Holomorphic maps of projective algebraic manifolds into compact C-hyperbolic manifolds

Dedicated to Professor Nobuyuki Suita on his 60th birthday

By Yoichi IMAYOSHI

(Received Oct. 15, 1992) (Revised Feb. 8, 1993)

Introduction.

Let $\operatorname{Hol}(M,N)$ be the Douady space of compact complex manifolds M and N, that is $\operatorname{Hol}(M,N)$ is the set of all holomorphic maps of M into N. Then $\operatorname{Hol}(M,N)$ has a complex analytic space structure whose underlying topology is the compact-open topology. Moreover, the evaluation map of $\operatorname{Hol}(M,N)\times N$ into N sending (f,p) to f(p) is holomorphic. (See Douady [2].)

The main purpose of this paper is to study concretely the structure of $\operatorname{Hol}(M,N)$ for a projective algebraic manifold M and a compact C-hyperbolic manifold N. A complex manifold N is said to be C-hyperbolic or Carathéodory hyperbolic if there exists a regular covering \tilde{N} of N whose Carathéodory pseudodistance is actually a distance (see Kobayashi [12], p. 129). A typical example of C-hyperbolic manifolds is a quotient space $N = \Omega/\Gamma$, where Ω is a bounded domain in the n-dimensional complex Euclidean space C^n and Γ is a fixed-point-free discrete subgroup of the analytic automorphism group $\operatorname{Aut}(\Omega)$ of Ω . Every submanifold of a C-hyperbolic manifold is also C-hyperbolic.

Throughout this paper, we assume that M is a projective algebraic manifold over the complex number field C, and N is a compact C-hyperbolic manifold. (By Noguchi and Sunada [19], Lemma 2.3, for a C-hyperbolic projective algebraic manifold N, it is sufficient to only assume that M is a compact complex space.) Since a compact C-hyperbolic manifold N is complete hyperbolic, Hol(M, N) is a compact complex analytic space with finitely many irreducible components (see Kobayashi [12], Theorem 3.2 in Chap. V).

In Section 1, we obtain the following main result:

THEOREM 1. Let M be a projective algebraic manifold with universal covering transformation group G, and let N be a compact C-hyperbolic manifold with universal covering transformation group Γ . If holomorphic maps $f_1, f_2: M \to N$ induces the same surjective monodromy $(\tilde{f}_1)_* = (\tilde{f}_2)_*: G \to \Gamma$ and if $f_1(M) \cap f_2(M)$

 $\neq \emptyset$, then $f_1 = f_2$.

In Section 2, we shall study the structure of the Douady space $\operatorname{Hol}(M,N)$. In order to state our results, we fix the following notations. Let $\Pi: \tilde{N} \to N$ be a covering such that the Carathéodory pseudo-distance on \tilde{N} is actually a distance. Denote by Γ the covering transformation group of $\Pi: \tilde{N} \to N$.

Let X be an irreducible component of $\operatorname{Hol}(M,N)$. Take the universal covering $\rho: \widetilde{X} {\to} X$ of X with covering transformation group H and the universal covering $\pi: \widetilde{M} {\to} M$ of M with covering transformation group G. We set

$$F(f, p) = f(p)$$

for all $(f, p) \in X \times M$. Then $F: X \times M \to N$ is a holomorphic map, which is lifted to a holomorphic map $\tilde{F}: \tilde{X} \times \tilde{M} \to \tilde{N}$. Let $\tilde{F}_*: H \times G \to \Gamma$ be a homomorphism such that

$$\widetilde{F} \circ (h, g) = \widetilde{F}_*(h, g) \circ \widetilde{F}$$

for all $(h, g) \in H \times G$. We put

$$\hat{\Gamma} = \widetilde{F}_*(H \times G)$$
 and $\hat{N} = \widetilde{N}/\widehat{\Gamma}$.

Since $\hat{\Gamma}$ is a subgroup of Γ , the quotient space \hat{N} is a complex manifold. Note that \hat{N} is not necessarily compact.

Let $\hat{\Pi}: \hat{N} \to \hat{N}$ be the canonical projection, and let $\hat{F}: X \times M \to \hat{N}$ be the holomorphic map satisfying

$$\hat{F} \circ (\rho, \pi) = \hat{\Pi} \circ \tilde{F}.$$

For any $f \in X$, we obtain a holomorphic map $\hat{f}: M \rightarrow \hat{N}$ given by

$$\hat{f}(\cdot) = \hat{F}(f, \cdot).$$

For every point $p \in M$, we define the holomorphic map $\hat{p}: X \rightarrow \hat{N}$ by

$$\hat{p}(f) = \hat{f}(p) = \hat{F}(f, p)$$

for all $f \in X$.

Now we have the following assertions:

PROPOSITION 1. For any point $p \in M$, the holomorphic map $\hat{p}: X \rightarrow \hat{p}(M)$ is c-biholomorphic.

THEOREM 2. For any fixed point f_0 of a component X of Hol(M, N), complex spaces $\hat{F}(X \times M)$ and $X \times \hat{f}_0(M)$ are c-biholomorphically equivalent.

THEOREM 3. For any component X of Hol(M, N),

$$\dim X + \operatorname{rank} X \leq \dim N$$
.

If $\dim X+\operatorname{rank} X=\dim N$, then $X\times \hat{f}_0(M)$ is biholomorphically equivalent to \hat{N} , where $f_0\in X$. In particular, X and $\hat{f}_0(M)$ are nonsingular, and $\hat{\Gamma}$ is a finite index subgroup of Γ so that the canonical projection $\hat{\Pi}_0: \hat{N}=\tilde{N}/\hat{\Gamma}\to N=\tilde{N}/\Gamma$ is a surjective finite holomorphic map.

THEOREM 4. Let N be a compact complex manifold represented by a quotient space Ω/Γ such that Ω is a bounded domain in C^n and Γ is a fixed-point-free discrete subgroup of $\operatorname{Aut}(\Omega)$. Let $\ell(\Omega)$ be the maximum dimension of all complex spaces included in the boundary $\partial\Omega$ of Ω . If a holomorphic map $f: M \to N$ is of $\operatorname{rank} > \ell(\Omega)$, then f is rigid. Moreover, $\dim X \leq \ell(\Omega)$ for any component X of $\operatorname{Hol}(M,N)$ with $X \neq C$ onst, the component of $\operatorname{Hol}(M,N)$ whose elements are constant maps.

These assertions are analogous to Noguchi's results [18] for the case where $N = \Gamma \setminus D$, D is a symmetric bounded domain, and Γ is a torsion-free discrete subgroup of $\operatorname{Aut}(D)$ such that either Γ is co-compact or an arithmetic discrete subgroup of the identity component of $\operatorname{Aut}(D)$. In this case, every component X of $\operatorname{Hol}(M,N)$ is smooth. However, in our case, X may have singular points. Actually, in Section 3, using a Kodaira surface, we construct a C-hyperbolic projective algebraic manifold N of dimension 3 such that N is not biholomorphically equivalent to a product of complex manifolds and such that for a certain compact Riemann surface C the Douady space $\operatorname{Hol}(C,N)$ has a 1-dimensional component with singular points.

§ 1. Rigidity of holomorphic maps in Hol(M, N).

Let M be a projective algebraic manifold over the complex number field C. Denote by $\pi: \widetilde{M} \to M$ the universal covering of M whose covering transformation group is G.

Let N be a compact C-hyperbolic manifold. Take a covering $\Pi: \widetilde{N} \to N$ such that the Carathéodory pseudo-distance on \widetilde{N} is actually a distance. Denote by Γ the covering transformation group of $\Pi: \widetilde{N} \to N$.

For any holomorphic map $f: M \to N$, the Monodromy Theorem implies that there exists a holomorphic map $\tilde{f}: \tilde{M} \to \tilde{N}$ with $f \circ \pi = \Pi \circ \tilde{f}$. We have the following commutative diagram:

$$\begin{array}{ccc} \widetilde{M} & \xrightarrow{\widetilde{f}} & \widetilde{N} \\ \pi \downarrow G & f & \Pi \downarrow \Gamma \\ M & \longrightarrow N. \end{array}$$

This holomorphic map \tilde{f} is called a lift of f. Note that \tilde{f} is not unique,

for we may replace \tilde{f} by $\tilde{f}_1 = \gamma_0 \circ \tilde{f} \circ g_0$, where $g_0 \in G$ and $\gamma_0 \in \Gamma$. A lift \tilde{f} of f induces a group homomorphism $\tilde{f}_* \colon G \to \Gamma$ such that

$$\tilde{f} \circ g = \tilde{f}_*(g) \circ \tilde{f}$$

for any $g \in G$. We call \tilde{f}_* a monodromy of f. If a lift \tilde{f} is replaced by $\tilde{f}_1 = \gamma_0 \circ \tilde{f} \circ g_0$, then \tilde{f}_1 induces a homomorphism $(\tilde{f}_1)_*$ such that

$$(\widetilde{f}_1)_*(g) = \gamma_0 \circ \widetilde{f}_*(g_0 \circ g \circ g_0^{-1}) \circ \gamma_0^{-1}$$

for each $g \in G$.

Now, we have the following rigidity theorem of holomorphic maps.

THEOREM 1. Let M be a projective algebraic manifold with universal covering transformation group G, and let N be a compact C-hyperbolic manifold with covering transformation group Γ . If holomorphic maps $f_1, f_2 \colon M \to N$ induces the same surjective monodromy $(\tilde{f}_1)_* = (\tilde{f}_2)_* \colon G \to \Gamma$ and if $f_1(M) \cap f_2(M) \neq \emptyset$, then $f_1 = f_2$.

REMARK. In Theorem 1, the surjectivity of $(\tilde{f}_i)_*$: $G \rightarrow \Gamma$ is necessary. For example, take a compact Riemann surface R of genus $g \geq 2$ such that R has a biholomorphic involution T with no fixed points. Then T acts on $N_0 = R \times R$ by

$$T(p, q) = (T(p), T(q))$$

for any $p, q \in R$. Let $\langle T \rangle$ be the subgroup of $\operatorname{Aut}(N_0)$ generated by T. Set $N = N_0 / \langle T \rangle$. Then N is a 2-dimensional compact complex manifold and the canonical projection $P \colon N_0 \to N$ is an unramified finite covering. Let $\pi \colon \varDelta \to R$ be the universal covering with covering transformation group G, where \varDelta is the unit disc in the complex plane. Then $\Pi_0 = (\pi, \pi) \colon \tilde{N} = \varDelta \times \varDelta \to N_0$ is the universal covering with covering transformation group $\Gamma_0 = G \times G$. Let Γ be the covering transformation group of $\Pi \colon \tilde{N} \to N$.

Fix a point $p_0 \in R$ and set $\varphi_1(p) = (p_0, p)$, and $\varphi_2(p) = (T(p_0), p)$ for any $p \in R$. Then φ_1, φ_2 are distinct holomorphic maps of R into N_0 . Take $z_1, z_2 \in \Delta$ with $\pi(z_1) = p_0$ and $\pi(z_2) = T(p_0)$. Then the holomorphic map $\tilde{\varphi}_i : \Delta \to \tilde{N}$ sending z to (z_i, z) is a lift of φ_i for i = 1, 2. Moreover, they induce the same homomorphism $\chi = (\tilde{\varphi}_i)_* : G \to \Gamma_0$ such that $\chi(g) = (1, g)$ for each $g \in G$, where 1 is the unit of G. Since $\Gamma_0 = G \times G$, the homomorphism χ is not surjective.

We set $f_i = P \circ \varphi_i$ for i = 1, 2. Then $\tilde{\varphi}_i$ is a lift of f_i for each i = 1, 2 and $\chi = (\tilde{\varphi}_1)_* = (\tilde{\varphi}_2)_*$. On the other hand, f_1 , f_2 are distinct holomorphic maps R into N and $f_1(R) = f_2(R)$. Hence, this example shows that the assumption of surjectivity of $(\tilde{f}_i)_*$ in Theorem 1 is necessary.

By using the following two lemmas, the proof of Theorem 1 is reduced to

the case where M is a projective algebraic curve, that is, a compact Riemann surface.

LEMMA 1. Let R be a compact Riemann surface with universal covering transformation group G, and let N be a compact C-hyperbolic manifold with covering transformation group Γ . If holomorphic maps $f_1, f_2 \colon R \to N$ induce the same monodromy $(\tilde{f}_1)_* = (\tilde{f}_2)_* \colon G \to \Gamma$ and if $\tilde{f}_1(\tilde{R}) \cap \tilde{f}_2(\tilde{R}) \neq \emptyset$ for the universal covering surface \tilde{R} of R, then $f_1 = f_2$.

PROOF. The Uniformization Theorem for Riemann surfaces implies that the universal covering surface \tilde{R} of R is biholomorphically equivalent to the Riemann sphere \hat{C} , the complex plane C, or the unit disc $\Delta = \{z \in C \mid |z| < 1\}$. If \tilde{R} is biholomorphically equivalent to \hat{C} or C, then \tilde{f}_1 , \tilde{f}_2 are constant maps, for \tilde{N} is C-hyperbolic. Since $\tilde{f}_1(\tilde{R}) \cap \tilde{f}_2(\tilde{R}) \neq \emptyset$, we have $\tilde{f}_1 = \tilde{f}_2$, and hence $f_1 = f_2$.

Now, assume that \tilde{R} is biholomorphically equivalent to Δ . In this case, we can use the same method as the proof of Theorem 1 in [6]. Take two points $z_1, z_2 \in \Delta$ with $\tilde{f}_1(z_1) = \tilde{f}_2(z_2)$. Let $\chi = (\tilde{f}_1)_* = (\tilde{f}_2)_*$. We obtain

(1)
$$\begin{cases} \tilde{f}_1 \circ g = \chi(g) \circ \tilde{f}_1 \\ \tilde{f}_2 \circ g = \chi(g) \circ \tilde{f}_2 \end{cases}$$

for all $g \in G$.

Assume that $\tilde{f}_1 \neq \tilde{f}_2$ on Δ . Since \tilde{N} is C-hyperbolic, there exists a bounded holomorphic function α on \tilde{N} such that $\alpha \circ \tilde{f}_1 \neq \alpha \circ \tilde{f}_2$ on Δ . Then $A_1 = \alpha \circ \tilde{f}_1$ and $A_2 = \alpha \circ \tilde{f}_2$ are bounded holomorphic functions on Δ .

Since G is of divergence type, almost every boundary point $\zeta \in \partial \Delta$ is an angular limit point of G, that is, there exists a sequence $\{g_n\}_{n=1}^{\infty}$ of G such that $g_n(z) \to \zeta$ through a Stolz domain with vertex at ζ as $n \to \infty$ for each $z \in K$, where K is a compact subset in Δ . Apply Fatou's theorem to bounded holomorphic functions A_1 , A_2 . For almost every boundary point $\zeta \in \partial \Delta$, there exist two complex numbers $b_1(\zeta)$, $b_2(\zeta)$ such that $A_1(z)$ and $A_2(z)$ converge uniformly to $b_1(\zeta)$ and $b_2(\zeta)$, respectively as $z \to \zeta$ through a fixed Stolz domain with vertex at ζ . Hence, for almost every boundary point ζ , there exists a sequence $\{g_n\}_{n=1}^{\infty}$ of G such that

$$\lim_{n\to\infty} A_1 \circ g_n(z_1) = b_1(\zeta),$$

$$\lim_{n\to\infty} A_2 \circ g_n(z_2) = b_2(\zeta).$$

By relation (1) and $\tilde{f}_1(z_1) = \tilde{f}_2(z_2)$, we have $b_1(\zeta) = b_2(\zeta)$. Hence, A_1 and A_2 have the same boundary value for almost all $\zeta \in \partial \Delta$, which implies $A_1 = A_2$ on Δ . This contradicts $A_1 \neq A_2$ on Δ . Therefore, $f_1 = f_2$ on R.

LEMMA 2. Let M be a projective algebraic manifold. For any two points

 $p_1, p_2 \in M$, there exists a non-singular, connected, 1-dimensional analytic subset R of M such that R contains p_1 and p_2 , and such that R is biholomorphically equivalent to the Riemann sphere \hat{C} or the inclusion map $\iota: R \subseteq M$ induces a surjective homomorphism $\iota_*: \pi_1(R) \to \pi_1(M)$ between the fundamental groups of R and M.

PROOF. We will prove this lemma by the induction of dimension of M. If M is of 1-dimension, then we can take R=M. Assume that M is of dimension $n(\geq 2)$ and embedded in a complex projective space $P^k(C)$ with k>n. We may assume that $p_1 \neq p_2$. Then we can take $p_1=[1, 0, 0, \cdots, 0]$ and $p_2=[0, 1, 0, \cdots, 0]$ in $P^k(C)$. If M contains the complex projective line L_0 in $P^k(C)$ which meets p_1 and p_2 , then we take $R=L_0$.

Now, assume that M contains no complex projective lines meeting p_1 and p_2 . Let \mathcal{L} be the set of all hyperplanes H in $P^k(C)$ such that H contains p_1 and p_2 . Then any element H of \mathcal{L} is represented by an equation

$$a_2 z_2 + \dots + a_k z_k = 0$$

in $P^k(C)$, where $[a_2, \dots, a_k] \in P^{k-2}(C)$. Since M does not contain L_0 , the intersection $B = M \cap L_0$ consists of finite points. By Bertini's Theorem, the intersection $M \cap H$ is smooth away from B for the generic element H of \mathcal{L} . (See Griffiths and Harris [5], p. 137.) We shall prove that $M \cap H$ is also smooth at every point of $M \cap H \cap B$ for the generic element H of \mathcal{L} .

Take any point $x=[x_0, x_1, 0, \cdots, 0] \in B$. We may assume that $x_0 \neq 0$. Then $\zeta = z_i/z_0$ $(i=1, \cdots, k)$ are local coordinates at $x \in P^k(C)$. There exist holomorphic functions f_i $(i=1, \cdots, k-n)$ defined on a neighborhood U of $x \in P^k(C)$ such that $M \cap U = \{\zeta \in U \mid f_i(\zeta) = 0 \ (i=1, \cdots, k-n)\}$ and $\det(\partial f_i/\partial \zeta_j)_{1 \leq i,j \leq k-n}$ does not vanish on U. Let $f_{k-n+1}(\zeta) = a_2\zeta_2 + \cdots + a_k\zeta_k$. Then

$$M \cap H \cap U = \{ \zeta \in U \mid f_i(\zeta) = 0, i = 1, \dots, k-n+1 \}$$

and

$$\det(\partial f_i/\partial \zeta_j)_{1 \leq i, j \leq k-n+1} = \sum_{j=2}^{k-n+1} a_j \Delta_j(\zeta),$$

where each Δ_j is a holomorphic function on U.

Since $\Delta_{k-n+1} = \det(\partial f_i/\partial \zeta_j)_{1 \le i, j \le k-n}$, the function Δ_{k-n+1} does not vanish on U. Hence

$$\left\{ \left[a_2, \, \cdots, \, a_k \right] \in \mathbf{P}^{k-2}(\mathbf{C}) \left| \, \sum_{j=2}^{k-n+1} a_j \Delta_j(\zeta) = 0 \right\} \right.$$

is of dimension < k-2. Therefore, $M \cap H$ is smooth at x for the generic element H of \mathcal{L} . This implies that $M \cap H$ is non-singular for the generic element H of \mathcal{L} .

Take an element H of \mathcal{L} such that $M \cap H$ is non-singular. By Lefschetz's Theorem, the pair $(M, M \cap H)$ is (n-1)-connected. (See Milnor [16], Theorem

7.4, or Lamotke [15], Theorem (8.11).) Hence, $M \cap H$ is connected and the inclusion map $\iota \colon M \cap H \hookrightarrow M$ induces a surjection $\iota_* \colon \pi_1(M \cap H) \to \pi_1(M)$ providing that $n = \dim M \ge 2$. Therefore, for the generic element H of \mathcal{L} , the hyperplane section $M \cap H$ is a non-singular, connected, (n-1)-dimensional analytic subset of M such that $\iota_* \colon \pi_1(M \cap H) \to \pi_1(M)$ is surjective. This completes the proof of Lemma 2.

REMARK. This lemma is proved in Zaidenberg and Lin [22], Lemma 1, p. 130.

LEMMA 3. Let M be a projective algebraic manifold with universal covering transformation group G, and let N be a compact C-hyperbolic manifold with covering transformation group Γ . If holomorphic maps f_1 , $f_2: M \to N$ induce the same monodromy $(\tilde{f}_1)_* = (\tilde{f}_2)_* : G \to \Gamma$ and $\tilde{f}_1(\tilde{M}) \cap \tilde{f}_2(\tilde{M}) \neq \emptyset$, then $f_1 = f_2$.

PROOF. Take two points \tilde{p}_1 , $\tilde{p}_2 \in \tilde{M}$ with $\tilde{f}_1(\tilde{p}_1) = \tilde{f}_2(\tilde{p}_2)$, and set $p_1 = \pi(\tilde{p}_1)$, $p_2 = \pi(\tilde{p}_2)$. Let R be a compact Riemann surface as in Lemma 2. If R is of genus ≤ 1 , then f_1 , f_2 are constant on R. Since R contains p_1 and p_2 , we have $f_1 = f_2$ on R.

Now, assume that R is of genus >1. Then the inclusion map $\iota\colon R \subseteq M$ induces a surjection $\iota_*\colon \pi_1(R) \to \pi_1(M)$. We set $\hat{R} = \pi^{-1}(R)$, which is a nonsingular, connected, 1-dimensional analytic subset of \tilde{M} . By definition, \hat{R} is invariant under G and the quotient space \hat{R}/G is biholomorphically equivalent to R. Let $\pi_0\colon \Delta\to \hat{R}$ be the universal covering of \hat{R} , where Δ is the unit disc. Then $\hat{\pi}=\pi\circ\pi_0\colon \Delta\to R$ is the universal covering of R with covering transformation group H. Note that

$$H = \{ h \in \operatorname{Aut}(\Delta) | \pi_0 \circ h = g \circ \pi_0 \text{ for some } g \in G \},$$

and that π_0 induces a surjective homomorphism $(\pi_0)_*: H \to G$ sending $h \in H$ into $(\pi_0)_*(h) = g \in G$, where g is uniquely determined by the relation $\pi_0 \circ h = g \circ \pi_0$.

Set $\varphi_i = \tilde{f}_i \circ \pi_0$ for i = 1, 2. Then $\varphi_i : \Delta \to \tilde{N}$ is a lift of $f_i | R : R \to M$ and satisfies

$$\varphi_i \circ h = (\tilde{f}_i)_*((\pi_0)_*(h)) \circ \varphi_i$$

for all $h \in H$. Let $(\varphi_i)_* = (\tilde{f}_i)_* \circ (\pi_0)_*$. Holomorphic maps $\varphi_1, \varphi_2 : \Delta \to \tilde{N}$ induce the same homomorphism $(\varphi_1)_*, (\varphi_2)_* : H \to \Gamma$, and $\varphi_1(\Delta) \cap \varphi_2(\Delta) \neq \emptyset$. Hence, Lemma 1 implies that $\tilde{f}_1 = \tilde{f}_2$ on \hat{R} and $f_1 = f_2$ on R.

Let p be an arbitrary point on M. By Lemma 2, we can take a non-singular, connected, 1-dimensional analytic subset R' of M such that R' contains p and p_1 , and such that R' is biholomorphically equivalent to \widehat{C} or the inclusion map $\iota: R' \hookrightarrow M$ induces a surjective homomorphism $\iota_*: \pi_1(R') \to \pi_1(M)$. If R' is of genus ≤ 1 , then f_1 , f_2 are constant on R'. Hence, $f_1(p) = f_1(p_1) = f_2(p_2) = f_2(p)$.

Now, assume that R' is of genus >1. Since $\tilde{p}_1 \in \hat{R}' = \pi^{-1}(R')$ and $\tilde{f}_1(\tilde{p}_1) = \tilde{f}_2(\tilde{p}_1)$, the same reasoning as above implies that $f_1 = f_2$ on R'. In particular, $f_1(p) = f_2(p)$. Since p is arbitrary, we have $f_1 = f_2$ on M.

PROOF OF THEOREM 1. Take two points p_1 , $p_2 \in M$ with $f_1(p_1) = f_2(p_2)$. Let $\tilde{p}_i \in \tilde{M}$ such that $\pi(\tilde{p}_i) = p_i$ for i = 1, 2. There exists an element $\gamma_0 \in \Gamma$ with $\tilde{f}_2(\tilde{p}_2) = \gamma_0 \circ \tilde{f}_1(\tilde{p}_1)$. Since $(\tilde{f}_1)_* : G \to \Gamma$ is surjective, we find an element $g_0 \in G$ with $\gamma_0 = (\tilde{f}_1)_*(g_0)$. We have $\tilde{f}_2(\tilde{p}_2) = \tilde{f}_1 \circ g_0(\tilde{p}_1)$. Hence, $\tilde{f}_1(\tilde{M}) \cap \tilde{f}_2(\tilde{M}) \neq \emptyset$, and Lemma 3 implies that $f_1 = f_2$ on M. This completes the proof of Theorem 1.

COROLLARY 1. Let M be a projective algebraic manifold with universal covering transformation group G, and let N be a compact C-hyperbolic manifold with covering transformation group Γ . If surjective holomorphic maps f_1 , f_2 : $M \rightarrow N$ induce the same monodromy $(\tilde{f}_1)_* = (\tilde{f}_2)_* : G \rightarrow \Gamma$, then $f_1 = f_2$. In particular, if surjective holomorphic maps f_1 , f_2 : $M \rightarrow N$ are homotopic, then $f_1 = f_2$.

PROOF. Let $\Gamma_0 = (\tilde{f}_1)_*(G)$ and $N_0 = \tilde{N}/\Gamma_0$. Let $\Pi_0 : \tilde{N} \to N_0$ be the canonical projection. Take holomorphic maps $\varphi_i : M \to N_0$ satisfying $\varphi_i \circ \pi = \Pi_0 \circ \tilde{f}_i$ for i = 1, 2. Since M is compact, the Proper Mapping Theorem implies that $\varphi_1(M)$ is a compact analytic subset of N_0 . Since f_1 is surjective, $\dim \varphi_1(M) = \dim f_1(M) = \dim N_0$. Hence, $\varphi_1(M) = N_0$, and N_0 is compact. Similarly, we have $\varphi_2(M) = N_0$. Then $\varphi_1, \varphi_2 : M \to N_0$ are surjective holomorphic maps which induce the same surjective homomorphism $(\tilde{f}_1)_* = (\tilde{f}_2)_* : G \to \Gamma_0$. By Theorem 1, we have $\varphi_1 = \varphi_2$, and hence $f_1 = f_2$.

Now, we have the following well-known finiteness Theorem of surjective holomorphic maps of M to N. (Cf. Kalka, Shiffman and Wong [9], Kobayashi and Ochiai [13], Noguchi and Sunada [19], and Urata [20].)

COROLLARY 2. Let M be a projective algebraic manifold, and let N be a compact C-hyperbolic manifold. Then there exist finitely many surjective holomorphic maps of M to N.

PROOF. Assume that there exist infinitely many distinct surjective holomorphic maps $\{f_n\}_{n=1}^{\infty}$ of M to N. Fix a point $\tilde{x}_0 \in \tilde{M}$ and take a relatively compact fundamental set K_0 for Γ . There exists a unique lift $\tilde{f}_n \colon \tilde{M} \to \tilde{N}$ of f_n with $\tilde{f}_n(\tilde{x}_0) \in K_0$ for each n. We may assume that $\tilde{f}_n(\tilde{x}_0) \to \tilde{y}_0 \in \tilde{N}$ as $n \to \infty$.

Let $d_{\tilde{M}}$ be the Kobayashi pseudo-distance of \tilde{M} and $d_{\tilde{N}}$ the Kobayashi pseudo-distance of \tilde{N} . Since \tilde{N} is C-hyperbolic and $N = \tilde{N}/\Gamma$ is compact, $d_{\tilde{N}}$ is a complete distance. (See Kobayashi [12], Theorem 4.7 in Chap. 4.)

Let $\{g_1, \dots, g_\ell\}$ be a finite system of generators of G. We set

$$\delta = \max_{1 \le i \le \ell} d_{\tilde{M}}(g_i(\tilde{x}_0), \tilde{x}_0).$$

The distance decreasing property of Kobayashi pseudo-distances gives

$$d_{\tilde{N}}(\tilde{f}_n \circ g_i(\tilde{x}_0), \tilde{f}_n(\tilde{x}_0)) \leq d_{\tilde{M}}(g_i(\tilde{x}_0), \tilde{x}_0) \leq \delta$$

for all $n=1, 2, \dots$, and $i=1, 2, \dots$, ℓ . Since $d_{\tilde{N}}$ is a complete distance on \tilde{N} , the set K_0 is a relatively compact subset of \tilde{N} , and $\tilde{f}_n(\tilde{x}_0) \in K_0$ for each n, we may assume that $\{\tilde{f}_n \circ g_i(\tilde{x}_0)\}_{n=1}^{\infty}$ converges to a point $z_i \in \tilde{N}$ as $n \to \infty$ for each $i=1, 2, \dots, \ell$.

Since \tilde{N} is complete hyperbolic, \tilde{N} is taut (see Eisenman [3] or Kiernan [11]). Hence, from the relation $\tilde{f}_n \circ g_i = (\tilde{f}_n)_*(g_i) \circ \tilde{f}_n$, we may assume that $\{(\tilde{f}_n)_*(g_i)\}_{n=1}^{\infty}$ converges uniformly to a holomorphic map γ_i defined in \tilde{N} on compact subsets of \tilde{N} as $n \to \infty$. Therefore, H. Cartan's Theorem implies that $\gamma_i \in \operatorname{Aut}(\tilde{N})$ for each $i=1, 2, \cdots, \ell$ (cf. Narasimhan [17], Chap. 5, Theorem 4). Since Γ is discrete, there exists a positive integer n_0 such that $(\tilde{f}_n)_*(g_i) = \gamma_i$ for all $n \ge n_0$ and $i=1, 2, \cdots, \ell$. Hence, $(\tilde{f}_n)_* = (\tilde{f}_{n_0})_*$ for all $n \ge n_0$. By Corollary 1, we have $f_n = f_{n_0}$ for all $n \ge n_0$. This is a contradiction.

§ 2. The structure of Hol(M, N).

We shall study concretely the structure of the Douady space Hol(M, N) of a projective algebraic manifold M and a compact C-hyperbolic manifold N.

Let Const be the set of all constant maps of M into N. Then Const is an irreducible component of Hol(M, N) and it is biholomorphically equivalent to N.

Take a covering $\Pi: \tilde{N} \to N$ such that the Carathéodory pseudo-distance on \tilde{N} is actually a distance. Denote by Γ the covering transformation group of $\Pi: \tilde{N} \to N$.

Let X be an irreducible component of $\operatorname{Hol}(M,N)$ which is distinct from Const. We may assume that X is reduced. (See Grauert and Remmert [4], pp. 20-21.) Take the universal covering $\rho: \widetilde{X} {\to} X$ of X with covering transformation group H, and the universal covering $\pi: \widetilde{M} {\to} M$ of M with covering transformation group G. Then $(\rho,\pi): \widetilde{X} {\times} \widetilde{M} {\to} X {\times} M$ is the universal covering of $X {\times} M$ with covering transformation group $H {\times} G$, where $H {\times} G$ is the direct product of H and G. We set

$$F(f, p) = f(p)$$

for all $(f, p) \in X \times M$. Then $F: X \times M \to N$ is a holomorphic map, which is lifted to a holomorphic map $\tilde{F}: \tilde{X} \times \tilde{M} \to \tilde{N}$. We obtain the following commutative diagram:

$$\begin{array}{ccc} \widetilde{X} \times \widetilde{M} & \stackrel{\widetilde{F}}{\longrightarrow} \widetilde{N} \\ (\rho, \pi) & \downarrow H \times G & f & \downarrow \Gamma \\ X \times M & \stackrel{}{\longrightarrow} N. \end{array}$$

Let $\widetilde{F}_*: H \times G \rightarrow \Gamma$ be a homomorphism such that

$$\widetilde{F} \circ (h, g) = \widetilde{F}_*(h, g) \circ \widetilde{F}$$

for all $(h, g) \in H \times G$. We put

$$\hat{\Gamma} = \widetilde{F}_*(H \times G)$$
 and $\hat{N} = \widetilde{N}/\widehat{\Gamma}$.

Since $\hat{\Gamma}$ is a subgroup of Γ , the quotient space \hat{N} is a complex manifold. Note that \hat{N} is not necessarily compact.

Let $\hat{H}: \tilde{N} \to \hat{N}$ be the canonical projection, and let $\hat{F}: X \times M \to \hat{N}$ be the holomorphic map satisfying

$$\hat{F} \circ (\rho, \pi) = \hat{\Pi} \circ \hat{F}$$
.

We have the following commutative diagram:

$$\begin{array}{ccc}
\tilde{X} \times \tilde{M} & \xrightarrow{\tilde{F}} & \tilde{N} \\
(\rho, \pi) \downarrow H \times G & \tilde{F} & \hat{\Pi} \downarrow \hat{\Gamma} \\
X \times M & \longrightarrow \tilde{N}.
\end{array}$$

For any $f \in X$, we have a holomorphic map $\hat{f}: M \rightarrow \hat{N}$ given by

$$\hat{f}(\cdot) = \hat{F}(f, \cdot).$$

For every point $p \in M$, we define the holomorphic map $\hat{p}: X \rightarrow \hat{N}$ by

$$\hat{p}(f) = \hat{f}(p) = \hat{F}(f, p)$$

for all $f \in X$.

We fix these notations throughout this section.

Note that the Proper Mapping Theorem implies that both $\hat{f}(M)$ and $\hat{p}(X)$ are compact analytic subsets of \hat{N} , and hence they are compact complex spaces. Now we have the following lemma.

LEMMA 4. If $f_1, f_2 \in X$ satisfy $\hat{f}_1(M) \cap \hat{f}_2(M) \neq \emptyset$, then $\hat{f}_1 = \hat{f}_2$. In particular, $f_1 = f_2$.

PROOF. Take two poins $(\tilde{f}_1, \, \tilde{p}_1)$ and $(\tilde{f}_2, \, \tilde{p}_2)$ of $\tilde{X} \times \tilde{M}$ such that $(\rho, \, \pi)(\tilde{f}_1, \, \tilde{p}_1) = (f_1, \, p_1)$ and $(\rho, \, \pi)(\tilde{f}_2, \, \tilde{p}_2) = (f_2, \, p_2)$. The assumption $\hat{F}(f_1, \, p_1) = \hat{F}(f_2, \, p_2)$ implies that there exists an element $(h_0, \, g_0) \in H \times G$ satisfying $\tilde{F}(\tilde{f}_2, \, \tilde{p}_2) = \tilde{F}_*(h_0, \, g_0) \in \tilde{F}(\tilde{f}_1, \, \tilde{p}_1) = \tilde{F}(h_0(\tilde{f}_1), \, g_0(\tilde{p}_1))$. Define $\varphi_1, \, \varphi_2 : \, \tilde{M} \to \tilde{N}$ by

$$\varphi_1(\tilde{p}) = \tilde{F}(h_0(\tilde{f}_1), \tilde{p}),$$

$$\varphi_2(\tilde{p}) = \tilde{F}(\tilde{f}_2, \tilde{p})$$

for any $\tilde{p} \in \tilde{M}$. Then $(\varphi_1)_* = (\varphi_2)_* : G \to \hat{\Gamma}$ and $\varphi_2(\tilde{p}_2) = \varphi_1(g_0(\tilde{p}_1))$. Hence, Lemma

3 implies that $\varphi_1 = \varphi_2$ on \widetilde{M} . Therefore, $\widehat{F}(f_1, \cdot) = \widehat{F}(f_2, \cdot)$ on M.

LEMMA 5. For any point $p \in M$, the holomorphic map $\hat{p}: X \rightarrow \hat{N}$ is injective. If $p_1, p_2 \in X$ satisfy $\hat{p}_1(X) \cap \hat{p}_2(X) \neq \emptyset$, then $\hat{p}_1 = \hat{p}_2$.

PROOF. The first assertion of this Lemma is clear from Lemma 4.

The second assertion is proved as follows: Take two elements f_1 , $f_2 \in X$ with $\hat{p}_1(f_1) = \hat{p}_2(f_2)$. Then we have $\hat{f}_1(p_1) = \hat{f}_2(p_2)$. By Lemma 4, we get $\hat{f}_1 = \hat{f}_2$, and hence $\hat{p}_1(f_1) = \hat{p}_2(f_1)$. The rigidity theorem due to Borel and Narasimhan ([1], Theorem 3.6 and its remark) shows $\hat{p}_1 = \hat{p}_2$.

Since X may have singular points, we extend the notion of holomorphic maps on complex spaces after Whitney. Let X and Y be complex spaces. We say that a map $f: X \rightarrow Y$ is continuous weakly holomorphic, or c-holomorphic for short, if it is continuous on X and is holomorphic at every regular point of X (see Whitney [21], p. 149). A map $f: X \rightarrow Y$ is said to be c-biholomorphic if it is homeomorphic, and both f and f^{-1} are c-holomorphic. Two complex spaces X and Y are c-biholomorphically equivalent if there exists a c-biholomorphic map between them. We give a typical example of c-biholomorphically equivalent complex spaces which are not biholomorphically equivalent: Let X be the complex plane, and let Y be the complex space $\{(z, w) \in C^2 | w^2 = z^3\}$. Define the map $f: X \rightarrow Y$ by $f(t) = (t^2, t^3)$. Then f is homeomorphic and holomorphic. The inverse map f^{-1} is given by $f^{-1}(z, w) = w/z$, and hence it is not holomorphic at the singular point (0, 0) of Y. Clearly f^{-1} is c-holomorphic, and X, Y are c-biholomorphically equivalent.

Now we have the following assersion.

PROPOSITION 1. For any point $p \in M$, the holomorphic map $\hat{p}: X \to \hat{p}(M)$ is c-biholomorphic.

PROOF. From Lemma 5 we see that $\hat{p}: X \to \hat{p}(M)$ is homeomorphic. Since \hat{p} is holomorphic, it is clear that the graph of the inverse map \hat{p}^{-1} is an analytic subset of $\hat{p}(M) \times X$. Hence \hat{p}^{-1} is c-holomorphic (see Whitney [21], p. 149).

COROLLARY. If N is a projective algebraic C-hyperbolic manifold, then any component X of Hol(M, N) is c-biholomorphically equivalent to a projective algebraic variety.

PROOF. Let $\hat{H}_0: \hat{N} = \tilde{N}/\hat{\Gamma} \to N = \tilde{N}/\Gamma$ be the canonical projection. Then $\hat{H}_0 \circ \hat{p}(X)$ is a projective algebraic variety and $\hat{H}_0 | \hat{p}(X): \hat{p}(X) \to H_0 \circ \hat{p}(X)$ is a finite holomorphic map. Thus $\hat{p}(X)$ is also a projective algebraic variety. Hence Proposition 1 implies that X is c-biholomorphically equivalent to a projective algebraic variety.

PROPOSITION 2. For any two points f_1 , $f_2 \in X$, complex spaces $f_1(M)$, $f_2(M)$ are c-biholomorphically equivalent.

PROOF. First, we define the map $\Phi: \hat{f}_1(M) \rightarrow \hat{f}_2(M)$ by

$$\Phi(x) = \hat{f}_2(p), \qquad p \in \hat{f}_1^{-1}(x).$$

This map Φ is well-defined. In fact, for any p, $q \in \hat{f}_1^{-1}(x)$, Lemma 5 implies that $\hat{p} = \hat{q}$, and so $\hat{f}_2(p) = \hat{f}_2(q)$.

Second, we show that Φ is continuous on $\hat{f}_1(M)$. Assume that Φ is not continuous at $x_0 \in \hat{f}_1(M)$. Then there exists an infinite sequence $\{x_n\}$ converging to x_0 in $\hat{f}_1(M)$ such that $\{\Phi(x_n)\}$ does not converge to $\Phi(x_0)$. We find a neighborhood U of $\Phi(x_0)$ in $\hat{f}_2(M)$ and a subsequence $\{\Phi(x_{n_j})\}$ such that $\Phi(x_{n_j}) \notin U$ for all n_j . For each n_j , take a point $p_{n_j} \in M$ with $\hat{f}_1(p_{n_j}) = x_{n_j}$. Since M is compact, we may assume that $\{p_{n_j}\}$ converges to a point $p_0 \in M$. Because \hat{f}_1 is continuous and $\{x_{n_j}\}$ converges to x_0 , we have $\hat{f}_1(p_0) = x_0$, and so $\Phi(x_0) = \hat{f}_2(p_0)$. By the continuity of \hat{f}_2 , we obtain $\Phi(x_{n_j}) = \hat{f}_2(p_{n_j}) \to \hat{f}_2(p_0) = \Phi(x_0)$. This is a contradiction.

Third, we prove that Φ is c-holomorphic. It is sufficient to see that the graph G_{Φ} of Φ is an analytic subset of $\hat{f}_1(M) \times \hat{f}_2(M)$. By the definition of Φ , we get

$$G_{\emptyset} = \{ (\hat{f}_1(p), \hat{f}_2(p)) \in \hat{f}_1(M) \times \hat{f}_2(M) | p \in M \}.$$

Since $\hat{f}_1 \times \hat{f}_2 : M \to \hat{f}_1(M) \times \hat{f}_2(M)$ is holomorphic, and M is a compact complex space, the Proper Mapping Theorem shows that G_{ϕ} is an analytic subset of $\hat{f}_1(M) \times \hat{f}_2(M)$.

Finally, we define the map $\Psi: \hat{f}_2(M) \rightarrow \hat{f}_1(M)$ by

$$\Psi(y) = \hat{f}_1(p), \qquad p \in \hat{f}_2^{-1}(y).$$

By the same reasoning as above, we see that Ψ is a c-holomorphic map. It is clear that Ψ is the inverse map of Φ .

THEOREM 2. For any fixed point $f_0 \in X$, complex spaces $\hat{F}(X \times M)$ and $X \times \hat{f}_0(M)$ are c-biholomorphically equivalent.

PROOF. Define the map $\Phi: X \times \hat{f}_0(M) \rightarrow \hat{F}(X \times M)$ by

$$\Phi(f, x) = \hat{f}(p), \qquad p \in \hat{f}_0^{-1}(x).$$

This map Φ is well-defined. In fact, for any p, $q \in \hat{f}_0^{-1}(x)$, Lemma 5 implies that $\hat{p} = \hat{q}$, and hence $\hat{f}(p) = \hat{f}(q)$.

Next, we show that Φ is continuous on $X \times \hat{f}_0(M)$. Assume that Φ is not continuous at $(f, x) \in X \times \hat{f}_0(M)$. Then there exists an infinite sequence $\{(f_n, x_n)\}$ converging to (f, x) in $X \times \hat{f}_0(M)$ such that $\{\Phi(f_n, x_n)\}$ does not converge to

 $\Phi(f, x)$. We find a neighborhood U of $\Phi(f, x)$ in $\hat{F}(X \times M)$ and a subsequence $\{\Phi(f_{n_j}, x_{n_j})\}$ such that $\Phi(f_{n_j}, x_{n_j}) \notin U$ for all n_j . For each n_j , take a point $p_{n_j} \in M$ with $\hat{f}_0(p_{n_j}) = x_{n_j}$. Since M is compact, we may assume that $\{p_{n_j}\}$ converges to a point $q \in M$. Because \hat{f}_0 is continuous and $\{x_{n_j}\}$ converges to x, we have $\hat{f}_0(q) = x$, and so $\Phi(f, x) = \hat{f}(q)$. By the continuity of \hat{F} , we obtain $\Phi(f_{n_j}, x_{n_j}) = \hat{F}(f_{n_j}, p_{n_j}) \to \hat{F}(f, q) = \Phi(f, x)$. This is a contradiction.

In order to prove that Φ is c-holomorphic, it is sufficient to see that the graph G_{Φ} of Φ is an analytic subset of $X \times \hat{f}_0(M) \times \hat{F}(X \times M)$. By the definition of Φ , we get

$$G_{\phi} = \{(f, \hat{f}_0(p), \hat{F}(f, p)) \in X \times \hat{f}_0(M) \times \hat{F}(X \times M) | f \in X, p \in M\}.$$

Since $\mathrm{id} \times \hat{f}_0 \times \hat{F} : X \times M \to X \times \hat{f}_0(M) \times \hat{F}(X \times M)$ is holomorphic, and $X \times M$ is a compact complex space, the Proper Mapping Theorem shows that G_{Φ} is an analytic subset of $X \times \hat{f}_0(M) \times \hat{F}(X \times M)$.

Finally, the inverse map Ψ of Φ is given by

$$\Psi(y) = (f, \hat{f}_0(p)), \qquad (f, p) \in \hat{F}^{-1}(y).$$

By the similar reasoning as above, we see that Ψ is a c-holomorphic map and it is the inverse map of Φ .

From Theorem 2, $\dim \hat{f}(M)$, the dimension of the complex space $\hat{f}(M)$, is independent of $f \in X$. We call $\dim \hat{f}(M)$ the rank of X and denote it by rank X.

THEOREM 3. For any component X of Hol(M, N),

$$\dim X + \operatorname{rank} X \leq \dim N$$
.

If $\dim X+\operatorname{rank} X=\dim N$, then $X\times \hat{f}_0(M)$ is biholomorphically equivalent to \hat{N} , where $f_0\in X$. In particular, X and $\hat{f}_0(M)$ are nonsingular, and $\hat{\Gamma}$ is a finite index subgroup of Γ so that the canonical projection $\hat{\Pi}_0: \hat{N}=\tilde{N}/\hat{\Gamma}\to N=\tilde{N}/\Gamma$ is a surjective finite holomorphic map.

PROOF. Theorem 2 implies that $X \times \hat{f}_0(M)$ is c-biholomorphically equivalent to the analytic subset $\hat{F}(X \times M)$. Thus we have $\dim X + \dim \hat{f}_0(X) = \dim \hat{F}(X \times M) \le \dim \hat{N} = \dim N$, and hence $\dim X + \operatorname{rank} X \le \dim N$.

If $\dim X+\mathrm{rank}X=\dim N$, then we get $\dim \hat{F}(X\times M)=\dim \hat{N}$. Thus $\hat{F}(X\times M)$ is a non-empty, open and closed subset of \hat{N} . Since \hat{N} is a connected complex manifold, we see that $\hat{F}(X\times M)=\hat{N}$ and $X\times\hat{f}_0(M)$ is biholomorphically equivalent to \hat{N} . Hence both X and $\hat{f}_0(M)$ are nonsingular. Since \hat{N} is a compact complex manifold and $\dim \hat{N}=\dim N$, we see that the canonical projection $\hat{H}_0:\hat{N}=\hat{N}/\hat{\Gamma}\to N=\hat{N}/\Gamma$ is a surjective finite holomorphic map. In particular, $\hat{\Gamma}$ is a finite index subgroup of Γ .

This theorem also proves Corollary 2 to Theorem 1.

THEOREM 4. Let N be a compact complex manifold represented by a quotient space Ω/Γ such that Ω is a bounded domain in C^n and Γ is a fixed-point-free discrete subgroup of $\operatorname{Aut}(\Omega)$. Let $\ell(\Omega)$ be the maximum dimension of all complex spaces included in the boundary $\partial\Omega$ of Ω . If a holomorphic map $f: M \to N$ is of $\operatorname{rank} > \ell(\Omega)$, then f is rigid. Moreover, $\dim X \leq \ell(\Omega)$ for any component X of $\operatorname{Hol}(M,N)$ with $X \neq C$ onst.

PROOF. For the first assertion it is sufficient to show that $\dim X=0$ for any component X of $\operatorname{Hol}(M,N)$ which contains f. Assume that $\dim X>0$. Since N is projective algebraic, Corollary to Proposition 1 implies that X is c-biholomorphically equivalent to a projective algebraic variety. Thus we have a 1-dimensional irreducible analytic subset R of X. Let $\sigma: R_0 \to R$ be the normalization of R. Then R_0 is a compact Riemann surface of genus >1. In fact, if R_0 is of genus ≤ 1 , then for a point $p_0 \in M$, the holomorphic map $\hat{p}_0: X \to \hat{N}$ is constant on R, which contradicts Lemma 5. Hence the universal covering surface of R_0 is the unit disc Δ . Denote by H_0 the universal covering transformation group of R_0 .

Define the holomorphic map $\Phi: R_0 \times M \to N$ by $\Phi(\varphi, p) = F(\sigma(\varphi), p) = \sigma(\varphi)(p)$ for any $(\varphi, p) \in R_0 \times M$. Let $\tilde{\Phi} = (\tilde{\Phi}_1, \dots, \tilde{\Phi}_n) : \Delta \times \tilde{M} \to \Omega$ be a lift of Φ . From Lemma 5 we can take a point $t_0 \in \Delta$ so that $\tilde{\Phi}(\cdot, \tilde{p})$ is injective in a neighborhood of t_0 for any $\tilde{p} \in \tilde{M}$.

Let r be the rank of f. Since $\widetilde{\Phi}(t,\cdot)$ is of rank r for any $t \in \mathcal{A}$, we may assume that there exist holomorphic local coordinates z_1, \dots, z_m around a point $\widetilde{p}_0 \in \widetilde{M}$ such that

$$\det\Bigl(\frac{\partial\widetilde{\Phi}_{j}}{\partial z_{k}}(t_{0},\ \widetilde{p}_{0})\Bigr)_{1\leq j,\ k\leq r}\neq 0\,.$$

For any $t \in \mathcal{A}$ we set

$$d(t) = \det\left(\frac{\partial \widetilde{\Phi}_{j}}{\partial z_{k}}(t, p_{0})\right)_{1 \leq j, k \leq r}.$$

Then d(t) is a bounded holomorphic function on Δ .

Take a neighborhood K of t_0 which is relatively compact in Δ . For almost every boundary point $\tau \in \partial \Delta$, there exists a sequence $\{h_j\}_{j=1}^{\infty}$ of H_0 satisfying the following conditions:

- (1) $h_j(t) \rightarrow \tau$ through a Stolz domain with vertex at τ as $j \rightarrow \infty$ for any $t \in K$.
- (2) $\tilde{\Phi}(h_j(t), \tilde{p}_0) \rightarrow \zeta \in \bar{\Omega}$ as $j \rightarrow \infty$ for any $t \in K$.
- (3) $d(h_j(t)) \rightarrow d_0 \in \mathbb{C}$ as $j \rightarrow \infty$ for any $t \in K$.
- (4) the sequence $\{\tilde{\Phi}_*((h_j, \mathrm{id}))\}_{j=1}^{\infty}$ of Γ converges uniformly on compact sets of Ω to a holomorphic map $T: \Omega \to \bar{\Omega}$.

It is proved that the range of T is contained in $\partial \Omega$ as follows: From conditions (2) and (4), we have

$$\zeta = \lim_{t \to \infty} \widetilde{\Phi}(h_j(t), \ \widetilde{p}_0) = T \circ \widetilde{\Phi}(t, \ \widetilde{p}_0),$$

where $\zeta \in \overline{\Omega}$ is independent of $t \in K$. If $T(\Omega) \not\subset \partial \Omega$, H. Cartan's theorem (Narasimhan [17], Theorem 4, p. 78) implies that T is an analytic automorphism of Ω . Thus $T \circ \widetilde{\Phi}(t, \, \widetilde{p}_0)$ depends on t because $\Phi(t, \, \widetilde{p}_0)$ is injective in a neighborhood of t_0 . We have a contradiction.

Now we define a holomorphic map $A: \tilde{M} \rightarrow \partial \Omega$ by

$$A(\hat{p}) = \lim_{i \to \infty} \tilde{\Phi}(h_i(t_0), \hat{p}) = T \circ \tilde{\Phi}(t_0, \hat{p}).$$

Then A is of rank $\leq \ell(\Omega)$. Hence, by the assumption that $\ell(\Omega) < r$ and condition (3), we obtain $d_0 = 0$. This means that the bounded holomorphic function d on the unit disk Δ has boundary value 0 for almost all $\tau \in \partial \Delta$. Thus d = 0 on Δ , which contradicts the condition $d(t_0) \neq 0$. Therefore, we have $\dim X = 0$.

In order to prove the second assertion, assume that some component X of $\operatorname{Hol}(M,N)$ with $X\neq Const$ satisfies $\dim X>\ell(\Omega)$. Consider the Douady space $\operatorname{Hol}(X,N)$. Take a point $f_0{\in}X$. For any $p{\in}M$ we have a holomorphic map $\hat{p}:X{\to}\hat{N}$. By Theorem 2 these maps \hat{p} 's are parametrized by an analytic subset $\hat{f}_0(M)$ of \hat{N} . Hence there exists a component Y of $\operatorname{Hol}(X,N)$ such that Y includes all $\Pi_0{\circ}\hat{p}$, where Π_0 is the canonical projection of $\hat{N}{=}\Omega/\hat{\Gamma}$ to $N{=}\Omega/\Gamma$. Note that $\dim Y{>}0$ because $X{\neq}Const$. On the other hand, from Lemma 5 the holomorphic $\hat{p}:X{\to}\hat{N}$ is injective. Thus, $\Pi_0{\circ}\hat{p}$ is of rank $\dim X{>}\ell(\Omega)$. By the first assertion of this theorem, $\Pi_0{\circ}\hat{p}$ is rigid. This is a contradiction.

§ 3. An example.

In Imayoshi [8], we saw some typical examples of 2-dimensional compact C-hyperbolic manifolds N and Douady spaces $\operatorname{Hol}(M,N)$. In this section, using a Kodaira surface in Kodaira [14], we construct a 3-dimensional C-hyperbolic projective algebraic manifold N such that N is not biholomorphically equivalent to a product of complex manifolds, and such that for a certain compact Riemann surface C the Douady space $\operatorname{Hol}(C,N)$ has a 1-dimensional component with singular points.

Fix a complex torus T, i.e., a compact Riemann surface of genus 1. Note that a torus has the canonical additive group structure. Construct a 2-sheeted ramified covering $\pi_{R_0} \colon R_0 \to T$ so that π_{R_0} is ramified over two points $t_1, t_2 \in T$. By Riemann-Hurwitz relation, R_0 is a compact Riemann surface of genus 2. After Kas [10], Example 1, let us construct a Kodaira surface M as follows: Let R be a compact Riemann surface of genus 3 such that R is a 2-sheeted

unramified covering of R_0 with covering projection π_R . Taking a certain compact Riemann surface S of genus 9, which is a 4-sheeted unramified covering surface of R, we can construct a Kodaira surface M. This 2-dimensional compact complex manifold M has a holomorphic map $\Phi: M \to S \times R$ which makes M an r-sheeted cyclic branched covering of $S \times R$ such that $P_S = P_1 \circ \Phi: M \to S$ and $P_R = P_2 \circ \Phi: M \to S$ are both non-trivial regularly fibered surfaces, where P_1 and P_2 are the projections of $S \times R$ onto the first and second factors, respectively. We have the following commutative diagram:

Hence, the universal covering space \tilde{M} is biholomorphically equivalent to a bounded domain in C^2 , and so M is a C-hyperbolic projective algebraic manifold. Moreover, \tilde{M} is biholomorphically equivalent to neither a 2-dimensional polydisc nor a 2-dimensional strongly pseudoconvex domain (see Imayoshi [7], Corollary 1 to Theorem 1, and Theorems 2, 3).

Now we take a 2-sheeted ramified covering $\pi_A\colon A\to T$ which ramified over $t_j'\in T,\ j=1,\cdots$, 2m. We also construct a 3-sheeted ramified covering $\pi_B\colon B\to T$ such that π_B is ramified over $t_k''\in T,\ k=1,\cdots$, 2n and these branch numbers are all 2. We may assume that $\{t_j'-t_k''\mid 1\leq j\leq 2m,\ 1\leq k\leq 2n\}$ does not meet $\{t_1,\ t_2\}$. We set

$$\begin{split} & \rho = \pi_{R_0} \circ \pi_R \circ P_R \colon M \longrightarrow T \,, \\ & \Pi = \pi_A - \pi_B \colon A \times B \longrightarrow T \,, \\ & N = \{ (a, b, p) \in A \times B \times M | \, \pi_A(a) - \pi_B(b) = \rho(p) \} \,. \end{split}$$

We shall see that N satisfies the following assertions:

- (1) N is a 3-dimensional C-hyperbolic projective algebraic manifold.
- (2) N is not biholomorphically equivalent to a product of complex manifolds.
- (3) N contains a submanifold which is biholomorphically equivalent to a product of Riemann surfaces.
- (4) There exists a compact Riemann surface C such that $\operatorname{Hol}(C,N)$ has a 1-dimensional irreducible component with singular points.

In order to prove assertion (1), we consider a compact analytic subset of $A \times B \times R$ defined by

$$Z = \{(a, b, x) \in A \times B \times R \mid \pi_A(a) - \pi_B(b) = \pi_{R_0} \circ \pi_R(x)\}.$$

Since $\pi_{R_0} \circ \pi_R$, π_A , and π_B are ramified over $\{t_1, t_2\}$, $\{t'_j\}_{j=1}^{2m}$, and $\{t''_k\}_{k=1}^{2n}$, respectively, the analytic subset Z is non-singular. We see that Z is connected as

follows: Take any points (a_0, b_0, x_0) , $(a_1, b_1, x_1) \in Z$. Since $A \times B$ is connected, we have a continuous curve C_0 : $[0, 1] \rightarrow A \times B$ with $C_0(0) = (a_0, b_0)$, $C_0(1) = (a_1, b_1)$. Then $D_0 = \Pi \circ C_0$ is a continuous curve on T. Thus we find a continuous curve E_0 on R with $D_0 = \pi_{R_0} \circ \pi_R \circ E_0$. Consequently, we obtain a continuous curve F_0 on E defined by $F_0(t) = (C_0(t), E_0(t))$. Therefore, E is connected, and hence it is a 2-dimensional compact complex manifold.

By the same reasoning as the case of Z, the compact analytic subset N of $A \times B \times M$ is non-singular. We define a holomorphic map $\Psi \colon N \to Z$ by

$$\Psi(a, b, p) = (a, b, P_R(p))$$

for all $(a, b, p) \in N$. It is easy to see that Ψ is of rank 2 at every point of N because P_R is of rank 1 at an arbitrary point of M, and $\pi_{R_0} \circ \pi_R$, π_A , π_B are ramified over $\{t_1, t_2\}$, $\{t_j'\}_{j=1}^{2m}$, $\{t_k''\}_{k=1}^{2n}$, respectively. For every $(a, b, x) \in Z$ the fiber $\Psi^{-1}(a, b, x)$ of Ψ over (a, b, x) is biholomorphically equivalent to the fiber $P_R^{-1}(x)$ of P_R over $x \in R$. In particular, every fiber $\Psi^{-1}(a, b, x)$ is non-singular and connected. Hence N is connected and is a complex manifold. Since $A \times B \times M$ is a C-hyperbolic projective algebraic manifold, its submanifold N is also C-hyperbolic projective algebraic.

Let us prove assertion (2). Assume that there exists a biholomorphic map $F: N_1 \times N_2 \rightarrow N$, where N_1 is a compact Riemann surface and N_2 is a 2-dimensional compact complex manifold. Let P_A , P_B , P_M be projections of $N \subset A \times$ $B \times M$ to A, B, M, respectively. We put $F_A = P_A \circ F$, $F_B = P_B \circ F$, $F_M = P_M \circ F$. It is seen that $F_M(\cdot, q_2): N_1 \to M$ is constant for every $q_2 \in N_2$. In fact, suppose that $F_{\mathtt{M}}(\cdot, q_2): N_1 \to M$ is non-constant for some $q_2 \in N_2$. Then $F_{\mathtt{M}}(\cdot, q_2): N_1 \to M$ M is non-constant for every $q_2 \subseteq N_2$. From Imayoshi [6], Theorem 9, the set $\{F_{M}(\cdot, q_{2})|q_{2} \in N_{2}\}\$ is finite. Thus we get $\dim F_{M}(N_{1} \times N_{2}) = 1$, which contradicts F_M is surjective. We see that $F_A(\cdot, q_2): N_1 \to A$ is constant for every $q_2 \in N_2$ or $F_B(\cdot, q_2)$: $N_1 \rightarrow B$ is constant for every $q_2 \in N_2$. In fact, assume that $F_A(\cdot, q_2)$: $N_1 \rightarrow A$ is non-constant for some $q_2 \in N_2$ and $F_B(\cdot, q_2): N_1 \rightarrow B$ is nonconstant for some $q_2'' \in N_2$. Then both $F_A(\cdot, q_2) : N_1 \to A$ and $F_B(\cdot, q_2) : N_1 \to B$ are non-constant for every $q_2 \in N_2$. By de Franchis' theorem (see, for example Imayoshi [6], Theorem 2), the sets $\{F_A(\cdot, q_2)|q_2 \in N_2\}$ and $\{F_B(\cdot, q_2)|q_2 \in N_2\}$ are finite. Hence we obtain $\dim F_A \times F_B(N_1 \times N_2) = 1$, which contradicts $F_A \times F_B$ is surjective. Thus we may assume that $F_A(\cdot, q_2): N_1 \to A$ is constant for every $q_2 \in N_2$. Then by the relation $\pi_A \circ F_A(\cdot, q_2) - \pi_B \circ F_B(\cdot, q_2) = \rho \circ F_M(\cdot, q_2)$ on N_1 , we conclude that $F_B(\cdot, q_2)$ is also constant. This is a contradiction.

Now we see assertion (3). By Sard's theorem, we can find a point $t_0 \in T$ such that the analytic subset $\Pi^{-1}(t_0) = \{(a, b) | \pi_A(a) - \pi_B(b) = t_0\}$ of $A \times B$ is non-singular. Let D be a connected component of $\Pi^{-1}(t_0)$. Take a point $x_0 \in R$ with $t_0 = \pi_{R_0} \circ \pi_R(x_0)$. We set $C = P_R^{-1}(x_0)$. It is easy to show that $D \times C$ is a

2-dimensional complex submanifold of N.

Finally we show assertion (4). Take a point $x_0 \in R$. We set $C = P_R^{-1}(x_0)$ and $t_0 = \pi_{R_0} \circ \pi_R(x_0) \in T$. Let D be an irreducible component of the analytic subset $\Pi^{-1}(t_0)$ of $A \times B$. Then we see that the Douady space $\operatorname{Hol}(C, N)$ has an irreducible component X given by

$$X = \{ f_{(a,b)} | f_{(a,b)} : C \to N, (a,b) \in D \},$$

where $f_{(a,b)}$ defined by $f_{(a,b)}(p)=(a,b,p)$ for any $p\in C$. In fact, let Y be an irreducible component of $\operatorname{Hol}(C,N)$ with $X\subset Y$. Take any element $f\in Y$. For any $(a,b)\in A\times B$ the holomorphic map $P_{M^{\circ}}f_{(a,b)}=\operatorname{id}$ on C. Thus $P_{M^{\circ}}f$ is nonconstant, and so $P_{M^{\circ}}f=P_{M^{\circ}}f_{(a,b)}=\operatorname{id}$ on C by de Franchis' theorem. Since the holomorphic map $P_{A^{\circ}}f_{(a,b)}\colon C\to A$ is constant map with value a, the holomorphic map $P_{A^{\circ}}f:C\to A$ is also constant. Similarly, $P_{B^{\circ}}f:C\to B$ is also constant. Hence f is contained in X, and $Y\subset X$. Thus X is an irreducible component of $\operatorname{Hol}(C,N)$. It is seen that X is biholomorphically equivalent to D as follows: By the universality property of $\operatorname{Hol}(C,N)$, the holomorphic map of $D\times C$ into N sending (a,b,p) to (a,b,p) induces the bijective holomorphic map $G:D\to X\subset \operatorname{Hol}(C,N)$ given by $G(a,b)=f_{(a,b)}$. The inverse map $G^{-1}\colon X\to D$ of G with $G^{-1}(f_{(a,b)})=(a,b)$ is also holomorphic because for a fixed $p_0\in C$ the map of X into N sending $f_{(a,b)}$ into $f_{(a,b)}(p_0)=(a,b,p_0)$ is holomorphic, and so is the map of X to D sending $f_{(a,b)}$ into (a,b). Thus G gives a biholomorphic map between X and D.

If we choose t_1' , $t_2'' \in T$ with $t_1' = t_2''$ and $t_0 = 0 \in T$, the D has a singular point as same as the singular point (0, 0) of the analytic subset $\{(z, w) \in \mathbb{C}^2 \mid w^2 = z^3\}$. Therefore, X has a singular point.

References

- [1] A. Borel and R. Narasimhan, Uniqueness conditions for certain holomorphic mappings, Invent. Math., 2 (1967), 247-255.
- [2] A. Douady, Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donné, Ann. Inst. Fourier (Grenoble), 16 (1966), 1-95.
- [3] D. Eisenmann, Holomorphic mappings into tight manifolds, Bull. Amer. Math. Soc., 76 (1970), 46-48.
- [4] H. Grauert and R. Remmert, Theory of Stein Spaces, Springer-Verlag, Berlin, Heiderberg, New York, 1979.
- [5] P. A. Grifiths and J. Harris, Principles of Algebraic Geometry, John Wiley, New York, 1978.
- [6] Y. Imayoshi, Generalizations of de Franchis theorem, Duke Math. J., 50 (1983), 393-408.
- [7] Y. Imayoshi, Universal covering spaces of certain quasi-projective algebraic surfaces, Osaka J. Math., 20 (1983), 581-598.
- [8] Y. Imayoshi, Holomorphic maps of compact Riemann surfaces into 2-dimensional

- compact C-hyperbolic manifolds, Math. Ann., 270 (1985), 403-416.
- [9] M. Kalka, B. Shiffman and B. Wong, Finiteness and rigidity theorems for holomorphic mappings, Michigan Math. J., 28 (1981), 289-295.
- [10] A. Kas, On deformation of a certain irregular algebraic surfaces, Amer. J. Math., 90 (1968), 789-804.
- [11] P. J. Kiernan, On the relations between taut, tight and hyperbolic manifolds, Bull. Amer. Math. Soc., 76 (1970), 49-51.
- [12] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Dekker, New York, 1970.
- [13] S. Kobayashi and T. Ochiai, Meromorphic mappings onto compact complex spaces of general type, Invent. Math., 31 (1975), 7-16.
- [14] K. Kodaira, A certain type of irregular algebraic surfaces, J. Analyse Math., 19 (1967), 207-215.
- [15] K. Lamotke, The topology of complex projective varieties after S. Lefschetz, Topology, 20 (1981), 15-51.
- [16] J. Milnor, Morse Theory, Princeton Univ. Press, New Jersey, 1963.
- [17] R. Narasimhan, Several Complex Variables, The University of Chicago Press, Chicago, 1971.
- [18] J. Noguchi, Moduli spaces of holomorphic mappings into hyperbolically embedded complex spaces, Invent. Math., 93 (1988), 15-34.
- [19] J. Noguchi and T. Sunada, Finiteness of the family of rational and meromorphic mappings into algebraic varieties, Amer. J. Math., 104 (1982), 887-900.
- [20] T. Urata, Holomorphic mappings onto a certain complex analytic space, Tôhoku Math. J., 33 (1981), 73-585.
- [21] H. Whitney, Complex Analytic Varieties, Addison-Wesley, Reading, Massachusetts, 1972.
- [22] M.G. Zaidenberg and V. Ya Lin, Finiteness theorems for holomorphic maps, in Several Complex Variables III, (ed. G. M. Khenkin), Encyclopaedia of Mathematical Sciences, 9, Springer-Verlag, 1989, pp. 113-172.

Yoichi IMAYOSHI

Department of Mathematics College of General Education Osaka University Toyonaka, Osaka 560 Japan

Current Address Department of Mathematics Osaka City University Sugimoto, Sumiyoshi-ku Osaka 558 Japan