Algebraic number fields with the discriminant equal to that of a quadratic number field

By Takeshi Kondo

(Received May 12, 1993)

§ 1. Introduction.

The purpose of the present paper is to prove the following Theorem 1 and Theorem 2.

Theorem 1. Let F be an algebraic number field of degree n and $d(F)$ be the discriminant of F. Let K be the Galois closure of F over \boldsymbol{Q}, the field of rational numbers. If $d(F)$ is equal to the discriminant of a quadratic number field, i.e., $d(F)$ is not a square and equals the discriminant of the field $\boldsymbol{Q}(\sqrt{d(F)})$, then the following hold:
(a) the Galois group of K over \boldsymbol{Q} is isomorphic to Σ_{n}, the symmetric group of degree n, and
(b) the extension $K / \boldsymbol{Q}(\sqrt{d(F)})$ is unramified (at all finite primes of $\boldsymbol{Q}(\sqrt{d(F))}$).

This is a generalization of theorems which were proved by several authors (cf. [K], [N], [0], [Y1] and [Y2]) under the assumption that $d(F)$ is square free.

Corollary. Let $f(t)$ be a monic irreducible polynomial of degree n with rational integral coefficients and $d(f)$ be the discriminant of $f(t)$. Let $K=$ $\boldsymbol{Q}\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right)$, the splitting field of $f(t)$ over \boldsymbol{Q}, where $\alpha_{1}, \boldsymbol{\alpha}_{2}, \cdots, \alpha_{n}$ are the roots of an equation $f(t)=0$. If $d(f)$ is equal to the discriminant of a quadratic number field $\boldsymbol{Q}(\sqrt{d(f)})$, then
(a) the Galois group of K over \boldsymbol{Q} is isomorphic to Σ_{n},
(b) the extension $K / \boldsymbol{Q}(\sqrt{d(f)})$ is unramified,
(c) $\mathcal{O}_{K}=\boldsymbol{Z}\left[\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right]$, where \mathcal{O}_{K} is the ring of integers in K.
(a) and (b) of Corollary are immediate from Th. 1, and (c) follows from a result of E. Maus [M].

Theorem 2. Let F and $d(F)$ be as in Theorem 1. Then the following statements (A) and (B) are equivalent:
(A) $d(F)$ is equal to the discriminant of a quadratic number field $\boldsymbol{Q}(\sqrt{d(F)})$.
(B) For every prime p of $d(F)$, p has exactly one ramified prime divisor in F and its ramification index (resp. residue class degree) is two (resp. one).

Remark. If $p \| d(F)$, i.e., $d(F)$ is divisible by exactly the first power of p, p satisfies the condition in (B) of Th. 2 (cf. the proof of Case 1 in $\S 3$). Also see Lemma 4 in $\S 4$.

In an interesting paper of Yamamura [Y2, p. 107], it is stated that, under the assumption (B), (a) and (b) of Th. 1 hold, although the proof is omitted. So it can be said that Th. 1 is a consequence of Th. 2. But, in the present paper, Th. 1 and Th. 2 will be proved at the same time.

§ 2. Some Lemmas.

The following two lemmas are well known in algebraic number theory.
Lemma 1 (Dedekind). Let F be an algebraic number field and \mathscr{D} be the different of F over \boldsymbol{Q}. Let \mathscr{P} be a prime divisor in F of a prime number p, and $\mathscr{P}^{d} \| \mathscr{D}$ and $\mathscr{P}^{e} \| p$. Then
(a) if $p \nmid e$, then $d=e-1$,
(b) if $p^{v} \| e(v>0)$, then $e \leqq d \leqq e v+e-1$.

See [F2] for the proof.
Lemma 2 (Van der Waerden). Let F and K be as in Theorem 1, and Z and T be the decomposition group and the inertia group of a prime divisor in K of a prime number p respectively. Suppose that p has a decomposition in F

When the Galois group of K over \boldsymbol{Q} is regarded as a permutation group of degree n (on the set of conjugates of F over \boldsymbol{Q}), Z has g orbits each of which is of length $e_{i} f_{i}$ and decomposes into $f_{i} T$-orbits of length e_{i}.

See [W] or [F2] for the proof.
Lemma 3. Let F be an algebraic number field. Assume that F has the discriminant equal to that of a quadratic number field $\boldsymbol{Q}(\sqrt{d(F)})$. Then F does not contain any proper intermediate field, i.e., a field L such that $\boldsymbol{Q} \subsetneq L \sqsubseteq F$.

Proof. $d(L)^{[F: L]} \mid d(F)$ by a transition property of discriminant, which is impossible unless $d(L)=1$, because $d(F)$ is a discriminant of a quadratic field. But $d(L)=1$ is also impossible by a theorem of Minkowski, unless $L=\boldsymbol{Q}$.
§ 3. The proof of Th. 1 and Th. 2.

3.1. The proof of Th. 1 and a part " $(\mathbf{A}) \Rightarrow(B)$ " of Th. 2.

Assume that $d(F)$ is equal to the discriminant of $\boldsymbol{Q}(\sqrt{d(F)})$ and $p \mid d(F)$. Suppose that we have factorizations
(1) $p=\mathscr{P}_{1}{ }^{e_{1} \mathscr{P}_{2}}{ }^{e_{2}} \cdots \mathscr{P}_{g}{ }^{e} g \quad N_{L / Q}\left(\mathscr{P}_{i}\right)=p^{f_{i}}(i=1,2, \cdots, g)$,
(2) $\mathscr{D}_{p}=\mathscr{P}_{1}{ }^{d_{1}} \mathscr{P}_{2}{ }^{d_{2}} \cdots \mathscr{P}_{g}{ }^{d} g\left(\mathscr{D}_{p}=" p\right.$-part" of the different \mathscr{D} of $\left.F / \boldsymbol{Q}\right)$
into prime divisors in F.
Case 1, where p is odd. Then $d(F)$ is divisible by exactly the first power of p. By taking norm $N_{F / Q}$ of both sides of (2), we have

$$
1=d_{1} f_{1}+d_{2} f_{2}+\cdots+d_{g} f_{g}
$$

Therefore we may assume

$$
d_{1}=f_{1}=1, \quad d_{i}=0 \quad(i \geqq 2)
$$

and so, by (a) of Lemma 1, $e_{1}=2$ and $e_{i}=1(i \geqq 2)$. Thus in this case the condition (B) of Th. 2 holds. Moreover the inertia group T of a prime divisor in K of \mathscr{Q}_{1} is a group of order 2 generated by a transposition by Lemma 2. In particular, any prime divisor in $\boldsymbol{Q}(\sqrt{d(F)})$ of p is unramified in K, since $|T|$ $=2$ and p is already ramified in $\boldsymbol{Q}(\sqrt{d(F)})$.

Case 2, where $p=2$. Then $d(F)$ is divisible exactly by 4 or 8 .
Subcase $2-1$, where $4 \| d(F)$. Then we have

$$
2=d_{1} f_{1}+d_{2} f_{2}+\cdots+d_{g} f_{g}
$$

and also, by (b) of Lemma 1, $d_{i} \geqq 2$ if $d_{i} \neq 0$. Thus we may assume

$$
d_{1}=2, \quad f_{1}=1 \quad \text { and } \quad d_{i}=0 \quad(i \geqq 2)
$$

and then we see $e_{1}=2$ or 3 and $e_{i}=1(i \geqq 2)$ from Lemma 1. We must show $e_{1}=2$. Suppose by way of contradiction that $e_{1}=3$. Then, by Lemma 2, the inertia group T is a subgroup of Σ_{3}. But since 2 is ramified in $\boldsymbol{Q}(\sqrt{d(F)})$, we must have $T=\Sigma_{3}$. This is impossible, because any inertia group has, in general, a normal Sylow p-subgroup ($p=2$ in the present case) while \sum_{3} does not. Again we see from Lemma 2 that the inertia group T is a group of order 2 generated by a transposition, and so any prime divisor in $\boldsymbol{Q}(\sqrt{d(F)})$ of p is unramified in K.

Subcase 2-2, where $8 \| d(F)$. Then we have

$$
3=d_{1} f_{1}+d_{2} f_{2}+\cdots+d_{g} f_{g} \quad \text { and } \quad d_{i} \geqq 2 \quad \text { if } d_{i} \neq 0
$$

Thus we may assume

$$
d_{1}=3, \quad f_{1}=1 \quad \text { and } \quad d_{i}=0 \quad(i \geqq 2)
$$

and then we see $e_{1}=2$ and $e_{i}=1(i \geqq 2)$ from Lemma 1.
Thus, in all cases, we have proved that the inertia group T is a group of order 2 generated by a transposition and so any prime divisor in $\boldsymbol{Q}(\sqrt{d(F)})$ of p is unramified in K. This means that (b) of Th. 1 and a part " $(\mathrm{A}) \Rightarrow(\mathrm{B})$ " of Th. 2 hold. A part (a) of Th. 1 follows from Lemma 3. In fact, the Galois group of K / \boldsymbol{Q}, considered as a permutation group of degree n, is a primitive permutation group by Lemma 3. It is well known that, if a primitive permutation group contains a transposition, it is a symmetric group. (See also [Y1, p. 476].)

3.2. The proof of a part " $(B) \Rightarrow(A)$ " of Th. 2 .

Let p be a prime divisor of $d(F)$. Then we may assume $e_{1}=2, f_{1}=1$ and $e_{i}=1(i \geqq 2)$. If p is odd, we see $d_{1}=1$ and $d_{i}=0(i \geqq 2)$ from (a) of Lemma 1. Then we have $p \| d(F)$. Thus if $d(F)$ is odd, $d(F)$ is a discriminant of a quadratic field. Suppose $p=2$. Then we see $d_{1}=2$ or 3 and $d_{i}=0$ ($i \geqq 2$) from (b) of Lemma 1. If $d_{1}=3$ then $d(F)$ is a discriminant of a quadratic field. Suppose $d_{1}=2$. Since the inertia group of a prime divisor in K of 2 is a group of order 2 generated by a transposition by Lemma 2, it induces a nontrivial automorphism on $\boldsymbol{Q}(\sqrt{d(F)})$, because the subgroup of the Galois group of K / \boldsymbol{Q} corresponding to $\boldsymbol{Q}(\sqrt{d(F)})$ consists of even permutations. This means that 2 is ramified in $\boldsymbol{Q}(\sqrt{d(F)})$ and so $d(F) / 4 \equiv-1 \bmod 4$. Thus, also in this case, $d(F)$ is a discriminant of a quadratic field.

§4. Concluding remarks.

Let $\mathscr{F}_{u r, n}$ be the class of non-conjugate algebraic number fields of degree n which satisfy the conditions (a) and (b) in Th. 1, and let $\mathscr{F}_{q d, n}$ be the class of non-conjugate algebraic number fields of degree n with the discriminant equal to that of a quadratic number field. Theorem 1 shows
(*)

$$
\mathscr{F}_{u r, n} \supseteq \mathscr{F}_{q d, n}
$$

All examples of algebraic number fields in $\mathscr{F}_{u r, n}$ which are obtained in [F1], [O], [YY] and [U] belongs to $\mathscr{F}_{q d, n}$. In fact, for such examples, the condition (B) of Th. 2 is satisfied. It is not so difficult to see that the equality hold in (*) if $n \leqq 5$ (see [Y2, Remark in p. 107] or Lemmas 4 and 5 below). If $n \geqq 6$, however, the equality does not hold as is seen in Example 1 below. (See also [N, Example 2].) It seems to be difficult to state the conditions that an algebraic number field belongs to the family $\mathscr{F}_{u r, n}$ in terms of its discriminant.

In Lemma 4 and 5 below, F is an algebraic number field of degree n and K be the Galois closure of F over \boldsymbol{Q}, and the Galois group of the extension K / \boldsymbol{Q} is regarded as a permutation group of degree n (on the set of conjugates of F over \boldsymbol{Q}).

Lemma 4. The following condition (C) is equivalent to (B) in Theorem 2.
(C) The inertia group of every ramified prime of K is a group of order 2 generated by a transposition.

In particular, if F satisfies (C), then $F \in \mathscr{F}_{q d, n}$, i.e., the discriminant $d(F)$ of F is equal to that of $\boldsymbol{Q}(\sqrt{d(F)})$.

Proof. This is immediate from Lemma 2.
Furthermore, we have clearly
Lemma 5. Assume that $d(F)$ is not square in \boldsymbol{Q}. Then the following two statements are equivalent:
I. The extension $K / \boldsymbol{Q}(\sqrt{d(F)})$ is unrami fied.
II. The inertia group of every ramified prime of K is a group of order 2 generated by an odd permutation.

As applications of Lemmas 4 and 5 , we will exhibit some examples of unramified extensions of quadratic fields which are obtained from fields in $\mathscr{I}_{u r, n}$ $-\mathscr{I}_{q d, n}$ or not in $\mathscr{I}_{u r, n}$.

Example 1. Let $f(t)=t^{6}+t^{4}-3 t^{3}+t^{2}+3 t+3, F=\boldsymbol{Q}(\theta)$, where θ is a root of $f(t)=0$, and K be the splitting field over \boldsymbol{Q} of $f(t)$. Then we have $d(f)=d(F)$ $=-2^{3} \cdot 3^{3} \cdot 37 \cdot 7577$ and

$$
\begin{aligned}
& f(t) \equiv(t+1)^{2}\left(t^{4}+t+1\right) \quad \bmod 2 \\
& f(t) \equiv t^{2}(t+1)^{2}(t-1)^{2} \quad \bmod 3 .
\end{aligned}
$$

Other prime divisors 37 and 7577 of $d(F)$ satisfy the condition in (B) of Th. 2. (Note the remark after Th. 2 in the introduction.) Thus we see from Lemmas 2 and 4 that the condition II of Lemma 5 is satisfied, and so $K / \boldsymbol{Q}(\sqrt{d(f)})$ is unramified. It is easy to see that the Galois group of K / \boldsymbol{Q} is Σ_{6}. Thus we have $F \in \mathscr{F}_{u r, n}-\mathscr{F}_{q d, n}$.

Example 2. Let $f(t)=t^{6}-t^{5}-t^{4}+t+1, F$ and K be as above. Then we have $d(f)=d(F)=-11691=-3^{3} \cdot 433$, and $f(t) \equiv\left(t^{3}+t^{2}+2 t+1\right)^{2} \bmod 3$. Thus, as in Example 1, we see that $K / \boldsymbol{Q}(\sqrt{-3 \cdot 433})$ is unramified. We note that the Galois group of K / \boldsymbol{Q} is a group of order 72 which is isomorphic to the wreath product of Σ_{3} by Z_{2} (cf. [S] for the method of computations of Galois groups), and so $K / Q(\sqrt{-3 \cdot 433})$ is an unramified extension with the Galois group iso-
morphic to a Frobenius group of order 36.
Example 3. Let $f(t)=t^{7}-t^{6}-t^{5}+t^{4}-t^{3}-t^{2}+2 t+1$, and F and K be as above. Then $d(f)=d(F)=-357911=-71^{3}$ and $f(t) \equiv(t+15)(t+22)^{2}(t+47)^{2}(t+65)^{2} \bmod 71$. Therefore, by Lemma 5, $K / \boldsymbol{Q}(\sqrt{-71})$ is unramified. The Galois group of K / \boldsymbol{Q} is isomorphic to a dihedral group of order 14 (cf. [YK]), and so $K / \boldsymbol{Q}(\sqrt{-71})$ is an unramified extension with a cyclic group of order 7 as the Galois group. This shows that K is the absolute class field of $\boldsymbol{Q}(\sqrt{-71})$, since the class number of $\boldsymbol{Q}(\sqrt{-71})$ is 7 .

Finally, we note that, in Yamamura [Y2], very interesting observations are done on the "density" of $\mathscr{I}_{u r, n}$ and $\mathscr{I}_{q d, n}$.

References

[F1] G. Fujisaki, On an example of an unramified Galois extension, (in Japanese), Sûgaku, 9 (1957), 97-99,
[F2] G. Fujisaki, Introduction to Algebraic Number Theory, (in Japanese), Shoukabou, 1975.
[K] K. Komatsu, Square-free discriminants and affect-free equations, Tokyo J. Math., 14 (1991), 57-60.
[M] E. Maus, Computation of integral bases in certain S_{n} extensions of \boldsymbol{Q}, J. Symbolic Comput., 4 (1987), 99-102.
[N] J. Nakagawa, On the Galois group of a number field with square free discriminant, Comment. Math. Univ. St. Paul., 37 (1988), 95-98.
[O] H. Osada, The Galois groups of the polynomials $X^{n}+a X^{\iota}+b$, J. Number Theory, 25 (1987), 230-238.
[S] R.P. Stauduhar, The determination of Galois groups, Math. Comp., 27 (1973), 981-996.
[U] K. Uchida, Unramified extensions of quadratic number fields, I, Tôhoku Math. J., 7 (1970), 138-140.
[W] B.L.van der Waerden, Die Zerlegengs - und Trägheitsgruppe als Permutationsgruppen, Math. Ann., 111 (1935), 731-733.
[YK] K. Yamazaki, The computation of Galois groups, (in Japanese), Report of Symposium at Osaka Univ., (ed. T. Kondo), 1981, pp. 9-57.
[YY] Y. Yamamoto, On ramified Galois extensions of quadratic number fields, Osaka J. Math., 7 (1970), 57-76.
[Y1] K. Yamamura, On unramified Galois extensions of real quadratic number fields, Osaka J. Math., 23 (1986), 471-478.
[Y2] K. Yamamura, Some analogue of Hilbert's irreducibility theorem and the distribution of algebraic number fields, J. Fac. Sci. Univ. Tokyo, 38 (1991), 99-135.

Takeshi Kondo
Department of Mathematics
Tokyo Woman's Christian University
Zenpukuji, Suginami-ku, Tokyo, 167
Japan

