J. Math. Soc. Japan
Vol. 46, No. 4, 1994

An exact sequence related to Adams-Novikov
E.-terms of a cofibering

By Mizuho HIKIDA and Katsumi SHIMOMURA

(Received April 23, 1992)
(Revised April 14, 1993)

§.1. Introduction.

Let E be a ring spectrum. The E-Adams spectral sequence with compu-
table E.-term is a useful tool for computing stable homotopy groups of spectra.
We concern here about the BP-Adams spectral sequence E,=Ext}X zp(BPs,
BPy(X))=my_s(X), in which BP is the Brown-Peterson spectrum at a prime p
with the coefficient ring BPy=7n4«(BP)=Z ,[v1, vs, ---]. For a spectrum X, we
especially concern for the sphere spectrum S° and the Toda-Smith spectrum V(n).
In their paper [8], Miller, Ravenel, and Wilson have introduced the chromatic
spectral sequence to compute the E,-term of the above spectral sequence. Let
I,=(p, vy, -+, v;_1) be the invariant prime ideal of BPs. They have defined
BPyBP-comodules A} and LA} by taking AY=n«(BP)/I,, LAi=v7};A} and the
short exact sequences 0— Aj— L Aj— AJ*'—0, inductively. The chromatic spectral
sequence converging to Extyp,zp(BPy, BPy/I;) is given by the chromatic re-
solution

0 —> BPy/I,—> LA} —> LA} —> -~

associated to the short exact sequence above. Then they have defined “the
universal Greek letter map” 7 : Extyp,zp(BPsx, A})—ExtsH,sp(BPy, BPyx/I;) by
taking the composition of the coboundary homomorphisms, and the Greek letter
elements to be the image of 7.

In this paper we also consider the Johnson-Wilson spectrum E(n) for n=0
with E(n)x=Z p[v1, V2, **+, Un, v3']. Define E(n)sxE(n)-comodules B} and LB]
in the same way as the case of BP by replacing the first step of the induction
by Bi=E(n)x/I; (see §3). Throughout the paper, we use the following nota-
tion for the Hopf algebroids appeared above:

(A, I') = (BP«, BP«BP)
and
(B, 2) = (E(n)s, EmM)xE(n) = E(M)xQal' Q4E(n)+).

Let L,X (resp. C,X) for a spectrum X denote the Bousfield localization
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(resp. acyclization) with respect to the spectrum E(n) for n>>0. Then we have
the cofibration

Vi—-1)— L,V(i—1)—> C,V({E-1)

for the Toda-Smith spectrum V(—1), which is known to exist if 7/—1<4 and
the prime p=2/—1 (cf. [10]). Applying the homotopy m(—) gives rise to the
exact sequence 7w(V(@i—1)) — me(L,V(@—1)) — m(C,V(E—1)) and we have the
Adams-Novikov spectral sequences computing these homotopy groups. The
maps in the cofiber sequence above induce the maps of these E,-terms

ExtH(A, A}) — Ext}(B, BY),

Ext¥(B, BY) — Exti (4, Ai*)
and

Y
ExtFi(4, A" — ExtFi(4, AY.

Our main result of this paper is to show that these maps give the exact se-
quence in the following results:

THEOREM A. For i+j<n, we denote t=n—i—j. Then there exists an
exact sequence

n ; . . ) ]
- — Exti(A, A) — Ext$(B, B) — ExtyFi(A, A7) — Ext#i(4, AD— -,
in which Ext¥t=0 for s—t<0.

Here we note that if 7=0, then every map in the sequence is induced from
the corresponding one in the cofibering V(i—1)—L,V(i—1)—C,V(i—1) if the
spectrum V(i—1) exists. Therefore this is the exact sequence of E,-terms of
the Adams-Novikov spectral sequences computing homotopy groups of these
spectra and so we obtain some information on the homotopy from the E,-terms
that are generally studied algebraically (see §6).

We obtain this exact sequence by the Mahowald spectral sequence con-
verging to Ext%(B, B]) whose differential d, is related to the one of the BP- ™
Adams spectral sequence (cf. [3], [6]). Its FE.term is given by Ext}.(4,
Ext%(B, BI'}), where BI'} is a Y-comodule defined by BI'i=BiQ4I". The E,-
term now is read off from

THEOREM B. For i+j5<n,
A for t =0,
Exty(B, BI') =4 Ar ™' for t =n—i—j,

0 otherwise.
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Furthermore, we have the following theorem for the Mahowald differential
d, and the universal Greek letter map 7.

THEOREM C. For t=n—i—j,
din = (1) Exti(4, A1) —> Exti**}(4, A)).

Then the exact sequence of Theorem A follows from the standard argu-
ment of the spectral sequence (see Th. 3.20).

These results are generalized in the following sense: Suppose that a spec-
trum X has the BPi-homology BP«(X)=AiRQFs« for a connected locally finite
free A-module Fix. Then the E,-terms for the homotopy groups of X, L,X
and C,X are given by

EXt}E(Ar A;@AFHJ ’
Ext¥(B, Bi@aFx)
Ext%(4, AT7""®@4Fx),

and

respectively. We now have the following theorem relating with the cofibering
X— L, X— C,X.
THEOREM D. There exists an exact sequence
- LEXUHA, A@aFx) — Bxti(B, Bi@uFy) — Extit(4, A37*1@,F)
L EXtHA, A@aF) — )

for the integers i and j with i+j<n, in which t=n—i—j and ExtF'=0 for s—
1<0.

As an example of X, we have W,(), which is defined to be a spectrum
that has BPy-homology

BP*(Wk(i>) - BP*/Ii+1Et1y Tt tk:[ = A%+1®AAD1, Tty tk]

as a BPy(BP)-subcomodule algebra of BP«(BP)/I;.1 = Z [ty ts, ---]. Then
Ww(—1) is Ravenel’s spectrum T(k) and W,() would be T(EAVE) if V()
exists. We have the existence of W,(4) for 2>0, though we have no idea
about V(4)=W,4) ([14], [13]). We also know the existence of W,() for k=7
([13D.

This paper is organized as follows. In §2 we study about the Mahowald
and the Cartan-Eilenberg spectral sequences and then chromatic spectral se-
quence in §3. We prove Theorem C in §4 by studying the definitions of these
spectral sequences. We then give a lemma in §5 to give more general results.
In the last section we give some remarks on these results.
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The authors would like to thank the referee for suggesting them that the
results are applied not only to Toda-Smith spectra but to other spectra.

§2. Mahowald spectral sequence.

In this section we prepare some notations in the homological algebra of the
Hopf algebroids (cf. [2], [7], [10, Appendix 1]), and prove that the Mahowald
spectral sequence is the same as the Cartan-Eilenberg one.

Let (A, I') be a Hopf algebroid with a coproduct 4r: I'->I"®4[" and N a
right™I'-comodule with a coaction ¢r: N->NXQ,I. Then we have the cobar
complex C¥(N) consisting of [/-comodules

CrN) = NRQ® (I = T'Qy4--R4l’ with s factors of )
and differentials - given by

0r(m@ysQ -+ Qr1) = mQr:Q - Qril
+ (= D'mQr@ - Q4r)&@ - A1
+ (=" rmQr:Q - Q1
for meN and 7, with 1=/<s. We define Ext}(A4, N) for a I-comodule N

as the cohomology HS(CE(N); 6r) of the cobar complex CH(N). By the defini-
tion of the coboundary homomorphism, we have the following

LEMMA 2.1. Let a: 0—~N—M-L—0 be a short exact sequence of right I-
comodules and 0°: Extp(A, L)—ExtF' (A, N) the coboundary homomorphisms. If
there exist elements x&CHL), yeCrM) and z= CFY(N) such that j«(y)=x and
or(y)=i«(z), then

0*([x]) =[],
for [x]€H(CH(L)) and [z] € H*}(CHN)). Here [x] denotes the cohomology
class represented by x and ix and jx are the induced maps on the cohomologies.

Next, let (B, 2) be another Hopf algebroid with a coproduct 45: ¥—3RX 5>
and N a left Y- and right I'-comodule with coactions ¢s: N—3&®3zN and ¢, :
N—-N@uI" such that 1X¢r)Ps=(dsQ1)¢r. Then there exists a cobar double
complex C%!r=23'QpsCHN) with differentials - and o6y defined by

or =1Q0r: C¥Lp(N) —> C§HH(N)
and

0:(0:Q0,Q - Qa.mQy) = 180, -+ Qo .mSy
+ 2 (~D'0® - QAs(0)R - R @mSy
+H(=D!"10,Q -+ QPs(m)Q7y
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for 0,2, meN and y=I'*. We note that d;0,=0rdy. Consider a total com-
plex T™=F;,,;-,C%*r(N) with a differential dp(x)=0r(x)+(—1)*"105(x) for x=

$tr(N). Then we obtain two spectral sequences {E%¢, d.} and {E%¢, d,}
converging to H**'(T*; dr) by filtering

Tstt — Fostt ... ) Fst — @C%,—S‘Ft—a(N> o Fstit-i oy Ly Fsth0 5 )

azs

and

Tstt=Fs+t0D .. DF%t = QCEF»(N)DFvet D . DF" D 0.
bzt

Consider the following commutative diagrams

0 — Fstit-t - Fst 5 C$Ep(N) —> 0
l5r 151' l("l)SHEZ

0 —> Fstlt — Fst+l 5 C%EFI(N) —>0
and
0 —> Fs~1,z+1 C Fs,z s %’-‘r(N) —>0

or |or |or

0 —> FS,H-I cC Fs+1,z s ngtljﬂz(N) — 0,

and we have E{'= HYC$*(N); (—1)**18y), Ev* = HY(C¥p(N); 0r), di = 0dr,:
HYC$X(N)—-H CF(N)) and d,=(—1)""'85,: H(C¥p(N)—H*(C¥FY(N)) by
definition. Then we have the following

LeEmMA 2.2, i) If I’ is A-flat, then
Eyt = HYHHCEHN); (~1)185); 3r.)
= Ext{(4, Ext&(B, N)),
and if X is B-flat, then
Eyt= HYH(C§¥HN); dr); (—1)"103,)
= Ext&(B, Exti(A, N)).

ii) If Extiy(A, N)=0 for s>0 and X is B-flat, then the sequence {E%'}
converges to H¥(T*; d;)=FEY'=Ext§(B, ExtH(A, N)).

iii) For x&C%ipr(N), if ds(x)=0 and d;([x])=0 for 1<i<r ([x]€E%Y),
then there exist elements x,€ C$ U (N) for 0=<i<r such that

Xy = X, Or(xy) = (=17 105(xi00), and
dri([x]) = [0r(x,)] € ESSGT0ET,

PrOOF. i) and ii) are trivial.
iifi) In the case »=0, this is trivial. We proceed by induction on r.
Assume first that there exist » and x, above and d,.([x])=[0r(x)]=0&

2.3
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Esti+tt=7 This implies that [0r(x,)] = d.([y]) € E5 """ for some [y] €
Estt -1 and so there exist v, C$7AM7Y(N) for 0<;j<r—1 such that dx(y,)
=0, [y] = [y J€EF" Y 05(y;) = (—1)*7*%05(y;.1) and [0r(y,.1)] = [0r(x)] €
Esm+ui=7 - Then, for elements x{=x, and x;=x;,—y,_; 1Zi<r), (2.3) holds
and [6p(x7)] =0 ES"*11-7, Repeating this process, we may assume that
[6r(x) =0 E{*THbi-r=H " 7(C$ Y *(N)) for elements of (2.3). Hence there
exists x”leCfgt}“*"T‘l(N) such that 8p(x,) = (—1)**""195(x,,1). Moreover,
Or(X441)=0r (X4 )+(=1)*""*205(x,41)=0r(Xs,1)—0r(x;), and s0 07 (X, )=0r(X,)+

Or(Xry1)=0r(X,_1)+0r(Xp+Xpyy)= - =0r(¥o)+0r(2i2'x,) and 2DiHx, € Frh
This implies the desired equation d,,.([x,])=[0r(x,.1)] by the definition of d,.
q.e.d.

Now let E and F be ring spectra and A: E—~F a ring map. We assume
that Ew«(E) and Fy«(F) are flat over m«(E) and 7« (F), respectively. We apply
the argument above for the case of (A4, I') = (m«(E), Ex(E)), (B, 2) = (m«(F),
Fy(F)) and N=F«(XAE) for any spectrum X. The ring map 4 induces a map
A«: (A, I')—(B, ) of Hopf algebroids, and we see that Ext3(A, N)=0 for s>0,
and =F«(X) for s=0 by the same way as the proof of [3, Lemma 2.2]. Hence
we have a spectral sequence of Lemma 2.2,

PROPOSITION 2.4. There exists a spectral sequence {E%*, d,} converging to
Exti¥ (B, F«(X)) with E,term Ey'=Exti(A, Exti(B, F«(XAE))).

On the other hand, by and [6], we have a Mahowald spectral sequence
{E(Mah)%t, d¥°?} converging to Ext$"(B, F«(X)) as follows:

Consider the cofibering «: S5 E—F associated to the unit map ¢: S"—F,
and the spectra ESAX=EA---AEAX (s-times smash products). Then it gives
rise to the long exact sequence

-« —> Ext&(B, Fu(E*AX)) —> Ext&(B, F{(EAE*AX))
—> Ext&(B, Fx(E*'AX)) —> Ext{™(B, Fu(E*AX)) —> -,
which defines an exact couple and the associated spectral sequence is the

Mahowald one. By definition, E(Mah)j‘=Exts(B, Fx(EAE*AX)) and E(Mah)s'*
=Extr(A, Ext§(B, Fx(XAE))) (cf. [3, Th. 4.7]).

THEOREM 2.5. Let {E%*, d.} be the spectral sequence of Proposition 2.4. For
r=2 and x&C%ir(Fx(XAE)), E(Mah)yt= E$* and d¥er([x])=(—1)**"*1d,([x])
([xJ€eEMah)$*=E%?Y), and so E(Mah)yt=E%! for r=1.

PrROOF. If there exist elements x; of (iii), then d¥&r([x])=
(=17 [dpr(x,)] by [3, Lemma 4.10]. This implies the above theorem.
q.e.d.
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§3. Chromatic spectral sequences.

The chromatic spectral sequence is introduced by [8] to compute the E,-
term of the BP-Adams spectral sequence for the sphere spectrum and for the
Toda-Smith spectrum. In the same way we can construct similar one for
another ring spectrum as follows:

Let E(n) be the Johnson-Wilson ring spectrum with the coefficient ring
T (E(n)) = Z py[v1, -, Un, v7']. We denote that (A, I') = (z+(BP), BP«(BP)),
(B, 2)=(z+(E(n)), E(n)x(E(m))=(B, BRQ4I'®W4B), and BI'=E(n)x«(BP)=BQ4l.
For N=A, B and BI', we define N} and LN{=v7};N{ inductively by taking
N?=N/I; and short exact sequences

) T

3.1) 0 N/ LN} N+ 0

of I'-comodules (or 2-comodules). Then we obtain a long exact sequence

(3.2) 0 N1 LN/ LNt —» ...
by splicing [3.1). .

In the first place, consider the case of N=A. In this case, [3.1)] gives us
a long exact sequence

N

0

] 7T
(3.3) - —> ExtiA, A) —> Exti(A, LAD —> Exth(A, A*1) —> ...

Now this sequence gives us the exact couple and the chromatic spectral sequence
converging to Ext§7(A, AY) with E;-term Exti(A4, LA%) (cf. [8], [10, §5]). Then
for j=0 is the chromatic resolution

(3.4) 0—> BPy/I;, —> LA} —> LA} —> .-,
“The universal Greek letter map”
(3.5) Pttt =0 0: Exti(4, A1) — ExtFTY(A4, A)),

is introduced in and defines related Greek letter elements. By Lemma 2.1,
we have the following

LEMMA 3.6. For any cocycle x of CHA**Y), we can find a set of elements
yECFHF ™Y AYD and x,=CHFY LA for 0kt such that mx(xe)=x, dr(x)=
ixTx(X g y1) for 0Zk<t—1 and or(x)=ix(y). Then p**'([x])=[y].

For the E,-term of the chromatic spectral sequence, we know the Morava
vanishing Theorem (cf. [10, §67). Let (K;, 2;) denote the Hopf algebroid
(K(@)%, K(1)«K(@)) studied in [10, §6]. Here K,=K@)«=Z/(p)[vs, v7'] and X,=
K@)«K@)=K@)x&Q 4l Q4K (@)x.
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THEOREM 3.7. If (p—1) )i then Ext} (K, K)=0 for s>z

Since we have the isomorphism Exty(A, LAY)=Ext},(K;, K,) of [7, Th. 2.10],
we see immediately the following

COROLLARY 3.8. If (p—1) )i then Exti(A, LAY)=0 for s>i®

COROLLARY 3.9. i) ([8, Cor. 3.171). If (p—1) ) (G+)), then Extp(A, LA}
=0 for s>@G+7)

ii) If p—1 does not divide integers i+j+k for 0k <t, then the universal
Greek letter map n**' of (3.5) is an isomorphism for s>+ j41)%, and an epimor-
phism for s=(+7+1)>%

Next consider the case of N=B. Then [(3.1] and give us a long exact
sequence

(3.10) .- — Ext%(B, B}) — Ext4(B, LB}) — Ext{(B, Bi*!) — .-
and a resolution

(3.11) 0—> B{—> LB} —> LBJ*' —> .. —> LB*"{ —> 0.

We notice that
3.12) Brt= LBy and Bi=LBi=0 fori+j>n.

By the exact couple, we have a spectral sequence such that it converging to
Ext$*¢(B, B}) and its E,-term is Ext%(B, LB*®). For this E;-term, we have
the following

ProposITION 3.13. If (p—1) ) (G+7), then
Exts(B, LB) =0  for t> (+7))?.

PrOOF. Noticing that XY=B®X 4" ®4+B, we have X,=K; Q2 XsK,;, which
induces the map (B, 2)—(K,, 2,) of Hopf algebroids. We also obtain an iso-
morphism X@pK;= LBiQg,Y; from the one I'QK;=LAIRk,S: shown in [7,
Prop. 2.4]. This gives another isomorphism (X®gsK;)0s,K;=LB}. Apply now
Shapiro’s Lemma [7, Prop. 1.4], and obtain an isomorphism

which is zero if (p—1) }7 and t>7® by [Theorem 3.7. We now proceed by in-
duction on ;5. Consider the long exact sequence associated to the short exact
sequence

V;

0—> LBiz! —> LBi —> [Bil—>0,
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and we see that the induced map v« : Ext§(B, L B)—Ext&(B, LB)) is an isomor-
phism by the assumption of induction and so Ext%(B, LB{)=0 for t>(+/)* and
(p—1) ¥ (#+) since this Ext-group is v;-torsion. g.e.d.

If p—1 does not divide any i4j+% for 0<k<n—i—J, then Exts*(B, LBi**)
=0fort>n*+n-—i—J by the above proposition and t—k >n*+n—i—j—k=n*=({+
j+k)2. Moreover, LBi**=0 for k>n—i—7, and so the spectral sequence as-
sociated to (3.10) implies immediately the following

COROLLARY 3.14. If p—1 does not divide any of i+j,i+j+1, ---, n, then
Exty(B, B)=0 for t>n?*+n—i—j.

In the last place, consider the case of N=BI. We note that BI'}=LBI’}
for i+j=n and BI'{=LBI'}=0 for i+s7>n.

LEMMA 3.15. For i<n, Ext§(B, LBI')=LA} for s=0, and =0 for s>0.

ProOOF. This is similarly shown as the first step of the proof of Proposi-
tion 3.13. By [7, Prop. 2.8], we have (I'®.K)O5,(K:Qal)=LAIR4l, and
50 BRQ4LANRA'= (BRIl Q@4K)O5;(KiQal") = (EQ@sK:)O5,(K:Q4I'). Noticing
that BRLLAR.'=LBI'}, we have Ext§(B, LBI')=Ext{(B, (2XQsK))Us,(K;
QalM)=Exts (K, KQ4I') by the Shapiro’s lemma [7, Prop. 1.4]. Moreover
we have

Exts (K, K,Q4l') = Ext} (K, QLAY
{ LAY for t=20,

0 for t>0,
by [7, Prop. 2.4]. q.e.d.

A short exact sequence O—»LBF%;}—»LBF{E LBI'!—0 induces a com-

mutative diagram

Vs .
0— LA — LA — LA, —> 0

I L L

0 — Ext¥(B, LBI'i7}) — Ext}(B, LBI'}) — Ext%(B, LBI'}) — Ext}(B, LBI'}7)).

By induction on j with the lemma above, we see that Ext%(B, LBI'})=0 for >0
and & is an isomorphism since LAJ and LBI"} are v;-torsion as long as j>0.

THEOREM 3.16. For i+j<n, Ext¥(B, LBI')=LA} for t=0, and =0 for
t>0.

This theorem shows that the sequence for N=BI"
3.17) 0—> B['{—> LBI'Y—> LBI'{*"* —> .. —> LB['}7*—0
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is a Z-resolution of BI'} with Ext&(B, LBI'{**)=0 for all {>0. By [7, Lemma
1.17, this fact and for N=A imply the following

THEOREM 3.18.

Al t=0,
Ext§(B, BI'}) = A1 t=n—i—j, for i+7<n,
0 otherwise,
LA}  t=0,
= for /4+s7=mn, and
0 t>0,
=0 for i+7>n.

Now, consider the spectral sequence {E%¢, d,} of for N=BI".
Since BI'=BiQ.I", we see that Ext+(A, BI'))=0 for s>0 and =B} for s=0.
Then shows that this spectral sequence converges to Ext{*(B, Bi)
and has E,term Ey‘=ExtH(A4, Exti(B, BI'})). By the above theorem, d,=0
for r#n—i—j+1, and so we have two exact sequences

0 —> E%° —> Ext%(B, BY) Estt 0, and
(3.19) div1

O > Ego—-t,t > Eg—l,l Eg+l,0 Ego+1,o > O’

in which ¢t =n—i—j. By splicing (3.19), we have the exact sequence of
Theorem A.

THEOREM 3.20. i) Exti(A, LAY )=Exti(B, B?™Y).
ii) Ext¥(B, B)=ExtHA, LA} for s<n—i—j.
iii) The following is a long exact sequence
dit1 A% ] )
- —> Ext}(A, A}) — Ext$(B, B}) — Ext§ (A4, A7)
di+1 . 2*
—5 Ext§(4, A —> -,
in which t=n—i—j and Ay denotes the induced map from the canonical map A:
I'—2% of Hopf algebroids, and note that ExtFt=0 for s—t<0.

We notice that since Ax is induced from the Thom map BP—E(n), it is
also obtained from the localization map X—L,X. In fact, the Thom map in-
duces the map between the Adams-Novikov spectral sequences based on BP and
E(n) which converges to the homotopy groups of X and L,X, respectively.
We further notice that [Corollary 3.(ii) follows from the exact sequence above
and for n=i+j+1.
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§4. Mahowald’s differential and the Greek letter map.

In this section, we use the following notation. The short exact sequences
for N=A and B induce the exact sequences

7 ba
0 —> CY4r(BI) —5 Cytr(LBIY) —25 C3t (BT —> 0, and

Z 3
0 —> CHAD —> CHLAY —> CHAIY —> 0.

The Hurewitz map h: A= n4x(BP)— Bl = E(n)«(BP) induces two homomor-
phisms h,: CHA) — C¥r(BI') and hps: CHLAD — C$2r(LBI']). Then we
take {C*%* dr, 05, 01} as follows:

Cy:r(LBI**)  for s=0,t=0, u =0,

C%ip(BI') for s=20,t=0, u=—1,

Covt = Cr(LAT™) for s=0,t=—1, u=0,
CH(Ad) for s=20,t=—1, u=—1, and
0 otherwise,

or: CvvrCstibt for s>0 and d0s: CH02—Co*1¥ for t=0 are the same as
mentioned before in §2, dy for t=—1 is hy, for u=0 and h, for u=—1, d.:
csvrCsbutl for wu>0is ngrigr for 120 and n 4, for t=—1, and o for u=
—1 is 7gr for t=0 and 74 for t=—1.

ProPoSITION 4.1. i) If t=n—i—j=0 and there exists an element x(s, t,
—1D)eC " '=C%tp(BI) with dx(x(s, t, —1))=0, then we have elements x(a, b, ¢)
eC*»?¢ for a+b+c=s+t—1 such that

x(a, b, c)=0 for a<s or ¢<—1, and
4.2)
os(x(a, b, ¢)) =0r(x(a—1, b+1, ¢))+(—1)*0.(x(a, b+1, c—1)).
ii) For the case of c=—1,

deni([x(s, 8, =D1) = (—1)*[or(x(s+t, 0, —1))],

in which e=t2s+t+1)/2, [x(s, t, —1)]€Ey'=H*(HYC¥*%(BI'))) and [0r(x(s+t,
0, —1)]eE§t+ e 0=Hs Y H(CES(BI'Y)) in the spectral sequence of Lemma 2.2.
iii) For the case of b=—1,

T ([walx(s, —1, HD) = (=D [x(s+t+1, —1, —1)],

in which &/ =0t+1)2s+1)/2, [malx(s, —1, 1))] € Exti(A, Al = H(CHA] ),
[x(s+i+1, —1, —1)] € ExtF* (A4, A) = H*YCHAYD), and »'*' is the Greek
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letter map of (3.5).
iv) A correspondence of x(s,t, —1) to wa(x(s, —1, t)) induces an isomorphism
f 1 Ext§(B, BI'YQa*=H (Cy*(BI'))— A" QI =CH(AT* ).

PrROOF. i) We shall adopt the induction on k2 =a+c—s+1. For k2 <0,

(4.2) is equivalent to
x(a, b, ¢)=10 for a<sorc¢<-—1, and
os(x(s, t, —1) =0.
Assume that there exist elements x(a, b, ¢) with (4.2) for 0Za-+c—s+1<k.
We see that n=i+j+it=i+j+c+@—s)+Ob+1)=i+j+c and n—i—j=t=~k—1
+b+1>b+1 if we put k=a+c—s+1, a=s=0, b=—1 and c=—1, which shows
H*Y(Ce*¢; §5)=0 by Theorems and 3.18. We now compute
0s(0r(x(a—1, b+1, c)+(—1)*d0.(x(a, b+1, c—1)))
=0ros(x(a—1, b+1, )+ (—1)%0.05(x(a, b+1, c—1))
=0r@r(x(a—2, b+2, o)+ (—=1)*19.(x(a—1, b+2, ¢c—1)))
+(—=D%*0L0r(x(a—1, b+2, c—1))+(—=1)*0.(x(a, b+2, c—2)))

=90,
and so we have x(a, b, ¢) with ds(x(a, b, ¢))=dr(x(a—1, b+1, ¢))+(—1)*d.(x(a,
b+1, c—1)).

ii) For ¢c=-—1, 4.2) implies ds(x(a, b, —1))=0r(x(a—1, b+1, —1)). Then
we can take x,; in iii) by (—=1)¢®x(s+i, t—i, —1), where e@) =
1(2s+i+1)/2, and so

dialx(s, t, =D] = (—=D[dr(x(s+¢, 0, —1))].

iii) By (4.2), or(x(a, —1, o)+(=D*"'o(x(a+1, —1, c—1)) =0s(x(a+1, =2,
¢)=0. Then we can take x, and v in by

Xp=(—D"®x(s+k, —1,t—k) and y = (—1D"Yx(s+t+1, —1, —1),
where ¢’(k)=k(2s+k—1)/2, and so p**'([7x(x(s, —1, 1)]) = (—1)*" “*D[x(s+t+1,
—1, —1)].

iv) By (4.2), x(s—1, b+1, ¢)=0, and so ds(x(s, b, ¢)) = (—1)%0,.(x(s, b+1,

c—1)). We take x, by x(s, t—Fk, k—1). Then x,=x(s, t, —1), x;,,=x(s, —1, )
and

4.3) 0s(xs) = (—1)*0(xk41) for 0k =1t

For another x,(0<k<t-+1) satisfying and [x;]=[x,]€H (CL*(BIY), we
see that m(x[,)=mx,,)EA'R[* by and for N=A,
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and so f is well defined. Moreover, f is isomorphic by the diagram chasing.
qg.e.d.

NOW, 52:hA: Cs+t+l,-l.‘IZC%+£+1(A{)__>CS+5+1.O.-IZC%%-_tI-_H,O(B[’%) induces an

isomorphism A’ : C}“”(A{f)—_:EXt%(B, BRI+t = HY(C$HEY*(BIY) 3 d5) by
(3.17) and [Theorem 3.18, and so an isomorphism A : Extyi+i(A4, Al =
He*#1(CHAD) = Egtrt0 = Exty (A, Ext¥(B, BI') = H****' (H(C¥X(BI))).
By the above proposition, we have Ay f([x(s, t, —1)]) = hip" " ([wa(x(s, —1,

D=1 hi([x(s+t+1, =1, —1)D=(=D"[or(x(s+t, 0, —1))]=(—1)*d,.([x(s,
t, —1)1). This completes the proof of Theorem C in the introduction.

§5. Generalization.

In this section we consider more general cases. For a graded A-module
My, M, stands for the subset of M, with degree », and A,, for the subset of
a set Ax of the generators of My. A graded A-module M, is said to be con-
nected if it has an integer r, such that M,=0 for any »<#,, and locally finite
if A4,=0 for each reZ.

Let Fyx be a [-comodule which is a connected locally finite free A-module
and A4 the set of its generators. We may assume that 4,=0 for »<<0. Denote
F(r)x the A-submodule of Fi generated by the elements of \U,<.4:, and we
have the exact sequence

-
(5.1) 0—> F(r)« —> Fr+1)x —> Gr+1)x« —> 0,

in which G(r)« is the trivial I'-comodule generated by the elements of 4,. For
a I'-comodule M, we use here the notation

Ext* (M),

which stands for Exty(A, M) or Ext¥“(B, BQ4M). Now applying Ext* *(—)
to the short exact sequence [5.1), we have the exact couple, which also gives
the Cartan-Eilenberg type spectral sequence

s = Ext'(M)QXZ ,QaFx = Ext* (M Q4 F%)

for some [-comodule M. Here Z, has the [I'-comodule structure as a sub-
comodule of A. Then we have

LEMMA 5.2. If Ext’(M)=0 for some s and I-comodule, then so is
Ext*(MQ 4Fx).

Applying the lemma to [[heorem 3.20, we have the similar result.
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THEOREM 5.3. Let Fy be a I'-comodule which is a connected locally finite
free A-module. Then we have the following :

i) Extp(A, LAY '@4Fx)=Ext3(B, B} "QaF%).

ii) Ext¥(B, BiRQiFx)=ExtiA, LAIRQsFx) for s<n—i—].

iliy The following is a long exact sequence

di+ . 2 : {
- S ExtHA, AIQ4Fy) —> Exty(B, BI®.Fy) —> Extii(A, AT*'® Fy)

dt+1 . 2*
—> ExtF (4, AlQsFy) — -,

in which t=n—i—j and Ay denotes the induced map from the canonical map A:
I'—2X of Hopf algebroids, and note that ExtFt=0 for s—t<0.

In the previous section we only use the fact whether or not the Ext-groups
are zero. So we can replace N in the previous sections by NX®.Fx, since
tensoring with Fy preserves exactness. Immitating the definition of the universal
Greek letter map, we have the map

7 = 9®id : Exti(4, A7 QuaFy) — Exti (A, AlRQ4Fw).

Here % on the right is the universal Greek letter map. We thus apply
5.2 to and get
THEOREM 5.4. For t=n—i—j,

devi = (—1)°n 1 Extp(4, AT "' QuFs) — ExtF (4, AlQ4Fy).

§6. Some remarks.

In [9, Th. 5.10], Ravenel gives the following cofibration :

nX
6.1) 2N X —> X — L. X,

in which BPy-homology of N, X is A7 for X =V (j—1), the Toda-Smith
spectrum by [11]. The E,-terms of the Adams-Novikov spectral sequence con-
verging to 7x(N,..1X), 7«(X) and m4«(L,X) are

Extr(4, A®Y, Extr(A, A/I) and Exts(B, B/I,),

respectively, for the Hopf algebroids (A, I")=(BPx, BP«BP) and (B, 3)=(E(n)x,
E(n)xE(n)) as before. Theorems and C shows

PROPOSITON 6.2. We have the long exact sequence
Ui (UV)*
o —> ExtH(A, A%+ — ExtF*i(A, A/1) — Ext¥ (B, B/I})

- > Eth*H(A, Ar;ﬂ) —_— 5 ...

b
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where 7 denotes the universal Greek letter map, (V) the induced map by the
localization one for V(j—1) and (B, 2)=(E(n+7j)x, E(n+)xEn+7)).

In fact, the map ExtiF"*'(4, A/I)—Ext§"*(B, B/I;) is induced from the
canonical map /'—2 and so it is induced from the localization map V. We
generalize this a little more. Let W,(;) denote a spectrum such that

BPx(W (7)) = (A/ L)y, -+, te] = (BPy/1;0)[t, -+, te]

as a BPy(BP)-subcomodule algebra of I'/I;,,=BP«(BP)/I;,,. Then we know
the existence of the spectrum for 2=, or for j<4 and the prime p>25. (cf.

[10], [13], [14]). For j=-—1, it is known as Ravenel’s spectrum and denoted
by T(k). Then the cofiber sequence turns into

. . oW )
AN, W (G—1) — W, (j—1) — L, W.(j-1),

and the BPy-homology of each spectrum is A}*'[t, -, t:], (A/I)[t, -, te]
and wRtA/I)[t, -, te], respectively. Now our corresponding result on their
E,-terms is

PROPOSITION 6.3. We have the long exact sequence

7
o —> Exti(A, A7, -, t]) — Exti A, A/LL, -, 6D

(WW)*
— Ext§"*\(B, B/IL;[t,, -+, t:]) —> ExtF(4, A7 [, -

s le]) —>

where 7 denotes the map induced from the umiversal Greek letter map, (RW)«
the induced map by the localization one for W,(j—1) and (B, X)=(E(n+1)x, E(n
+NxE(n+7)).

These are the results concerning the cofibration [6.I). As an immediate
consequence of Theorem C, the definition of Greek letter elements shows the
following

PROPOSITION 6.4. The homotopy groups m«(L,S) of the localized sphere
L,S do not contain the (n+1)-st Greek letter elements.

In the same way as defining A%, we can define E(n)! inductively as follows :
E(m)i=Em)/I;,  LE®m);=viEM);
and the cofibering
0 — E(n);i —> LE(n)! — E(n)i** — 0.

Note that if we fix n then it is same as B} used above. In this case, LE(n)?~7
=En)?*7 and so E(n)i=0 for i+j>n. Then we can proceed our argument
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for (4, I')=(E(n)x, E(n)xE(n)) and (B, 2)=(E(m)x, E(m)x+E(m)) as long as m<
n. For m=n—1, we have the long exact sequence as [Proposition 6.3 in the
commutative diagram

7
—> Ex*(A7*Y) — Ex**"*1(4) —> Ex$iP Y(E(n)y) —> Ex**1(A")

” 5 T” T’”‘

—> Ex*(A3*!) —> Ex**!(A}) —> Ex**}(L A}) —> Ex**1(A?)

! T

Ex@F2hy(E(n—1)y) = Exi2(E(n—1)4).
Here we use the notation: A=BP,
Ex*(M) = Extyp,5p(BPx, M), Ex{n,(M) = EXtEmyuem)(E(m)x, M)

and %, is the universal Greek letter map based on E(n)x. In particular, we
have

PROPOSITION 6.5. If Ex{i2,(E(n—1)%)=0, then
Ex**1(LAS) = ExGTHH(E(n)«) .
This result relates to the conjecture
ExS(LA}) =0 if s>n*—n and n<p-—1,

which is arisen from a result of [12]. Furthermore, we know the triviality
Ex}._n(E(n—1)5)=0 for s>(n—1?%*+(n—1)=n*—n and n<p by and so this
proposition is applied to this conjecture to be

QUESTION. Is Extinyeeo(E(M)x, E(n)x)=0 for s>n??

For the case n=2, the result of [9, (10, 10)] says that ExXt} ).z (E(2)x,
E(2)4)=0 for s>6 and the results of indicates that it is trivial for s>5.
Recently it is proved in that the Ext group is trivial for s=5.
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