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   § 0. Introduction. 

   This paper provides a partial answer to the following question. 

   QUESTION. Assume that a nonsingular complete algebraic variety X of dimen-
sion n+2 (n>_1) contains a nonsingular rational surface S with Nsix ample. 
Then is X unirational? 

   In the previous paper [2], we have solved this question affirmatively in the 
case where n=1 (i, e., X is three-dimensional) and S is toric. Here we shall 

generalize the main theorem of [2] to the higher-dimensional case. The main 
result is the following. 

   MAIN THEOREM. Let n be a positive integer. Let X be a nonsingular com-

plete algebraic variety of dimension n+2. Assume that X contains a nonsingular 
projective toric surface S and that the following two conditions (a) and (b) are 
satisfied : 

   (a) Ns,x=3u=1 Au where each A~ is an ample line bundle, 
   (b) H1(S, NS1x®Sq(Ns,x))=0 for each positive integer q. 

   Then X is unirational. 

   As is easily seen, this theorem is a generalization of the main theorem of 

[2]. The following corollary would be a help to understanding of the state-
ment of Main Theorem. 

   COROLLARY. Let X be a nonsingular complete algebraic variety of dimension 
n+2 and L a line bundle on X. Assume that there exists a sequence 

                      X=X0DX1J... ~Xn=S 

of subvarieties of X satisfying the following three conditions : 

   (1) Xi is a smooth member of the linear system ( L xti-1 I on Xi_1 (1<i<_n), 
   (2) X, =S is a toric surface, 
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   (3) L I s is ample on S. 
   Then X is unirational. 

   The way of proof heavily depends on the paper [2] and we refer to it for 
our principle and technique. What we should emphasize here again is that 
Hironaka-Matsumura's theorem ([3] Theorem (3.3)) plays a central role in our 

theory. Due to this theorem, we can reduce the problem to the study of 
formal neighbourhoods of a toric variety. 

   In § 1 we recall how to construct regular formal neighbourhoods of a given 
smooth variety. Such construction is rather well-known and we have stated it 
in [2] in the three-dimensional case. Here, in order to fix the notation, we 
recall the correspondence between transition functions of the coordinates of 
neighbourhoods and certain Cech cochains without proof. 

   In § 2 we state a key lemma (Lemma 2.3) on formal neighbourhoods of a 
nonsingular rational curve, which is a slight generalization of Lemma 2.6 of 

[2]. This lemma provides a sufficient condition for a neighbourhood of P1 to 
be rationally dominated (cf. Definition 2.1). 

    In § 3 we discuss a semi-group, which we shall call a scope, associated to 
a regular formal neighbourhood (X, S) of a toric variety S such that the normal 
bundle Ns,x is a direct sum of equivariant line bundles. The notion of the 
scope has been introduced in [2] in the case where X is three-dimensional and 
S is a toric surface. Here we shall generalize and refine it. The notion of the 
scope is a technical core of our theory, which makes our arguments on formal 
neighbourhoods easy to handle. 

    §'s 4, 5 and 6 are devoted to complete the proof according to the way of 
proof established in [2]. We estimate the scope of a neighbourhood (X, S) of 
S by the induction on p(S), take a nonsingular rational curve C on S and apply 
Lemma 2.3 to the neighbourhood (X, C)A of C. By Hironaka-Matsumura's 
theorem (loc. cit. ), we obtain Main Theorem. 

    In § 7 we shall state some supplementary propositions and problems. First 

we make some remarks on the condition (b) of Main Theorem. We show an 
example in which the condition (b) is not satisfied and the scope is so big that 
we cannot apply our theory itself (cf. Example 7.2). Next we make a remark 
on the algebrizability of formal neighbourhoods, which we do not discuss in the 

proof of Main Theorem. We determine all the algebrizable regular formal 
neighbourhoods of dimension two of P1 with ample normal bundle, according 
to the idea of M. Reid (cf. Proposition 7.4, Example 7.5). Finally we discuss 

general problems and propose a conjecture (Conjecture 7.8). 
    The feature of our theory is very similar to that of [2]. The following 

two points should be distinguished from [2]. 

    (1) We define the scope in arbitrary dimension, though we shall later
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       restrict ourselves to discussing neighbourhoods of a toric surface. 
   (2) We define the scope more intrinsically than [2]. Let S be a nonsingular 

      toric surface and N a direct sum of equivariant line bundles on S. 
       We realize the scope as a semi-group contained in the variety 

       Spec (eq>o 5(N)), which makes our arguments more perspicuous. 
Once the theory of the scope is established in the higher-codimensional case, 
the remaining problem of generalization of the result of [2] is at most a kind 
of technical complexity, though the result is quite improved. It suggests that 
our approach is essentially independent on the codimension of subvarieties, which 
provides an evidence for Conjecture 7.8. 

   ACKNOWLEDGEMENT. The author would like to express his thanks to Pro-
fessors S. Iitaka and Y. Kawamata for their advices and warm encouragement. 
He discussed the results of this paper with Professors I. Nakamura, M. Reid, 
I. Shimada, T. Usa and many other people. He also expresses his thanks for 
their stimulating advices and discussions. 

   § 1. Construction of neighbourhoods. 

   In this section, we discuss how to construct regular neighbourhoods of a 
given smooth variety with a given vector bundle as the normal bundle. Such 
construction is rather well-known (cf. [2], [7]). We briefly survey this general 
theory without proof in order to fix the notation. For the proof we refer to 
§ 1 of [2], which is still effective in our case after a slight modification. 

   Let S be a smooth variety of dimension m and N a vector bundle on S of 
rank n. We discuss how to construct a regular neighbourhood (X, S) of S with 
NS, x = N. For simplicity, we restrict ourselves to the case where S is covered 
by affine open subsets isomorphic to because we shall later assume that S 
is a nonsingular toric variety, which satisfies the above condition. Let QU= 
(U1)iE1 be an affine open covering of S, and let (X, S) be a regular formal neigh-
bourhood of S with covering U=(73 such that Nsrx N N, Ui=Ui s. We assume 

N that U1~Spec k [t1] and Ui~Spf k [ti] [[xi]], where ti=(t2, • • , tm) and xi=(x27 
                                        N N 

• • • , x 2) denote the coordinates. On UinU; (i, j E I ), the coordinates are related 
to each other by the following transition relation : 

                         (ti, xi) = f 11(t, xj), 

where f ij is a vector-valued formal power series in xj with the coefficients in 
I'(UifU3, Os). We put 

                          = (gij, hij) 

                                      - ( ' ... m hi hn )                                     gij , , gij, ij, , ij ,
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that is, ti=gi j(t j, x j), x = h (t j, x1), (1 _<,im, 1 <_ p <_ n). We expand gz j and 
h' j in the following way : 

              gij - gijl0(tj)+gijl i(tj, xj)+ ... +gzjlq(tj, xj)+ ... , 

              h = h l0(tj)+h1(tj, xj)+ ... +hijlq(tj, xj)+ ... 

where gi j, q and h i j I q are homogeneous polynomials of degree q in x,. Note that 
h10=O. We put: 

                                                                                       1 ,,, m )                               g ijlq - (gijlq, , gijiq 

                             h ijlq - (h ijlq, , ijlq), 

                          f ijiq = (gi,lq, hij q) . 

We also use the following notation : 

                       gj[gj = 

                         h [q] = h1+ ... +h 31q, 

                                                 1 In. 
                             gi j[qj - gi j[qJ, "' , gi[(J) 

                                            1 n                           1ij[gJ - (hij[gJ, , Z j[qJ) , 

                        f i j[qj = (gij[gJ, hi j[q]) 

The collection {gi j, 0} of the terms of degree zero is nothing but the transition 
functions that determine the variety S, which is already given. The collection 

{hij11} is nothing but the transition functions that determine the vector bundle 
N, which is also given. 

   To construct (X, S), we have to give a collection { f i j} satisfying the fol-

lowing 

   (1) {gi j 10} determines S ; 

   (2) {hij11} determines N; 

   (3) fij(fjk(tk, xk))=fik(tk, xk) for i, j, kEI. 
We successively construct the q-th infinitesimal neighbourhoods. We introduce 

another notation. For f, g~I'(UinU,, Os)[[xj]], we write f _=q g if f 

g mod (x). 
    To construct the first infinitesimal neighbourhood, we have to give a collec-

tion { fij11} and determine { fij[1J} satisfying the following condition (*)1: 

(*)1 f ij[1J(f jk[1J(tk, xk)) =1 f ik[1J(tk, xk) for i, j, k E I. 

To the vector-valued function gi j, i, we attach an element Gi j, i P(UinU j, 

Os®Ny) in the following way :
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                         m a 

~ 

              Gij11 = J (-j-) ~gijll(gji1o, hji11) mod (x1)2 

z 

                  = (---) a l ®'1(ti)x i mod (x)2, 
                             a=1 fi=i ati 

where {(6/at)' 1<_A__<m} denote the local basis of the sheaf Os on Ui and 

{xi mod (xi)2} is the local basis of the sheaf Nv on Ui. Since 1 belongs to 
I'(UinU;, Os), we can consider Gi;11 to be an element of P(UinU;, Os®Nv). 
We put Q1=Os®Nv. Thus we often identify a collection {gijll}i,3E1 with G1= 

(Gijil)i,JE1~Cl(V, ~7). 

   CLAIM 1.1. A collection {gi;11} determines {gij[1~} satisfying the condition 

(*)1 if and only if the corresponding Cech cochain G1 satisfies the cocycle condi-
tion, i, e., G1~Z1(V, ~1). 

   CLAIM 1.2. Let G, G'EZ1(~1). Assume that G'-G~B1(V, ~2). Then the 

first infinitesimal neighbourhoods determined by G and G' are isomorphic to each 
other. 

   Suppose that a description of the (q-1)-th infinitesimal neighbourhood is 

given (q?2), that is, a collection {fi;[q_1~} of the transition functions is deter-
mined up to degree q-1 with respect to the coordinates x;'s. We have 

f i j[q-1](f jk[q-1])-q-lf ik[q-1]. We put 

                  (ijk iq = (f ij[q-1](f jk[q-17)-f ik[q-1])[q7 

                        = (aijkiq, bijklq) 

                                     1 m 1 n                             _ (aijkiq, ... , aijklq , bijkiq, ... , bijklq)~ 

To the function (blJ k I q, we attach an element ?' i j k l q E l (Ui nU jf U k, & X S® 

Sq(Nv)) in the following way : 

                        m a 
                    ijklq kill)                 ~' - - v1 aijklq(gkilo, h 

                        f=1 ati 

                                      n a 
                           axe ~b~kjlq(gkilo, hkill) mod (xi)q+1 

m 

                    1 q0 ate ~atijklq(xi)q                                          - 
,~ 2 

                                                     1 • q=q 

n 

                             e ®6lq(xi) mod (xi)q+1'                            111 ax 
                                          1.4=4 

where a/ati (1 _<,i<_ m) and 0/0x' (1 p _< n) denote in this time the local basis 
N of the sheaf OX I s on U1, (xi) mod (xi)q+l ( .9=q, q>o) are the local basis of
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the sheaf S(N) on Ui with q=(q1, , qn), 0=(0, • • , 0), 1=(1, , 1), (x1)i= 

(x~)q1 (x )qn and 1 • q=q1~' • • • +qn denoting the usual inner product. 
   From now on, we use the following notation about vectors unless otherwise 

mentioned. 

   DEFINITION 1.3. Let d =(a 1, ..•, an), b =(b1, • • • , bn)• We denote d > b (resp. 
d >_ b) if a > b (resp, a0>_ b0) for each p with 1 p < n . We denote by 0 the 
vector (0, ..•, 0). We denote by 1 the vector (1, • • • , 1). We denote by d,, the 
vector of which the p-th coefficient is equal 1 and the others are 0. We define 
d•b=alb1+ +anbn and (d)b=(al)b1 (a,1)bn. 

   We put Fq=0x (s®'Sq(Nv). Thus we often identify a collection {~bijk Iq} i, j, kEI 
with ?Fq=(?'ijklq)~C2(`U, EFq)• 

   CLAIM 1.4. P gEZ2(9l, Fq). 

   To construct the q-th infinitesimal neighbourhood, we have to add a collec-
tion { f ijiq} of the terms of degree q to { f ij[q_1]} which is already determined 
and determine { f ij[q]} satisfying the following condition (*)q: 

(*)q f ijLq (f jkLq (tk, xk)) =q f ik[q](tk, xk) for i, ~, kEI. 

To the function f ijiq=(gijiq, hijfq), we attach an element Fij,q~I'(UinU,, Fq) 
in the following way : 

                        m U ~ 
               Fijlq = ®gijlq(gji10, h111) 

                           ~=1 Uti 

n 
                   + Uxi Oh('jiq(gjiio, h11) mod (x1)'. 

Thus we often identify a collection { f i j I q} i JEI with Fq=(F1 j I q)i, jEI E C1(`v, Fq) 

   CLAIM 1.5. 

   (1) In order to satisfy (*)q, Fq must satisfy dFq=-?/Tq, where d denotes the 
coboundary map. In particular, if gB2(V, sq), there does not exist such a 
cochain Fq. 

   (2) Assume that Fq and FQ determine two q-th infinitesimal neighbourhoods 
and that FQ-FgEBI(V, Fq). Then these two neighbourhoods are isomorphic to 
each other. 

   § 2. RD Lemma. 

   In this section we state a lemma which plays a key role in this paper and 
which is a slight modification of Lemma 2.6 in [2].
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   DEFINITION 2.1. Let (X, C) be a regular formal neighbourhood of a non-
singular rational curve C, that is, X is a regular formal scheme with the re-

duced subscheme C. The neighbourhood (X, C) is said to be rationally dominated 

if there exists a dominant morphism cp : (PN, l)-(X, C), where l denotes a line 
in PN and (PN, l)~ the formal completion of PN along 1. 

   PROPOSITION 2.2 (cf. [2] Prop. 2.5). Let X be a nonsingular complete alge-

braic variety. Assume that there exists a nonsingular rational curve C such that 

(X, C)~ is rationally dominated. Then X is unirational. 

   PROOF. We refer to [2]. This proposition is an easy corollary of Theorem 

(3.3) of [3]. 

   The following is a key lemma in this paper, which we shall call the RD 
Lemma, and which we have proved in the three-dimensional case in [2]. 

   LEMMA 2.3 (RD Lemma). Let 

        (X, C) = Spf (k [t0] [[xo, ... , xor]])USpf (k [t1] [[xi, ... , xi ]~) 

be a formal neighbourhood of a nonsingular rational curve C with the following 

transition relation of the coordinates : 

         t0 = (ti)-1+ aagl...gx(tl)-a(xi)g1 ... 
                                                    q1, ..., qN? 0 

                                             ql+...+q N? 1 

                xp = bag1...gN(t1)-a(xD°' ... (xi )qN 
                     q1, ...+ N0 

                        ql qN-

(1<_p_<N). Assume that there exists a positive integer r satisfying the following 
condition : If a<(q1+ ... +qN)/r, then aaq,...gx=O and bagl...gN=O for all p. 

   Then the neighbourhood (X, C) is rationally dominated. 

    PROOF. Let l be a line in P N+1. Then we have 

      (pN+1' 1Y ~' Sp f (k [u0] [[zo, zo ]])USpf (k [u1] [[zi, ... , zi ]]) 

with u0=(u1)_1 and zo=(u1)-1z'i (1_<<p<_N). We can explicitly construct a do-
minant morphism co : (pN+1, l)~->(X, C) by the following two homomorphisms ~&0 
and ~l'1 of rings : 

              ~b0 : k [t0] [[xo, ... , x6]] --* k [u0] [[zo, ... , zo']] 

                  t0 I-~ (u0)r+ aagl...gN(u0)ra-q1-..._gN(z0)g1 ... (z0 )qN 

                  xp ~~bagl...q~,(u0)ra-ql-..._gN(z0)gl ..: (z0 )qN , 

and 

             ~ : k [t1] [[xi, ... , xi ]] -~ k [u1] [[zl, ... , zN]],
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                     tl (1)' 

, 

                     xi'-* zi (1~p~N) • 

   § 3. Semi-groups associated to neighbourhoods. 

   This section provides a generalization and refinement of § 3 of [2]. We 

introduce certain semi-groups, which we shall call scopes, in order to describe 

regular formal neighbourhoods of a smooth toric variety whose normal bundle 

is isomorphic to a direct sum of equivariant line bundles. We use the same 

notation as in § 1. Let S be a nonsingular projective toric variety of dimension 

m. Let A1, ..•, An be equivariant line bundles on S and N= E=1 A. Let 

(X, S) be a regular formal neighbourhood of S with NS,X N N. 
   We use the following notation for q>0 and q=(q', •• , qn) with I •=q1+ 

 ...     Qn= 
                          Eq _' ~X I S~Sq(Nv) 

                       Qq = ~S~Sq(Nv) 

                     JCq = N~Sq(Nv) , 

                    q = ~X I S®(A1)-q1® ... 

                                           ... ~(A n)-qn ,                    ~' = OSO(A1)_gi® 

                       = A®(A1)1® ... 

n 

                                                      f~=1 

Directly from the definition, we have the following : 

                                  ~q = { ®'q , 

                             ~q = 

n 

                                                             p=1 i.=q 

We have the following exact sequences : 

                      o --~ QQq --~ £fq -~ 9Cg --~ 0, 

                    o---r-c---o.                          C ~ -~ ~~ 

To construct transition functions of (X, S), we have to give collections {g,1} 

and {(g2,,q, h2,,q)} (q>>_2), or equivalently Cech cochains G1EZ1(V, Q1) and FqE



            Formal neighbourhoods of toric variety and unirationality 393 

C1(V, EFq) (q>_2) (cf. § 1). We also use the following notation throughout this 

paper. We may assume that the top terms {gi; i o} and {h111} ;of the transition 
functions are monomials and that {h1} ;1determines the line bundle A~ (1 <_,u 
<n). For 1<_A<m and 1p<_n, we put 

m 

                              A (tv)8(A,v;ti, i)                             g1210-

                                  h1 v=1 

m 

                        _ fj(t~)hcPx . 
                                                 v=1 

We define T(i, j)EM(m+n, m+n : Z) in the following way : 

                         G(i, j) 0 
                  T (i, j) _ 

                         H(i, j) En 

with 

              G(i, j) _ (g(A, .i ; i, j))1~ ~i m E M(m, m ; Z), 
                                                                  ls_v~m 

               H(i, j) _ (h(p, v,• i, j))1~~t5n M(n, m ; Z). 
                                                                1<_v~m 

We put 

              g (A; i, j) _ (g(A, 1; i, j), ... , g(2, m; z, j)) 

              h(~; i, j) _ (h(p, 1; i, j), ... , h(p, m ; i, j)) 

It is easy to see the following. 

   CLAIM 3.1. 

   (1) T(i, j)EGL(m+n, Z) for any i, jEI. 
   (2) T(i, j)•T(j, k)=T(i, k) for any i, j, kEI. 

   (3) (g~~io)(z)(h~~i1)(i>-(t~)a(~)(x~)~c~) if 

               (a(j), ~(J)) _ (a(i), $(i))T(i, j), 

where a(i)=(a1(i), ... , am(i)), Vi(i)=(131(i), •", j3n(i)), etc.. 

N 

   Let us denote by M the group of the characters of Spec (Eq>o Sq(Nv)) of 

N dimension m+n, which is also toric. We denote the characters in M induced 
by the coordinates ti and x~` (i I, 1 <_ Am, 1 <_p <_ n) of (X, S) by [tfl and 

[x i ], respectively. We put [tE] =([t], , [tm]) and [x1] =([xi], •", [x i ] ). 
We define the scope of a description f= {f,} = h3)} of (X, S). 

    DEFINITION 3.2. The scope of a description f = { f ~;} i, ~Er of (X, S) is the 
N semi-group contained in M generated by the following elements : 

   (a) a • [t;] + • [x;] -- [ti] with (t;) (x;) appearing in the function gi, (1 <_ 
~Cm);
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   (b) a • [ti] +i • [x,] - [xfl ] with (t;)"(x j)~ appearing in the function h : (1 

where i and j run all over the index set I. We denote it by Scope (f). 

N 

   Since it is convenient to fix an integral basis of M~ Zm+n, we make another 

definition. 

   DEFINITION 3.3. Let OEI. The scope of a description f = { f ij} of 

(X, S) with respect to the coordinates (t0, x0) is the semi-group contained in 
Zm+n generated by the following elements : 

   (a) (a-g(A; i, j), )T (j, 0) with (tj)"(x;)~ appearing in the function g~; 

(1A in); 
   (b) (a-h(p; i, j), Q-e~)T(j, 0) with (tj)a(x;)~ appearing in the function h 

(l~pcn), 
where i and j run all over the index set I• We denote it by Scope (f; 0). 

   REMARK 3.4. Let O I. It is easy to see that Scope (f; 0) is the repre-

sentation of Scope (f) in Zm+Th with respect to the integral basis {[t0], [x0] } of 
N M. Note that the matrix T (i, j) is nothing but the transition matrix of the 

bases {[ti], [x1]} and {[t;], [x]} and that 

           Scope (f ; j) = Scope (f ; i)T (i, j) for i, j I. 

   We also define the scopes of elements or subsets of Cp(w, eq), Cp(w, ~q) 
and Cp(V, ~Cq). 

   Let F=(Fio...ip)~Cp(V, EFq) with q). We write 

                       m a 
             Fio".ip " ~

o GZOq.~p(t~0) ate 'Y(xi0)q 

2 

                             1 ~=q ~ 

n 

                         ~~ Hip. i p(ti0) axe` ~(xio)q mod (xi0)q~', 
                                    (i-1 iq0 ~~                                              1 ' ~=q 

where a/atz0®(xi0)4 mod (x10)+l and a/axz0®(xi0)q mod (xi0)q+l (1<_A<m, l_<p<n, 
1 • q=q) denote the local basis of E'q on Ui0. 

   DEFINITION 3.5• 

   (1) The scope of the above element F~Cp(V, Fq) is the semi-group con-
tained in M generated by the following elements : 

   (a) a • [t0]+4• i[x0]-[t0] i~with (ti0)a appearing in G do i p (12m);                                                      <_ 
(b) a•[t10]+.[x0]-[x0] q iwith (ti0)a appearing in H~o. i p (1 p <_ n ), 

where i0, ip run all over the set I. We denote it by Scope (F). 
   (2) Let OEEI. We denote the representation of Scope (F) in 7m+n with 

respect to the basis { [t0], [x0] } by Scope (F; 0) and we call it the scope of F 
with respect to the coordinates (t0, x0). More explicitly, we define Scope (F; 0)
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to be the semi-group in Zm+m generated by the following elements : 

   (a) (a-eA, q)T(i0, 0) with (ti0)a appearing in Gioq.ip (1<_,i<m); 
   (b) (a, q-e~)T (i0, 0) with (t10)" appearing in H o.qi p (1 _< p < n). 

   (3) Since is a subsheaf of Fq (q=I • q), we naturally define the scope of 
an element F of C(V, Eq). That is, we define Scope (F) in the above way 
regarding F as an element of C(V, EFq). 

   (4) Let Y be a subset of C(V, ~q) (resp. C(V, E)). We define Scope (Y) 
and Scope (Y; 0) in the following way : 

                   Scope (Y) _ Scope (F), 
                                          FEY 

                 Scope (Y; 0) _ Scope (F; 0) 
                                          FEY 

   Let G=(G~0...ip)ECp(V, ~q) with ~q). We write 

                   m 
(x )4 mod (x10)1.                        ~zo at2o 

                                            1•q=q 
   DEFINITION 3.6. 

   (1) The scope of the above element G~Cp(V, ~q) is the semi-group con-
tained in M generated by the following elements : 

   a • [too] +q • [x10]-[t0] owith (ti0)a appearing in G~oq.i p (1 <_ 2<_ m), 
where i0, , i~ run all over set I. We denote it by Scope (G). 

   (2) Let OBI. We denote the representation of Scope (G) in Zm+n with 
respect to the basis {[t0], [x0]} by Scope (G; 0) and we call it the scope of G 
with respect to the coordinates (t0, x0). That is, it is the semi-group in Zm+n 

generated by the following elements : 
         q)T(i0, 0) with (t10)a appearing in Goo .~~ (1<_A__<m). 

   (3) Since ~ is a subsheaf of Qq (q=1 • q), we naturally define the scope of 
an element G of C(V, ~' ) by regarding F as an element of C(V, ~q). 

   (4) Let V be a subset of C(V, ~q) (resp. C(V, ~q)). We define Scope (V) 
and Scope (V; 0) in the following way: 

                   Scope (V) _ Scope (G) , 
                                            GEV 

                 Scope (V; 0) _ Scope (G; 0). 
                                             GEV 

    Let H=(H10...~p)EC'(V, 4Cq) with H2o...zpEl'(U2o...ip, hrq). We write 

           H~ _ Hu. ~ (t~) a ~~O(x0 

                                          ~ )i mod (x10)+l,                   0 p 
f~=1 ~~~ ~0 p 0 axe                          1 ~=4 

where (a/ax o)®(xi0)q mod (x~0)q+1 (1 < p <_ n, I • q=q) denote the local basis of JCq 
on Ui0.
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   DEFINITION 3.7. 

   (1) The scope of the above element H~Cp(V, JCq) is the semi-group con-
tamed in M generated by the following elements : 

                                            1_<_ p <_ n                   ~` with (ti0) appearing in (     ' [t01+ ixie][x]     a q' ~ _ aoa z i p ), 

where i0, ..., ip run all over the set I. We denote it by Scope (H). 

   (2) Let OEI. We denote the representation of Scope (H) in Zm+n with 
respect to the basis {[t0], [x0]} by Scope (H; 0) and we call it the scope of H 

with respect to the coordinates (t0, x0). That is, Scope (F; 0) is the semi-group 

in Zm+n generated by the following elements : 

   (a, q-e~)T (i0, 0) with (ti0) appearing in Ho.i (1p< <_ n). 

   (3) Since; Q is a subsheaf of JCq (q=I. q, 1 _<p <_ n), we naturally define 
the scope of an element H of Cp(w, iCp;Q) by regarding F as an element of 

Cp(V, JCq). 

   (4) Let W be a subset of C' (V, 9Cq) (resp. Cp(V, iC p; q)), we define Scope (W) 
and Scope (W; 0) in the following way : 

                  Scope (W) _ Scope (H), 
                                     HEW 

                Scope (W; 0) _ Scope (H; 0). 
                                    HEW 

   As for cochains of the sheaves Qq and lCq, we can interpret their scopes in 
another way. We first remark that the m-dimensional algebraic torus T acts 
on S and that (min)-dimensional algebraic torus T acts on the variety 
Spec (E0 5(N)). Then tL (a/atti)' and x i (a/ax i )" (i E I, 1 <_ A<_ m, 1 < p < n) are 

N semi-invariant under the action of T. In other words, we have [(a/ati)'] _ 
N - [ti] and [(a/axu)"] _- [x e] in M, where [(a/at)'] and [(/6x fl"] denote the 

characters corresponding to (/at)' and (d/ax', respectively. 

   DEFINITION 3.8. For any rational function F~ k(S), we define the set of 
lattice points S(F) of F in the following way : 

                   S(F)= {m~MIFm*O}, 

where F=~mEM Fm denotes the expansion of F corresponding to the decomposi-
tion into the eigenspaces associated to the characters, that is, Fm is the mono-
mial part in F corresponding to rn M. Since M naturally includes M, we 

N regard S(F) as a subset of M. 

   Let G=(G10...ip)~Cp(V, Qq) and H=(Hi0...i~)~Cp(v, JCq). We write : 

m a                                                         ~
, q q                           _ 

2~I Gio...i~(ti0)ati (xio) , 

0
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                                  n a 
                 = 

~ Hio.q~p(tio) axt` U(x~o)q mod (x10)4+1. 
                                                 1 ' q=q 

N 

Then Scope (G) (resp. Scope (H)) is the semi-group in M generated by the fol-

lowing subset : 

            4)] ~                    U U uo S(G~o...ip)+at~ +q' x~o]1
0 ...2pEl 2=1 q? 
                                             1 • q=q 

a 

       (resp. U U U S(H.4tip)+[()]+ q' [xzp]                         i0,... ZpEl p=1 qi ~ axZO 
                                                        1 ' q=4 

We have the following proposition on the behaviour of the coboundary maps. 

   PROPOSITION 3.9. The coboundary maps of the Cech complexes C'(V, ~q) 
and C'(V, 1Cq) preserve the scope as follows : Scope (df )CScope (f), where f is an 
element of C'(V, Qq) (resp. C'(V, ~Cq)) and d denotes the coboundary map. 

   PROOF. It immediately follows from the fact that ti (a/ate)' and x t ̀ (a/ax z)" 

(i E I, 1 <_ A<_ m, 1 <p <_ n) are semi-invariant under the action of T . Or equi-
valently, we can also directly prove it by the following transition relations of 
local bases of e8 and N: 

                       a' m a'                 t; at(--) = g(u, A; Z, 1)ti atv 
                                          ~ v=1 a 

                    a„ a„ 
                    x, a

x = xi` axi 

   REMARK 3.10. The coboundary maps of the complex C(9], q) are not 

scope-preserving (cf. Lemma 3.17). 

   We recall definitions of Hr-slice and W-basis in [2]. 

   DEFINITION 3.11. Let F be any sheaf on S. 

   (1) A finite-dimensional vector subspace V of Zp(V, F) is said to be an 
W-slice of the sheaf F if V satisfies 2r(V)=Hp(S, ), where 2r: Zp(V, F) 

H' (S, ) denotes the canonical projection. 

   (2) Let V be an W-slice of F. We call a basis {v1, ••• , v0} of V an Hp-
basis of the sheaf F. 

   The following is the main result of this section, which is a generalization 

of Theorem 3.8 in [2]. 

   THEOREM 3.12 (FUNDAMENTAL THEOREM ON SCOPES). Let S and N be as be-

fore. Let V be an H1-slice of the sheaf ~q (I. =q1, 1, q? 0) and W p; q an H'-
slice o f ~;. W e put
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               V1=               8 V, 
                            q>~ 

                                    1.q=q 

n 
                 I`Vq = W; q 

                                  p ,qa 
                                                    1 •q=q 

              Q = Scope (V1)+ Scope (Wq) 
                              q?i q>1 

n 

                = Scope (V)± QScope (W;1) . 
                                    q>_ 0 p=1 q>_ 0                                                         1.q=q>1 

Then any formal neighbourhood (X, S) of S with N81 isomorphic to N admits a 
description f = {f13} by the transition functions such that Scope (f )CSC. 

   COROLLARY 3.13. Under the same situation as in Theorem 3.12, we further 
assume that N is ample and that H1(S, A 1)=O for each q>_ 1. Then any formal 

neighbourhood (X, S) of S with NS, ti N admits a description f such that Scope (f) 
is finitely generated and that 

                   Scope (f) C Scope (Vq). 
                                               q?1 

   PROOF OF COROLLARY 3.13. Straightforward. 

   We prove Theorem 3.12 in such a way as the proof of Theorem 3.8 of [2]. 
First we consider the first infinitesimal neighbourhoods. 

   LEMMA 3.14. Any first infinitesimal neighbourhood (X1, S) of S with N81 1 
~N has a description f [i]= {f iJ[1[! i ;EI such that Scope (f [1,)CScope (V1). 

   PROOF. It immediately follows from the definition of the scope, Claims 1.1 
and 1.2. 

   The definition of the scope of C'(Fq) depends on the description f1 [] of the 
first infinitesimal neighbourhood. From now on, we always assume that 
Scope (f [1])CScope (V1). Next we discuss the scope of the ambiguity ~bq (cf. § 1). 

    LEMMA 3.15. Let q>_2. Suppose that some (q-1)-th infinitesimal neighbour-
hood (Xq_1, S) of S is described by f [q-1J= { f ij[q-11} i, JEI, Let ~' q= { ijk Iq} ii, kF_I 
EZ2(V, Fq) corresponds to ~bq- q} with 

                       ~ijkIq = (f ij[q-1](f jk[q-1])-fik[q-iJ)[ga 

(cf. § 1). Then Scope (?P'q)CScope (f11). 

   We make a preliminary definition before we prove Lemma 3.15. 

    DEFINITION 3.16. Let Q be a semi-group contar_ed in Zm+n=Zm X Zn. For 
t=(t1, •, tm) and x=(x1, •, xn), we define subsets P(Q ; t, x) and UP(Q ; t, x)
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of k((t, x)) in the following way : 

              P(Q ; t, x) = aa~(t)a(x)~ I as k , 
                                          (a, )EQ 

            UP(Q, t, x) = aa~4(t)a(x)~EP(Q, t, x)I ado-1 

where a=(a1, • • • , am) and =(/1, , fin), 

   It is easy to see the following. 

   CLAIM 3.17. 

   (1) P(Q; t, x) is a subring of k((t, x)). 
   (2) UP(Q ; t, x) is a group with respect to the natural multiplication. 

   PROOF OF LEMMA 3.15. We put Qi=Scope (f Cq_1] ; i) for iEI. Then 
=(gij[q -1], hij[q_1]) is written in the following form: 

                                         ~ a t)a(x )            gj[q1'](tj, x) _ (t)2' ~(;i, (i+ Gj; a(                       i - j) 
                                                    (a, )EQj 

             hj[q-17(tj, xj -
                                                   (a. ~)EQj 

with Gij;ati, H~'j;aEk. If we put gjk[q-1]-(tk gjk and hjk[q-17-(tk 
 x'h;k, then g,k, h UP(Qk tk, xk). We put 

                fij[q-1](fjk[q-1]) = (gok, hijk) 

                                                 1 m 1 n                                         _ (gijk, ..• , ijk, ... , hijk), 

After a similar calculation to that in [2], we have : 

          (tk) g(~;i, k)gijk 

          = (gjk) (a; 7) 1+ Gij;a~(tk)a(k)(xk)(gjk)A(hjk)~ , 
                                    (a, )EQj 

          (tk)-h((, k)(xe)-lh P 

k 

                    )h~H ;;a~(tk)a(k)(xk)~(k)(gjk)a(hjk)~ ,           = (gjk)h(~;"k(1+ 
                                   (a )EQj 

where (a(k), Q(k))=(a, ~3)T(j, k)EQk. Then 

           (tk), k)gijk, (tk) 1i(u;i> k)(xk)-lh jk E UP(Qk , tk, xk) 

    Next, we consider exact sequences 
                                           lq tq 

                   o-~Qq->£fq-3 0. 

We write c=Cq and V=Vq for simplicity. We also denote the morphism

399

f ij[q-1]

)h(f ;i k)
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                          Cp(`U, C'q) --~ Cp(V, Fq) 

                     (resp. Cp(w, Fq) ---* Cp(`U, ICq)), 

which is induced by c : Qq~ Fq (resp. r : q--~ Cq) by the same symbol c (resp. r). 

The following lemma is a generalization of Sublemma 3.16 of [2]. It enables 

us to estimate the scopes of elements appearing in diagram chasing on the above 

exact sequences. 

   LEMMA 3.18. 

   (1) Scope (c(x))cScope (x)+Scope (V 1) for x ECp(V, Qq). 

   (2) For an element y~C°(V, JCq), there exists an element zECp(V, q) such 
      that z(z)=y and that 

      Scope (z)CScope (y)+Scope (V1). 

   (3) Scope (dw)CScope (w)+Scope (V1) for w EC)(RI, Fq). 

   PROOF. Let Q;=Scope (V1; j). Then f Zj[1]=(gij[1], hZj[1~) is written in the 
following form : 

                gijri] _ (t1) "(1+ 1+ G(A, v,i, j)xj , 
                                                           v=1 

where G(A, v; i, j)EP(U1fU;, Ds) and G(A, v; i, j)x;~P(Q;; y,, x;). Then we 
have the following transition relation between the local basis of ex I s 

m 

               t3 ate _ g(v, A ; i, j)t2 -- , 
                                   1 v=1 2 

             6 m                             a a 
               x~` _ G(v, u ; i, j)xti +x                  a

x3 v=1 at? ax ~` 

Let ~' be a semi-group in Zm+n and P1, , Pm, Q1, •, Qn E P(E ; t;, x;). Then 

we have the following relation : 

              ;~a n a               t
j ®P2+ x, OQ,~                    =1 at; ~=1 ax, 

                         a ,m n               _ ti ® g(v, A; i, j)PA+ G(y, ; 2, j)x~Q                           v=1 ati 2=1=1 1 

n 

             +x--®Q.                   ~ ~` ~ 
~=1 ax i 

Note that 1 g(v, A; i, j)P2 + ~~=1 G(v, p ; i, j)x; Q~ belongs to the ring 
P(Q;+E ; t;, x;). The assertions (1), (2) and (3) immediately follow from the 
above relation. Thus Lemma 3.18 is proved. 

    To complete the proof of Theorem 3.12, we prove the following two lemmas.
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   LEMMA 3.19. Let q>_ 2. For an element W E B2(V, Fq), there exists c 
C1(V, Fq) such that dcl=cp and that 

            Scope (~b) C Scope (p)+Scope (Wq)+Scope (V1). 

   LEMMA 3.20. Let q>_2. There exists an H1-slice Y of EFq such that 

           Scope (Y) C Scope (V q)+Scope (Wq)+Scope (V1). 

   PROOF OF LEMMAS 3.19 AND 3.20. We refer to Lemmas 3.12 and 3.13 of 

[2]. Once Lemma 3.18 is proved, the same arguments as in [2] are effective. 

   PROOF OF THEOREM 3.12. We construct neighbourhoods in such a way as 
in § 1. Theorem 3.12 immediately follows from Lemmas 3.14, 3.15, 3.19 and 
3.20. 

   § 4. Further properties on scopes. 

   From now on, we restrict courselves to the case where S is a nonsingular 
toric surface. In this section we estimate the scope of an H1-slice of by the 
induction on the Picard number p(S) of S. The way of arguments is a slight 
modification of § 4 of [2], using an interpretation of the edge sequence of the 
Leray spectral sequence in terms of Cech cochains (cf. § 1.B of [2]). We use 
similar notation to that in [2] (cf. [6] for detail). Let S be a nonsingular pro-

jective toric surface, on which the algebraic torus TG Nm acts. We denote the 
T -invariant prime divisors by D1, ..•, DS and we put D=D1-F ... +D8. We 
denote by GS the weighted dual graph of D ; Gs is a circular graph with s 
vertices with weights a1, , a1, where a=(D1)2 (i=1, •••, s). 

                                       ai+1 ai 

1 

                   
I 1 

                                 as a2 

                              Figure A. 

   We may assume that the weights a1, , a S lie counter-clockwise such as in 

Figure A. Conventionally, we put D18+i-Di and a1s+i=ai for IEZ. We also 

put pi=DifD1+1. 
   Conversely, the weighted dual graph GS uniquely determines S up to iso-
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morphism. Moreover, we can construct from Gs an affine open covering S= 

Ui=o U2 of S with U2 N Spec k [t, tfl, and determine the transition functions 
between the coordinates (ti, ti) (i=0, ..•, s-1) in such a way that the following 
conditions are satisfied : ti=(ti+1)-1 and ti=ti+1(tZ+1)-ai*1. The equation t2=0 
determines D, on Ut, ti=0 determines Di+1 on U~, and t~=ti=0 determines pti 
on U~. From now on, we always take the coordinates (t1, u1) as above unless 
otherwise mentioned. 

   DEFINITION 4.1. We call the above affine open covering {U2} the canonical 
open covering of S determined by the weighted dual graph. We also call the 
coordinates (ti, ti) the canonical coordinates on U~. 

  Let B=1 ~2.b'D1 (p=1, •••, n) be invariant divisors on S, A=O(B) and 
N=E 1 A~. We put b1=(bl, •.., bi ). In this paper, we describe the pair (S, N) 
by the multi-weighted circular graph in Figure B. 

i

f 

1 

                             as 

                    (bs) al 

                        (s')                                                   l) 
                              Figure 

   The following claim is well-known. 

   CLAIM 

equalities a: 

   From 

the coordi 

i 

                      s}) 
transition                              formal 

 N. We 
which are § 

where dz+1=b~-I- aZ+1b~+1~bZ+2.

B.

  (bl) 

at 

1 
L 
I 

a2 / 

 (b2)

/

/
I

4.2. The vector bundle N is ample if and only if the following in-

e satisfied for i=1, •••, s: bi_1+aZb~~bti+1>0. 

the multi-weighted circular graph corresponding to N, we can recover 

p                      and the top terms {gti,, o } and {h,11} xof the ates (t      , x ~) (i E {1, , 

                       neighbourhood (X, S) of S with Ns,x functions describing a 

can determine the matrices T (i, j) ~ G L (2 -Fn, Z) (i, j E {1, • • • , s } ) 
defined in         3 in such a way that the following conditions are satisfied 

                        0 -1 0 

                          r~ -`d z+1 En
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   Suppose that a nonsingular projective toric surface S and a vector bundle 
N=~u=1 Au are determined by the following multi-weighted circular graph in 
Figure C with (D1)2=a and A=O( bD): 

                                                 be-1)                      (b 
c) 
                                            ac-~ (bc-2) 

                              ac                                                              a
c-2 ~                    (b

c+1) a c+1 

                  (bc+2) ac+z i I 

                      (be) (b2) 

                                Figure C. 

   Let f : S--~S be the equivariant blowing-up of S along pc=DcnD1+1. We 
    N N N 

put A~= f *A,~®®(-c~`E) and 1V=~=1 A,,, where E denotes the exceptional 
                                                N N 

divisor of f. We put c=(c', • • , c'). Then S and N are determined by the 
double-weighted dual graph in Figure D. 

                           (bc+bc+,-c 

                       i _ 1 (bc)                      (b
c+~) a~-1 

                                              ac+1--1 

                                                ac-1 (bc-1) 

                   (bc+2) a`+a / l 

                     (bs) (6k) 
                               Figure D. 

   Let T (i, j) (i, j E {1, • • • , s}) be the transition matrices with respect to S 

and N. To get an affine open covering of S, we replace Uti by Uti (i ~ l) and 
U1 by Uc-EUUl+E with Uti "' U2 (ill), Ut-E'~ Spec k[tl-E, tl_j and UI+E N 

                                               N N 

Spec k [t~+E, t~+E], using a symbol 6. That is, S is covered by open subsets Ui 

(i=1, , l-e, l+~, , s). The transition matrices T (i, j) with respect to S 
and N are calculated in the following way : T (i, j) =T (i, j) if i l and j l,
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T(i, l+e)=T(i, l)T(l, l+e ; c) and T(i, l-e)=T(i, l)T(l, l-e ; c), where 

                           1 0 0 

                  T(l, 1+e; c) = 1 1 0 
                                tc t0 En 

and 
                          1 1 0 

                   T(l, l-e ; c) = 0 1 0 
                              tO tc En 

We put T(l+e, l ; c)=T(l, l+e ; c)-1 and T(l-e, l ; c)=T(l, l-e ; c)-1. Note that 
the matrices T(l, l+e; c) and T(l, l-e; c) do not depend on 1. We put pi+E= 
{tl+e=ti+E =0}GUI+E and pz_E= {ti_E=tt_E=0} EU1_E. Then we have pt_E=D1nE 
and pl+E=Di+ifE. The following theorem is the aim of this section, which 
estimates the scopes of H1-slices of ~7q after blowing-up. 

   THEOREM 4.3. Let f : S-->S be an equivariant blowing-up of S along pl~S 
as above, and let A,. (resp. A,,) line bundles on S (resp. S) with A,.= f *A,.O 
O(-c"E), where E denotes the exceptional curve of f and c=(c1, ..•, c)>0. Let 
{U1} be the canonical open covering of S determined by the weighted dual 
graph. Let N=~ =1 Au, A,., =Os®(A1)-q1® ... ®(A,,)_gn, =e® 
(A1)-g1®®(A)-Qn for q=(q1, •••, q,)>_ i with q:0. Let Vq be any H1-slice of 
Qq. Then there exists an H1-slice P of ~ which satisfies the following condition : 

       Scope (VQ) C Scope (VQ)+ Z>o(a[tf+/3Ctfl +q. [xi]) 
                                                       as-1, j3<-i 

Or equivalently, 

         Scope (Vq ; 0) C Scope (VQ ; 0)+ Z>0(a, /3, q)T (l, 0) 
                                                                          as-1, j3<_-i 

                                                   a+j3 1 

for 0 I\{l}. 

N 

    REMARK 4.4. Since the group M of the characters is common to both 

N varieties Spec (~q>o 5(N)) and Spec (~q>o Sq(Nv)), the above inclusion of semi-

groups is reasonable. 

    We make some preparation before we prove Theorem 4.3. We put : 

                    = Coker (Os -~ f *Os) , 

                                  N N 

                    ~q = ®(4)-41® ... 
                                    N N 

                      Qq f *vs®(A1)~g1® ... ~C,1(An)-qn



            Formal neighbourhoods of toric variety and unirationality 405 

for q=(q1, • • • , qn). Then the exact sequence 

                 0--*~ ->QQ->~Q-~0 

induces the exact sequence 

(4-1) H°(S, ~Pq) -> H1(S, 1) --~ H1(S, QQ) -~ H1(S, ~) • 

On the other hand, we consider the Leray spectral sequence on the sheaf Qq 
N and the morphism f : S-*S. Since c>0, we easily see f QQ~~Q and R1f,~Q ^' 

Q4®R1 f O((c • q)E). Thus we have the following exact sequence : 

N (4-2) 0-~H1(S, )_H1(S, Q)-->H°(S, Qq®Rl f o((~ • 9)E))->H2(S, ~q) . 

We introduce the notion of the scope on the Cech complexes of sheaves appear-
ing in the sequence (4-1) and (4-2). 

   Suppose iEI. If i*l, then f*(a/atti)®(x~)q mod (x~)q+1 (A=1, 2) are considered 
to be the local basis of the sheaf Qq on U1. On the open set UI+E (resp. U1_E), 

f*(a/ati)®(xt+E)~ mod (xa+E)q+1 (resp. f *(a/at1)®(xl-E)~ mod (x1-E)q+l) (A=1, 2) are 
the local basis of Qq. Let V=(Ul)1EI be the canonical open covering of S and 
let cU=(U2)ZEJ=((Uz)1EI\{i}, Ul_E, Ut+E) the canonical open covering of S. We 
can define the scopes of elements of Cp(~U, Q) and Cp(w, f,~Cr(~J, Q)) as follows. 

   DEFINITION 4.5. 

   (1) Let Q I'ra t(S, Qq) be any rational section of Qq and 0I. We can 
write 

                  Q = Q~(t~)f* a ~(x )                          ~=1 ati J 

with i I, j E I. (If j ~ 1, we usually take i = j . If j =l -F or j =l - s, we take 

N i=i.) We define the scope Scope (Q) of Q to be the semi-group in M generated 
by the following subsets : S(Q2)-[ti]-H • [x,] (A=1, 2). 

   (2) Let Q E I'ra t(S, Q) and 0 E I. We define the scope Scope (Q; 0) of Q 
with respect to 0EI to be the representation of Scope (Q) in Z2+n with respect 
to the integral basis { [to], [x0]}. It is also explicitly defined in the following 
way. 

   (A) If 0 ~ l- s, l+E, we can write 

2 

               Q = QA(to)f *ate ®(xo) mod (x0)+l. 

0 Then we define Scope (Q; 0) to be the semi-group contained in Z2+n generated 

by the following elements : 

   (A-1) : (a1--1, a2, q) with (t)a1(t)a2 appearing in Q1(to), 
and 

   (A-2) : (a1, a2-1, q) with (t)a1(t)a2 appearing in Q2(to).



406 M. EBIHARA 

   (B) If 0=I+E, we write 

               Q - Q2(tt+E)f * ®(xl+E)~ mod (xt+E)q+1 ,                        ~=1 at 

Then we define Scope (Q; 0)=Scope (Q; l+E) to be the semi-group contained in 
Z2+n generated by the following elements : 

   (B-1) : (a1-1, a2, q) with (tl+E)a1(ti+E)a2 appearing in Q1(tt+E), 
and 

   (B-2) : (a1-1, a2-1, q) with (tt+E)a1(t~+E)a2 appearing in Q2(tt+E)• 
   (C) If 0=l-i, we write 

               Q = Q2(tt-E)f * ®(xl-E)~ mod (xt-E)4+1                         a=1 at 

Then we define Scope (Q; 0)=Scope (Q; l-E) to be the semi-group contained in 
Z2+n generated by the following elements : 

   (B-1) : (a1-1, a2-1, q) with (ti-E)a1(ti-E)a2 appearing in Q1(tl-E), 
and 

   (B-2) : (a1, a2-1, q) With (ti-E)a1(tl-E)a2 appearing in Q2(tl-E)• 
                                       EI~ II . We define    (3) Let Q-(QiO...i)ECp( , Q~) with Q~) 

Scope (Q) and Scope (Q ; 0) as follows : 

                 Scope (Q) = Scope 
                                                                         °'"•' pip 

                 Scope (Q; 0) = Scope (Qi0...i p ; 0). 
                                                      ia> op 

   (4) Let Q ~Cp(V, f *C r(~U, Q)). We write Q=(Qio...ip; jo •.j r) with 

-

                                               1 " 

                       Qi0,..i p;io"'ir E ( ( i0...ip)f Uj0...jr, Q), 

(cf. [2] § 1.B). We define Scope (Q) and Scope (Q; 0) as follows : 

                  Scope (Q) = Scope (Qio .ip;jo •jr)                                                                  ip,••,ip 

                                                             1p~"•1r 

                Scope (Q; 0) = Scope (Qio..ip;;o..jr ; 0). 
                                                             i~...ip 

                                      J0 Jr 

   REMARK 4.6. (1) The natural map Cp(~U, )->Cp(~U, Qq) is scope-preserving. 

   (2) The differential maps of the double complex C' (V, fC' (~I1, Qq)) are 
scope-preserving. 

   For an element PECp(~U, ~q), we define Scope (P) and Scope (P; 0) in such 

a way that the natural map C' U, QQ)-~Cp(~i1, ) is scope-preserving. Let 
~E : I"(U1+E, QQ)--I'(UI+E, ~P) and 2r_E : I'(U1_E, Q)-~1(Ul_E, P) be the canonical 

projections. If we put
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                          a i +                   ~E f* a
te ~(xt+~)~ mod (xt+E)'~ =t+~, 

t and 

                 -~ (f*®(xii a -E)mod(xl_E)q+1= 
               ate ~ 

we have the isomorphisms 

                        1 (U l+E, ~q) = k [ti+E] ' I+, q 

and 
                          N L 

The morphism iE and are determined by the following : 

2 

              ~E F2(ti+E, t+E)f* mod (x1+)1) 
                   _ {F2. , ti+E)~tt+EFl(0, tl+E)} 

               -E F2(tL, tL)f * mod (xt-E)q+i 

                   _ {F~(ti-E, `") ti-EF2(tt-Ef 0)}ct-E,q 

Note that the following transition relation are satisfied : 

a 

   DEFINITION 4.7. Let 0 E 1. 

   (1) For an rational section PE1'rat(E, we define the scope Scope (P) 
(resp. Scope (P; 0)) in the following two ways which are equivalent to each 
other : 

   (A) If we write P=F(tt+E)t+E,, Scope (P) (resp. Scope (P; 0)) is the semi-

group in M (resp. Z2+n) generated by j3[tj-[ti]+q' [xt+E] (resp. (-1, j9-1, g) 
• T (l+e , 0)) with (tt+E)~ appearing in F (t+2). 

   (B) If we write P=G(tt_E)et_E,, Scope (P) (resp. Scope (P; 0)) is the semi-
group in M (resp. Z2+n) generated by a[ti_E]-[tt]+q• [xt_E] (resp. (a-1, -1, q) 
• 17'(l-E, 0)) with (ti_E)a appearing in G(ti_E). 

   (2) We naturally induce the scope of an element Cp(Ci, &P) by (1)• 

   Then it is easy to see that the following exact sequence of complexes are 
scope-preserving: 

             0- CU, ~q)--~C'(U, Q) - CU, )--30. 

   PROOF of THEOREM 4.3. The proof is done by the same arguments as the 

proof of Theorem 4.2 of [2] after a slight modification as follows. We refer
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to § 1.B of [2] for the interpretation of the edge sequence of the Leray spectral 
sequence in terms of Oech cochains. 

   Let Aq be a vector subspace of the space C°(w, f *C1(cCI, Q)) which repre-
sents H°(S, Q®R1 f *O((c . q)E)). Let CQ be an H°-slice of ~. Then there exists 
an H1-slice i7 of ~ such that Scope (f7)Scope (Vq)+Scope (A )+Scope (Ca). 
Let V be the vector subspace of F(UI+1fUI_E, Q) generated by the elements 
(ta)a(ti)~f *(a/ati)~(xc)~ mod (x~)q+1 and (tDa(tD f*(a/ati)O(xl) mod (xl)Q+1 with 
a<0, /3<0 and a+j3+c~q>_0. Then we have ~r(V)=H1(UI+~UUI_E, Q), where 
2r: I'(UI+EnUI_E, Q)-~H1(U~+EUUI_~, Q) denotes the canonical projection. In 
fact, the above elements are considered to be elements of P(U1+EnUI_E, Qq) by 
the following equations : 

            (ti)a(ti '~f *®a (xl)q mod (x~)Q+1                   ati 

               = (tl+s)a+9+cq(t~+~) f* ~(xl+s)4 mod (xl+~)4+1                        at 

              = (tL)a(tL)a+~+cq f* ®(xlmod (x~-E)4+1 .                       at 

By the same argument as [2], we can take AQ satisfying Scope (A)=Scope (V), 
whence we have 

           Scope (Ad) _ Z>o(a[tl +p[ti]+q• [xc]) 
                                              a, $~-i 

                                          a+~4+c~.~a-1 

   Next, we calculate Scope (Ca). Since ~'QNc*Op1(1-c•), where c: E-~S de-
notes the natural inclusion, we have H°(S, ~?)=0 unless the following condition 
is satisfied: q~=1 for some 1p<n, qy=0 for i *p and c~=1. Suppose q=eu 

N and c~=1. Then dim H°(S, ?=1 and we can take as Cq the set consisting of 
the elements ae1+E, _-a l_~, with ask. Thus we have: 

                Scope (C) = Zzo(-Ctfl+[xi E]) 

                         = z>°(-[t~]+[xi ~]) 

                       = Z>o(-Cti]-Cti]+Cxi]) 

Thus Theorem 4.3 is proved.

   § 5. Reduction to scopes. 

   This section is a modification of § 5 of [2]. First, we fix the notation con-

cerning the Hirzebruch surface Ee=Pp1(O®O(_e)). The surface Ee is described 
by the weighted dual graph with four vertices. Let D=D1+D2+D3+D4 be the
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corresponding invariant Cartier divisor with (D1)2=e, (D2)2=0, (D3)2=-e and 

(D4)2=0, and let p0=D4nD1, p1=D1nD2, p2=D2nD3 and p3=D3nD4. Then Xe 
is covered by four sheets Ui (i=0, 1, 2, 3) of affine open subsets with Uti= 

1 Spec k [t, tz] 2• Then the following relations are satisfied : t1=(t2 -1, t2- 1 z        2ol) o-tl(tl) , 
t1-' 2)-1, t1- 2, t2- (t3)-1, t2-t3(t3)e, t3-(t0)_1 and t3=tp. 

   DEFINITION 5.1. Let f : S -> S be a proper birational morphism of non-
singular projective surfaces. We define the set Fund (f) of the fundamental 

points of f as follows : 

             Fund (f) _ {x E S f -1 is not defined at x } . 

   Using the above notation, we state the following lemma. 

   LEMMA 5.2. Let S be a nonsingular projective toric surface. Assume that 
S is not isomorphic to P2. Then S is one of the following three types : 

   (Type I) : There exists a proper birational morphism f : S --- X e which is a 
succession of equivariant blowing-ups such that e>_ 2 and that Fund (f )C {P2, b3}. 

   (Type II) : There exists a proper birational morphism f : S -- E0 = P1 X P1 
which is a succession of equivariant blowing-ups such that Fund (f )C {p0, P2}. 

   (Type III): There exists a proper birational morphism f : S--~E1 which is 
a succession of equivariant blowing-ups such that Fund (f )C {po, p2, P3}. 

   PROOF. We refer to Lemma 5.2 of [2]. 

   REMARK 5.3. The above three types of surfaces are not exclusive. For 
example, there exists a surface S of type II and type III at once. Precisely 
speaking, we consider the pair (S, f) of the surface S and the above morphism 

f when we say that S is of type A (A= I, II , III). 

   DEFINITION 5.4. (1) Let (S, f) be a toric surface of type I. Let D1 denote 
the invariant curve on Xe with (D1)2=e as is stated before, that is, D1 is deter-
mined by the equations to=0 on the open subset U0 and ti=0 on U1. We call 
the strict transform C of D1 with respect to f the reference curve of type I. 

   (2) Let (S, f) be a toric surface of type II . Let I' be the diagonal curve 
on P'XP1 defined by the equations ti=ti on U1 and t3=t2 on U3. We call the 
strict transform C of I' with respect to f the reference curve of type II . 

   (3) Let (S, f) be a toric surface of type III. Let Di be a displacement of 
the curve D1 on E1 defined by the equations to=1 on U0 and ti=ti on U1. We 
call the strict transform C of Di with respect to f the reference curve of 
type III. 

   Moreover, we fix the following notation. Let (S, f) be a toric surface of 
Type A (A=I, II, III). Since Fund (f)p, lthere exists an open subset U of S
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such that f u : U->U1 is an isomorphism. This open set U admits the natural 
coordinates which is induced by the coordinate (ti, ti) on U1. We denote the 
open set U by U1. We also denote the coordinates induced by (ti, ti) by the 
same symbols (ti, ti). Let (X, S) be a formal neighbourhood of S described by 

a collection b = {ii;} i• jEI of the transition functions. Since X11 ~ Spf (k [ti, 
ti][[x1]]) for some coordinates x1=(xi, •••, x?), we can define the scope 
Scope (~ ; 1) of the description with respect to the coordinates (t1, x1). 

   DEFINITION 5.5. We define a semi-group QRD contained in Z2 X (Z>o)n in 
the following way: 

             QRD = {(a, /3, q) Z2 X (Z _>_o)n a+ J3+I • q _< O}. 

   PROPOSITION 5.6. Let S be a toric surface of type A (A= I, II or III) and 
C the reference curve of type A on S. Let (X, S) be a formal neighbourhood of 
S such that NNNS,X and that N®0300 is ample on C. Assume that (X, S) is 
described by a collection P of the transition functions such that Scope (~ ; 1) C 
QRD• Then the induced formal neighbourhood (X, C)~ of the curve C in X is 
rationally dominated. More precisely, (X, C)~ admits a description by the transi-
tion functions satisfying the assumption of Lemma 2.3 for r=1. 

   PROOF. The proof is done by the same arguments as the proof of Proposi-
tion 5.6 of [2] after a slight modification as follows. First, we assume that 

(S, f) is a toric surface of type I. Since Fund (f) po, pl, f r 1(Uo) and f r 1(U1) 
are isomorphic to A2, which we denote by Uo and U1, respectively. Then we 
have 

                                   0 -1 0 

    T(0,1)= 1 --e 0 , 
                                tO -`d E n 

where d=(a1, an) and A~ ®osOc "' O(a) with a~>O (1<_p<_n). By the 
assumption the transition relation between the coordinates (to, xo) on X vo and 

(t1, x1) on X I vl is written in the following way : 

              t0 - (tl)-1(1+~jaap(tl)a(tl)p(xl)~), 

             tp = tl(tl)_e(1+~bap(tl)a(tl)p(xl)~) 

               x p = (tl)-a~x(1+G1cap(tl)a(tl)p(xl)~) 

where aap, bapq or capQ*O implies a+jS+I•q<_O. Since the reference curve 
C is defined by the equations to=0 on Uo and ti=0 on U1, we can consider the 
above equations to be a transition relation describing the neighbourhood (X, C)~ 
of C in X. We apply Lemma 2.3 to this description.
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   We now assume that (S, f) is a toric surface of type II . Since pl, p3 

Fund (f), f '(U1) and f (U3) are isomorphic to A2, which we denote by U1 and 
U3, respectively. Then we have 

                                 -1 0 0 

                    T(3,1)= 0 -1 0 

                                    _tb _ta E n 

for some integer d =(a 1, , a n) and b=(b1, • • • , ba). The transition relation 
between the coordinates (t3, x3) on X Il3 and (t1, x1) on X1 is written in the 

following way : 

              t3 - (tl)_i(1+LJaap(tl)a(tl)p(xl)~) 

             t3 _' (tl)-1(l+~bap(tl)a(tl)p(xl)g) 

             x3 _' (tl)_~~(ti)-af~(x 1(1+~'~«pq(tl)a(tl)p(xl)~) 

i where aap4, bapq or capq~0 implies a+j3+1~g50. To obtain a transition rela-
tion of (X, C)~, we change the coordinates near the curve C in the following 
way : We put T3=t3, X3=x3 (1<p<_n) and Y3=t3-t3 near CnU3, and T1=t1, 
Xi =xi (1<_p<_n) and Y1=t;-ti near CfUI. Then the curve C is defined by 
the equation X3=Y3=0 and X1=Y1=0. The transition relation between the 
new coordinates (T3, X3, Y3) and (T1, X1, Y1) is easily calculated as follows : 

            T3 = (T1)-i(1+(T1)-'Yl)-i {1+~jbapqcl'ap4} 

           X3 = (T1)_ap_(1+(T1)-lYl)-apXl {l+~capgci'apq} 

           Y3 = (T i)rl(1+(T1)_1Yi)_i {l+~bapgcbapq} 

               -(Ti)-i {1+Ea apcap4} . 

where clap =(T1)a+p(1+(T1)-IYi)p(X1) . Since N511cOc is ample, we have 
d+>0. We apply Lemma 2.3 to this description. 

   Finally, we assume that (S, f) is a toric surface of type IlI. As was stated 
before, the surface E1 is covered by four afl"ine open subsets U0, U1, U2 and U3. 
Corresponding to an equivariant blowing-up, we replace an affine open subset 
by two sheets of affine open sets. By replacing open covering in such a way 
as we stated before, we get an affine open covering {U2} ,EA of S. The curve 
D4 in E1 is defined by the equations to=0 on Uo and t3=0 on U3. There exists 
an element oEA such that f (Uo)CU0 and that U$ intersects with the strict 
transform of D4 with respect to f. Then the transition matrix T (o, 1) is writ-
ten in the following way (cf. § 4). First, we formally put T (o, 1)=T(8, 0)T(0, 1). 
Then
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                                  0 -1 0 

    T(0,1)= 1 -1 0 
                                t0 -ta En 

for some a =(a1, • • • , an), and T (o, 0) is a product of matrices of the form 

                     • 1 1 0 -1 1 -1 0 

                0 1 0 = 0 1 0. 

                    t0 tc E n t0 -tc En 

Hence T (o, 0) and T (o, 1) is written in the following form : 

                                   1 -l 0 

                  T(o, 0) = 0 1 0 , 

                                    t0 _t5 E,t 

                                      -l l-1 0 

                  T(o, 1) = 1 -1 0 

                             -t~ t(fi-a) E n 

for some 1€Z and p =(p1, • • • , pa). The transition relation between the coor-

dinates (to, x0) on US and (t1, x1) on U1 is written in the following form : 

            td _ (ti)-l(tl)d-1C1+l~aagCtl)aCtl)~Cxl)~), 

             t~ = t1Ct1)-iC1+G.iba~9q(ti)a(ti)'g(xl)~) 

            x _ +~Ca~4Ct1)aCti)(xl)~), 

where aapq, ba~q or Car~Q ~ 0 implies a+j3+1•q<O. In order to describe the 
formal neighbourhood (X, C)" of C in X, we change coordinates near the curve 
C. We take coordinates (T5, X3, Y0) near CnU0 as follows : Ts=ta(ta)', X'= 

(t~)°' xa and Yb=ta-1. Note that we can take such coordinates around CnU~, 
since ta~0 near CnU0. We take coordinates (T1, X1, Y1) near CnU1 as follows: 
T 1=t, X i =x 1 and Y1=ti-ti. Then the reference curve C is defined by the 
equations X0=Yo=O and X1=Y1=0. The transition relation between the coor-
dinates (T0, X0, YS) and (T1, X1, Y1) is calculated as follows: 

            Ta = (T1)1(1 -+~ba~Wal9q)a, 

          Xa = (T1)_X(1 a~i+~ba~QcDa~gYP(1+~ca~gS a~Q), 

             Ya = --1+(1-t"(T1)-lYl)C1-E'~ba~4~apq), 

where Wa~4=(T 1)a+ (1+(T 1)-1Y1)a(X1)q. We apply Lemma 2.3 to this description,
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noting that d>0. 

   Thus Proposition 5.6 is proved. 

   As for P2, we fix the covering P2=U0UU1UU2 with Ui~Spec k[t~, tl (i= 

0, 1, 2) such that the following transition relations are satisfied : to=(ti)-1 and 
to=ti(ti)-1 on UonU1, and ti=(t2Y1 and ti=t2(t2)-i on U1nU2. 

   DEFINITION 5.7. We define a semi-group QRD contained in Z2 x (Z?0)n in 

the following way: 

           QRD = {(a, , q) Z 2 X (Z>_o)n I - ? 1 (a+1. (~) .             ~ p 2 

   PROPOSITION 5.8. Let S=P2 and let C a nonsingular rational curve on S 
defined by the equations to=0 on Uo and t1=0 on U1. Let (X, S) be a formal 
neighbourhood of S with Nsrx~N. Assume that (X, S) is described by a collec-

tion of the transition functions such that Scope 1)CQRD. Then the induced 

formal neighbourhood (X, C)~ of the curve C in X admits a description by the 
transition functions satisfying the assumption of Lemma 2.3 for r=2. 

   PROOF. The transition relation between the coordinates (to, x0) and (ti, x1) 
is written in the following way : 

              t0 = (tl)-i(1+~aap(tl)a(t(xi)~), 

                t0 '_ tl(tl)-i(1+~bapq(tl)a(tl)~lxl)~), 

                x 0 = (tl)-ai x 1(l+~c«`~ 

with a~>0, where aapQ, bad or cad *0 implies - j3>_(a+I. )/2. We can con-
sider it to be a transition relation describing (X, C)~ as it is. We apply Lemma 2.3. 

   § 6. The proof of Main Results. 

   In this section, we prove Main Theorem. We use the same notation as 

in §5. 

   THEOREM 6.1. Let S be a nonsingular projective toric surface and N= 

~~=1A a direct sum of ample line bundles on S. 
   (1) I f S=P2, then, for each q with q>_ 0 and I , q=q>__ 1, there exists an H1-

slice V of ~2 such that the following condition is satisfied : 

                    Scope (V ; 1) C QRD . 

   (2) Assume that there exists a morphism f : S-~Xe such that the pair (S, f ) 
is of type A (A= I, II or III). Then, for each q>0 with q>_0 and I.q=q>1, 
there exists an H1-slice Vq of Q such that the following condition is satisfied :
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                    Scope (V q ? 1) C QRD 

   COROLLARY 6.2. Let S be any nonsingular projective tonic surface. Then 
there exists a nonsingular rational curve C on S satisfying the following condi-
tion : If N=EJu=1A~ is a direct sum of ample line bundles on S such that 
H1(S, N®Sq(Nv))=0 for each q>0, then, for any formal neighbourhood (X, S) of 
S with NS1X~N, the neighbourhood (X, C)~ of C on X is rationally dominated. 

   COROLLARY 6.3 (MAIN THEOREM). Let n be a positive integer. Let X be a 
nonsingular complete algebraic variety of dimension n+2. Assume that X contains 
a nonsingular projective toric surface S and that the following two conditions (a) 
and (b) are satisfied : 

   (a) NS/X=EBu=1A, where each A~ is an ample line bundle, 
   (b) H1(S, NS1XOSq(Ns,x))=0 for each q>0. 

   Then X is unirational. 

   REMARK 6.4. (1) If n=1, the condition (b) is always satisfied for an 
ample line bundle N. 

   (2) The condition (b) is equivalent to the following condition (b'). 
    (b') : For any a {l, ••, • n } and any 

                 (q1, ... , qp-1, qp+1, ... , qn) E (Z~0)n-1\ {(O, ... , 0)} 
we have 

      H1(S, A®(A1)1®                               ... (Au-1)-qa-1~(A~+1)-4~+1~ ... ~(An)-fin)=0. 

In fact, we have H1(S, ®s)=0 and H1(S, (A)-1)=0 for an ample line bundle A. 

   (3) In particular, the conditions (a) and (b) are satisfied if N =A®n for an 
ample line bundle A. 

   (4) In the case where S=P2, then the condition (a) implies the condition (b). 

    COROLLARY 6.5. Let X be a nonsingular complete algebraic variety of di-
mension n+2 and let L be a line bundle on X. Assume that there exists a sequence 

                        X =X0DX1~... DXn=S 

of subvarieties of X satisfying the following three conditions : 

    (1) X2 is a smooth member of the linear system I L X2.1 on X2.1(1Si_<n), 
   (2) X=S is a toric surface, 

   (3) L I s is ample on S. 
    Then X is unirational. 

    PROOF OF COROLLARY 6.2. It immediately follows from Theorems 6.1, 3.12, 

Propositions 5.6, 5.8, 2.5, Corollaries 3.13 and 6.2. 

    PROOF OF COROLLARY 6.3. It immediately follows from Corollary 6.2 and



            Formal neighbourhoods of toric variety and unirationality 415 

Proposition 2.2. 

   PROOF OF COROLLARY 6.5. We put A = L®Os. Since H1(S, Os) = 0, the 
following exact sequence splits for 1 <_ i <_ n -1: 

               0 --~ Ns/X1 - * Nsixz_1 ---~ N11 _l®Os --* 0. 

Noting that Nxi,xi _1OOs. A, we have Nsix. A®n. Then Corollary 6.5 follows 
from Remark 6.4. (3). 

   PROOF OF THEOREM 6.1. First, we prove Theorem 6.1 in the case where 
S is the projective space P2. As is easily seen, the cohomology group H1 (S, 
Opt®OP2(-a)) vanishes unless a=3. We also have dim H1(S, Opt®Op2(-3))=1. 
After elementary Cech cohomological calculation, we have the element ~1'=(c'i0i1) 
EZ1(V, Opt®Op2(-3)) with cb2011EF(U1011, OP2OOp2(-3)) as an H1-basis of the 
sheaf Opt®Op2(-3) as follows : 

                                                         l _ a                  X01=-(to)1at2® 0, 

0 

                                   t2.1 a                X02 = (o) ato ~~0, 

                            12 =              ~bato 

                                                         1. a                        = -(t1                      l) at2 ®721, 

1 where ~i denotes the local basis of the sheaf Opt®Op2(-3) on Ui. Thus we 

can take an H1-basis of ~7 in the following way. We put N= 1A, A=O(a) 

and d=(a1, ••• , an). We easily see H1(P2, Q)=0 unless d .j=3. We have the 
following element G = (G1011)EZ1(V, ) with G2o,1EF(U1011, ~Q) as an H1-basis 

of 

                 G01= -(to)-1 a ®(x0) mod (x0)4+1                       ato 

                Got = (to)-1 ao®(xo) mod (x0)4+1                   at 

                G12= -(ti)-1 a ®(x1) mod(x1)4+1                       ati 

The scope Scope (C; 1) is generated by (-1, -1, q), which belongs to QRD, 

since g=I •q<_d •g=3. Thus Theorem 6.1.(1) is proved. 

   Next, we prove Theorem 6.1 in the case where S is the Hirzebruch surface 

.e. We make some preparations before we state the proof. 

   DEFINITION 6.6. Let S=~'e, ic: S-~C~P1 the natural projection, F a fiber
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of n and so the section with so=-e. For a, beZ, we denote the invertible 
sheaf O(aF +bso) by the symbol O(a, b). 

   LEMMA 6.7 (cf. [2] LEMMA 6.6). The cohomology group H1 (Xe, 0 (p, r)) 
vanishes unless one of the following two conditions is satisfied : 

    (a) p>_ e(r+1) and r_-<_ -2 
   (b) per-2 and r0. 

   In the case (a), we can take the following elements as an H1-basis of 0(p, r) : 

                 'a> p = (0, Wa, iS, Was Wa, !S, 0) 

              E F(Uol, 0(p, r)) X F(U02, 0(p, r)) X r(Uo3, 0(p, r)) 

               X F(U12, 0(p, r)) X F(U13, O(p, r)) X F(U23, 0(p, r)) 

with a>0, j3<0, p-a-ej3>_ _0 and r-/3<0, where cPa'~=(to)a(to)'rlo and rlo denotes 
the local basis of 0(p, r) on U0. 

   In the case (b), we can take the following elements as an H1-basis of 0(p, r) : 

                     _ (Wa, PWa, 0, 0, -~a, P, -~o' p) 

                 F(U0,, O(p, r)) X F(U02, 0(p, r)) X F(Uo3, O(p, r)) 

                X F(U12, 0(p, r)) X F(U,3, 0`p, r)) X F(U23, 0(p, r)) 

with a<0, j9>_0, p-a-ej3<0 and r-Q>_0. 

    We put L=Ker (Os_~1r*LC). Then we have the exact sequence 

                     0 --> L --> ps --> ,r* (9 ->0. 

Then L-0(e, 2) and 2r*OC~0(2, 0) (cf. [2]). We denote LO(A,)-gl®®(An)-qn 
by Lq and 7r*0c®(A,)-01®• • • ® (An)-4n by Mq. Then we have the following 
exact sequence 

                        0 ---> L ---> ~Q -- > Mq -->0. 

Since L~ is a subsheaf of Q, we can naturally define the scope of an element 
of C'(V, Lq) so that the natural map C'(V, L)-~C'(V, ) is scope-preserving. 
We can also define the scope of an element of the group C'(V, Mq) so that the 
natural map C'(V, Q)-+C'(U, Mq) is scope-preserving. Thus we have only to 
calculate the scopes of H1-slices of Lq and MQ in order to calculate the scope 
of an H1-slice of ~. 

    If we put A,~=O(a, bu), a=(a,, , an) and b=(b,, ••• , ba), then we obtain 
the isomorphisms L 0(e-q • a, 2-q • b) and M0(2-.a, q Since N is 
ample, the following inequalities are satisfied : a > eb, b>0. Since
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H 

                                  0 -1 0 

                      T(0,1)=: 1 -e 0 
                                  t0 -ta En 

in this case, a vector (a, ~3, q) belongs to QRDT(l, 0) if and only if a+(e-1)~3 
+(a-1)•q>_0. 
   First, we calculate the scope of an H1-slice of L. We put p=e-q • a and 
r=2-q • b. Since a > eb, we obtain the inequality p-e(r+1) <0. Thus the case 
(a) in Lemma 6.7 does not occur. Hence we have q • b <_ 2 if H '(S, L) ~ 0. Noting 
that 8/t®(x0) mod(x0)+l is the local basis of L on U0, we can take an H1-
slice V of LQ such that Scope (V; 0) is generated by the vectors (a, /3-1, q) 
with a<0, p-a--e j3<0 and r-j30. 

   Suppose q • b=2. Then j3>_0 and r-/3=2-q • b-/3>_O imply p=0. Thus 
Scope (V ; 0) is generated by (a, -1, q) with e-g • a +1 <_ a -1. Then we have 

                 a+(e-1) • (-1)+(a-1) • g >_ 2-i. q >_ 0, 

whence Scope (V; 1)C QRD• Note that 1 • q <_ q • h=2, since b >_ 1. 
  Suppose .b=1. Then j3>_0 and r-/3=2-q.6-,60 imply /3=0 or 1. Thus 

Scope (V a ; 0) is generated by (a, -1, q) with e - q • a + 1 <_ a <_ --1 and (a, 0, q) 
with -q•a+1<a<-1. For (a, /3) with e-q•a+1Sa<_-1 and j3=0, we have 

               a+(e-1)(/3-1)+(a-1)•g >_ 2-1•q >_ 0. 

For (a, /3) with --q•a+1<a<_-1 and /3=1, we have 

           a+(e-1)(p-1)+(a-1).q > 1-1.q = 0. 

Hence we have Scope (V; 1)CQRD• 
   Next, we calculate the scope of an H1-slice of M. We now put p=2-• 

and r=-q • b. Sirce r<0, the case (b) in Lemma 6.7 does not occur. Noting 
that the image of a/ato®(xo)q mod (x,)q+l is the local basis of M~ on U0, we 
can take an H1-slice WQ of Mq such that Scope (W; 0) is contained in the semi-
group generated by the vectors (a-l, j3, q) with a>_0, j3<0, p-a-e/3=2-q•¢ 
-a-ej3> _0 and r-/3=-q•b-j3<0. Since 

    0 <_ p-e(r+1) = 2-e-q•(a-eb) 2-e-•1 1-e, 

we have e <_ 1. For such vectors (a-1, /3, q) as above, we have 

                                 -1+(1-e)+eb.q >_ 0, 

whence such vectors belong to QRD • T (1, 0). Thus Theorem 6.i.(2) is partially 
proved in the case where S=Xe.
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   Suppose p(S)>_5. Then the morphism f : S*Ee is written as the composi-
               fm fm-1 fl 

tion S=Sm --~ Sm_1-~ Sm_2-~ S1--~ S°=Xe of equivariant blowing-ups. 
Let Ap;, _ ((f,+1° • • °fm)*ApY for 0<j<m-1 and Ap,m = Au, (1<_p<_n). Let 
Fund (f 3)=q,ES,_1 and E,= f 31(q,)CS, (1<_ j <_m). Then, for each j with 1<_ j 
<_ m, there exists a positive vector c, _ (c;, • • • , c;) such that A ,, f *A~,, _ 1 
O(-c; E,). We construct an affine open covering V (" _ {UZ} %EI (,) of S, in the 
following way. We take the open covering R1(°' _ {Uz} AEI (°) of S°=Xe with 1(0)= 

{0, 1, 2, 3} as before. Suppose that the open covering V'= {U~} ZEI(,-1) of S,_1 
with UZ=Spec k [t, tfl is determined. For i E 1(j-1), we denote by p2 the 

point on S,_1 determined by the equation ti=ti=0. Using this notation, we 
can write q,=PS(,) for some s(j)EI(j-1). Then we put 

             1(j) _ (1(j-1)\ {s(j)} )`J {s(j)+~, s(j)-E}, 

with the symbol as is used in § 4. For i E I (j -1)'\ {s(j)}, we denote f (U) 
the same symbol U. and we use the same coordinates (ti, ti). We have f_1(U) 
=Us(,)+stJU,(,) -S with the coordinates satisfying the following : ts(,)+E=ts(,), 

   +=(t ,))t3), ts(,)-s=ts(,)(ts(,))-1 and t() =t(). By the induction on p(S) 
and Theorem 4.3, it is enough to show 

     {(a, p, 4) a < -1, / < -1, a+/3+m > -1} .T(s(m), 1) C QRD, 

By the same argument as in the proof of Theorem 6.1 of [2], we may assume 
that f is a succession of equivariant blowing-ups along successive infinitely 
near points, that is, s(j-F1)=s(j)+~ or s(j+l)-s(j)-s for 1<_ m-l. We 

                                        i • • • , bn). Then we have a >e/               ,, yput Au;°=0(a                          , b                  ), a=(a1, ••• , an) and b=(b1, 
       i 1 

and b > 0. We also put 

                       a11(j) a12(j) 

                      a21(j) a22(j) 

          T(s(j), 1) = a31(j) a32(j) 

                           a2+n,l(j) a2+n 2(j) 

We divide the proof into three cases. 

   Case I : s(1)=0. In this case, (S, f) ' f 

We put r1(j) _ -all(j)-a12(j), r2(j) = j 

a2+~,2(j)-1 for 1<p_<n and 1 <_ j<<-m. 

 CLAIM 6.8. r(j)0 for i=1, 2. 

   PROOF. We have

0 

0 

1 

0

...0 

••• 1

 is o type 
a 21( )+a22(j)

II or 

and

type III . Thus e _< 1. 
r2+,,(j) _
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                                       0 -1 0 

              T(s(1), 1) = T(0, 1) = 1 -e 0 

                                        t0 -ta E n 

Thus r1(1)=1, r2(1)=1-e>_0. If s(j+1)=s(j)+s, we have 

            T (s(j +1), 1) = T (s(j)+s, s(j) ; c~)T (s(j),1) 

                       1 0 0 

                      _ -1 1 0 T(s(j) , 1). 

                                  -tc, t0 E n 

Thus we have r1(j+1) = r1(j), r2(j+l) = r1(j)+r2(j) and r2+~(j+1) _ -c r1(j)+ 

r2+,,(j), (1p n). 

   If s(j+1)=s(j)-~, then we have 

            T (s(j+1), 1) = T (s(j)-~, s(j) ; ~,)T (s(j), 1) 

                                  1 -1 0 

                     = 0 1 0 T (s(j) , 1). 

                                  t0 _tc; E n 

Thus we have r1(j+1)=r1(j)+r2(j), r2(j+1)=r2(j) and r2+(j+1)=c~`r2(j)+r2+p(j)• 
Thus Claim 6.8 is proved. 

   CLAIM 6.9. r2+ (j)-c~`r1(j)>_0 for 1<p<_n and 1<jcm, 

   PROOF. First, we assume that s(j +1)=s(j)+s for all j. Since N is ample, 

the following inequalities are satisfied : a>cl+i2+ ••+cm, cm>0, Cm-1>Cm, 

C1>c2, 6>i, a>e& Then we have 

                    1 -(j-1) 0 

       T (s(j), 1) = 0 1 O T(0, 1) 

                   t0 _t( +) E n 

                       -(j-1) e(j-1)-1 0 

                  = 1 -e 0 . 

                          t(+ +) e•t(c 1+...+Cj-1)-ta En 
Thus 

           r2+0(j)-c,r1(j) 

                 = a~-c,-1+(1-e){c'+...+c,-1-(j-1)c;} >_ 0. 

Assume that r2+~(j)-c;r1(j)>_0 for some j. Moreover, we assume that the
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morphisms f3, f ;+1, • • , f,+(ti) are chosen such that the following are satisfied : 
s(j +1) = s(j)-e, s(j HI-A) = s(j +2-1)-I-~ for 2_-A t. Note that t may be equal 
to one. Since N is ample, the following inequalities are satisfied : Cj> C j+1 ~' 

    c+>0,j+t-1>cj+t, ..., ~j+1>~j+z• Then we have: 

          r1(j +l) = r1(j)+r2(j), 

          r2(j+1) = r2(j), 

           r2+~(j+l) = c;rz(j)+r2+~(j) 

          r1(j +t) = r1(j +1) , 

          r2(j +t) = (t-i)r1(j +i)+r2(j +i) , 

            r2+~(j+t) = -(cj~+1+...+C +t-1)r1(j+1)+r2+~(j+l). 

We obtain : 

             r2+,~(j +t)--c~`+tr1(j +t) 

                  = r2+f~(j)-cjr1(j)+(c -c3+1-...-C +t)rl(j+i) 

             o. 

Thus Claim 6.9 is proved. 
   Let (a, Q, q)EZ2X(Z=o)n with a<_-1, /<_-1 and a+Q+cm-1. Putting 

                  (a, 3, q)T (s(m), 1) = (A, B, 9) , 
we have : 

        -A-B-I •q = r1(m)a-r2(m)p+ r2(m)qp 
                                                    ~=1 

n                 = -(r1(m)+r2(m))/3+r1(m)(a+p)+ ~1r2+ (m)q1, 

n 

                    r(m) + (r2+~(m)-cm` rl(m))gp 0. 
                                        u=1 

   Case II : s(1)=2. In this case, we put r1(j)=a11(j)+a12(j), r2(j)=-a21(j)-
a22(j) and r2+,,(j)=-a2+p,1(j)-a2+~,2(j)-i. We have 

                            0 1 0 

               T(s(1), 1) = T(2, 1) = -1 0 0 

                                       -tb to E n 

If s(j+1)=s(j)+E, we have r1(j+1)=r1(j), r2(j1)=r1(j)r2(j) and r2+(j+1)= 

c,r1(j)+r2+p(j). If s(j+l)=s(j)-s, we have r1(j+1)=r1(j)+r2(j), r2(j+1)=r2(j) 

and r2+~(j+l)=-c~fr2(j)+r2+1(j)• It is easy to see that r•(j)>_0 for i=1, 2.
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   CLAIM 6.10. r2+~(j)-c,r2(j)?0. 

   PROOF. First, we assume that s(j+1)=s(j)-E for all j. Since N is ample, 
the following inequalities are satisfied: a>eb+cl, c1>c2, •••, cm_1>cm, cm>0, 
and b>cl+c2+•••+cm. Then we have r2+p(j)-cf r2(j)=bu-1-(ci+•••+c;)>_0. 

   Assume that r2+~ (j) - c; r2(j) ? 0 for some j and that, for t >_ 1, the following 
are satisfied: s(j+1)=s(j)+E, s(j+A)=s(j+2-1)-~ for 2<_A<_t. Since N is 
ample, the following inequalities are satisfied : cj+1>cj+2, cj+t-1>cj+t, cj+t> 
0, Cj>Cj+1+••'+cj+t. Then we have 

     r2+u(j+t)-C3+tr2(j+t) = r2+p( )-c r2(j)+(cj-Cj+1-...-C~+t)r2(j+1) 

                    >0. 

Thus Claim 6.10 is proved. 
   Let (a, j3, q)EZ2 X (Z?0)n with a_<-1, j3<_ -1 and a+ j3+cm • q>_ -1. Putting 

                 (a, j3, q)T (s(m), 1) = (A, B, q), 
we have : 

                                                    ., n   -A-B-1.9 = -r1(m)a+r2(m)~+ r2(m)9 
              = -(r1(m)+r2(m))a+r2(m)(a+~)+ ~

1r2+ (m)q~ 

n 

                 rl(m)+ (r2+~(m)--cmr2(m))9p ? 0. 
                                   ~=1 

   Case III: s(1)=3. In this case, (S, f) is of type I or type i. Thus e>_ 1. 
We now put r1(j)=all(j)+x12(3), r2(j)=-a21(1)-a22(j) and r2+,(j)=-a2+p,1(~)-
a2+f~,2(j)-1 as in Case II. We have 

                                        -1 e 0 

            T(s(1), 1) = T(3, 1) = 0 -1 0 

                                   -tb et/3_ta En 

By the same argument as before, we see that r3(j)__>0 for i=1, 2. To prove 
Theorem 6.1.(2) in this case, it is sufficient to show that r2+~(j)-c~ r2(j)>-0 for 
1<pn. 
   First, we assume that s(j+1)=s(j)-E for all j. Then the following ine-

qualities are satisfied: b>cl, ~1>c2, , cm-1>Cm, cm>0, a>eb+cl+c2+•••+cm. 
Then we have 

          r2+p(j)-Cjr2(j) = r2+,u(1)-(ci+ ... +C~-1)r2(j)-Cjr2(j) 

                        = r2+~(1)-(c~`+ ... +c~)r2(1) 

                          = a ,~-(e-1)b~_1-(c;+ ... +c~) >_ 0.
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Assume that r2+~(j)-cr2(j)>_0 for some j and that, for t1, 

satisfied : s(j+1)=s(j)+~, s(j+A)=s(j+A-1)-~ for 2<A<t. 

r2+~(j+t)-c;+rr2(j+t)>_0 by the same argument as in Case H 
   Thus Theorem 6.1. (2) is proved.

the following are 

Then we obtain

   § 7. Supplements. 

   A. A note on the assumption of Main Theorem. 
   In the statement of Main Theorem (Corollary 6.3) we have assumed the 

two conditions (a) and (b). But the condition (b) seems to be superfluous for 
the conclusion that X is unirational. We shall later conjecture a more general 
statement (cf. Corollary 7.8). But, so far as we insist on our technique of 
scopes and RD Lemma, which does not seem sharp enough, these assumptions 

(a) and (b) are necessary for our calculation. 
   First, we state the following proposition which suggests what the condition 

(b) means. 

   PROPOSITION 7.1. Let S be a nonsingular algebraic variety and A1, • • , An 
line bundles on S. Let N=Eu=1A~. Assume that H1(S, NOSq(Nv))=0 for each 

q>o. Let (X, S) be any regular formal neighbourhood of dimension m+n with 
Ns,x ti N. Then there exist regular formal subschemes X1, • • • , X n of X o f codi-
mension one such that Ns,xa 32# AA and that X1nfXn=S. 

   PROOF. Let S=U~~IU1 be an open covering of S by the open sets U~ with 

the coordinates (ti, ..•, tm). Let (ti, ..•, tm, x~, • • • , x?) be the coordinates on 
X I vi such that xu mod (xti)2 is the local basis of A on U2. By the assumption 
we have 

     H1(S, A®(A1)1® ... ®(A~_1)-qp-1O(A,+1)-qu+1( ... O(A)n) = 0 

for each p with 1 < p <_ n and each (q1, • q p-1, qp+1, qn) (Z,0)n-1\ {(0, ..., O)}, 
which implies the following : We can take the transition relation 

                (ti, x1) = f 23(t,, xj) = (gij, ... , g e), hij, ... , hij) 

on UifU2 (2, jEl) such that a term (x,)g1•••(x,-i)qu_1(x~+1)qu+1 ,,(x~)Qn does not 
appear in the function It follows that the equations x'=0(iEl) patch 
together and define a regular formal subscheme of X, which we denote by Xa. 
Then X1, ..•, Xn satisfy the required property. 

   Next, we show an example in which the scope is too big to satisfy the 

assumption of RD Lemma (Lemma 2.3). 

  EXAMPLE 7.2. Let S=L 2i A1=®(10, 1), A2=o(5, 2) and N=A1~A2. Then
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                H1(S, (1;(O,2)) = H1(S, Al®(A2)-2) * 0. 

We have an H1-slice W1; (o, 2) with 

                Scope (W 1; (o, 2) ; 1) = Z>_o(a, /3, -1, 2).                                                             a=-1, -2                                                      Os /3 -2a 

Take the reference curve of type I on S, apply Lemma 2.3. Then the descrip-

tion of the second infinitesimal neighbourhood determined by a general element 

of the above H1-slice W1; (o, 2) fails to satisfy the assumption of Lemma 2.3 for 

any covering index r>0 of Pl. 

   This example suggests that our arguments on scopes and RD Lemma are 

not sharp enough. The following two points are the weak points of our theory. 

   (1) RD Lemma provides a sufficient condition for a neighbourhood of Pl 
to be rationally dominated, which is not a necessary one at all. We have 

started a special type of cyclic covering of P1, which seems too easy, though 

it is not easy to prove another RD Lemma which is useful for our later argu-

ments and which comes from a more general covering of P1. 

   (2) If we are given transition functions of a neighbourhood of a toric 
variety, we can calculate the scope of this description. But the scope does not 

recover the transition relation as it is. In particular, we neglect the discussion 

of coefficients of monomial terms and obstructions in the second cohomologies 
when we discuss scopes. 

   PROBLEM 7.3. Remove the assumption (b) from the statement of Main 

Theorem. More generally, develop similar arguments in the case where the 

normal bundle is an ample equivariant vector bundle which does not a direct sum 

of line bundles and generalize our results. 

   B. A remark on algebrizability. 

   A formal neighbourhood (X, S) of S is said to be algebrizable if there exists 

an algebraic variety Y containing S such that the completion Y " of Y along S 

is isomorphic to (X, S). In Corollary 6.2, we discuss all the regular formal 
neighbourhood (X, S) of S with NS,X-N which might not be algebrizable, 

though we have only to discuss algebrizable neighbourhoods in order to prove 
Main Theorem. How many algebrizable neighbourhoods are there among all 

the neighbourhoods? We have few answers to this question. As for two-

dimensional neighbourhood of P', we have the following proposition, which 

suggests that the algebrizability would be a somewhat strong condition. This 

proposition is essentially due to the idea of M. Reid, who informed the author 
of its prototype. 

   PROPOSITION 7.4. Let (X, C) be a two-dimensional regular neighbourhood of
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 CNP1 with ample normal bundle. Assume that (X, C) is algebrizable. Then 

 (X, C) is rationally dominated. 

    PROOF. Suppose that a nonsingular projective surface Y contains C . Pl 

 with ample normal bundle. Since (KY+C)C = -2, the divisor KY+C is not 

 nef, whence there exists a curve R with (Ky+ C)R <O (cf. [4] for terminology). 

 Since (C)>O, C is nef and big. Thus we have Ky • R <O, which implies that 

 R determines an extremal ray. If R is an exceptional curve of the first kind, 

 then we have C • R=o, because (KY+C)R <O, C • R>>-O and KY • R=-1. Let f : 
 Y--Y' be the contraction of R. In this case (Y, CY is isomorphic to (Y', C)# 

 via f. In the case where Y=P2, then C is a line or a conic. If C is a line, 

 then we have : 

             (Y, C)~ ~' Sp f (k [t0] [[x0]]) JSpf (k [t1] [[x1]]) 

 with t0=(t1)-1 and x0=(t1)-1x1. 
    If C is a conic, then we have the following transition relation of (Y, C)~ 

 after elementary calculation : 

                           t0 = (t1)_1(1+(t1)_2x1)-1, 

                         x0 = (t1)-4x1(1+(t1)-2x1)_2 

 If the contraction of R determines a P°-bundle over a curve, then we have 

 C • R=1. In fact, K . R=-2, (KY+C)R <O and C • R>_O imply C • R=0 or 1. 
 If C • R=O, then C is a fiber of the contraction morphism, a contradiction. 

 Thus C is a section of a P1-bundle over P1. In this case we have the follow-
 ing transition relation of (Y, C)~ : 

                                   t0 - (t1)-1 

, 

                       x0 = (t1)-"x1(1+~o((t1)_1)x1)-1 

 where p>O and ~o is a polynomial with deg(cp)__<p-1 and p(O)=0. 
    All the above neighbourhoods turn out to be rationally dominated. Thus 

 Proposition 7.4 is proved. 

     By the above proposition we can also construct examples of neighbourhoods 

 which are not algebrizable as follows. 

    EXAMPLE 7.5. Let (X, C) be a regular formal neighbourhood of CNP1 

 with NC,X.O(1). Assume that (X, C) is not isomorphic to the neighbourhood 

 of the zero section of the normal bundle. Then (X, C) is not algebrizable. 

 Note that such neighbourhoods do exist and that they are not isomorphic to 

 neighbourhoods appearing above (cf. [2] Proposition 2.7).
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   C. Problems. 
   The origin of Main Theorem is the following theorem due to M. Noether. 

   THEOREM 7.6 (M. NOETHER). Let X be a nonsingular projective surface. 

Assume that X contains a nonsingular rational curve C with (C)X>0. Then X 

is a rational surface. 

   We consider the following questions which are generalizations of Theorem 

7.6. 

   QUESTION R(n, m) (resp. UR(n, m), RC(n, m)). Let n>m>0. Let X be a 
nonsingular projective algebraic variety of dimension n and Y a nonsingular 

subvariety of dimension m. Assume that Np11 is an ample vector bundle and 

that Y is rational (resp. unirational, connected). Then so is X? 

   An algebraic variety X is said to be rationally connected if the following 

is satisfied : For general points x and y of X, there exists a rational curve C 

passing through both x and y. As is easily seen, a rational variety is unira-
tional and one is rationally connected. But a unirational variety is not rational 

in general. It is an open problem whether any rationally connected variety is 

unirational or not. 

   Since any nonsingular rational surface contains a nonsingular rational curve 

with ample normal bundle, R(n, 1) (resp. UR(n, 1), RC(n, 1)) implies R(n, 2) 

(resp. UR(n, 2), RC(n, 2)). As for the question R(3, 2), we have a counter-
example due to [1] as follows. Let X be a nonsingular cubic hypersurface in 

P4 and Y=XnH, where H denotes a general hyperplane. Then Y is a rational 

surface, NY1 is ample and X is unirational, but X is not rational. This ex-

ample also provides a counter-example against R(3, 1). 

   On the other hand, RC(n, 1) holds true for any n>_2, which is proved by 

applying the following theorem due to [5] for the inclusion morphism Yc~X. 

   THEOREM 7.7 (KOLLAR-MIYAOKA-MORI). For a nonsingular algebraic variety 

X, the following are equivalent to each other. 

   (1) X is rationally connected; 

   (2) There exists a morphism f : P1-X such that f *ex is ample. 

   RC(n, m) is also true for any n>m. 

   Our Main Theorem tells that UR(n, 2) holds true under certain assumption. 

Whether UR(n, 1) holds true or not is as much doubtful as whether any ra-

tionally connected variety is unirational or not. There seems to be essential 

difference between the problems UR(n, m) with m>_2 and the problem UR(n,1). 

We shall end this paper with the following conjecture. 

   CONJECTURE 7.8. UR(n, m) holds true for n>m>_2.
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   As we have mentioned in § 0 of [2], we need essentially finite parameters 

to describe neighbourhoods of a variety of dimension greater than or equal to 

two, which is essentially different from neighbourhoods of a curve. Such fini-

teness seems to be deeply related to the unirationality of algebraic varieties. 
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