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$0$ . Introduction.

In this Paper we study the properties of a large subclass of $B(\mathcal{H})$ , the set
of all bounded linear operators $T:\mathcal{H}arrow \mathcal{H}$ on a Hilbert space $\mathcal{H}$ . As is custo-
mary, we refer to $T^{*}T-TT*$ as the self-commutator of $T$ , denoted $[T*, T]$ .
A self-adjoint operator $P$ is positive if $\langle Pf, f\rangle\geqq 0$ for all $f\in \mathcal{H}$ ; the operator $T$

is normal if $[T*, T]=0$ and $T$ is hyponormal if $[T*, T]$ is positive. When $\tau*$

is hyponormal, we say $T$ is cohyPonormal; $T$ is seminormal if $T$ is hyponormal
or cohyponormal. If $T$ is the restriction of a normal operator to an invariant
subspace, then $T$ is subnormal.

$lf$ $A\in B(\mathcal{H})$ is to belong to our subclass, then $A$ must not be “too far”
from normal; more precisely, there must exist an inierrupter $S\in B(\mathcal{H})$ such
that $AA^{*}=A^{*}SA$ , or equivalently, $[A^{*}, A]=A^{*}(I-S)A$ . Two observations
suggest the additional requirement that $S$ be self-adjoint, even positive: (1)

since $AA^{*}$ is self-adjoint, each operator $A$ in our subclass must satisfy $A^{*}S^{*}A$

$=A^{*}SA;(2)$ since $\langle SAf, Af\rangle=\langle A^{*}SAf, f\rangle=||A^{*}f||^{2}$ for all $f$ , the interrupter
$S$ must be positive on Ran $A$ (the range of $A$ ).

DEFINITION. If $A\in B(\mathcal{H})$ , then $A$ is Posinormal if there exists a positive
operator $P\in B(\mathcal{H})$ such that $AA^{*}=A^{*}PA$ . $9(\mathcal{H})$ will denote the set of all
posinormal operators on $\mathcal{H}$ . $A$ is coposinormal if $A^{*}$ is posinormal.

We note that if $A$ is posinormal with interrupter $P$ and $V$ is an isometry
(that is, $V^{*}V=I$), then, as one can easily check, $VAV^{*}$ is posinormal with
interrupter $VPV^{*}$ . Consequently, posinormality is a unitary invariant (that is,
if $A$ is posinormal and $T$ is unitarily equivalent to $A$ , then $T$ is also posi-
normal).

If the posinormal operator $A$ is nonzero, the associated interrupter $P$ must
satisfy the condition $||P||\geqq 1$ since $||A||^{2}=||AA^{*}||=||A^{*}PA||\leqq||A^{*}||||P||||A||=$

$||P||||A||^{2}$ . We will make repeated use $\sqrt{P}$, whose existence is guaranteed by
the functional calculus for (positive) self-adjoint operators. $P$ need not be uni-
que, as we will soon see; the following result gives a sufficient condition for
the uniqueness of $P$.
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THEOREM 0.1. If $A$ is posrnormal with interrupter Pand $A$ has dense range,
then $P$ is unique.

PROOF. Assume $P_{1}$ and $P_{2}$ both serve as interrupters for $A$ . Then $A^{*}P_{1}A$

$=AA^{*}=A^{*}P_{2}A$ , so $A^{*}(P_{1}-P_{2})A=0$ . Since $A$ has dense range, $A^{*}$ is one to
one and, consequently, $(P_{1}-P_{2})A=0$ . We again apply the fact that $A$ has dense
range to conclude that $P_{1}-P_{2}=0$ .

COROLLARY 0.1. If $A$ has dense range and $S$ serves as an interrupter for
$A$ , then $A$ is posrnormal and the interrupter $S$ is posrtive and unique.

A normal operator is (trivially) posinormal; we will soon see other ex-
amples–among them, posinormal operators that are not normal and, in some
cases, not even hyponormal. For an example of an operator that is not posi-
normal, we consider $U^{*}$ , the adjoint of the unilateral shift $U:l^{2}arrow l^{2}$ ; recall that
$U$ has matrix entries

$u_{J^{k}}=\{$

$0$ if $j\neq k+1$

1 if $j=k+1$ .

Here $A=U^{*}$ cannot be posinormal since $AA^{*}=I$ while $A^{*}PA\neq I$ for all $P$ (the

trouble comes in the northwest corner: $0\neq 1$); a different proof will result from
Corollary 2.3.

1. Examples.

The example which motivated this study is the Ces\‘aro matrix

$C=\{\begin{array}{lll}01 0\vdots \cdots\frac{1}{2}\frac{1}{2}0 \cdots \cdots\frac{1}{3}\frac{1}{3}\frac{1}{3} \cdots \cdots \vdots \vdots\end{array}\}$ ,

regarded as an operator on $\mathcal{H}=1^{2}$ . The standard orthonormal basis for $l^{2}$ will
be denoted by $\{e_{n} : n=0,1, 2, \}$ . If $D$ is the diagonal operator with diagonal
$\{(n+1)/(n+2):n=0,1, 2, \}$ , then a routine computation verifies that
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$C^{*}DC=\{\begin{array}{lll}1\frac{1}{2}\frac{1}{3} \cdots \cdots\frac{1}{2}\frac{1}{2}\frac{1}{3} \cdots \cdots\frac{1}{3}\frac{1}{3}\frac{1}{3} \cdots \cdots \vdots \vdots\end{array}\}=CC^{*}$ .

So the Ces\‘aro operator (on $l^{2}$ ) is posinormal with interrupter D. $C$ is known
to be hyponormal, even subnormal (see [8]). In [2], $C$ is shown to be hypo-
normal by looking at determinants of finite sections of $[C^{*}, C]$ . We include
here a brief and different proof–one that takes advantage of the availability
of $D$ .

THEOREM 1.1. $C$ is hyponormal.

PROOF. Since $I-D$ is a positive operator, we have $\langle[C*, C]f, f\rangle=$

$\langle(I-D)Cf, Cf\rangle\geqq 0$ for all $f$ .

We have, in the Ces\‘aro operator, an example of a nonnormal posinormal
operator. The next proposition provides us with a large supply of additional
examples, including the unilateral shift $U$ ; we will see more examples in sec-
tions 4 and 5.

PROPOSITION 1.1. Every umilateral weighted shift with nonzero weights is
posrnormal.

PROOF. In matrix form, the weighted shift $A=[a_{J^{k}}]$ with nonzero weights
$w_{k}$ has entries

$a_{J^{k}}=\{$

$0$ if $j\neq k+1$

$w_{k}$ if $j=k+1$ .

Take $P$ to be the diagonal matrix with diagonal entries $p_{00}\geqq 0,$ $p_{11}=0$ , and $p_{kk}$

$=|w_{k-2}/w_{k-1}|^{2}$ for $k\geqq 2$ . It is routine to verify that $AA^{*}=A^{*}PA$ , as required.
(Note: The freedom possible here for $p_{00}$ illustrates the nonuniqueness of $P$

when $A$ does not have dense range.)

It is easy to see that if $A$ is the unilateral weighted shift with weights
$w_{k}$ , then $[A^{*}, A]$ is the diagonal matrix with diagonal entries $\{w_{0}^{2},$ $w_{1}^{2}-w_{0}^{2}$ ,
$w_{2}^{2}-w_{1}^{2},$ $\}$ . If $\{w_{k}\}$ is increasing, then $A$ is hyponormal. The special case
when $w_{0}=2$ and $w_{k}=1$ for all $k\geqq 1$ provides an example of a posinormal operator
that is neither hyponormal nor cohyponormal.
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2. Posinormality versus hyponormality.

We have just seen that posinormality does not imply hyponormality, but
our experience with the Ces\‘aro matrix and the unilateral shift suggests the
plausibility of the reverse implication. The next result, from [4], will help
settle the question (see Corollary 2.1).

THEOREM (Douglas). For $A,$ $B\in B(\mathcal{H})$ the following statements are equz-
valent:

(1) Ran $A\subseteqq$ Ran $B$ ;
(2) $AA^{*}\leqq\lambda^{2}BB*for$ some $\lambda\geqq 0$ ; and
(3) there exists a $T\in B(\mathcal{H})$ such that $A=BT$ .

Moreover, if (1), (2), and (3) hold, then there is a unique operator $T$ such that
(a) $||T||^{2}= \inf t\mu|AA^{*}\leqq\mu BB^{*}\}$ ;
(b) $KerA=KerT$ ; and
(c) Ran $T\subseteqq$ $($Ran $B^{*})^{-}$ .

The next result is an indication of the somewhat limited extent to which
posinormal operators display behavior associated with hyponormal operators.
Recall that a hyponormal operator $T$ must satisfy the inequality $||T^{*}f||\leqq||Tf||$

for all $f$ . Statement (a) of the following proposition gives us an analogous
result for posinormal operators; this result, together with the above theorem
of Douglas, will lead to a characterization of posinormality (see Theorem 2.1).

PROPOSITION 2.1. If $A$ is posinormal with (positive) interrupter $P$, then the
following statements hold:

(a) $||A^{*}f||=||\sqrt{P}Af||\leqq||\sqrt{P}||||Af||$ for every $f$ in $\mathcal{H}$ .
(b) $||\sqrt{}\overline{P}A||=||A||$ .

PROOF. (a) Since $A$ is posinormal and $P$ is positive, $||A^{*}f||^{2}=\langle AA^{*}f, f\rangle=$

$\langle A^{*}PAf, f\rangle=||\sqrt{P}Af||^{2}\leqq||\sqrt{}\overline{P}||^{2}||Af||^{2}$ for all $f$ in $\mathcal{H}$ .
(b) From (a) we see that $||A^{*}||=||\sqrt{P}A||$ , and $||A||=||A^{*}||$ is universal.

We note that if $A$ is posinormal, then condition (2) in the theorem above
is satisfied with $\lambda=||\sqrt{}\overline{P}||$ and $B=A^{*}$ . If condition (3) in the theorem holds, then
there is an operator $T\in B(\mathcal{H})$ such that $A=A^{*}T$ , so $A^{*}=T^{*}A$ ; consequently,
$A$ is posinormal with interrupter $TT*$ . Thus Douglas’ theorem has led almost
immediately to the following result.

THEOREM 2.1. For $A\in B(\mathcal{H})$ the following statements are equivalent:
(1) $A$ is posrnormal;
(2) Ran $A\subseteqq RanA^{*};$
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(3) $AA^{*}\leqq\lambda^{2}A^{*}A$ for some $\lambda\geqq 0$ ; and
(4) there exists a $T\in B(\mathcal{H})$ such that $A=A^{*}T$ .

Moreover, if (1), (2), (3), and (4) hold, then there is a unique operator $T$ such
that

(a) 1 $T||^{2}= \inf\{\mu|AA^{*}\leqq\mu A^{*}A\}$ ;
(b) $KerA=KerT$ ; and
(c) Ran $T\subseteqq(RanA)^{-}$ .

COROLLARY 2.1. Every hypcnormal operator is $pos\iota normal$ .

PROOF. If $A$ is hyponormal, then condition (3) is satisfied with $\lambda=1$ .

Let $[A]=\{TA:T\in\ovalbox{\tt\small REJECT}(\mathcal{H})\}$ , the left ideal in .EB(.siC) generated by $A$ . If $A$ is
posinormal, then, because of (4), we have $A^{*}=T^{*}A$ for some bounded operator
$T$ , so $A^{*}\in[A]$ . Conversely, if $A^{*}\in[A]$ , then $A^{*}=KA$ for some $K\in B(\mathcal{H})$ , so
$A$ is posinormal with interrupter $P=K^{*}K$ . In summary, we have the following
corollary.

COROLLARY 2.2. $A$ is posinormal if and only if $A^{*}\in[A]$ .

We note that if $A$ is hyponormal, then for some contraction $\kappa,$
$A^{*}=\kappa A$ (see

[3], p. 3). A straightforward computation shows that in the case of the Ces\‘aro
operator the contraction $\kappa=\kappa(C)$ takes the form $\kappa(C)=[k_{mn}]$ where

$k_{mn}=|- \frac{n+1}{n+2,0}\frac{1}{n+2}$

if $m\leqq n$

if $m=n+1$

if $m>n+1$ .
It is not hard to verify that $\kappa(C)^{*}\kappa(C)=D$ .

COROLLARY 2.3. If $A$ is posinormal, then $KerA\subseteqq KerA^{*};$ in particular,
$Ker$ $A$ is a reducing subspace for the posinormal operator $A$ .

If we did not already know that $U^{*}$ fails to be posinormal, we would know
now, for $kerU^{*}\neq\{0\}$ while $kerU=\{0\}$ . In fact, the adjoint of any unilateral
weighted shift with nonzero weights will fail to be posinormal.

COROLLARY 2.4. In order for a cohyponormal operator $A$ to be $po\alpha normal$

it is necessary that $KerA=KerA^{*}$ .

While the Ces\‘aro matrix $C=M_{1}$ is hyponormal, the $rema!ningp$ -Ces\‘aro
matrices
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$M_{p}= \lceil(\frac{1}{3})^{p}(\frac{1}{2})^{p}1(\frac{1}{2})^{p}(\frac{1}{3})^{p}0(\frac{1}{3})^{p}00$ $000||.)$

where $p>1$ are not (see [11]). Here we will use Corollary 2.2 to show that
all of these operators are, however, posinormal. Define $B_{p}=[b_{mn}]$ by

$(1-( \frac{n+1}{n+2})^{p}$ if $m\leqq n$

$b_{mn}= \downarrow-(\frac{n+1}{n_{0}+2})^{p}$

$ififm=n+1m>n+1$

We observe that $B_{1}=\kappa(C)$ . To see that $B_{p}$ is bounded when $p>1$ , we note
that this matrix can be decomposed as $B_{p}=Y+Z$ where $Y=[y_{mn}]$ satisfies
$y_{mn}=b_{mn}$ when $m=n+1$ and $y_{mn}=0$ otherwise (so $Y$ is a weighted shift) and
$Z$ is the upper triangular matrix whose entries on and above the main diagonal
agree with those from $B_{p}$ and whose other entries are all zero. We note that
the entries of $Z$ are all nonnegative. Since $1-(n+1)^{p}/(n+2)^{p}<p/(n+2)$ for all
$p>1$ (see [7, Theorem 42, 2.15.3, page 40]), $Z$ is entrywise dominated by $pc*$ ,

an operator known to be bounded; $Y$ is clearly a bounded operator, and con-
sequently $B_{p}$ is also bounded and $||B_{p}||\leqq||Y||+||Z||\leqq 1\perp 2p$ . A routine computa-
tion gives $M_{p^{*}}=B_{p}M_{p}$ , and the following theorem has been proved.

THEOREM 2.2. $M_{p}$ is posinormal for all $p\geqq 1$ .

We have seen that $C$ is posinormal, but what about $C^{*}i$ Corollary 2.2 will
help us here also, for it can be verified that $C=BC^{*}$ when $B=C-U^{*}$ , so $C\in$

$[C^{*}]$ ; it can also be easily checked that $\kappa(C)B=I=B\kappa(C)$ . While $B^{*}B$ is the
interrupter for the posinormal operator $c*$ , the matrix product in the other
order takes on a much simpler form: $BB^{*}$ is the diagonal matrix with diagonal

$\{$ 2, 3/2, 4/3, 5/4, $\cdots\}$ . These observations justify the next theorem and its
corollary.

THEOREM 2.3. $c*is$ posinormal with interrupter $P=B^{*}B=(C^{*}-U)(C-U^{*})$ .

COROLLARY 2.5. 1 $C-U^{*}||=\sqrt{2}$ .

Theorem 2.1 assures us that a hyponormal operator must be posinormal and,
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consequently, possess an interrupter. The next result gives a necessary and
sufficient condition (on the interrupter) and a sufficient condition (on the norm
of the interrupter) for a posinormal operator to be hyponormal.

THEOREM 2.4. Assume $A$ is posinormal with interrupter P. (a) Then $A$ is
hyponormal if and only if the restriction of $I-P$ to Ran $A$ is a positive operator.
(b) If $||P||=1$ , then $A$ is hyponormal.

PROOF. (a) The assertion follows immediately from the fact that
$\langle[A^{*}, A]f, f\rangle=\langle(I-P)Af, Af\rangle$ for all $f$ in $\mathcal{H}$ . (b) If $||P||=1$ , then $||\sqrt{P}||=1$

also, so $||A^{*}f||\leqq||v’\overline{P}||||Af||=||Af||$ , one of the equivalent conditions for the
hyponormality of $A$ (again see [3], p. 3).

An alternate approach yields a different proof of (b): If $A$ is not hypo-
normal, then $\langle(A^{*}A-A^{*}PA)f, f\rangle<0$ for some $f$ not in $KerA$ . Hence $||Af||^{2}<$

$\langle PAf, Af\rangle\leqq||PAf||||Af||$ , so $||PAf||>||Af||>0$ for some $f$ and consequently
$||P||>1$ .

COROLLARY 2.6. If $A$ is hyponormal and has dense range, then the unique
interrupter $P$ associated with A must satisfy $||P||=1$ .

PROOF. Since $A$ is hyponormal and the range of $A$ is dense, we conclude
from Theorem 2.4 (a) that $I-P$ is a positive operator ( $P$ is unique by Theorem
0.1). It follows that $||P||\leqq||I||=1$ , and since $||P||\geqq 1$ is universal for nonzero
$A$ , the proof is complete.

The next result shows how a positive interrupter $P$ for a hyponormal
operator can be used to construct new’ hyponormal operators from an “old”
one.

THEOREM 2.5. Assume $A$ is posinormal with interrupter P. If $I\geqq P$ (that

is, $I-P$ is a positive operaior) and $Q$ is a positive operator satisfying $I\geqq Q\geqq P$,

then (a) the operator $Z=\sqrt{Q}A\sqrt{}\overline{Q}$ is hyponormal and (b) $A^{*}QA-AQA*$ is a
positive operator.

PROOF. (a)

$[Z^{*}, Z]=\sqrt{}\overline{Q}A^{*}QA\sqrt{Q}-\sqrt{Q}A^{*}PA\sqrt{}\overline{Q}+\sqrt{Q}A^{*}PA\sqrt{}\overline{Q}-\sqrt{}\overline{Q}AQA^{*}v’\overline{Q}$

$=\sqrt{Q}A^{*}(Q-P)A\sqrt{Q}+\sqrt{}\overline{Q}A(I-Q)A^{*}\sqrt{}\overline{Q}$ .

Therefore $\langle[Z^{*}, Z]f, f\rangle=\langle(Q-P)A\sqrt{}\overline{Q}f, A\sqrt{}\overline{Q}f\rangle+\langle(I-Q)A^{*}\sqrt{}\overline{Q}f, A^{*}\sqrt{}\overline{Q}f\rangle$

$\geqq 0$ for all $f$ , as needed. The proof of (b) is similar.

For an application of this theorem, we consider the following example. Let
$Q$ denote the diagonal matrix with diagonal entries $\{(n+1)a_{n} : n=0,1, 2, \}$
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where $a_{n}=(n+3)/(n+2)^{2}$ . Since $(n+1)/(n+2)\leqq(n+1)a_{n}$El for all $n$ and $CC^{*}=$

$C^{*}DC$ , we see that $Z=\sqrt{Q}C\sqrt{Q}$ is hyponormal and $C^{*}QC-CQC^{*}$ is positive.
The same conclusion holds for the cases when $a_{n}=\ln(1+1/(n+1))$ , $a_{n}=$

$\sin(1/(n+1))$ , and $a_{n}=Arc\tan(1/(n+1))$ .
The following result is a corollary to each of Theorem 2.4 (a) and Theorem

2.5 (a) separately. We encountered a special case (Theorem 1.1) earlier.

COROLLARY 2.7. If $A$ is posinormal with interrupter $P$ and $I\geqq P$, then $A$ is
hyponormal.

In this section we have seen several properties of hyponormal operators
which are shared by posinormal operators. One important difference in behavior
will emerge soon. Hyponormal operators behave well with respect to scalar
multiplication and translation in the following sense: if $\lambda\in C$ and $T$ is hypo-
normal, then $\lambda T$ and $T+\lambda$ are both hyponormal also. In the next section we
will see that a weaker result holds for posinormal operators.

3. Invertibility, translates, and posispectrum.

We start this section by looking at the relationship between invertibility
and posinormality. A posinormal operator need not be invertible (example: the
unilateral shift), but the following theorem tells us that an invertible operator
must be posinormal.

THEOREM 3.1. Every invertible operafor is Posinormal.
PROOF. If $A$ is invertible, then $A^{*}=A^{*}(A^{-1}A)=(A^{*}A^{-1})A$ , so $A^{*}\in[A]$ .

COROLLARY 3.1. Every invertible operator is coposinormal.

COROLLARY 3.2. Assume $A\in B(\mathcal{H})$ and $\lambda\not\in\sigma(A)$ , the spectrum of A. Then
$A-\lambda$ is Posrnormal.

In [1] A. Brown introduced a class of operators $T$ satisfying the condition
that $T^{*}T$ commutes with $T$ ; these operators have since been referred to as
quasinormal. Routine computations indicate that if $T$ is quasinormal and $\lambda\neq 0$ ,

then (1) $\lambda T$ is quasinormal but (2) the translate $T+\lambda$ can be quasinormal only
if $T$ is normal. As noted previously, the result is different for $T$ hyponormal;
in that case both $\lambda T$ and $T+\lambda$ are also hyponormal. The following theorem
considers the same questions for posinormal operators.

THEOREM 3.2. Assume $A$ is Posrnormal with interrupter $P$ and $\lambda\neq 0$ .
(a) Then $\lambda A$ is posrnormal (with interrupter $P$).

(b) The translate $A+\lambda$ need not be posinormal.
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PROOF. (a) $(\lambda A)(\lambda A)^{*}=|\lambda|^{2}AA^{*}=|\lambda|^{2}A^{*}PA=(\lambda A)^{*}P(\lambda A)$ .
(b) Consider the case where $A=U^{*}-2$ and $\lambda=2$ (recall that $U^{*}$ is the ad-

joint of the unilateral shift). Since 2 is not in $\sigma(U^{*})$ (see [5], Problem 82), $A$

is posinormal. But $A+2=U^{*}$ is not posinormal.

DEFINITION. For $A\in B(\mathcal{H})$ the $po\alpha spectrum$ of $A$ , denoted $p(A)$ , is the set
{ $\lambda:A-\lambda$ is not posinormal}. Corollary 3.2 makes it clear that $p(A)$ is a subset
of $\sigma(A)$ .

TO illustrate, we consider $A=\{\begin{array}{ll}0 01 0\end{array}\}$ acting on $R^{2}$ ; a straightforward com-

putation shows that, for $\lambda\neq 0,$ $A+\lambda$ is posinormal with interrupter

$P(\lambda)=[_{-\overline{\lambda}|\lambda|^{-4}}^{1-|\lambda|^{-2}+|\lambda|^{-4}}$ $1+-\lambda|\begin{array}{l}\lambda\lambda\end{array}|]$ .

However, $A$ is not posinormal, so $p(A)=\{0\}=\sigma(A)$ . A quick check will verify
that $p(A^{*})=\{0\}$ also.

PROPOSITION 3.1. If $A$ is hyPonormal, then $p(A)=\emptyset$ .

PROOF. Since translates of a hyponormal operator are hyponormal, $A-\lambda$ is
hyponormal and hence posinormal for every $\lambda$ .

PROPOSITION 3.2. If $U$ is the unilateral shift, then $p(U)=\emptyset$ and $p(U^{*})=$

$\sigma(U^{*})=\{\lambda:|\lambda|\leqq 1\}$ .
PROOF. The assertion about $p(U)$ follows from Proposition 3.1. To deter-

mine $p(U^{*})$ requires more work. For an operator $B$ to satisfy $U-\overline{\lambda}=B(U^{*}-\lambda)$ ,

it is necessary that $-\lambda b_{00}=-\overline{\lambda}$ and $b_{0k}-\lambda b_{0.k+1}=0$ for all $k\geqq 0$ ; consequently,
for $\lambda\neq 0,$ $b_{0k}=\overline{\lambda}(\lambda^{-k-1})$ for all $k\geqq 0$ . This mean that $||B^{*}e_{0}||^{2}=\Sigma_{k=0}^{\infty}|b_{0k}|^{2}=$

$\Sigma_{k=0}^{\infty}|\lambda|^{-2k}=+\infty$ when $0<|\lambda|\leqq 1$ , which cannot hold for any bounded operator
$B$ . We have already seen that $U^{*}$ is not posinormal, so $\{\lambda:|\lambda| ; 1\}=\sigma(U^{*})\supseteqq$

$p(U^{*})\supseteqq\{\lambda:|\lambda| 1\}$ and hence $p(U^{*})=\{\lambda:|\lambda|\leqq 1\}$ .
It can be verified that if $S=S(\lambda)$ is the diagonal matrix with diagonal entries

$\{1-|\lambda|^{-2},1,1, 1, \}$ , then $S$ serves as an interrupter for $U+\lambda$ when $\lambda\neq 0$ .
When $|\lambda|\geqq 1,$ $S$ is a positive interrupter; but when $|\lambda|<1,$ $\langle Se_{0}, e_{0}\rangle=1-|\lambda|^{-z}$

$<0$ and hence $S$ is not positive. We know by Proposition 3.1 that $U+\lambda$ has a
positive interrupter even when $|\lambda|<1$ ; since $-\overline{\lambda}\in\pi_{0}(U^{*})$ , the point spectrum
of $U^{*}$ , for $|\lambda|<1$ , Ran $(U+\lambda)$ is not dense, so the nonuniqueness of the inter-
rupter in this case does not surprise us.

COROLLARY 3.3. The set EP(.siC) of Posrnormal oPerators is not closed in the
operator norm topology on $B(\mathcal{H})$ .
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PROOF. Suppose $\lambda_{n}$ is a decreasing sequence converging to 1. Then $U^{*}-\lambda_{n}$

converges in the operator norm to $U^{*}-l$ , but $U^{*}-1$ is not posinormal while
each $U^{*}-\lambda_{n}$ is posinormal.

Later in this section we will see that $9(\mathcal{H})$ is also not an open set in the
operator norm topology on $B(\mathcal{H})$ . Meanwhile, we continue computing posi-
spectra.

PROPOSITION 3.3. If $A$ is a unilateral weighted shift with positive weights
$w_{n}$ such that $w_{n}arrow 0$ , then $p(A)=\emptyset$ and $p(A^{*})=\{0\}$ .

PROOF. We already know from Proposition 1.1 that $A$ is posinormal. From
[5, Solution 96] we know that $\sigma(A)=\{0\}$ and, consequently, $A-\lambda$ is posinormal
for every $\lambda\neq 0$ . Therefore $p(A)=\emptyset$ . We now show that $p(A^{*})=\{0\}$ : Since
$\sigma(A^{*})=\sigma(A)=\{0\},$ $A^{*}-\lambda$ is posinormal for every $\lambda\neq 0$ ; but $A^{*}$ fails to be posi-
normal for the same reason $U^{*}$ does.

For specificity, consider the case when $w_{n}=1/(n+1)$ . Since $\{w_{n}\}$ is decreas-
ing, $A$ cannot be hyponormal. This example illustrates, since the spectral
radius $r(A)=0$ while $||A||>0$ , that a posinormal operator need not satisfy $||A||=$

$r(A)$ . This example also demonstrates that a compact posinormal operator
need not be normal (or even hyponormal), need not have a compact interrupter
$\langle$or multiplier), and need not have a posinormal adjoint.

Our two most recent propositions involve the computation of $p(A)$ in cases
where $A$ is particularly tame. The next proposition will sometimes aid in
computing $p(A)$ in other cases.

PROPOSITION 3.4. (a) If $\lambda\in\pi_{0}(A)$ but $\overline{\lambda}\not\in\pi_{0}(A^{*})$ , then $\lambda\in p(A)$ .
(b) If $\lambda\in\pi(A)$ but $\overline{\lambda}\not\in\pi(A^{*})$ , then $\lambda\in p(A)$ .

PROOF. (a) Assume $\lambda\in\pi_{0}(A)$ . Then $(A-\lambda)f=0$ for some nonzero $f\in \mathcal{H}$ .
If $A-\lambda$ were posinormal then we would have $(A-\lambda)^{*}f=0$ by Corollary 2.3, so
$\overline{\lambda}\in\pi_{0}(A^{*})$ . (b) If $\lambda\in\pi(A)$ , the approximate point spectrum, then there exists a
sequence of unit vectors $f_{n}\in \mathcal{H}$ such that $||(A-\lambda)f_{n}||arrow 0$ . If $A-\lambda$ were posi-
normal, then we would have $(A-\lambda)^{*}=B(A-\lambda)$ for some $B\in B(\mathcal{H})$ ; consequently,
$||(A-\lambda)^{*}f_{n}||\leqq||B||||(A-\lambda)f_{n}||arrow 0$ , so $\overline{\lambda}\in\pi(A^{*})$ .

This result allows us to determine $p(A^{*})$ if $A$ is the unilateral weighted
shift with weights $w_{n}=(1+1/(n+1))^{2}$ . From [5, Solution 93] we know that
$\pi_{0}(A)=\emptyset$ and $\pi_{0}(A^{*})=\{\lambda:|\lambda|\leqq 1\}=\sigma(A^{*})=\sigma(A)$ . We apply Proposition 3.4 (a)

to conclude that $p(A^{*})=\{\lambda:|\lambda|\leqq 1\}$ .
Since the posispectrum has turned out to be a closed set in each example

presented so far, we might reasonably wonder if $p(A)$ is always closed. Pro-
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position 3.4 (a) will help us, through partial determination of $p(C^{*})$ (where $C$

is the Ces\‘aro operator), settle that question negatively. Since $\pi_{0}(C)=\emptyset$ while
$\pi_{0}(C^{*})=\{\lambda:|\lambda-1|<1\}$ (see [2]), we see that $\{\lambda:|\lambda-1|<1\}\subseteqq p(C^{*})\subseteqq\sigma(C^{*})=$

$\{\lambda:|\lambda-1|\leqq 1\}$ . Since we know that $c*$ is posinormal, we can improve our
claim slightly : $\{\lambda:|\lambda-1|<1\}ip(C^{*})\subseteqq\{\lambda:|\lambda-1|\leqq 1\}\backslash \{0\}$ ; therefore $p(C^{*})$ can-
not be a closed set. This same example also provides us an opportunity to
show that $9(\mathcal{H})$ is not an open set in the operator norm topology on $\ovalbox{\tt\small REJECT}(\mathcal{H})$ ;
for any $\epsilon$ -ball $B_{\epsilon}(C^{*})=\{T\in B(\mathcal{H}):||C^{*}-T||<\epsilon\}$ contains the nonposinormal
operators $C^{*}-\lambda$ for all real $\lambda$ in $(0, \min\{\epsilon, 2\})$ .

We say that an operator $A$ is totally Posinormal if the translates $A+\lambda$ are
posinormal for all R. Proposition 3.1 tells us that any hyponormal operator will
be totally posinormal, and Proposition 3.3 gives an example of a nonhyponormal
totally posinormal operator. We observe that, as an immediate consequence of
Proposition 3.4 (a), any totally posinormal operator $A$ must satisfy $\pi_{0}(A)^{*}\subseteqq$

$\pi_{0}(A^{*})$ .
In [14] Stampfli and Wadhwa studied dominant operators; an operator $A\in$

Ve(.sZC) is dominant if Ran $(A-\lambda)$ I Ran $(A-\lambda)^{*}$ for all $\lambda\in\sigma(A)$ . As a consequence
of Theorem 2.1, we have the following result.

PROPOSITION 3.5. $A$ is totally posinormal if and only if $A$ is dominant.

In an earlier paper [15] Wadhwa studied $M$-hyponormal operators; an
operator $A\in B(\mathcal{H})$ is $M$-hyponormal if there exists a real number $M$ such that
$||(A-\lambda)^{*}f||\leqq M||(A-\lambda)f||$ for all $f\in \mathcal{H}$ and all complex numbers Z. By [14]
and [15], it is known that

{subnormal operators} $\Leftarrow\subset$ {hyponormal operators}

$\subseteqq$ { $M$-hyponormal operators}

$\subseteqq$ {dominant operators}.

AS a consequence of Theorem 3.1 and Proposition 3.5, we have the following:
{dominant operators} $\cup$ { $invertible$ operators} $\subseteqq$ {posinormal operators}.

It has been noted that any hyponormal operator must be totally posinormal.
Among the hyponormal operators, many are noncompact and possess a spectrum
with positive planar measure; the Ces\‘aro operator on $l^{2}$ , for example, has
spectrum $\{\lambda:|\lambda-1|\leqq 1\}$ . On the other hand, Proposition 3.3 supplies an ex-
ample of a compact nonhyponormal (in fact, nonseminormal) totally posinormal
operator. A natural question at this point would be–Does there exist a non-
seminormal, totally posinormal operator whose spectrum has positive planar
measure ? For the answer, consider the unilateral weighted shift with weights
$w_{0}=1,$ $w_{1}=2,$ $w_{k}=1$ for all $k\geqq 2$ (the notation is that of Proposition 1.1); this
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example (see [15] for details) settles our question affirmatively because it is M-
hyponormal, not seminormal, and similar to the unilateral shift.

Anotber natural question arises: Does there exist a nonnormal, totally
posinormal operator with totally posinormal adjoint ? The following example
shows the answer is yes. Let $\{f_{n}\}^{\infty}-$ denote an orthonormal basis for $\mathcal{H}$ ;
define $Tf_{n}=2^{-|n\}}f_{n+1}$ for $-\infty<n<\infty$ . $T$ is dominant, codominant, and non-
normal; for details, see [14].

We have seen that posinormality is not preserved under the taking of ad-
joints. The next theorem is a modest result in the same direction; its proof
consists of a straightforward computation and will be omitted.

THEOREM 3.3. If $A$ is PosinormOl with an invertible interrupter $P$, then
$B=\sqrt{}\overline{P}A^{*}\sqrt{P}$ is posznormal with interrupter $P^{-1}$ .

We illustrate this theorem with an example. Since the Ces\‘aro operator $C$

on $\mathcal{H}=1^{2}$ is posinormal with invertible interrupter $D$ , it follows from Theorem
3.3 that $B=\sqrt{D}C^{*}\sqrt{D}$ is posinormal with interrupter $D^{-1}$ . We note that while
$C$ is hyponormal, $B$ cannot be hyponormal since $B$ has dense range (a con-
sequence of the fact that $c*$ does) and $||D^{-1}||=2$ (see Corollary 2.6); in fact, $B$ is
cohyponormal (see Theorem 2.5), and hence $B^{*}$ is posinormal. We also note that,
since $\sqrt{D}B^{*}(\sqrt{D}^{-1})=DC$ , the operator $B^{*}$ is similar to $U^{*}CU=DC$ ; results
from [12] applied to the terraced matrix $C_{2}\equiv DC$ allow us to conclude that
$\pi_{0}(B^{*})=\emptyset,$ $\pi_{0}(B)=\{\lambda:|\lambda-1|<1\},$ $\sigma(B)=\{\lambda:|\lambda-1|\leqq 1\}$ and I $B||=2$ (see section
5 for more information on this and related matrices). By Proposition 3.4 (a),

we have $\{\lambda:|\lambda-1|<1\}\subseteqq p(B)$ Ei $\{\lambda:|\lambda-1|\leqq 1\}$ . We conclude our discussion of
this example with the remark that $B*$ and $DC$ , although similar, are not uni-
tarily equivalent; justification of that negative claim is left to the reader.

We know that if $A$ is invertible, then both $A$ and $A^{*}$ will be posinormal;
furthermore, $A^{-1}$ and $(A^{-1})^{*}$ will also be posinormal. The following theorem
formalizes these relationships in terms of interrupters; its proof is straight-
forward and will be omitted.

THEOREM 3.4. Assume $A$ is invertible. If $P$ serves as the interrupter for
the $po\alpha normal$ oPerator $A^{*}$ , then (1) $P$ is invertible and (2) $P^{-1}$ serves as the
interruPter for the posrnormal oPerator $A^{-1}$ .

The remaining results of this section address the following question: since
$A-\lambda$ is posinormal for “many” values of $\lambda$ , to what extent does the interrupter
depend on $\lambda$ ? As we see here, if $A$ is to be nonnormal, the dependence of $P$

on $\lambda$ is rather severe.

THEOREM 3.5. Assume $A-\lambda$ is Posinormal for four distinct complex values
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$\lambda=0,$ $\lambda_{1},$ $\lambda_{2}$ , and $\lambda_{3}$ where $\lambda_{3}=\lambda_{1}\lambda_{2}/(\lambda_{1}-\lambda_{2})$ , and assume that the same positive
operator $P$ functions as an interrupter for $A-\lambda$ in each of those four cases. Then
$A$ is normal.

PROOF. Since $(A-\lambda)(A-\lambda)^{*}=(A-\lambda)^{*}P(A-\lambda)$ for $\lambda=0,$ $\lambda_{1},$ $\lambda_{2}$ , and $\lambda_{3}$ , we find
that, for $k=1,2$ , and 3, $(A-\lambda_{k})(A-\lambda_{k})^{*}=(A-\lambda_{k})^{*}P(A-\lambda_{k})$ reduces to the
equation

$\frac{1}{2}(I-P)={\rm Re}[\frac{1}{\lambda_{k}}(I-P)A]$ .

Therefore ${\rm Re}[((\lambda_{1}-\lambda_{2})/\lambda_{1}\lambda_{2})(I-P)A]={\rm Re}[(1/\lambda_{2})(I-P)A]-{\rm Re}[(1/\lambda_{1})(I-P)A]=0$ ,
from which it follows that $(1/2)(I-P)={\rm Re}[(1/\lambda_{3})(I-P)A]=0$ , and hence $A$ is
normal.

A slight modification of the above proof leads to the following result.

COROLLARY 3.4. Assume $A-\lambda$ is posinormal for three distinct real values of
$\lambda$ and that the same positive operator $P$ functions as an interrupter for $A-\lambda$ for
each of those three values. Then $A$ is normal.

An even tighter result is obtained when the question is recast in terms of
the multiplier $B$ .

THEOREM 3.6. Assume $A-\lambda$ is posnormal for two distinct values of $\lambda$ , and
assume that the same operator $B$ functions as a multiplier for $A-\lambda$ for both of
those values. Then $A$ is normal.

PROOF. Assume $(A-\lambda_{1})^{*}=B(A-\lambda_{1})$ and $(A-\lambda_{2})^{*}=B(A-\lambda_{2})$ where $\lambda_{1}\neq\lambda_{2}$ .
Then $(\overline{\lambda}_{1}-\overline{\lambda}_{2})I=(\lambda_{1}-\lambda_{2})B,$ $soB=((\overline{\lambda}_{1}-\overline{\lambda}_{2})/(\lambda_{1}-\lambda_{2}))I$ . $ThereforeP=B^{*}B=Iserves$

as an interrupter for $A-\lambda$ when $\lambda=\lambda_{1},$ $\lambda_{2}$ ; it follows that $A$ is normal.

4. Discrete generalized Ces\‘aro operators.

In this brief section we consider the lower triangular matrices

$A_{\alpha}=[ \frac{\alpha}{2}\frac{\alpha^{2}}{3}1$

$\frac{1}{2}\frac{\alpha}{3}0$ $\frac{1}{3}00$

$|]$ , $oSa\leqq 1$ ,

regarded as operators on $l^{2}$ . These operators have been studied in $[9, 10]$ . $l-$
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[9] it was shown that $A_{\alpha}$ is not hyponormal when $0<\alpha<1$ ; this is in stark
contrast to the fact that both $A_{1}=C$ and the diagonal operator $A_{0}$ are hypo-
normal (better yet: subnormal and self-adjoint, respectively). Here we will
show that these operators all belong together, however, when classified in terms
of posinormality. The case $\alpha=0$ is trivial, so we restrict our attention to
$0<\alpha\leqq 1$ . Define $B_{\alpha}=[b_{mn}]$ by

$b_{mn}=|_{\frac{\alpha^{n-m}(1n+1}{n+2}\alpha}^{-\frac{n+1}{n+2}\alpha^{2)}}0$

if $m\leqq n$

if $m=n+1$

if $m>n+1$ .

Note that when $\alpha=1,$ $B_{\alpha}$ is the contraction (hence bounded) operator $\kappa(C)$ from
section 2. We need to know that $B_{\alpha}$ is also bounded when $0<\alpha<1$ . Once that
is determined, a routine computation gives $A_{\alpha}^{*}=B_{\alpha}A_{\alpha}$ , settling the question of
posinormality for $A_{\alpha}$ .

TO see that $B_{\alpha}$ is bounded, we consider the decomposition $B.=Y+Z$ where
$Y=[y_{mn}]$ is a weighted shift satisfying $y_{mn}=b_{mn}$ when $m=n+1$ and $y_{mn}=0$

otherwise and $Z$ is the upper triangular matrix whose entries on and above the
main diagonal agree with those from $B_{\alpha}$ and whose other entries are all zero;
then $||Y||\leqq 1$ and $||Z||\leqq||T_{\alpha}||$ where

$T_{\alpha}=\{\begin{array}{llllll}1 \alpha \alpha^{2} \alpha^{3} \vdots \cdots 0 1 \alpha \alpha^{2} \vdots \cdots 0 0 1 \alpha \vdots \vdots\end{array})$ .

It remains to show that the Toeplitz matrix $T_{\alpha}$ or its adjoint is bounded. If
$t_{n}=\alpha^{n}$ for $n=0,1,2,$ $\cdots$ , and $r_{n}=0$ for $n=-1,$ $-2,$ $-3,$ $\cdots$ , then $\Sigma_{n}|t_{n}|^{2}=$

$(1-\alpha^{2})^{-1}<\infty$ , so the $t_{n}’ s$ are Fourier coefficients of a function $\acute{\varphi}$ in $L^{2}(0,1)$ ; the
function $\phi$ is given by

$\phi(x)=\sum_{n\approx 0}^{\infty}\alpha^{n}e^{2\pi\ell nx}=(1-\alpha e^{2\pi\ell x})^{-1}$

Since $\phi$ is bounded (with $|\emptyset(x)|\leqq(1-\alpha)^{-1}$ for all $x$ ), the matrix $\tau_{\alpha}*is$ bounded
[see 6, pp. 24-25].

THEOREM 4.1. $A_{\alpha}$ is posinormal for all $\alpha\in[0,1]$ .
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5. Shift-conjugated Ces\‘aro matrices.

In this section we consider the terraced matrix $C_{k+1}=(U^{k})^{*}C(U^{k})$ for posi-
tive integers $k$ :

$C_{k}=(_{\frac{1}{k+2}}^{\frac{1}{k+1}} \sim\frac{1}{k}\frac{1}{k+2}\frac{1}{k+1}0\frac{1}{k+2}00$ $|]$ .

Visually, $C_{k+1}$ can be obtained from the Ces\‘aro matrix $C=C_{1}$ by deleting the
first $k$ rows and columns from $C$ . We note that in fact for all $k>0$ (and not
just the positive integers) the matrix $C_{k}$ gives a bounded operator on $t^{2}$ : $C_{k}$

can be expressed as $D_{k}C$ where $D_{k}$ is the diagonal matrix with diagonal
$\{(1+n)/(k+n):n=0,1, 2, \}$ ; it is clear by inspection that $||C_{k}||\leqq||C||=2$ for
$k\geqq 1$ (the proof that $||C||=2$ appears in [2]); and for $0<k<1$ , we have $||C_{k}||=$

$||D_{k}C||\leqq||D_{k}||||C||=2/k$ . Results from [12] and [13] justify the remaining
assertions of the next theorem.

THEOREM 5.1. For each $k>0,$ $C_{k}$ is a bouaded operator on $l^{2}$ ; $||C_{k}||=2$ when
$k\geqq 1$ and $||C_{k}||\leqq 2/k$ when $0<k<1$ . Moreover, $\pi_{0}(C_{k})=\emptyset$ unless $k<1$ , in which
case $\pi_{0}(C_{k})=\{1/k\}$ ; $\pi_{0}(C_{k^{*}})=\{\lambda:|\lambda-1|<1\}\cup\{1/k\}$ ; and $\sigma(C_{k})=\{\lambda:|\lambda-1|\leqq 1\}$

$\cup\{1/k\}$ .

We show that, for all $k>0,$ $C_{k}$ is posinormal with interrupter $P=[p_{mn}]$

whose entries are given by

$p_{mn}=\{$

$\frac{n^{2}+(2k+1)n+k^{2}+1}{(n+k+1)^{2}}$ if $m=n$

$\frac{1-k}{(m+k+1)(n+k+1)}$ if $m\neq n$ .

We comment that working here with interrupters rather than multipliers puts
us in better position to investigate hyponormality once posinormality is settled.
Note that when $k=1,$ $P$ reduces to the diagonal operator $D$ . To see that $P$ is
bounded, we observe that $P$ can be decomposed as $P=L+R+L^{*}$ where $R$ is
the diagonal matrix with diagonal from $P$ and $L$ is the lower triangular matrix
whose entries below the main diagonal agree with those from $P$ and whose
other entries are all zero; then $||R||\leqq 1$ and $||L||\leqq|k-1|||C||=2|k-1|$ , so $||P||\leqq$

$1+4|k-1|$ .
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One can check that $PC_{k}\equiv[\alpha_{mn}]$ has matrix entries satisfying

$\alpha_{mn}=\{$

$\frac{n+1}{(m+k+1)(n+k)}$ if $m\geqq n$

;
$\frac{1-k}{(m+k+1)(n+k)}$ if $m<n$

using these entries, it is not hard to verify that $C_{k}C_{k^{*}}=C_{k^{*}}PC_{k}$ . In order to
see that $C_{k}$ is posinormal, it remains to show that $P$ is positive; it suffices to
show that $P_{N}$ , the $N^{th}$ finite section of $P$ (involving rows $m=0,1$ , , $N$ and
columns $n=0,1,$ $\cdots$ , $N$), has positive determinant for each positive integer $N$.
For columns $n=1,2$ , $\cdot$ . , $N$, we multiply the $n^{th}$ column from $P_{N}$ by $(k+n+1)/$

$(k+n)$ and then subtract from the $(n-1)^{st}$ column. Call the new matrix $P_{N’}$

and note that $\det P_{N}’=\det P_{N}$ . We now work with the rows of $P_{N}’$ : For $m=$

$1,2$, $\cdot$ .. , $N$, we multiply the $m^{th}$ row from $P_{N}’$ by $(k+m+1)/(k+m)$ and then
subtract from the $(m-1)^{st}$ row. The resulting matrix is tridiagonal and also
has the same determinant at $P_{N}$ ; that new matrix is constantly $-1$ on the two
off-diagonals and is almost constantly 2 on the main diagonal – the only exception
is the last entry: $(k^{2}+2Nk+N^{2}+N+1)/(k+N+1)^{2}$ . To finish our computation,
we work this tridiagonal matrix into triangular form: Multiply each row $m=$

$0,1,$ $\cdots$ $N-1$ by $(m+1)/(m+2)$ and add to the $(m+1)^{st}$ row. The new matrix
is triangular and has diagonal {2, 3/2, 4/3, $\cdots$ , $(N+1)/N$, $(N+k^{2}+1)/$

$(N+1)(N+k+1)^{2}\}$ ; from this we conclude that $\det P_{N}=(N+k^{2}+1)/(N+k+1)^{2}$ .
We note that the positivity (and uniqueness) of $P$ could have been demon-

strated more briefly using the fact that $C_{k}$ has dense range; however, our
computational procedure provides a springboard for investigating the positivity
of $I-P$. To see when $I-P$ is positive, we compute $\det(I-P)_{N}$ where $(I-P)_{N}$

is the $N^{th}$ finite section of $I-P$. Following exactly the same sequence of
column and row operations we used for $P_{N}$ , we arrive at a tridiagonal matrix
of the following form:

$Y_{N}=\{$
$d_{0}a_{0}00$

$a_{1}d_{1}a_{0}0$

$d_{2}a_{1}0$

. $d_{N-1}a_{N-1}a_{N-1}d_{N}000.]$

where $a_{n}=-1/(k+n+1),$ $d_{n}=(2k+2n+3)/(k+n+1)^{2}(0\leqq n\leqq N-1)$ , and $d_{N}=$

$(2k+N)/(N+k+1)^{2}$ . In transforming $Y_{N}$ into a triangular matrix with the
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same determinant, we find that the new matrix has diagonal entries $\delta_{n}$ which
are given by a recursion formula: $\delta_{0}=d_{0},$ $\delta_{n}=d_{n}-a_{n-1^{2}}/\delta_{n-1}(1\leqq n\leqq N)$ . An
induction argument shows that $\delta_{n}\geqq(n+k+2)/(n+k+1)^{2}$ for OS $n\leqq N-1$ ; since
$d_{N}$ departs from the pattern set by the earlier $d_{n}’ s,$ $\delta_{N}$ must be handled
separately: $\delta_{N}=d_{N}-a_{N-1}^{2}/\delta_{N-1}\geqq(k-1)/(N+k+1)^{2}$ . So $\det(I-P)_{N}=\Pi_{J=0}^{N}\delta_{j}>0$

for $k>1$ .
The computation just completed tells us that $C_{k}$ is hyponormal when $k>1$ .

Further calculations (we omit the details) reveal an exact value for the deter-
minant:

$\det(I-P)_{N}=[\prod_{j\Leftarrow 0}^{N}\frac{1}{j+k+1}][(k-1)\sum_{j=0}^{N-1}\frac{1}{j+k+1}+\frac{2k+N}{N+k+1}]$ .

For $k<1,$ $\det(I-P)_{N}$ is eventually negative, so $C_{k}$ is not hyponormal in this
case. We summarize the main results of this section in the following theorem.

THEOREM 5.2. $C_{k}$ is posinormal for all $k>0;C_{k}$ is hyponormal if and only

if $k\geqq 1$ .
The fact that $C_{k}$ is not hyponormal when $k=1/2$ has a curious consequence,

especially in light of our knowledge of the Ces\‘aro matrix.

COROLLARY 5.1. The matrix

$\{\begin{array}{lllll}1 0 0 \cdots \cdots\frac{1}{3} \frac{1}{3} 0 \cdots \cdots\frac{1}{5} \frac{1}{5} \frac{1}{5} \cdots \cdots \vdots \vdots\end{array}\}$ ,

regarded as an operator on $\mathcal{H}=l^{2}$ , is not hyponormal.

Before leaving Theorem 5.2, we note that [13, Lemma 4] shows, using an
entirely different approach from that presented here, that $C_{k}$ is hyponormal
for $k>1$ .

Earlier we saw that the Ces\‘aro operator on $l^{2}$ is coposinormal (see Theorem
2.3). The next theorem settles the remaining cases.

THEOREM 5.3. $C_{k}$ is coposinormal for all $k>0$ .

PROOF. Define $B=[b_{mn}]$ by
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$b_{mn}= \{_{-1}^{\frac{k}{k+m}}\frac{1}{k+m}0$

$ifif0<n\leqq mn=0$

if $n=m+1$

if $n>m+1$ .

Then $B+U^{*}$ is a lower triangular matrix with nonnegative entries, all domi-
nated by the corresponding entries from $( \max\{1, k\})C_{k}$ ; it follows that $B\in$

$\ovalbox{\tt\small REJECT}(l^{2})$ . A routine computation verifies that $C_{k}=BC_{k^{*}}$ , and the proof is complete.

We note that when $0<k<1$ , the operator $C_{k}$ illustrates that it is possible
for an operator having spectrum with positive planar measure to be both posi-
normal and coposinormal without being seminormal.

6. Questions and comments.

In closing, we cite some questions for possible further study.
(1) The development of analytic models for hyponormal and subnormal

operators has resulted in some interesting connections with function theory. Is
a similar development possible for posinormal operators?

(2) HOW much more can be said about the posispectrum, and what can be
said about operators satisfying $p(A)=p(A^{*})$ ?

The author would like to express his gratitude to Billy Rhoades and to
the referee for some helpful comments and suggestions.
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