn")Y Es(m")Esm)XAE 4(m); X, Y €DA)NDA), m, n, m’, n’€ N}

C (DAINDA))?
and

AAE 4n")Y Es(m")E s(n)XATE g(m)) = Eo(n")Y E((m")E 4(n) ] 1 E 4(m) ] 24(X)

—s> Y AX), (m, n, m’, n’—o0)
it follows that

A4(DAHNDA Y% is dense in K. 4.3)
We put

X = {KeDQX%); 2(K)e D(AND(J A1 ]:) and AX(K)e D}.
Then we have
KX C DAY and AYK) = AX(K), VKe X . (4.4)

In fact, this follows from
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KiJ X)=K]J,AJ;2X) = li_r.r:oK]AAEA(n)]M(X)
= lim KA(XAE «(n))

= lim XAE 4(n)A°(K)

= XAZ(K)
for each XeD(4,) and KeX. We put
Knn = J1Eam)] K] E4(n)]
for K€ DA YN\DA%* and m, n&N. Then we have
Knnd(X) = (J1E 4m) ] DK (J 1E () ] DAX)
= (J2E 4m)] DKAXE 4(n))
= (J2E 4(m) ] )XE ((n)2(K)

= X(J21E 4(m) J DE 4(n)A°(K)
and

K3 A(X) = X(J2E () JDE a(m)2°(K*)
for each XeD(2), and so
Knn € XNK*,
A (Kmn) = (J2E4m) ] DE sA(m)A%(K) ,

(K %) = (JaEAn)J)E a(m)A°(K*) . 4.5)
Hence we have

CounKnn & XNK*,
lim 'zc(cmnKmn) = lim Cmnfzc(Kmn)

m, N-»00

= m'linrglw Cnn(J1Eam) ] )E 4(n)2(K)

= CA(K) = 2(CK),
lim 2°(CnaKmn)*) = 2((CK)*)

m, -

for each C, K& D(A)N\D(A%)*, which implies that
AUHNK*)?) is dense in the Hilbert space D(S¥). (4.6)
For each K XNX* and n€N we have
K,=KJ;A'Esn)]: € XNX*,
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A(Ky) = ATTE,(n)A(K)

(K%)= J1ATE 4(n) ] 145(K*)
and so by

lim 24(CK,) = lim CA%(K,) = lim CE 4(n)A°(K)

-0 n—

= CA(K)
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for each Ce XN X*. Hence it follows from (4.6) that (XN X*)?) is dense in

4, which implies by that

S((DRAYNDAY*)?) is dense in 4.

4.7)

By and A4 is a cyclic and separating vector for . For each Ke

KXNX* we have by and

im 25(Kna) = lm AE4(n)J2E4m)J:2°(K)

= AX(K) = 214K),
lim A4(K%.) = lim AE (m)],E 4(n) ] 1A°(K*)

= A4(K*).
Furthermore, for each CeDAYNDAY* and m, ne N we put

Conn=(2Esm)J)CJ2E4m)] 1) .
Then we have

Cnnd(X) = (J2E4(m) J ) CALX ATIE 4(n))
= (J2Eam)J)XATE 4(n)24(C)
= X(J2EA(m) J ) AT E 4(n)25(C)

Chad(X) = X(J2E4(n) J ) AT E 4(m)25(C*) ,

and so by and

Cun € XNXK*,

mliglmli(c mn) = mligw(] 1E 4(m) JDE 4(n)A5(C)
= A2%(C)

lim 25(C%,) = 24(C*).

Therefore it follows that
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{A5K mn): K€ ANK*, m, ne N}
is dense in the Hilbert space 9(S*%e). (4.8)
For each K& XNX* and m, n N we have by and
S%ecAa(Kmn) = AE 4(n)J 2 E a(m) J 24°(K*)
= AE 4(n) ] 1E 4(m) ] 2SF2°(K)
= SJiAE s(n) ] E A(m)2°(K)

= S¥JAE (n) 1A E ;(m)AY(K),
and so

A5(K) e D(ST]:AJ:A™Y) and S¥J1 AT ATAAK) = Stedy(K)
for each Ke XN X*. By (4.8) we have

Shee C STJRAT AT (4.9)
Similarly we have
S¥C S¥c AT A (4.10)
By and (4.10) we have
Stee = SYLAT A = AT P ALAT. (4.11)

Since A is affiliated with (Ji{{,)"ﬂ it follows that the two self-adjoint operators
A7V% and J,AJ;AT are strongly commuting, that is, the spectral projections
of the two self-adjoint operators are mutually commuting, and so A7Y/2J;AJ,A™!
is self-adjoint and it equals J; AJ;A7'A72. Hence, it follows from and
the uniqueness of the polar decomposition of S*%eg, it follows that

Jag=Ja and Az’ =AY LALAT = LALATATE,

which implies
A?ic = J.A? ] A%AY and 6T (X) = AMtal(X)AR
for X and teR. Hence it follows from Lemma 4.1, (3) that
L (DA)NDQANY) C DAHNDQAL, IeR.

Therefore 4, is a standard generalized vector for 4. Further, it follows from
that [DA4: DA):=[D(A4)e: DA1.:= A% @ for te R. This completes
the proof.

LEMMA 4.4. Let A, y, and p, be full standard generalized vectors for M.
Suppose [Dyy: DAYi=[Dp,: DA]; for all t€R. Then p=py,.
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PrROOF. By ([17] Corollary 3.6) we have p$=p§¢, and so pi=gi. Take an
arbitrary XeD(p,). By ([7] Proposition 4.3) there exists a sequence {X,} in
D(pi)=D(p5°) such that lim,.. X,§=X& for each é=D and lim,.. p5°(X,)=
limp.e p§(X,)=p.(X). Hence we have '

Kp(X) = lim Kps(X,.) = lim X, p§(K)
= Xpy(K)

for all KeD(ps)N\D(ps)*, which implies by the fullness of fo that p,Cps.
Similarly we can show u,Cp;.

Let 4 and g be full standard generalized vectors for “#. Suppose g com-
mutes with A. Then it follows from that {{Dy: DALi}ier is a
strongly continuous one-parameter group of unitary operators in (#2)°*, and
so by the Stone theorem there exists a unique non-singular positive self-adjoint
operator A; , affiliated with (HUN°* such that [Dy; DA1,=A%4T 9 for all
teR. By Lemma 4.3, 4.4 we have the following

THEOREM 4.5. Let M be a generalized von Neumann algebra on D in I and
A and p full standard generalized vectors for M. Suppose A, I,EJM‘;X. Then
#:(2‘42,/1)‘7'

COROLLARY 4.6. Let M be an EW*-algebra on D in X and A and p full
standard generalized vectors for M. Then p commutes with A if and only if
p=(A4)s for some non-singular positive self-adjoint operator A affiliated with
(Hi)*.

PROOF. Suppose p commutes with 4. Since % is an EW*-algebra on 9
in 4, we have A4; ,H*, and so #=(24;, ) by [Theorem 4.5, The converse
follows from Lemma 4.3. ‘

THEOREM 4.7. Let M be a generalized von Neumann algebra on D in I
and A and p full standard generalized vectors for M. Then the following state-
ments are equivalent.

(1) p satisfies the KMS-condition with respect to {a}}.

(2) ot=a? for each t=R.

(3) There exists a non-singular positive self-adjoint operator A affiliated with
the center of (My) such that p=(A4)s.

PrROOF. (1)=(2) This follows from ([17] Corollary 4.11).
(2)=> (1) This is trivial.
(2)= (3) This follows from

ok(X) = ot(X) = A%k X)A72,  Xesu, teR.
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(3)= (2) Since A is affiliated with the center of (4.), it follows that
Aeﬁn;’]l, which implies by Lemma 4.3 that 4, is well-defined and

a4(X) = o 0o(X) = A*aHX)A = gi(X)
for all Xe % and t=R. This completes the proof.

Let % be a generalized von Neumann algebra on @ in 4. A generalized
vector A for M is said to be tracial if [|A(X)|=[A(X")| for all XeDQA)NDQA)!.
It is clear that a cyclic and separating tracial generalized vector 4 is standard
and A;=1. If there exists a cyclic and separating tracial generalized vector 4
for M, then M is said to be spatially semifinite.

PROPOSITION 4.8. Let M be a generalized von Neumann algebra on @ in 9.
The following statements hold.

(1) Suppose M is spatially semifinite. Then, for each full standard gener-
alized vector A for M there exists a non-singular positive self-adjoint operator A
affiliated with (M2 such that o X)=A*XA %" for all XM and t=R.

(2) Conversely suppose there exist a full standard generalized vector A for
M and a non-singular positive self-adjoint operator Ae&ng’1 such that o} X)=
A XA for all XeM and teR. Then M is spatially semi finite.

PrOOF. (1) Since . is spatially semifinite, there exists a full standard
generalized vector g for ¢ such that A,=1. Hence it follows from
4.2 that o{(X)=A%4%0#(X) A =A%X A% for all Xe and t=R.

- (2) Since A“eﬂgl, it follows from Lemma 4.3 that g=24-1 is well-defined
and o#(X)=A"g}(X)A**=X for all Xe. ¥ and t=R. Therefore, p is tracial,
and so K is spatially semifinite.

COROLLARY 4.9. An EW*-algebra M is spatially semifinite if and only if
there exist a standard generalized vector A for M and a mnon-singular positive
self-adjoint operator A affiliated with (M) such that o¥(X)=A**XA*" for all
XEeM and t=R.

ProofF. This follows from (H,,)’9C 9 and [Proposition 4.8,
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