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§0. Introduction.

Let an algebraic torus 7 of dimension z act on a vector space V of dimen-
sion N (N>n) via N characters X, -+, Xy of T. We assume the above characters
to generate the character group X(7) of T and to lie on one hyperplane of
Rz X(T). Let A be the polynomial ring Z[&,, -+, &x], and let L be the sub-
group of ZV consisting of the elements a=(a,)<;sy such that 2, aX;=0.
We consider the ring

R=A/S A&, .
acL

Here 33,z1 A&, denotes the ideal of A consisting of all sums >,er po€. With
poEA where §o=Tla 5 §5/—Tla,;<0 §3%4, and only finitely many p, are not zero.
In this situation Gelfand and his collaborators studied generalized hypergeo-
metric systems (cf. [G], [GGZ], [GZK1], [GZK2Z], [GKZ]). We notice that
the idea of this kind of generalized hypergeometric systems goes back to [H]
and [KMM]. We remark that Aomoto also defined and studied generalized
hypergeometric functions by use of integral representations (cf. [Al]-[A4]).
We can find in the computation of the characteristic cycles of generalized
hypergeometric systems ; we cannot follow this computation unless the Z-algebra
R is normal, however. In [S] we defined the b-functions of generalized hyper-
geometric systems, and used the normality of the Z-algebra R in order to
determine those b-functions. Hence the normality of the Z-algebra R is very
important.

In this paper we assume V to be an open Schubert cell of a simple com-
pact Hermitian symmetric space and 7 to be a maximal torus of its motion
group. We remark that the generalized hypergeometric system corresponding
to the Lauricella function F;, and the one to the Lauricella function F, are
defined in this setup (cf. [GZK2]). Then we prove
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THEOREM. In the above situation, the Z-algebra R is normal.

This theorem appears dividedly as Propositions 2.1, B.1, 41, 5.1, 6.2,
and B.2. We also determine a minimal system of generators of the ideal
Seer A&, except for type E, (Propositions B.2, 4.4 5.2 and [7.4). The
generation by the elements of degree 2 is known at least for classical types
(cf. ); we have not been able to find a proof in the literature, however.

In §1 we prepare some lemmas for the normality of the Z-algebra (Lemmas
i1, 0.2 and [.7) or the generation of the ideal (Lemmas [.4, and [.6).
From §2 through §8 we work on the above problems type by type.

In the previous version of this paper, systems of generators of degree 2
were presented except for type E,. It was the referee who suggested that
minimal systems of generators should have been written down. The author
would like to thank the referee for this suggestion.

§1. Preliminaries.

Suppose we are given N integral vectors X;=Xy;, -+, XpeZ™ (j=1, ---, N)
satisfying two conditions:
(1) The vectors X, ---, Xy generate the lattice Z*.

(2) All the vectors X; lie on one affine hyperplane >, c¢;x;=1 in R",
where ¢;€Z.
We denote by L the subgroup in Z¥ consisting of the a=(a,, -+, ay) such
that 33X, a;X;=0, by Q the Newton polyhedron, i.e., @ is the convex hull in
R™ of the points X, ---, Xy, by & the set of faces of Q of codimension one, by
A the semigroup Z.X,+ - +Z. Xy, by A the polynomial ring Z[&,, -+, Ex],
and by R the semigroup ring
Z[A]= A/ % Aé,

acL

where §,=ITq ;50 &7/ —Ila;<0 §57. The polynomial ring A has the gradation by
degrees: A=@5-, A,. Since all &, (a= L) are homogeneous, the Z-algebra R
has the induced gradation: R=&5-, R,. For I'eJ, we denote by Fr the
linear form for the hyperplane spanned by [’ such that the coefficients of Fr
are integers, that their greatest common divisor is one, and that Fy(X)=0 for
all X=A. 1t is clear that we have

R .+ - +R oy = rﬂg{XER” | Fr()=0}.
e

LEMMA 1.1. The Z-algebra R is normal if and only if we have

A=Z"N"N {XxeR"|Fr(X)=0}.
res



Normality of affine toric varieties 701

Proor. The semigroup A is said to be saturated when the condition mX
€4, where m is a positive integer and X Z ", implies 2 4. It is well known
that the Z-algebra R is normal if and only if A is saturated (cf. [TE]). Sup-
pose that Z*N(R.ti+ - +R.oXy)=A. Then it is clear that A is saturated.
Conversely suppose that A is saturated. We have

an(Rgoxl‘f' +Rg0xN) = Z"N(Qzk1+ -+ +Q.okn)

by Carathéodory’s theorem (see, e.g., [Gr]) and Cramér’s formula. For X&
Z"N\(Qzoki+ -+ +Q.0Xy), there exists a positive integer m such that mXe A.
By the saturatedness of A, it implies X< A. |

For i=n, we denote by C; the cone generated by X, ---, X;. Suppose that

Ci= Rt - +R.ls = N\ (X€R"| f0)=0},

JEF;

where F; is a finite set of linear forms on R®. We decompose the set F;
according to the sign at X, i.e., Fi:= {feF;|f(:,)=0} and F7:= {f€F|
fX;,1)<0}. We then define a finite set F;,; of linear forms by

Fii= F{U{f () f — ) fI fEFS, f/eF7).
LEMMA 1.2. Cin=\ser,,, (XER™ F1)20}.

Proor. It is clear that C,..CNyer,, (XER™| fN)=0}. Let 2N ser,., (XE
R f0)=0}. If we have f/(X)=0 for all f'€F7, then 2 C;cC,;,,. Hence we
suppose that there exists f4F7 such that | fo(X;.1)| ' feX)=minsrery| f/Kir)| !
-f/0)<0. Put X : =X+ fiXi)| " fs(0)X;. For f'eF7, we have

) =041 foawd) |7 o) F Kisr)
= f/O—1fee) ] @i fo(D) 2 0.
For fF%, we have
FA) = fOO+ 1 Fi@ie) | o) f Kisr)
= 1foXis) | @) fo— foas) f1E) 2 0.
Hence we have X’C; and X=X+ | fo(Xiz)| | fi(X)|X;,, belongs to Ciyy. W
~ 7 For i=n, we denote by A, the semigroup generated by %, -, .

LEMMA 1.3. Suppose that we have Ar——CJ\Z", f(Z™MCZ for all fFT,
and f'i)=—1 for all f'€F3;. Then we obtain A;.,.=C;..NZ".

PrROOF. It is clear from the proof of [Lemma 1.2. |



702 M. Sarto

ExAMPLE. Let n=2p—1 and N=2p for p=1. Let e, --, ¢, be a basis of
Z™, and f,, ---, f. the dual basis to it. We suppose that N vectors X;=e¢, -,
Xi=en, Xns1=e1+ -+ +ep—ep.1— -+ —e, are given. Then we have C,=R X+
- +R. X,=N% (f;=0). Since fi;(X,,,)=1 for 1=</<p and —1 for p+1=7/<n,
we have Cn+1mZn:An+1:A and Fn+1: {fly ] fpy f1.+fj (1§Z§f), P+1§]§n)} .

For acsL, we denote aX:= 33,20 a;X;eA. By the homogeneity, we have
al=(—a)X for any acL. For X, X’= A, we denote > when X—X' A4— {0}.

LEMMA 1.4. Let a, b, ce L satisfy that a=b-+c and a;=c; if ¢;>0.
(1) If there exists j such that 0>a; and 0>cj, then we have aX>bX.
(2) If there exists no j such that 0>a; and 0>c;, then aX=>bX.

PROOF. We define the subsets S.., S,., S__ and B, of the set {1, ---, N}

Siv = {i]a:>0, ¢;>0}

S.o={ila;>0, ¢;<0}

S__={i]la;=0, ¢;=<0}

B, = {ila;=c;}.
Then we have

b= 23 (aj—c)X;+ 2 (aj—c);+ X2 (a;j—c)X;

jesSy jesy jeS__nBy

= 2 a;X+ > anj— 2 ¢ J+ 2 (= CJ)XJ+ > (aj_cj)xj

JES 44 jeES 41— jeS i+ jeS - JjeS__nB,

= aX—cX+ 2( e+ 2 (aj—cpX;

jes jeS__nBy

=al— X (—celi+ 2 (a;—cpX;

jeS .. jeS__nBy

= (Zx+ 2 ij]+ 2 ajxj.

jeS__-B jeS__nBy

Hence we see that aX=bX, and that aX>bX if and only if there exists I<;<N
such that a;<0 and ¢;<0. [ ]

LEMMA 1.5. Let a, b, ce L satisfy that a=b+c and a;=c; if ¢;>0. Then
&, is generated by &, and &..

ProorF. Let S.,, S.-, S__ and B, be as in the proof of We
remark that S.,={/|¢;>0}, S__={i1a;<0} and S.,\US,_CB, by assumption.
We have
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o= 16— T1 &% = 11 &yv7ee- TI &% TI &%— II &3
a;>0 a ;<0 €Sy ci>0 eS8y @ ;<0

= T g T1 &gt T1 g30o T1 &5 T1 &0 T &%

S eSS, IS 1eS+‘ ci=0 a;<0

Since B,=S,,US._U(S__NB.), we have

I0 &3 I &% T1 &%

€Sy €S- ci=0
= II gno IT & T geeee TI & I &
S es ieS__nBy ieS_--B, ieS—_nBy
= H E‘“ IT &+ 10 5?“"- T & TIé
ieS__~ i€eS__nBy ieS__-B ieS__nBy bi<0

Hence we obtain

§.= TI &¢- 11 &¥-é&+ 11 E‘” I &&

eSSy zeS+_ ieS__-B teS__nBy
R LU TS L HE;’”’— IT &%
iesS__ ieS__nBy bi<0 a;<0

Since Tl,,<0 63" =Tlies__-5, " =1lies___5, 5%, we have

M & T & Méte= 1 &= T&e.

ieS__-B, i€S__nB, ;<0 ieS__ a;<0

Therefore we obtain

fo= II &~ II &% Ec—i- H Ez“ II &6

IS =N ieS__nBy

LEMMA 1.6. Let a=(a;)is;svEZY. Then we have 2N, aX;=0 if and only
if DX, a;Fr(X;)=0 for all faces I'eF.

PrOOF. By the conditions on %, ---, Xy, it is clear that the cone R.X;+
-+ +R., Xy has a vertex at {0}. Hence we see

Xe X(T)|Fr(X) =0 for all I'e g} = {0}.

Let g be a simple Lie algebra over C, b a Borel subalgebra of g, and § a
Cartan subalgebra of g with §cb. Let {a;, ---, a,} be the set of simple root-;‘=
determined by % and Y, and {f,, -+, f.} be the basis of (Z")*=(Za,P --- PZa,)*
dual to {ay, ---, a,}. Let p be a parabolic subalgebra of g containing b with
the abelian nilradical n. Then there exists a unique 1</m)<n such that the
To0t space corresponding to a;n, lies in n. For 1=:/<n, let s; be the reflection
corresponding to «;. Let W(g, ) denote the Weyl group of (g, §) and W the
subgroup of W(g, §)) generated by all s; ¢+i(n)). We denote by X={X;, ---, Xy}
the set of roots whose root spaces lie in n, by /A the semigroup generated by
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X. Then the group W acts on X. There are five classical types of pairs (g, p)
and two exceptional pairs, which are listed in Table 1 (cf. [LSS], the labelling
of the simple roots is that of Bourbaki [B]). There exists a nondegenerate
symmetric bilinear form (,): R*XR"—R induced by the Killing form.

Table 1.
g Dynkin diagram i(n) w N=dimn
1 n
A, (n=1) 0—=0-----0—0 Isp<sn Ap-IXAn-p p(n—p+1)
1 -1
B. (n=2) [ S O—lo:-:>g 1 B, 2n—1
1 _
Co (122)  o—oo oot n A, "("2+1)
1 n—2 n-l1
D, (n=Z4) o—o--- O——I—c 1 D, 2n—2
n
1 n—-2 n—1
D, (n24) o—oweu- O_I_o n Ao n(n—1)
N 2
1 3 4 5 6
E. 0—4)——I—o-—o 6 D, 16
2

E, o—o——I—o—o—o 7 Es 27

LEMMA 1.7. If any element X=a,a,+ -+ +aa, with a,€Z-y (1=i<n) and
X, a)=<0 (+#i(n)) belongs to the semigroup A, then the Z-algebra R is normal.

PROOF. Let XeZ""\(R.X;+ - +R.Xx). There exists an element weW
such that (w-X, a,)<0 for all /#i(n). Since W acts on X{and Z™, the conjugate
w-X also belongs to Z"N(R. o X,+ -+ +R-oXy). By the assumption, w-X belongs
to A, accordingly X belongs to A. [ ]

§2. Type A..

In this section we suppose that g is of A,-type and /(n)=p».

PROPOSITION 2.1. The Z-algebra R is normal.

ProOF. We number the elements of the set X by
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Li=a;+ +a, (1=igp),
Yi=ap+ - ta;  (p=i=n),
Ttk = Qroso1y(p-1yt = T Qpys (s—D(p—1<k=s(p—1), 1=s=n—p).

As in §1, we put A,=Z. X+ - +Z.X; and C;=R_X,+ --- +R.X; for i=n.
Then we have Co,=N\ser (XER"| f(X)=0}, where Fo={f1, fo—f1, ==, fp-1—Fp-2
fo—Ffp-1—Fps1, fosi—Fpsz, =+ faoi—fn, fr}. By using Lemmas and [.3,
we can verify the normality of R, and we see R. X+ -+ +R.,Ay=
mjeFN {XeR"| f(X)=0}, where Fy={f1, fa—f1, ", fp-1—F p-2, fo—Jp-v, fo—Fpsns
fp+1"'fp+2: ) fn—l“‘fn’ fn} ]

We re-index the elements of the set X by X;;:= Jicrsjar for 1S/<p=j<n.
Then we have X={X;|1=i=p<j=n}. For 1=i#i/'<p and p<j+;'=<n, we
define a(it’, j7/)e L by .. :

‘ 1 (G,0=07,G7")
a@t’, i/ =4 =1 (s, )=0(, 7), @, 1)
0 otherwise.

PROPOSITION 2.2. Let A be the polynomial ring Z[&; (1=<i<p=j<n)]
Then we have

R=A/ > A&y —E&is6u i)

1gi#i'spsj+j'sn

PROOF. We have obtained the set Fy in the proof of Proposition 2.1. For
a=(a4;)isps;EZY, we have ac L if and only if Zpsjsq a4;=0 for 1=/<p and
Sisisp @:;=0 for p<j=<n by [Lemma 1.6. Hence for a=L—{0} there exist
1<i+#:<p and p=j+#j'<n such that a;;;>0, a;,;>0 and a,;;<0. By Lemmas
1.4 and we see that &, is generated by &, ;- and &z_gqir, s, and that
aX>(a—a(i’, jj'))X. By recurrence, we see that §, is generated by &,u., ;1)
(1=i#i’'<p<j+j'=n). Obviously we have &qir,j;) =8 6150 —Eis€iry- ]

PROPOSITION 2.3. The set B := {£;;€1;—&i;&i ;| 1S5i<i’Sp=<j<j’'<n} is a
minimal system of generators of the ideal 23,e1 A&,.

PROOF. Since we have &, jin=—Caw 5y and &qir,jin=—8aus.j s, the
set & generates the ideal 3,c1 A,. Clearly we have

n

dim Rz = #{Z kiai

i=1

0=k ky< - Skp=2 }
0ZknSky S Zk,=2

_ (p+§—l>x(n—(1>—21)+2—1>

= p(p+D(n—p+1)(n—p+2)/4.
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On the other hand, we have

p(n~(p—1))+2—l>
2 ’

Iy

1

g

Hence we have dim R,+]Z|=dim 4,, and thus we proved the minimality of

ford

5. ' u

dim A, = (

PROPOSITION 2.4. The ring R is the Segre product of two polynomial rings,
Zle(ey), -, elep)] and ZTe(—ep,y), -+, e(—ea)].

Proor. This is clear from the standard realization of the root system A,
(cf. [B, planche I]). u

§3. Type B,.

In this section we supposejithat g is of B,-type. We index the elements
of the set X as follows:
Li= 2 art2 X aw (I£/<n—-1)

1ksy Jj<ksn

1= 2 ar (I=j=n-1)

XO = zfak .

1gsksn

Then we have X={X, X.; I<7<n—-1)}.
PROPOSITION 3.1. The Z-algebra R is normal.

ProOF. We denote by A the cone generated by X, X_i, -+, X_(n_yy. It is
clear that ANZ"=Z Xot+Z X 1+ - + 22k (a-y and A=(f1—f20N -
NS 1= faZ0ON(f2=0). Let d=a,a,+ - +a,a, with a,&Z,, (1<i<n) satisfy
(0, a;)<0 for 2<i<n. Then we have —a;+2a;—a;,,<0 for 2<i<n—1 and
—a,_1+2a,<0. Hence we have a,—a,=a,—a;= - =Za,_,—a,=a,=0, which
implies 6= A, accordingly d0€Z X+ Lok 1+ -+ +ZsX_(n-,CA. By
1.7, we obtain the normality of R. u

The proof of Proposition 3.1 shows that, for any I'e%, there exists weW
such that I'=(w-f,=0). The number |ZF| is equal to |W|/|W(A,..)|=
27 t.(n—D'}/(n—1)1=2"""1 where W(A,_,) is the subgroup of W generated by
Ss, S3, ***, Sn-1. The group W can be identified with the semidirect of the
symmetric group S,_; and the group of sign changes by s;=(—1, 7) for 2</<
n—1 and s,=the sign change of (r—1). For W we have ¢(X,)=X, and ¢(¥,)
=X, for any je{x1, -, (n—1)}. For 1=<i<n—1 we define b)) L by
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—2 s=0
b(@)s = 1 s= =i
0  otherwise.
For 1<i#7<n—1 we define czy)L by
1 s= *1i
c@ns=19 —1 s==+j
0  otherwise.
We remark that &ecijy=6&viy =50+

PROPOSITION 3.2. Let A be the polynomial ring Z[&(—(n—1)<i<n—1)].
Then the set 5 := {§;5_.,—&|1<i<n—1} is a minimal system of gemerators of the
ideal X.er A&,

PrROOF. Let a=(a;)-n-1ysisn-1Z". By [Lemma 1.6, we have a=L if and
only if a,+2>Xier ai+2Xier a-;=0 for any disjoint decomposition Il I'=
- {L, -+, n—1}. Let aeL—{0}. Then we have a¢,+2 3} a,=0and ¢,+23;.:a;:
+2a_,=0 for any i< {l, ---, n—1}. Hence we obtain a;=a_; for =1, ---, n—1.
Since a+0, there exists i< {1, ---, n—1} such that a=+0. If necessary, replac-
ing by —a, we may suppose that a;>0. Then there exists j& {1, ---, n—1}
such that a;<0 or a,=<—2. In the former case, &, is generated by &..; and
€._cijy, and we have aX>(a—c(Zj))X. In the latter case, &, is generated by
&y and &,_p;y, and we have aX>(a—b())X. By recurrence, we see that &, is
generated by &y, (1=i<n—1). Obviously we have &,;,=§:6.;—&. The mini-
mality is obvious. [ ]

§4. Type C,.

In this section, we suppose that g is of C,-type. For 1=i<j<n we define
X“EX by XU = Zi$k<j ak—l—ZstKn arta,. Then we have X= {X,]|1§z§]§n}.

PROPOSITION 4.1. The Z-algebra R is normal.

ProorF. We put X, :=%y. for i=1,2 -, n—1, Xp:=%Xpn, Tn-i:=
UL _an-y Tor odd i<n, and 7, =232 Xuor+X, for even i<n. We de-
note by A (resp. A’) the cone generated by %, X5, -+, X, (resp. 71, s, =+, Tn)-
It is clear that A’C A and Z*"N\A=Z X+ -+ +Z.X,. We can verify that

A= (20N (f—21:120)

AA Feee2f it FZON S ea—2f noa 212 20).
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Let 0=a,a,+ - +a,a, with a,€Z,, 1<i<n) satisfy (@0, a;)<0 for j=1, ---,
n—1. Then we have
2a1"—az § 0

—a;1+2a;—a;, =0 (=2, -, n—2)
—Ap-st+2a,1—2a0, £0.

Hence we have d= A’C A, which implies 6€Z.;+ -+ +Z.X,CA. By
1.7, we obtain the normality of R. u

Thezproof of [Proposition 4.1 shows that, for any I’ &, there exists weW
such that '=(w- f,=0). The number |F| is equal to |W|/|W(A._o)|=n1/(n—1)!
=n where W(A,_,) is the subgroup of W generated by s,, 83, =+, S,_1. Set
Zi;:=X;; for i>j. The group W can be identified with the symmetric group
S» by s;=(, i+1) for /=1, ---, n—1. Then for sW we have oX:;)=2s 100
for all 1<4, j<n. For a=(a:;)hsisjsnEZ%, we set a;;:= a;; for i>7, and thus
we identify ZV with the space of nXn symmetric matrices with integer co-
efficients. For four distinct numbers ¢, 7, 2,/ (; may coincide with &), we
define a(ij, k)L by

1 (0= k), U, D
a(@j, k) =4 =1 (s, t)=C(, 1), (J, k)
0  otherwise.
For 1=<i#j<n we define blzj) L by
2 (s, 0)=0@ 1)
bafse =1 =1 (s, )=0(, 1), (4, 7)
0  otherwise.
For three distinct numbers ¢, j, k, we define ¢(fjk)s L by
1 (80=01, 06k
c@jh)e =4 =1 (s, )=, 1), (J, k)
0  otherwise.

PROPOSITION 4.2. Let A be the polynomial ring Z[&;; (1<i<j<n)]. We
identify A with the ring A’/2i<; A'(§i;—&j1) where A’ is the polynomial ring
Z[¢&;; (1=i, j=<n)]. Then we have

R=A/( 2 Abiuiwvnt 2 Abup+ X Abcuin).

1st.j. k. lsn 1si. jsn 1gt.j ksn

PROOF. Let a:(aij)lsisjgnEZN. By we have a=L if and
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only if i ari+20%; a;,=0 for i=1, ---, n. Suppose that e L—{0}. Then
there exist 757 such that a;;#0. Without loss of generality, we may suppose
that a;;<0. Since we have 2a;;+ >+ @:»=0and 2a;;4+2:+; a;:=0, there exist
the following cases:

(1) There exist 2+ and /#7 such that ;>0 and a;;>0.

(2) We have @;;>0 and a4, <0 for all s#:. Moreover there exists k+j

such that a;,<0.

(3) We have a;;>0, a;;=<—2 and a;;=0 for all sy, j.
In the case (1), &, is generated by &, x5 and &._qq1, 25, and we have aX>
(a—a(l, k)X by Lemmas [.4 and [.5. In the case (2), &, is generated by &.qj»)
and &_q_cujry, and we have aX>(a+c@jk)X by Lemmas 1.4 and [.5. In the
case (3), &, is generated by &,¢j, and &_,_5uj, and we have aX>(a+b(j)X by
Lemmas 1.4 and 1.5. By recurrence, we see that &, is generated by &.uj x1)»
Eocijy and Ecqjny- |

PROPOSITION 4.3. The ring R is the Veronese subring of degree 2 of the
polynomial ring Z[e(e,), -+, e(en)].

ProOF. This is clear because we have X;;=e¢;-+¢; in the standard realiza-
tion of the root system C, (cf. [B, planche III]). [ ]

PROPOSITION 4.4. Put

Iy

1= G —Euénli<j<k<l}
i = {udn—ubnli<j<k<l}
3 1= {§isir—8ubn i <j <k}
o= S —Eibu li<j <k}
5:= {Sirin—Eure |1 < <k}
Eoi= {&—8ubi1i<J},

—
-

and Z:=\J%-y ;. Then 5 is a minimal system of generators of the ideal

ZaGL Aéa-

ProoOF. First we verify that all &, #:, are generated by 5. Since &, 21y
=—&.Giurn=—Caui1my=Eai1ry, We may assume :<j and k</. For distinct
i, J, k, I, there are six cases: (1) i<j<k<{, (2) i<k<j<I, () i<ki<], 4)
k<i<j<l, (B) k<i<i<y, (6) k<I<i<j. Inthe case of (1), we have &,quj 21)=
§iréi—8uép€ &, In the case of (2), we have &auj i =8irés—8ubr;=(Eirén—
Eiér)+H(Eisbni—Eubr)ES,+5,. In the case of (3), we have &qqj ey =8uré1;—
£aér;e5.. In the case of (4), we have &.qij. 1y =8rifi—Euér;€5.. In the case
of (5), we have &,uj ry=E&ri&1;—8uér;€5,+5,. In the case of (6), we have

oy Iy Iy

[y
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Eacis en=FErib1;—&1:r; €5, In the case of i<j=k <! we have &.qj, ey =6:,611—
§uéEs..

Second we verify that all &,;;, are generated by &. Since b(i)=b(ji), we
may assume <j. Then we have &, =8&%—&:.:.&;,E 5.

Third we verify that all &, are generated by 5. There are three cases:
D) i<i<k, @) j<i<k, (3) j<k<i. In the case of (1), we have &cjry=8&:;6:s
—&.8;: 55, In the case of (2), we have & ijr,=8&;:8ir—81:&» <5, In the case
of (3), we have &.qju=E8fri—EufjrE5;5. Hence we have proved that 5 gen-
erates the ideal X,cr A&..

Finally we verify that dim A,—|&|=dim R, for the minimality. Clearly

we have
= of N n n
15| = 2(4)+3(3)+(2)
= n¥n—1)(n+1)/12,
and
dim 4, = (PFD/ER2L).
By [Proposition 4.3, we have
dim R, = ("Jf“l).
We can check dim A,—dim R,=n*n—1)(n+1)/12, and thus we see the minimality
of 5. m

REMARK 4.5. In [S, Example 4], the subset 5, was missed.

§5. Type D, with i(n)=1.

In this section, we suppose that g is of D,-type, and that ;(n)=1. Let r=
20+ - F2a, st an1ta,=4. We index the elements of the set X as follows:

X_i = T—xl (Z':l, tery, n—l).
Then we have X={X, ¥_; (=1, ---, n—1)}.
PROPOSITION 5.1. The Z-algebra R is normal.

PrROOF. We denote by A; (resp. A.) the cone generated by X;, -+, X,_; and
7 (resp. Xy, -+, Xy_2, X_(n—1y and 7). It is clear that

Z"N\py =2+ LK+ 2y
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and
anA2 == Z;OZI+ +Zgoxn—2+Zgox—(n—1)+Zzor .

We can verify that
21 = (FaZ 0N (fror—f20)
A rr=froa=f2ZON O (i FinnZ0)

and
Az - (fn—lzo)m(fn'—fn—lg(»

A rot=Fra= 220NN (FimfraZ0).
Hence we have
AU A= (F2Z0N(frr20)
N(Framfra=F2Z0N D (Fi— 20

and
Z"N\(D I D) =Zoi+ o+ Z g s+ Z oy FZ o7

Let d=a,a;,+ -+ +a,a, with a;=Z., (1<i<n) satisfy (5, a;)<0 fori=2, 3, -
Then we have

—a;1t2a¢;—a;, =0 (=23, -, n=3)
—Qpst+2a, 3—ar1—a, =0
—Qn_s+2a,., =0
—Qp1+2a, £0.
From these inequalities, we obtain
A1—0y = Qy—03 = " = Ap3—App = Ap2—An_1—0n = 0,

which implies 6= A,\U ;. Hence we see that 60 Z. X+ - +Z-Xn_1+Z k- o1y
+Z.,ycA. By [Lemma 1.7, we obtain the normality of R. [

The proof of [Proposition 5.1 shows that, for any I'eJ, there exists weW
such that I'=(w-f,.,=0) or (w-f,=0). The number |Z| is equal to
WL/ IW(An )| W/ IW(Ag_) [=2{2"2-(n—=1) I} /(n—1)1=2""" where W(A,_)
(resp. W(A,_»)") is the subgroup of W generated by s,, ss, -+, sp_1 (resp. S, Ss,
-+, Sao_p and s,). The group W can be identified with the semidirect product
of the symmetric group S,_; and the group of even number of sign changes,
by s;=@(—1, ) for /=2, 3, ---, n—1, and by s,=the sign change of n—1 and
n—2 following the transposition (n—2, n—1). Then we have o(X;)=X,;, for
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any c€W and any je{%l, ---, =(n—1)}. For distinct 7, j&{1, ---, (n—1)}, we
define c(zj)e L by

1 §= &7
c@f)s =4 —1 S = +1

0 otherwise.

PROPOSITION 5.2. Let A be the polynomial ving Z[£.; 1=i<n—1)]. Then

the set & := {€:6_;—&inb_iin|15i<n—2} is a minimal system of generators of
the ideal X .cr A&,.

PROOF. Let a=(@y)ics1,..:n-nEZY. By [Lemma 1.6, we have a< L if and
only if Xier a;+2ier a_;=0 for any disjoint decomposition 71 I'={1, 2, ---,
n—1}. Suppose that acL—{0}. We see that a,=a_, for any 1=<k=<n—1,
and that there exist i##; such that ¢;<0 and a;>0 since 75 a;=0 and a_,
+ 550,522 @;=0 for any 1<k<n—1. Hence &, is generated by &..;;, and &a_ccij),
and we have aX>(a—c(ij))X by Lemmas [.4 and [.5. By recurrence, we see
that &, is generated by &.u; (1=7#j<n-—1). Clearly all &.;;, are generated
by Z. The minimality of 5 is also clear. ]

§6. Type D, with i(n)=n.

In this section, we suppose that g is of D,-type, and that i{((n)=n. We
index the elements of the set X as follows:

Liji= 2 ar+2 2 arta,.ta, (Isi<j=n—-1)

i kI Jjsksn-2

Lini= X2 apta, (1ZiZn—1).

isksn—-2

Then we have X={X;;]1=/<j<n}.
We define %; and %; (1</<n) by

Xoi=25:=Xn_1n
Lo i=2Xp 1:=Xp_on_s
Xpooi=2n o:=Xn_on
Xii=2y (AZi<n—3)
Xii=Ain (1<i<n-3).
We also define 7; (1=</<n) by

Tni= Xa



Normality of affine toric varieties 713

Tn-o1i= ) S
Tn-ei= oo
G-1)/2 i
Tnoii= xn~i—2+2k+xn (l. is odd and ZZB)
k=1

(i-2)/2

Tnoii=2 2 Xn_ioowor+Xno+Xy+X, ( is even and >3).

k=1

We denote by C,,; (resp. A,,;) the cone (resp. the semigroup) generated by
;.y xéy ttty x;‘t; xly X‘Zy Tty xl for O:<_-Z'§n_—3-

LEMMA 6.1.
anCZn—3 = /12n-3 .

Proor. It is clear that Z*""\C,=A4,. We can verify that
n-3
C.=(f,20N (_\Z(fi—fi_lio)

N roz=fra=faa1ZONF o Z0ON(f o —f2-220).
Then we have

fiX) =0 (1<ign—-3)
faa@)=0 (1=i=n-3)
(fo—frad@)=—1 (1=i=n—3)
(fre=frns=fa)¥)=—1 (1=<i<n—3)
(fae=fas—fa1)Xns) =0
(fi—fi-0@) =0 (1<i€n—3, 2<7<n—-3).
Hence we obtain the assertion by Lemmas [.4 and [.5l. ]

PROPOSITION 6.2. The Z-algebra R is normal.

PrROOF. We denote by A; the cone generated by 7y, 75, -, 72, and by A,
the one generated by 7y, 72, -, 74, X, Xiw1, -+, Xn_e and X, for 1<i<n—3. We
can verify that

A1 = (FZON2f1+ FZON D (Fa=2f i+ £,20)
m(fn—4_2fn—3+2fn—2'—fn—-1zO)

m(fn—4_2fn—3+2fn—1.2_—O)H(fn-dg"‘zfn—z‘*"zfn20),

and that, for 1</<n—3,



714 M. SaiTo

A= AFIZON N (Giz0)

isjsn, j#n-1
where
P {fj"rzf st fi (j<i-1)
i=

(n—i—=Dfioo—n—0)fs1+2fny (J=0),
and

—(n—i=2)fi+(n—i=1f—2f,..  (j=i)
Gi=1 fia—(n—i—1f;1+n—i—=1)f;—2fny (G<j=n—2)
firm(n—i=1)f oyt (n—i=3)fo i+ (n—i—1)fn (=n).
We remark that
Gi=—-Fifi (1=i=n-3)
Gin=(fii=2fi+fe)—Fif} (1<i=n-23)
fo=Gitm—i=D(f;—2f;+f5)  (A=i<j=n—3)
Gi=Ghiot(m—i—=1)(frn-s—2fnetfnatfn) (A=i<n-3)

where we put Firi3:= faa—2fns+2fny, FRlli=2fn_1—fns, and f;=0 for
1<0.

Let 0=a,a;+ -+ +ara, with a,€Z,, (1=</<n) satisfy (9, a;)<0 for ;=
1,2, ---, n—1. Then we have

—@;_1+20;—a;,, =0 =1, 2, ---, n—3)
—Qn 3205 2= 01— 0, £ 0
—Qn2+2a,,=0.
If F2-30)=a,_s—2a,_3+2a,_,=0, then we have
Qn_s—207_3F+207 3—20p_ 1= Qp_1—20n_3+2a, 1+ 2(an_s—2a,_,)
=0,
Qns—20n_2+20, =(Qn_s—2an_3+2a,_s—20a,_,)
+2(an-3—2an_s+Cr1+ay) =0,

and hence d= A,. If F2720)<0 and F7>-3(0)=0, then we obtain d=A,_;. For
1<i=<n-3, if Fi0)<0 (+1=<7<n—2) and Fi0)=0, then we obtain d=A;.
Since we have Fi(0)=a,_.,=0, we obtain o= A, UL A;. It is clear that
AN JUEE AT Conos. Hence we obtain the normality of R by Lemmas 1.7 and
6.1. [
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We put
A= {XeR f,0)z20 (1=i<n), and X, a,)<0 I=Zj<n—1)}.

Let X=X, a;X;€R" satisfy 4,20, a,.,=0 and (X, a;)<0 for 1<;<n—1. Then
we have

Qpnos—Qn_3 2 Apo3—0Qp s = = Ay—a; = a; 20,
an—Q—an-l Z an.-l Z 0,
n 2 (Qp_2—Qn_3)+(An_s—ar-1) = 0.

Hence we have X= A and
A= {XeR"| f10)20, fr.1X)=0, and X, a;)<0 1=<7Sn—1)}.

Since X}, a;)>0 for 1<j<n—1, the linear form (-, —a;) can not define a face
of @ of codimension one. On the other hand, it is easy to check that the linear
forms f, and f,_, actually define faces of Q of codimension one. For any
I'e g, there exists weW such that '=(w-f,=0) or (w-f,_,=0). The number
[F| is equal to |W|/|W(A._o)| + IW|/IWA,_0)'| =20/ (n—1)! =2n where
W(A,_s) (resp. W(A._,)") denotes the subgroup of W generated by s,, Si, =, Sp_:
(resp. Sy, Sz, ***, Sp_s)-

The group W can be identified with the symmetric group S, by s,=(, i+1)
for /=1, 2, ---, n—1. We set X;;:=%;; for j<i. We have o(X;;)=Xo(sy0(;, fOr
oW and 1=<7/#j<n. For all e=(a)isi<jsn=EZY we set a;;:= a;; for i>7j,
and thus we consider them as elements of Z" " V/2={(a;;)1sixjsn|a;EZ}. For
four distinct ¢, J, &, I {1, ---, n}, we define a(ij, k)& L by

L (s, )=0G, 7, (kD
a@j, k)se =7 =1 (s, )=0(, &), G, D)

0 otherwise.

PROPOSITION 6.3. Let A be the polynomial ring Z[§:; 1<i<j=<n)]. We
identify A with the ring A’/Xi<; A'(&:i;—&;:) where A’ is the polynomial ring
Z[&;; 1=i#5=n)]. Then we have

R=A4/ 2 AEa(ij,kl) .
i,.5.k,1l are distinct

PROOF. Let a=(a)1si<;sn=Z”~. Byl[Lemma 1.6, we have a= L if and only
if )zt api+2Fi41 a:»=0for 1<7/<n. For convenience, we set a;;:= a;; fori>j.
Suppose that ae L—{0}. Then there exist 7+ such that a;,<0. There also
exist j#¢, k and [+, kb such that a;;>0 and a,,>0. If j=/, then &, is gener-
ated by &qij.r and £4_ais k1, and we have aX>(a—a(ij, k1) by Lemmas [.4
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and 1.5. If j=/, then there exists m+7, 7, £ such that a;,<0, which implies
that &, is generated by &,ue, jm) and &giqqir, jm), and that aX>(a+a(k, jm)X
by Lemmas [.4 and [.5. By recurrence, we see that &, is generated by &,¢j. en
@, 7, k, | are distinct). [ |

PROPOSITION 6.4. Put
E = {Eijgkl_'gikfjl[Z.<]'<k<l};
&y = {Eik&jl_susjkIi<]‘<k<l}r

and E:=58,UE,. Then 5 is a mimimal system of generators of the ideal

ZaEL AEa-

ProOF. First we prove that all &,(;; 1, are generated by Z. Since &,¢5. 11y
=—&aar, in=—Cauj ton=Caur ji, we may assume 7</ and j<k. There are six
cases: (1) i<I<j<k, 2)i<j<I<k, B)i<j<kl, () j<ki<l, (5) j<i<k<I,
6) j<i<i<k. Since a(ij, kl)=a(j7, [k), we do not have to consider the cases
4), B), 6). In the case of (1), we have & riy=C8i;61r—Eixé1;,€5,. In the
case of (2), we have Ea(ij,kz):Eijfzk—Eiksjl(fijfzk‘“sufjk)‘}‘(silfjk“‘511:511)551

—

+&,. In the case of (3), we have &, r1,=8i;60i—iré=5,. Hence 5 gene-
rates the ideal >J,cz A&,.
Next we prove the minimality. We have

n(n—l)/2+2—l>

dimAzz( 2

and

15|=2(Z).

In the standard realization of the root system of type D, (cf. [B, planche IV]),
we have X;;=¢;+¢; (1Z:<j<n). Hence we have

am = (3)43(3)+(3)

Consequently we obtain dim R,+|5|=dim A,, and the minimality of £. =

§7. Type E..

In this section, we suppose that g is of E-type. We consider the following
elements of the set X:

Lii=atastatasta;
Y= ast+a,t+ast+as
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Xio := a;+ 20,4+ 2a5+3a,+ 205+, .

77

We also consider 7 :=2a,+3a,+4as+6a,+5a;+4as=%+X+ X+ s dand 7/ :=
ast+as+2a,+2a;+2a,=%,+X;= 4. We denote by C the cone generated by %,

X2, Tty XG and xls.

LEMMA 7.1.
ZGHC = Z;oxl“i‘ e +Z;0x6+220X15.

PrROOF. Let C’ be the cone generated by X, X,, ---, Xe. It is clear that

Zef\C' - Z;()X1+ o +Z30x6;
and

C=(f1z0Nf220N(fs—f120)
Nfa=fe=Fs Z2 ON(fs—fa =2 ONFe—f: = 0).

Since f:9)=2, f1(X1e)=(f3—f1)X1e)=1 and (f4‘f2—f3>(x16):(fs—f4)(xle):(fe—

fs)(e)=—1, we obtain the assertion by Lemma 1.3.

PROPOSITION 7.2. The Z-algebra R is normal.

PrOOF. We denote by A, the cone generated by X,, X, %, X, v° and 7, by
A, the one generated by Xs, X,, %5, X, ¥’ and 7, and by A, the one generated

by X, X5, X, X5, X; and y. Then we can verify that
K= ([1+2f:—2fs =2 ON(f1—2f—2f,+2f. 2 0)
Nf1—2f+2fs = ON(f1—2fs+2fs = 0)
N(=2f1+fs 2 ON(f1 2 0),
Lo=(—=f1=2fo42fs 2 ON(/1—2f—2fs+2f 2 0)
N(f1—2f+2fs 2 ON(f1—2f:+2fc = 0)

N=3f1+2f. 2 ON(f1 = 0),
and

Ns=@f1—2f2 Z ON(—3f1—2f+3f: = 0)
m(“zfz*?’fa"‘?)f-t = O)A(f2_3f4+3f5 = 0)
m(f2*3f5+3f6 Z O)H(fz 2 0)

Let 0=a,a;+a,a,++asa; with a,€Z,(1<i<6) satisfy (3, a;)<0 for
2, -, 5. Then we have
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2a,—a; £0

2a,—a, <0
—a,+2a;—a, <0
—a,—as;+2a,—as; <0
—a,42a5—a, < 0.

If we have a,+2a,—2a,=0, then d&€ A,. If we have a,+2a,—2a;<0and —3a,
+2a,=0, then d= A,. If we have a,+2a,—2a:<0 and —3a;+2a,<0, then d=
As. Hence we have de A,\UAJA,CC. By Lemma 7.1, we see that d= .
We obtain the normality of R by |

We put A={{eR*|f.(N)=0 1=/<6), X, a,)<0 1=7<5)}. Let 1= 0,
R® satisfy a,=0, a¢,=20 and (X, @;,)<0(1<7<5). Then we have

as=2a,=0
a,=2a,=0
as = (a,—az)+(a,—as) = (a,—ay)+(as—a) = 0
as = 2as—a,
= 2—a,—as+2a,)—a, = 3a,—2a,—2a,
= (a,—2a)+2(a;,—a,)
= (ay,—2a.)+2(a;—a,) =2 0.

Hence we have X A and
A={eR|f)=0, fA)=0and A, a)) <0 1= 7<5).

Since (X;, a;)>0 for 1<;<5, the linear form (-, —a;) can not define a face of
Q of codimension one. On the other hand, it is easy to check that the linear
forms f, and f, actually define faces of @ of codimension one. For any I'e &,
there exists weW such that I'=(w. f,=0) or (w. f,=0). The number |ZF]| is
equal to |[W|/|W(D)|+IW|/IW(A,)| =2*-5)/(2*-4)+(2*-5!1)/5!=10+16=26
where W(D,) (resp. W(A,)) denotes the subgroup of W generated by s,, s;, s,
and sz (resp. s;, Ss, S¢ and $;).

We take the new basis ¢y, e, -+, ¢ of R°*=Ra,+ --- +Ra,; such that a,=
01— 03, A==041€5, W3=Cs— 03, Ay=03~— €y, W5s—8C1,—C;5 and ag=(—e;—e,—es—e,+¢5)/2
+-¢,. Let 4 denote the set {IC{l, 2, 3,4, 5}||I|=o0dd}. For I=Y, we define
XIERG by

NI

XI::—I‘Zei— 21 eites.
2 icr €T i

<5
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Then we have X={X;|I=4}. The group W can be identified with the semi-
direct product of the symmetric group Ss and the group of even number of
sign changes by s,=(1, 2), ss=(2, 3), ss=(3, 4), ss=, 5) and s,= the sign change
of 4 and 5 following the transposition (4, 5). For I=4 and oW, we define
o(l)ed by

ol):={ec@))iecl, @) >0 U{—c@]|i & I, 6(@) < 0}.

Then we have a(X;)=X,;, for all W and all I€9. Supposing that {1, 2, 3,4, 5}
={i, j, k, I, m}, we define a((j, k)=a{m, k)L by

L I=1{,j, k}, {l, m, k}
aGij, k)r =1 —1  I={k}, {1,234 5

. 0 otherwise,
bGjkim)e L by
L I={,j k), {6, L, m}
bijkim)y =4 —1  I=1{i, j, I}, {i, &, m}

. 0 otherwise,
and c(Gjkl)eL by

(1 I=1{,J, k}, {}
ikl =4 —1 I={ 5,1}, {k}

L 0 otherwise.

PROPOSITION 7.3. Let A be the polynomial ring Z[&;(I€9)]. Then we have
R=A/ > Abajmt ) Py Abcjrn) .

i.j.karedistinct i,j. k. laredistinct
PrROOF. Let a =(a;);es € Z**. The conditions [, ;csa;X;)=0 and

fo(Zres arX)=0 induce X5, a;=0 and 3,711 €1=0Cu,2345. By Lemma 1.6,
we have a< L if and only if

2a;=0 (1=i55)

I>i

2 Q1 = Q2345
11i=1

Ay = Quesant 2 af 1=£:755)
1I11=8,te¢l

Q1,2,3.4,5 14, j — a(i)+a{j}+k§ Q5,8 @+#7).
7.7

Suppose that ac L—{0}. Then there exists /&4 such that |I|=3 and a;=+0.
We may assume a;,; >0 for some distinct 7, 7, 2. Let [ and m be the other
two elements of {1, 2, 3, 4, 5}. Since we have
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Qi jry = A+ em+ AL, mi+aG, L m T Ak 1,m
there are the following two cases:
1) au; >0 and am > 0.
(2) au;m>0 and ay > 0.

In the case (1), considering the equation >};5;a;=0, we see that a;<<0 for some
I=i. If a;»<0 or au,ss.4.0<0, & is generated by &, and &._ae, 1, and
we have aX>(a—a(jk, 7))X by Lemmas and LB Otherwise we may suppose
that @, ;,1n<0. Then &, is generated by &,jxim) and &4_pcijrim), and we have
aX>(a—bG kim))X by Lemmas [.4 and [.5. In the case (2), considering the
equation 3 ,era;=0, we see that a;<0 for some I not containing m. We may
suppose that @z, <0 or ay.;n<0. Then &, is generated by &.cijr1y and Ea_ccijry,
and we have aX>(a—c(@Ejk])X by Lemmas and [.L5. By recurrence, we see
that &, is generated by &acij.2)’S, Evcijrimy’s and &cqijry’s. Since we have &y(ijrim)
=&q0r »y—E&ai1. 1y, We obtain the assertion. |

PropPOSITION 7.4. Put

I

1= {Eecin = 8w mbum m
—5(k36(1,2,3,4,5ll {Zy ]" k; l} nl} = {1’ 2’ 3: 4: 5}}7
Ey:= {cinny=C6u.5. & —Euwuéuw |max{s, 7, k, I} =1},

and E:=5,\UE;. Then the set 5 isa minimal system of generators of the ideal

EaELAéa-

ProoOF. If max{;, j, k, I} =i, then we have &ujn=ECu.; néw—Cu s néin=
(E(j.k.l)é(i)—“su‘.j.l)E(k))—(E{j.k.l)E(i)—'E(i,J’,k)E(Z))Zec(jlki)'—sc(jkli)- Since we have
Eeajrny=E8ciirny=—Eccijiry, all &c(ijrr, are generated by Z,. By [Proposition 7.3,
we see that 5 generates the ideal X.czAE,.

Next we want to prove the minimality. Since we have &,uj »y=Ezum, &),

we see ]Ell-—*(?)x(%)/Z:lB. Since we have &cujrn=C8cir, We see | 5,|=
(‘?)x(?):li Clearly we have lJl:(?)-i—(g)—l—(g):l& Consequently we

have dimA2:(16+22_1)=17-16/2:136. For I, JeJ, we put I’ :=[1, 5]—1I, and

J':=[1,5]—J. Then we have X;+X;=3icrrvei— 2ici'nsi+2¢c. We can check
{INT1, 1 I'NJ'DIL T € S}
=10, 1), 0, 3), (1, 0), (1, 2), (1, 4), 2, 1), 3, 0), 3, 2), (5, O)}
=:38S.
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For (si, s)€S, we put
Ko i = AL UNT | =53, 1 TN]'] = 54},

and X*=\U(, spesX%s,.5,y. Then we can check

=)D =2, 1= ()=,
=)= =) =
Xl =(3)=5, Xl =(3) =5,
Xl =(5)=10.  Ixaai=(5)=10,

Kol =(2)=1.

Hence we have |X?|=106=dimA,—|&|. Therefore the set & is a minimal
system of generators of the ideal >J,c.A4&,. ]

§8. Type E..

In this section, we suppose that g is of E.-type. We consider the follow-
ing elements of the set X:

L= o tatatastatas
L= a,t+a,‘as+asta,
xi = 2 dp (223) 4: ) 7)

isks7

o7 = 20;+ 205+ 3as+4a,+3as+2as+ay .

We also consider 7 :=2a;+3a,+4a;+6a,+5a5+4a+3a,=X+X:+2n=4 and 7’ :
=a,+as+2a,+2a5+2a+2a,=%+X.=4. We denote by A the cone generated
by Xl, X2, Ty, X7 and XZ»,.

LEMMA 8.1.
Z'NA = Zzoxr{"Zgoxz‘*"“'+Zzox7+Zzoxz7-
ProOOF. Let A’ denote the cone generated by X, 4, ---, X,. It is clear that

Z'N\N =Z o+ Z oo+ Z Xy
and



722 M. Sarto

A= z0NFe 2 ONSs—f1 2 ON(fu—Fe—f: 2 0)
Nfs—feZ2 ONFe—fs 2 ON(fi—fe = 0).

Since we have fi(Xp)=f:(on)=2, (fs—f1)Xer)=1 and (fa—fo=Fa)e)=(f5—14)
Xa)=(fs— f6)X2)=(f+—fe)X2r)=—1, we obtain the assertion by Lemma 1.3
]
PROPOSITION 8.2. The Z-algebra R is normal.

PrOOF. We denote by A, the cone generated by Xy, Xy, Xs, X, X, 7/ and 7,
by A, the one generated by Xs, X, X5, X, %, 7’ and 7, and by A, the one
generated by Xy, X5, X, X5, Xg, X; and 7. Then we can verify that

A= (1 ZON(=2f1+f: =2 ON(f1—2f—2fs+2f. = 0)
NAG =22 2 ONFi+2f2—2f2 2 0),
Ly =([1Z ON(=3f14+2f: =2 ON(f1—2f—2fs+2f. = 0)

A O F=2f et 2fe Z ON(—fi—2f2 42, 2 0)
and
21 = (f2 2 ONBfi—2fo 2 ON(=2fs—3s+3f, 2 0)

A A fe3firt3fe 2 ON(=3F1=2fo+3f1 2 0).

Let d=a,a;,+aa;+ - +a.a, with a,€Z.,1=:<7) satisfy (0, a;) <0 for 7=1,
2, .-+, 6. Then we have
201—'03 = 0

2a,—a, <0
—a;+2a:—a, £0
—a,—as+2a,—a; £0
—a+2a5—a, <0
—as+2as—a, <0.

If we have a,+2a,—a;=0, then ¢ belongs to A,. If we have a,+2a,—a,;<0
and —3a;+2a,=0, then § belongs to A, Finally if we have a,4+2a,—a,=0
and —3a,;+2a,<0, then ¢ belongs to A;. Hence we have d€ A, UAJAC A,
which implies & 4 by Lemma 8.1. We obtain the normality of R by Lemma
1.7. [ |

Denote

A"={eR|fH)z00101=s:=7), Xa)=0(0=7=6)}.
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Suppose that X=X]_,a,X, =R’ satisfies a¢,=0, a,=0 and X, a,)<0 for 1<;<6.
Then we have that ¢,>0(1<:<6) as in §7 and

07 Z 2(16_"(15 _2_ 2(—a4+205)—05 - 305_2a4

2 3(—az‘a3+2a4)—'2a4 = 404_302_3(13

_ —21~a4+%(a4—202)+(2a4—3as) > 0.

Hence we have X A” and

A"=XeRfH=z0G=12), @&a)=010=;=6}

Since (X,, a,)>0 for 1<;<6, the linear form (-, —a,) can not define a face of
@ of codimension one. On the other hand, it is easy to check that the linear
forms f, and f, actually define faces of Q of codimension one. For any I'e %,
there exists weW such that I'=(w. f;=0) or (w. f,=0). The number |F| is
equal to |W|/|W(Ds)|+|W|/IW(As)|=(2"-3*.5)/(2*-5H)+(2"-3*-5)/6 |=27+72=99
where W(D;) (resp. W(A;)) denotes the subgroup of W generated by s,, s, S,
s; and sg (resp. Si, Ss, Ss, S; and sg).
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