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1. Introduction.

Let u: M—N be a smooth map between Riemannian manifolds and p a real
number 1< p<<oo. We call ¥ a p-harmonic map if it is a critical point of the

p-energy functional Sgld u(x)|?dv, for every compact domain QC M. Since the

p-energy functional is a natural generalization of the energy functional (p=2)
for a harmonic map, it is an important problem to study the difference between
p-harmonic maps (p+#2) and harmonic maps. In this paper we shall focus our
study on conformal properties of p-harmonic maps and the regularity for sphere-
valued p-harmonic maps.

Our main results are as follows. In Section 3, we show that for p'# p,
p#dim M, any p’-harmonic map becomes a p-harmonic one by some conformal
change of a given metric on M. We also discuss their stability under this con-
formal change. In Section 4, we investigate p-harmonic conformal maps and,
in particular, show relations between the mean curvature vectors and p-tension
fields of these maps. Based on this observation we prove that if dim M= p and
dim M<dim N, then a conformal map u is p-harmonic if and only if u(M) isa
minimal submanifold in N (Corollary 4). If dim M=p and dim M>dim N, then
the fibres of p-harmonic horizontal conformal maps are minimal submanifolds
in M (Proposition 7).

In Section 5, we discuss the regularity for sphere-valued weakly p-harmonic
maps which are not necessarily minimum. Helein has shown that any
weakly harmonic map from a two-dimensional surface into a sphere is smooth.
Evans generalized this to higher dimensions. We prove a regularity theo-
rem similar to the one of Evans for weakly p-harmonic maps (p=2) into a
sphere. Namely, if U is a smooth open subset in R™ and S™! is the unit
sphere in R", then a weakly p-harmonic map from U into S** is locally Hoélder
continuous on 2\, for some compact set S, whose (m— p)-dimensional Haus-
dorff measure is 0. In particular, in the case m=p, p-harmonic maps are
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Holder continuous on £ everywhere (Corollary 12).

There have been several papers about p-harmonic maps. Hardt and Lin
[10], Luckhaus [12], and Fusco and Hutchinson [8] discussed regularity of
minimizing p-harmonic maps. Roughly speaking, they proved that a minimizer
u of M to N is locally Hélder continuous on M\S for some compact set S.
Duzaar and Fuchs [4] proved an existence theorem of p-harmonic maps, which
extends a theorem of Eells and Sampson for harmonic maps. Coron and
Gulliver have investigated minimizing p-harmonic maps from a Euclidian
ball to a sphere. The stability and Liouville type properties of p-harmonic maps
have been discussed in [16].

The author wishes to thank Professors S. Nayatani, S. Nishikawa, and H.
Urakawa for their valuable comments and encouragement, and also the referee
for his kind advice. During the preparation of this paper he stayed at Tohoku
University, for which he expresses his sincere gratitude for the hospitality.

2. Preliminaries.

Let (M, g) be a Riemannian manifold of dimension m and (N, i) a complete
Riemannian manifold of dimension n. Let £ be a bounded domain in M. For
a number 1<p<o and a smooth map u: M—N, we define a p-energy func-
tional E,(u) of u on £ by

E,(u) = SQ[ du(x)|?dv, ,

where |du(x)| is the norm of the differential du(x) of u at x=2 and dv,
stands for the volume element of M. We denote by V and ¥V the Levi-Civita
connections of M and N respectively. Let ¥ be the induced connection on the
induced bundle »~!T'N. For an orthonormal frame field {e;} 7, with respect to
g on M, the p-energy density |du|2 is given by

|[du|? = |du|? = ( §:n_]l<duei, due¢>)p/2,

where <-, :>=h(-, -). When there is no confusion, we shall often drop the
subscript g. We call u a p-harmonic map if it is a critical point of the p-

energy functional for every compact domain QCM. We denote the p-tension
field z,(u) of u by

Mz

(D tp(u) = 2 {Ve,(|du|?*due)—|du|?*du(,e:)}

i

]

1

Ms3

= 2 (Ve (ldu|P*du))es).

i

il
-
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(The first variational formula.) Let u, be a one parameter family of maps
u,: Q—N with u,=u and du,/dt|.—o=V, V being a given vector field along u.
Then we have

d
G mo = = | <V, myuddv,

Therefore a smooth map u: M—N is a p-harmonic map if and only if the p-
tension field r,(u)=0. It should be noted that if the p-energy density |du(x)|?
is constant, then the notion of p-harmonic maps coincides with that of harmonic
maps. For example, the p-energy density for an isometric immersion u: M—N
is |du|P=mP/?,

(The second variational formula.) Let u: M—N be a p-harmonic map. We
consider a one parameter family of maps u, as above. For a compact domain
Q2c M, we have

@ LV, V)= By e

= 2= 1du* Z AV, duetdy,

+8] ldu e BTV =RV, dueydues, Viidv,,

where YR is the curvature tensor of manifold N. A p-harmonic map is called
stable if I,(V, V)=0 for any vector field V along u and every compact domain
Qc M. We call unstable otherwise.

(The Weitzenbock type formula.) We have the following formula by a direct
calculation. Let u be a p-harmonic map from M to N. Then

1 , - .
3) 5 Aldu|? = div @) +(p—2)|du| 7~ 3 (2. dues, due)
+1du| P [Vdu|*+ = (du(*Ric(es)), dues>

— 2 <¥R(due;, duej;)due;, duei>},
1.7
where w* is a vector field on M defined by
g*, X) = o(X) = |du|?~* 33 (V. du)e,), duX)
k=1

for any vector field X on M. We denote by #Ric the Ricci curvature of M,
and by div the divergence.
If M is a compact Riemannian manifold without boundary and has non-
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negative Ricci curvature, and if a complete Riemannian manifold N has non-
positive sectional curvature, then any p-harmonic map u of M to N is totally
geodesic. Thus |du|? is constant. As a result, all p-harmonic maps become
harmonic maps.

(Examples of p-harmonic maps.)

(1) p-harmonic functions (p=+1).

Let M=R™\ {0}, N=R. We suppose that u depends only on r=|x|, x&R™.
Then u is a p-harmonic function if u(r)=Cr®-™/@-Dp = p), u(r)=Clogr(m=7p),
where C is a constant independent of 7.

(2) Equator maps.

Let M=B™\{0}CR™ be the punctured unit ball and N=S"CR"" the
standard unit sphere. Define u: M—N as follows. When m—1>n, u(y, z2)=
y/1y|, for yeR"*!, ze R™ "1, When m—1=n, u(y)=y/|y|, for ye R™. When
m—1l<n, uw(y)=(/|y|,0), for yeR™, O0c=R" ™" Then the map u is p-
harmonic.

3. Deformation of p-harmonic maps.

Throughout this section we assume that u is a smooth map between Rie-
mannian manifolds M and N.

PRrROPOSITION 1. Let (M, g) and (N, h) be two Riemannian manifolds and
dim M=m. For 1<p’'<oo, let u:(M, g)—(N, h) be a p’-harmonic map and sup-
pose p=m. Define a new Riemannian metric § on M by g=|du|3?' ~P/m-P g,
Then the map u:(M,, §)—(N, h) is a p-harmonic map, where M,={x&M;
|du(x)| >0}.

REMARK. holds for all p if p’=m.

Proor. Deform g conformally to §=fg, where f is a positive function on
M,. Then the p-energy functional of u with respect to g is given by

) Eyw)=| |dulzdvs
- SM+|dzL1§f(m’p)/2dvg

=S |du|%'dv, (since p+m)
My

=E,(u).

Thus if u is p’-harmonic with respect to g, then u is p-harmonic with respect

to 2. -
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Furthermore we have the following.

PROPOSITION 2. Under the same hypotheses as in Proposition 1, the follow-
ing hold :

1. If p=p’ and u is stable as p’-harmonic map, then u is also stable as p-
harmonic map.

2. If p<p’ and u is unstable as p’-harmonic map, then u is also unstable
as p-harmonic map.

ProOF. Set Z=fg in [Proposition 1. Then it follows from the second

variational formula (2) with respect to g that

G L, V)= peigf oo )| ldul 3 ( S T, duedt)dv,
+p =2\ 1dulp (S TV, due?)dv,

+Sr|dul§‘2 ‘i UV 12—<¥R(V, due)due,, V>}a’vg],

where {e;} is an orthonormal frame field with respect to g. The last two
terms in the right hand side in (5) coincide with 7,(V, V). Therefore the
hypothesis in 1, i.e. p—p’=0 and the I,(V, V)=0, implies I,(V, V)=0. Re-
placing inf into sup, we get the upper estimate of I,(V, V) contrary to (5).
This completes the proof.

4. Properties of p-harmonic conformal maps.
We first study p-harmonic conformal maps.

PROPOSITION 3. Let u be a conformal immersion from an m dimensional
Riemannian manifold (M, g) to an n dimensional Riemannian manifold (N, h),
i.e. u*h=qa?g, where ¢ is a positive function on M. Then the p-tension field of
u s

tp(u) = [du|§ *{me*H+(p —m)du(grad (log o))},

where H is the mean curvature vector with respect to the metric induced by u
and grad denotes the gradient.

From this proposition, we easily obtain the following corollary.

COROLLARY 4. Let M, N and u be as in Proposition 3. When m=p, a con-
formal immersion u from M to N is p-harmonic if and only if w(M) is a minimal
submanifold in N. When m=p, a conformal immersion u is p-harmonic if and
only if u(M) is a minimal submanifold in N and u is homothetic. When m=n=p,



222 H. TAKEUCHI

a conformal immersion is always p-harmonic.

PROOF OF PROPOSITION 3. Let u be a conformal immersion from (M, g)
to (N, h). We denote by V the Levi-Civita connection of (M, u*h) and by
B(-, -) the second fundamental form of (M, u*h) in (N, h). Then the 2-tension
field of u is given by

(6) To(u) =

s

{"Vaue,(due)—du(V, e}

1

i
Ms

{B(ei, e)+du(V,e;—V.e:)}

i

= me*H+(2—m)d u(grad (log o)),

where {e;} is an orthonormal frame field with respect to g. From the con-
formality of u we get |du|*=mg®. Therefore the p-tension field z,(u) of u is
given by

(7 () = |du |2 {mo*H+(2—m)du(grad(log o))
+(p—2)/2(du(grad (log|du|")))}
= |du|52*{me*H+(p—m)du(grad(log ¢))}. O
Next we define the stress p-energy tensor S,(u) of u by
Sy() = o5 |du|?g—|dul*urh,

which is a symmetric 2-tensor on M. We then define the divergence of S,(u)
by

(v o)) = 3 (Ve,Sp)es, ).

The relation between the stress p-energy tensor and the p-harmonic map is
given by following

PROPOSITION 5. Let u: (M, g)—(N, h) be a smooth map. For any vector
field X on M, we have

SM@p(u), duX>dv, = §M<X, div S,()>dv, .

Proor. We prove this by modifying the method of Baird and Eells [2], [5].
Computing the Lie derivative along any vector field X on M, we get

®) Lx(ldu|?dv,) = diX)(|du|?dv,),

where #(X) denotes the interior product by X.
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On the other hand we compute
9) Lx((1/p)dul?dv,)
= Lx(A/p)ldul?)dv,+(1/p)|du|?Lx(dv,)
= {KV(duX), dup—1/2(Lxg, u*h)}dv,+(1/2p)|du|?<Lxg, g>dv,
= |du|?*du, V(duX))dv,+1/2{Lxg, Sp(u)>dv, .
From (8) and (9), we obtain

0= SMLX«l/p)ldulPdvg)

(10) - SM ldu|?*du, V(duX)>dug+SM<VX, S,(wydv,. O

We have the following corollary of [Proposition 5.

COROLLARY 6. Let u: (M, g)—(N, h) be a smooth map. If u is p-harmonic,
then div Sp(u)=0. Conversely, if u is a submersion, i.e. rank (du)=n, and
div S,(u)=0, then u is p-harmonic.

Next we study the case where dim M=m is greater than dim N=n. For
each xeM satisfying du(x)+#0, we decompose M into V.=ker du(x) and H,=
the orthogonal complement with respect to g. We call V, the vertical space
at x, and H, the horizontal space at x. The map u is said to be horizontal
conformal if for xeM, du(x)+#0, du(x): H,—T,»N is conformal and surjec-
tive. That is, u*h|y,«n,=4"-glu, «x, for some positive function 4, which is
called the dilation of u. We have the following properties of p-harmonic and
horizontal conformal maps.

PROPOSITION 7. Let (M, g), (N, h) be Riemannian manifolds of dimension
m, n respectively. Suppose m>n. Let u: M—N be a p-harmonic and horizontal
conformal map. Then:
(@) If n=p, all the fibers are minimal submanifolds.
(b) If n+p, the following properties are equivalent.
(1) All the fibers are minimal submanifolds.
(2) grad(AP) is vertical.
(3) The horizontal integral manifold has the mean curvature
{grad(A?)/(pAP)} as a submanifold of M.

PROOF. Since u is horizontal conformal, |du|?=nA%. Thus the stress p-
energy tensor is given by

Sp(u) = (1/p)nPl?AP g—nP-DI2AP2y*p
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Take a point x,=M and an orthonormal frame field {¢,}sas= such that {e:}1<i<n
are horizontal and {e,},..,is,sm are vertical. Since u is p-harmonic, div Sy(u)
=0. We get, for any 1=<b=<m,

a 0= (7., Sy ew, @)
= B[ 5T, 00— feal | dul?*uthe €2)

—du P h(Veer, ea)—|du | uthie, Tege)} |

We choose ¢,=¢; (1<7<n). From u*h(-, e,)=0, we have

1
(12) gvej(np/zl”)—n‘p”‘“VejZ”

+ 2H{u*h(N,ej, ei)+u*h(e;, Vel + TZ u*h(ej, Ve er).

— pPr2-1 {&;_p)vejzp_l_;{p(m——n)]{(ej)} =0,

where H(e;) denotes the mean curvature of the fibre in the e¢; direction. From
this formula, we get (a). Because, if n=p, we have H(e;)=0 for 1<7<n (i.e.
the fibers through x, are minimal). For (b), if n#p, then the fibers through
X, are minimal if and only if V,,A7=0, that is, if and only if grad 47 is vertical.
This proves (1)—(2).

Choose ¢,=e¢, (n+1<r<m) in [II). Then the equation becomes

0= n?2{(1/p)e,(A")—APH (e,)}.

If grad A7 is vertical, i.e., grad 2?=>7-.. (V. A)e,, we conclude

e, (A?) gradA? o

plp - pzp T >

which proves (2)—(3). We recall the definition of the mean curvature vector
of the horizontal distribution, namely, H(e,)=1/n)(%, Ve, e-)). By the
assumption of (3) of (b) in Ve, AP=(pA? /n)21k {Ne,eq, e->. Since

e, is a vertical vector, V., A” has vertical component. This implies (3)—(2). O

H(er) -

PROPOSITION 8. Let u be a p-harmonic and horizontal conformal map from
M to N. Then for an open set VCN, if f is a p-harmonic function on V, then
the function fou is a p-harmonic function on u (V).

To show this, we need the following composition law.

LEMMA 9. Let (M, g), (N, h) and (Q, k) be three Riemannian manifolds.
Let ¢: M—N be a smooth map satisfying |d¢|*+#0, and ¢: N—Q a smooth map.
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Then
(13) (o) = 07 2dd(z,(9))

+1d@|P72{67* trace (Vd¢)(dp, dp)+d(¢-¢)(grad 677%)},
where 0=|d(¢-¢)|/1dd].

PROOF OF PROPOSITION 8. Since u is a conformal map with dilation 4, we
have |du|*=nA? and |d(f-u)|*=A%*|df|%. By the p-harmonicity of » and the
composition law above, we get

tp(fou) = AP (f).

Thus, if f is p-harmonic function, then z,(f-u)=0. O

5. A regularity for sphere-valued p-harmonic maps.

In this section, we prove a regularity result for a p-harmonic map into
sphere by modifying the method of Evans [7]. Suppose m, n and p=2. Let
2 be a smooth open subset of the Euclidean space R™ and S™~! the unit sphere
in R*. Let L“?(Q, R") be the Sobolev space of all functions u such that » and
their first derivative Vu belong to L?(2, R"). We define

Lv2(2, S* ) = {us L*?(R, R"); u(x)eS™! a.e. on 2}.

Let C3(2, R™) be the set of all R™-valued smooth functions with compact sup-
ports in 2. When usLt?(R, S*) is a weak solution of the Euler-Lagrange
equation associated to E,(u), we call u a weakly p-harmonic map of  to S™~'.
That is, u satisfies the following equation

(14) S |Du|P-2Du.Dwdx=S |Du|Pu-wdx
Q Q

for each test function weCy(2, R"). Here Du=du and Du-Dw=du-dw are

Du = ((gij )>1sism;1sasn’ Du-Dw = 'l,Ea gz;(: gz;c: ’

In addition, if u is a critical point of E,(x) with respect to compact varia-
tions of a parameter domain 2, we call u a weakly stationary p-harmonic map.
The Holder continuity of the weak solution is trivial in the case p>m because
of the Sobolev imbedding theorem. Set

Byu, Bx, my=r-n| 1Dul*dx,

where B(x, r)={ye®2;|y—x|<r} is the ball in R™, centered at x with
radius 7.
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PROPOSITION 10. Let N be a Riemannian submanifold in R™. Suppose u is
a weakly stationary p-harmonic map from B(x, r)CR™ into NCR" and p<m.
For x€8 and 0<o<p<dist (x, 02), we have

(15) e'?p? " Ey(u, B(x, p))—e??a? ™ E(u, B(x, a))

=

S ™| Du|P%|ou/or|r? ™dx ,

B(z,p)\B(x,0)

where A is a constant, r is the radial coordinate on B(x, p), and 0u/or is the
radial derivative. In particular, we have the following monotonicity formula:

(16) E(x, B(x, p)) = E(u, B(x, o).

PROOF. Let ¢,: 2—8 a one parameter family of diffeomorphisms which
are ¢,=identity and d¢,/dt|.-o=V. Consider a composition map wu,=u-¢;.
Since u is stationary p-harmonic, we have

dE ,(u,)

an dt

-_—__S {1dul? div(V)—p|du|?* £ du(.,V), duei>}dx
t=0 2 i
=0.

Let {d/0r, ey, -+, en_1} be an 'orthonotrmal basis on 2. We take the above dif-
feomorphisms ¢, satisfying

_do] 0 0
a8 V= dt z=o_E(r)rar’

where £ C3(R). Substituting into (17), we obtain

[, 1du1?@r+me—m—1)7er) dx

< p| 1 du)PE'r|du(@/6r)|*+& du |+ (m—1)Ter| du]*hdx,

where [ is a positive constant (cf. [13], [15]). We choose, for z(a, p),
19) §(r)=§&.(r)=¢(/7),

where ¢ is a smooth function and ¢(r)=1 for r<[0, 1], ¢(»)=0 for re(l+e, =),
>0, ¢’(r)=0. Then we have

0( |0ul? . a
pr| |SE] el dulrrdx < o2 1duigd

+<p—m)gg|du|de+(p+1)(m-1)/7(1+s)cgg|dulps,dx .

We set A=2(p+1)(m—1)4. Multiplying by e#*zP~-™"! and integrating from ¢ to
p, and taking the limit e—0, we have (15). O
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REMARK. When m=p, we can observe that the monotonicity formula of
the weakly p-harmonic map is always valid.

Next we state the regularity theorem for a weakly p-harmonic map.

THEOREM 11. Let uesLV?(Q, S*™1') be a weakly p-harmonic map which
satisfies the monotonicity formula (16). Then wu is locally Holder continuous on
NS, and H™ ?(8,)=0. Here

S, = {asQ: linrlﬁsoup r?=mE (u, B(a, r))>0},
and H™™? denotes (m— p)-dimensional Hausdorff measure.
REMARK. When m=p, we see S,=@.
Thus we can get the following corollary.

COROLLARY 12. Any weakly p-harmonic map (p=m) from QCR™ into S™!
is everywhere Hilder continuous.

To prove this theorem, we need some lemmas.
We denote by 4'(R™) the Hardy space. Namely, a function feH}(R™) if
and only if feLY(R™) and f* L'(R™). Here f* is defined by

f*(x) = sup l—rlgsxmf(ym(x_y)dy} :

r

Here ¢ is any smooth function with support in the unit ball, and Snm¢d x
=1.
Its norm is defined by

1 f harrmy = | f*llL1cm) .

LEmMA 13. Assume ue LVP(R™), ve LYR™, R™), g=p/(p—1), and div (v)
=0 in the distribution sense. Then

Du-ve J4Y(R™),
and there exists a constant C such that

1Du-vlls1rmy < CllullLr s+ I0l11a) .-

Proor. C(Clearly Du-ve L*(R™). Choose x&R™, r>0. Set
6.(») =g(*=2).

r

Then, by the assumption div (v)=0, we get
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‘—}m-SRmDu-v¢rdy‘ = r”CL+ISB(x,T)Iu—(u)I'TI lvldy,
where

1

(U)x,r = mgmx,”udy ’

| B(x, r)| is denoted the Lebesgue measure of B(x, »), and C is a constant in-
dependent of r,

Choose p<a< p*=mp/(m—p)<co, and let 1<f=a/(a—1)<p/(p—1). Then
1 1 o 1/a 8 1/8
‘TmJ'lSB(x.r)(Du-vsbr)dy‘ § m(SB(x,r)lu_(u%'rl ) (SB(z.r)Iv! )

< sl 12407) (e 1)

< C{M (| Du|" )P +(M([v] PP},

(20)

where y=na/(n+a), and M(-) denotes the Hardy-Littlewood maximal function.
Now noting |Du|’eL?", p/r>1, and |v|=L¥?, g/B>1. Then we get

(21) IM(Du|") o < ClIDul™| o7
IMUv 1B a8 < ClIvIPH s -

Consequently,

22) (Du-py*: = srl;%)’?ln;SRmDu-vgb,dy e,

I(Du-v)*[[zr = ClullZns+lvlite) . O

Next we see the p-energy decay and blow up of the weakly p-harmonic
map.

LEMMA 14. Let usLv?(Q, S*°') satisfies the hypothesis of Theorem 11.
There exist constants 0<e,, <<l such that E,(u, B(x, r))<e, implies

E,,(u, B(x, mr)) £ %Ep(u, B(x, )

for all x€8, and 0<r<dist(x, 092).

PrROOF. Suppose the conclusion would not be hold. Then >0 may be
selected as follows. There exist balls B(x,, r,)C£ such that Ep(u, B(xy, 7y))
=AP—0, and Ep(u, B(x., tre))>(1/2)22. Rescale the variable to the unit ball
B, hcR™. 1If z=B(0, 1), put

Uxp+rrz)—a,
l )

ve(2) =
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where a,=(u).,.., denotes the average of u over B(x,, 7;), (k=1, 2, ---). Then
we verify that

P P _
S%pSB(o,l)lvkl dz < oo, SB((L])‘ka] dz=1,

but

1
23) Tm_prw,”]ka|sz>1/2 (h=1,2, ).

Then the sequence {v:}i-; is bounded in L*?(B(0, 1), R*). Hence there exists
a subsequence such that

(24) vy —> v strongly in L?(B(0, 1), R*), and
Dv, —> Dv weakly in L?(B(0, 1), R"™).

Next select an arbitrary smooth function w: B(0, 1)>R" with compact sup-
port. Set

—X
we(y) = w(l#) (yeB(xg, 74)).
Since u is a weakly p-harmonic map, we have

(25) |Du|?-*Du-Duwdy = | |DuiPu-w,dy.

SB(rk,-rk) B(Zp:Tg)

Rescaling this equality to the unit ball, we get
(26) S | Dv,| P 2Dvy-Dwdz = ZkS [ Dvp | P(ar+7iv:) wdz.
B(0,1) B(,1)

Send % to infinity in [26). Using the weakly convergence in LP/(P-D of
|Dv,|?"%Dv to |Dv|? 2Dy, |Dv,llp=1, and a,+r.v:=1, we get

S | Dv|PDv-Dwdz = 0.
B(0.,1)

That is, v is a weakly p-harmonic map. Using Uhlenbeck’s estimate in [17,
p. 228, Theorem 3.2] which is

sup |Dv|? < C(%SB(E;T)[DUIMZ),

Bz, 1/2)
for any B(x, »)CB(0, 1), we have
1

Tm-P

Plo < (CpP P
@27 SB(M)IDUI dz< Crt Bs(lgg)lel

_C
= @

A

S \Dul?dz < 1/2,
B(0,21)
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for a small 0<r<1/2.
On the other hand, we shall show in in the next séction that
Dv, —> Dv strongly in L?(B(0, 1/2), R™").

This implies by
1

TP

This contradicts to [27). O

S |Dv|?dz=1/2.
B(0.7)

6. Compactness.

In this section, we shall prove in that the above functions Duv,
converge strongly to Dv in LP(B(0, 1/2), R™"*), and shall complete the proof of
Theorem 11,

We denote by BMO the space of bounded mean oscillation functions.
Namely, the functions f&BMO if and only if f is locally summable and | flzx0
< oo, Here

1 m
[ fllBao = sup {WSB(z,r)lf_(f)”‘rldy; xeR™, 7’>0},

where

1
IB(?C, r)l SB(.Z‘. r)fdy )

First select a smooth cutoff function {: R™— R satisfying

(f)zr =

0=s{=1,
=1 on B(0,1/2),
=0 on R™B(0,5/8).
LEMMA 15. The sequence {{vi}i=: s bounded in BMO(R™, R").
Proor. Fix any point z, B(0, 7/8) and any radius 0<»<1/8.
Ve = Xp+7120 € B(xy, (7/8)r:).

From the monotonicity formula we have
1

e Du|?dy < 8™ PP .
(T’Tk)m_p SB(yk.rrk)l ul dy - 8 zk
Rescaling this estimate, we obtain

1

ym-P

g |Dv,|Pdz < 8™°P
B(Zo. T)
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for all k=1, 2, --- and all 0<r<1/8, z,&B(0, 7/8). Using the Poincaré and
Holder inequalities, we get

1
WSB(ZO_T) [Ve—(Vr)zgr1dz = C < 0.

This implies v,€BMO. Using the John-Nirenberg inequality, for any 1<s< oo,
we have

1 1/s
(1B, 77800 171°42) S Collalizuort Calvallea

Recall {v:}2,CL?(B(, 1), R*). This implies {v:}f, is bounded in
L3(B(0, 7/8), R*) (1<s<0). In a similar fashion to [7, p. 110], we get

1
FSBW, . |G —(QVa)zg r|dz < o0,

for z,eR™, 0<r<1/8. Thus we get
sup Qvellzr < oo
This completes the proof. O
Next define
b = | Dve|P* (v}, o (@k+Aevh)— vk, o (al+A00d)},

for 1<4, j<n, 1<I<m, k=1, 2, ---, where the subscript x, means the partial
derivative with respect to x;,. Note b/, L?/*-D(R" R") for_an arbitrary
fixed j.

LEMMA 16. For each functions ¢=CH(B(0, 1)),

Smo‘ngézlbi,fldz ~0,
for 14, j€n, k=1,2, ---.
PROOF. A direct calculation.
From Lemmas I3 and [[6, we have the following.

LEMMA 17. For each 1<i, j<n, the sequence {7 ({ui)z,b¥ 1} 71 is bounded
n KLY(R™).

Finally we obtain

LEMMA 18. The functions {Dv,}s-, converge strongly to Dv in LP(B(0, 1/2),
Rmn).

PrRoor. First, we can see
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(28) S (|Dvy|P~*Dv— | Dv|?2Dv)- Dwdz
B(0,1)

= RkS ‘ka‘p<ak+2‘l}k)‘WdZ,
B(0.1)
for a smooth function w: B(0, 1)—R" with compact support. We now substitute
w =L ve—v)

into (28). Using the weakly convergence in L?/®~V of | Dy, |? 2Dy, to |Dv|? 2Dv
and the strongly convergence in L? of v, to v, we have

the left hand side of (28) = cS , | Dvy—Dul?dz+o(1)

B(0.1/

as k—oo, The right hand side of (28) is

R, = ZkSB(o 1,C21kalP(ak—i—zkvk).(vk_v)dZ
- ZkSB(o.1)C2v£'zlb};?l(vl€—vi)dz

= | @haptionmde—a{, vt btz
= 2 (Ri-+ R

Since {v:}i=, is bounded in LZ??(B(0, 7/8), R*) and {b{’;}, is bounded in
L?/P-H(B(0, 7/8)), we obtain

sup| Rf| < eo.
Lemmas [5 and (7 imply
SI:D‘RIH = i§1C'SUP ”C(Ug—vi)”BMo}I(gvi)xlbifz]fJfl(Rm < oo,
Thus we get R,=o0(1) as k—o. Hence we have
S |Dvi—Do|Pdz < o(1)  as k—oo,
B(0,1/2)
which is our desired conclusion. [

PROOF OF THEOREM 11. Let 7 be fixed as in Lemma 14. For any p<7,
B(x, r)Cf there exists some integer k=N such that t**r<p<z*r. Using
inductively, we have '
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1
pmP
1

gm-P

(29) By, Bz, o) = 5|, 1Dul?dx

< Eo(u, B(x, t*r))

< ¢Pom-pB(gk 2B E (4 B(x, 7))

< o-m-n8( LNPP 5
< o7 ( L) Eou, B, 7)),
where we take B such that t?#=1/2. Thus we have

SB(Z',P) [Dul?dx = Tp_m—pﬁ(—g_)p-mpﬂg [Dul?dx.

B(z,7)

The Hélder continuity of » with Hélder exponent 8 follows from the Dirichlet
growth theorem (cf. [9, p. 64, Theorem 1.1]). H™ ?(Sp(u))=0 follows from
[9, p. 101, Theorem 2.2].
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