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Introduction.

We consider the Cauchy problem for degenerate quasilinear elliptic equa-
tions, and we give an estimate for their solutions with a prescribed bound.
For linear elliptic equations such an estimate is known (see e.g., [1], [3] and
[5]). In general the Cauchy problem is not well-posed for elliptic equations,
that is, it is improperly posed for these equations. We give the following ex-
ample due to Lavrentiev’s book [5, p. 19]:

Let £ be a bounded domain in the plane. Let its boundary 92 be smooth,
and let n be the outer normal of 2. Let I, be an open subset of 02 and
I=82—TI,. The part I', is said to be an initial surface. Let u be in CY®)
and harmonic in 2. We assume that

|u<x>|+)§;u<x>| <e zxell,

Tu(x)| —I—Iainu(x)‘ <M =xel,.

Then the inequality
lu(x)] £C(M, &) x&8

holds. Here C(M, &) is a constant depending only on &, M and £ such that
C(M, &)—0 as ¢—0. If ¢=0 in particular, » vanishes identically in £. From
this we see that the unique continuation property holds for harmonic functions.

In our previous paper [2], we have derived a similar estimate as above for
a certain class of degenerate quasilinear elliptic equations. In [2] we have
treated this problem in RY, and we have assumed the strict convexity of the
initial surface. However there is a derivative loss in the required estimate.
In this paper we extend our result in [2] to a larger class of degenerate quasi-
linear elliptic equations and we append another proof different from (see
[Theorem 2). Further we see that there is no loss of derivative for the esti-
mate in our [Theorem 1|, in comparison with [2].
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Let D be a domain in R¥ with coordinates x=(x,, ---, xy). Let F(x, v) be
a given function, and let us consider the variational quantity

0.1 ( —S L 6. 07 —F d >1
0.1 Jo)=| (5 & 18s1P=F(x, v)dz,  p>1.
Then the critical point u of J(v) satisfies

0.2) 3262 (18221750, 1) = —@F/0)(x, w)  in D.

If the integrand 3Y,[6.,v|? is replaced by |Vv|? in the equation [0.2) is
changed into

(0.3) div (|Vu|?*Vu) = —(8F/év)(x, v) in D.

Thus it seems to us that the difference between and is small.

Each one of left-hand sides of and is written together with
div (A(x, Yu)-Vu), where A(x, &) is a mapping from DXRY into RY. We set
L (u)=div (A(x, Yu)-Vu). The operator L, is said to be degenerate quasilinear
elliptic, if it is satisfied that for a.e. x&RY and for all éeRY

[A(x, §)] = Cl1§1P7Y,  Alx, £)-§ = clél?,
where ¢, C>0.

If p=2 in particular, both principal parts of and are Laplacien,
and it is known that the estimate with prescribed bound holds for the Cauchy
problem under some assumptions on F (see [3]). Kazdan [4] discussed the
strong unique continuation property for solutions of semilinear elliptic systems
in Riemannian manifolds, whose principal parts are Laplacien. He proposed
also the following question in the final section of [4]: Does the unique con-
tinuation property hold for solutions u of [0.3)? It does if N=2 and F=0, be-
cause the function 9,u—:d,u is a quasiconformal mapping due to Manfredi [7].
On the other hand Martio [8] gave a counterexample of L,u=0 such that the
unique continuation does not hold, where two functions A(x, & and u(x) are
constructed for p=N=3. Though we cannot answer comprehensively the above
question, we give a partial affirmative answer for the equations of type
under the assumption that the initial surface is strictly convex. Our method
is to yield an estimate based on those in and [9]
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helpful comments and suggestions.

1. Statement of our theorems.

Throughout this paper we consider the nonlinear operator
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L) = éaxiuaxiulwa,iu), p>1.

We write x=(x,, +, xy), x’=(x,, -+, xy-1) and y=xy. The origin in RY is
denoted by O. Let D be a domain in RY such that D is in the half space
{y>0}. Let I'" be an open subset of dD with I'=>0. Let I" be of class C*.

We assume that there is a positive number a<1/2 such that for any ¢
with 0<c¢<a, DN {y<c} is connected and

ADN{y<c}) = {0} TN {0< y<c})UDN {y=c}).

This means that D is strictly convex at O. We fix such a positive number a.
From now on we write D.=DN\{y<c¢} and I.=1'N{y<c}.

We denote by (,) the L%D,)-inner product. For any v, weC¥D,) we de-
fine the inner product of L,(v) and w as follows:

N
(1.1) (Lyw), )= = 2 | 1821770, 08, 0dx
N
+ 2, 10:017%0. 0w cos (n, x)dS,
i=1JdDg
where n is the outer normal of 6D, and dS is the surface element of 6D,.

Let u be in C*(D,) and f be in LY(D,). In what follows we say that

|Lyw)l = 1f] in Da,

if and only if for any p=C*D,)

(Lo, @l < 1f1Ipldx.

Let 2 be a non-negative integer and a be a real number with 0<a<1.
The Holder space C*«(D,) is defined as the subspace of C*(D,) consisting of
functions whose k-th order partial derivatives are uniformly Holder continuous
in D, with exponent a. It is known that solutions of the degenerate quasi-
linear elliptic equations are in C* ¢ (see e. g., [6]).

First we have

THEOREM 1. Let p=2 and let u belong 1o C** (D,) for a with 1/2<a<1.
Let

| Lp(w)] = K|u|?™*  in D,

for a constant K. Then, if

|, (ul>+1TumdS < e,
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(lul®+|Vu|P)dS = M

Sﬁmy=a1

and sexp (2P7'K), cexp (p/2)<a**M, it holds that
[, uir+ivuimds < catrpermer,
al2
where C is a positive constant depending only on p.

The assumption p>2 is essential in the above theorem (see Lemma 2). If
p>1, we have the following theorem. We denote |Vu|*=31{ ;. (0,0, ,4)"

THEOREM 2. Let ;b>1. Assume that either u is in C3D,), or u is in
C*D,) and [0z,u|?%0%u are in L'(D,) for i=1, -, N. Let Ly(u)=0 in D,.
Then, if

[ quir+ivuirtivumas <,

[, ulP Va4 17 7)ds < M
Dnty=a}

and sexp(p/2)<M, it holds that

N~

I, (et 1Tu st 5] 10:u177%0,0- 074

=1

+S Iayulp_z(agu)zdx] g Caa/zM(z_a)/2 )
Daye

where C is a posilive constant depending only on p.

For any function v in class C!, we see that if v=0 on E, |Vv|=0 a.e. on
E, by using Lebesgue’s density point theorem. Thus in we read
1axiu1P~2(axiazju)2=0, if axiu=0, i, j=1, ---, N.

2. Preliminaries.

First we prepare

LEMMA 1. Let p=2. Then for X,Y<ER
HX|P2X =Y [PV | < (p—DIX=Y (| X[+ |V ])P-2.

PROOF. We set

F(t) = Y +H{X-Y) | Y +t(X-Y)), teR.
Then
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[X|P2X— Y|P = SiF'(t)df

= (— DXV |V +HX—V)|7dt.
Using the trivial inequality
Y +#X-Y)| < [ X|+1Y], 0=t<1,
we complete the proof. Q.E.D.
Next we have
LEMMA 2. Let p=2. Then for X, YER
X-[|X+Y [P X+Y)— |V [P?Y] Z 27| X 7.
Proor. We set
F(t) = |14-¢t| 231 +-8)— 2| P2, teR.
It is enough to prove that the minimum of F(¢) is 2*-?. Since
F'(@t) = (p—D(1+2[P72—[8]77),

we see that F(¢) takes its minimum at t=—1/2. It completes the proof.
Q.E.D.

The following lemma is essentially that of Poincaré. We repeat_the proof
known for its completeness.

LEMMA 3. Let g=1. Then it holds that for usCY(D,)

[, witdx sz(af wiastal 18,ulvdx).

PrROOF. Let (x’, y(x"))el',, where y(x’) may be multivalued. First we
assume that (x’, y)eD, for any y with y(x")<y=<a. Since

u(x’, y)—u(x’, y(x")) = S:(z,)(ayu)(x’, tdt,
we have
utx', )1 S luce, s+ 10,00, pldt.
Hence

jute, it < 277 fue, yeplo+|)] @, nat|'],

a
vz
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and

SZ(I,)W(X', wdy = ZQ‘I[(a—y(x’))lu(x', P(x')|

+a—yx)R| 1@, pidy)].
We repeat the same calculus also for the general case and we note the trivial
inequalities
N-1 1/2
ds = [1+i21<ar,.y(x'))2] dx' = dx’,
2 agbz _S. (Z az)q(z bz) ’ ai, bzgo .
i i i

Thus the required inequality is obtained. Q.E.D.
For any function u we define
(D3, 3) = =lulx', y+h)—u(x, »],  heR.
Here we assume that #=0 and |k| is sufficiently small.

LEMMA 4. Let u be continuous in a neighborhood of D,. Then

SDQ(Dgu)(xMx—»SaDau(x', y)cos (n, )dS  as h—0.

PROOF. We may assume that I, is expressed by a function y=y(x’)
(x’<I) and (x’, y)eD, for y with y(x")<y<a. The general case is parallel
to that of the above.

We can write

a a+h (z')+h
[0 e, yem—uw, 3y = [ ue, ndy={"" ux, nay.
It becomes
S Dru)(x’, y)dx = —l—[g Suhu(x’ y)d ydx’
Dg v ’ h IJa ’
y(x')+h , ,
_Slgy(z’) u(x ! y)dydx ] ’
Letting h—0, we complete the proof. Q.E.D.

3. Proof of Theorem 1.

The function u in may be assumed to be of class C¥* (1/2<
a<1) in a neighborhood of D,.
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Let A<—1 for the time being. We set v(x’, y)=exp(Ay)-u(x’, y). It fol-
lows from that

(3.1) (L), exp((p—1)2y)-Dtv) = —”2 (18:,917-%92,v, D1d.1)

—(exp((1—p)Ay)- |0,0—Av|? %3 ,v—Av), 6,(exp((p—1)Ay)-Drv)+1{™,
where

Im = Nj‘gab |02,0]77%0,,v-Div cos (n, x,)dS

1=1

+SaD 18,v— | ?~%(3,v— A)D’v cos (n, y)dS.

If we write

—_— “" -2 . X
I, = Elgapa]ozzvl" 0z,v-0,vcos (m, x;)dS

i=

+S3Dala,,u—zv|1"-2(a,,v~—zu)a,,v cos (r, )dS,

then I{"—I, as h—0.
We see generally that for any C*! function F

(DYF X", 3)
= (D', 9)- [ F/u(x', )+, y+m)—ul', 3))dt.
Hence
(D}18:21P)(x', 3) = HD}B ), 9):
[ C1@20)8", D+H@= X, 3+ B)—@a 2", |72

((@=0)(x’, P)+H@=0)x, y+h)—(0:0)(x", y)))]dt.

From now on we  denote simply by the same C any constant depending
only on p. From

[(10z,0|77%0z,0, D30, v)—p7 (1, D}10-,0|7)]
= cf, 1050. 0%, 1+

[(0z,0)(x, y+h)—(0,0)(x’, ¥)]-

(1@=0)(x, y+R)| + @ 0)x, NP dx .
Thus if we set
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- N-
= (1820175020, D}de) = —p 5 (1, Djlde|)+] P
=1 =

-

then
32 JPISCH |, 15000, DI 1)+, y+B)—@s )X, )]

(1@z X2, y+m)|+1@20)(x’, M) 2dx.

Since v is of class C*¢, 1/2<a<1, we have
[(D30z,0)x", ¥)|-1(0=,0)(x", y+h)—(@=0)(%’, )

< L|h|?*'—s0 as h—0.

That is,
JW —0 as h—0,
Next setting
I = —p 5, D}1a.17),

we have from
I — 1, as h—0,
where

_lN—l
L=—p"3 SaDala”vlpcos (n, $)dS.
From (3.1) and the above it follows that
(3.3) (Lp(u), exp((p—1)Ay)-Div) = —(|8,v— v |?~*@,v—Av), D?d,v

F(P—1DAD)+IW I 4 J(W
Now we write

—(18,v—2|?*0,v—2v), D43, v+(p—1)AD}v)
= —(l0,v—Av|?7*@ ,v—Av), D10, v—Aiv))

— pA(18,v—Av| %@ ,v—Av), Dhv)
and
—(|0v—2v|?~%0,v— ), D@, v—v))

= —p7(1, Dy|0,v—2v|?P)+ ] .
Similarly to (3.2) it holds that
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@1 5 ¢ 1036 0— o, 3)1-

[(@,v—20)(x’, y+h)—(@,v—A)(x’, )|

(1@ v—2v)(x’, y+h)|+1@v—aw)x’, »)|)P*dx .
And

[(D@,v—2av))(x’, Y)|+1(@,v—Av)(x’, y+h)—(d,0—Av)(x’, y)| < L|h|***.

Thus
Jim —s=0 as h—0.

Setting
I{W = —p~Y(1, Di|o,v—|?),

we have as previously
I —s I =— p'lgapalayv—lvl” cos (m, y)dS  as h—0.
Further we write
(|0 ,v—2Av|?*@,v—Av), Div)
= (|0,v—A|?7%@,v—Av), 3,v)
+(|0,v—Av|?~%d,v—Av), Div—0d,v)
= (|0, v—2Av|P%0,v—Av), O v)—p 1AL T§M .

Then
JiM —0 as h—0.

Lastly we can write

A =] P — ), 0,0) = p-lmz’SaD 1] ? cos (m, y)dS

> P"Illpgralvlpcos (n, 9)dS.

It follows from and the above inequality
— pA(10,v—2Av| P20, v—2v), O,V)
= — pA(|10,v—Av|P"*0,v—Av)— | — Av|?"%(— Av), 0,v)
— PA(| —2v|P*(—4v), 9,v)
2 PZPIAI(, 18,010+ 1217) , [v]7 cos (r, )dS .

From and the above we conclude that
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(Lp(u), exp(p—1)2y)-D3v)
2 P2 1210, 19,017)+ 1217 1017 cos (n, 3)dS+ T 1M+ 3T,
On the other hand it is seen from our assumption that
(Lp(u), exp((p—1)Ay)-Djv) < KSDalu |77t exp (p—1)Ay)- | Dyv|dx.
Combining these inequalities and letting £—0, we obtain

pzz-pmgp 6,0]7dx

gKSD Ivl”‘llayvldx—}—lllpgr |v17dS+ 3111
The first integral on the right-hand side is replaced by

#70=D, 1o1Pdxtp | j0,017dx.

Hence

(3.4) (1— p-zzp-zmrl)gp 16,v]7dx
< p(p=D2 K11 JvlPdx

+ 2727217217 [o17dS+ 3 ILD).

Here we use the following inequalities :

SDalvlz’dx < 2P“I(aSralvfpdS+a”SDa[61,v[1’dS) (by

and

(3.5) ESILI éCH!S exp(pAy)-(lu|?+|Vu|?)dS .
i=1 3Dg
Then becomes

(1= 27K | 21— p(p— 1272 a? K| 21 ) 18,0174
< C[&{, exp(p2y)- 1u17as+1217] exp(prs)- 1u|7ds

+{,, exppay)-(lul?+1u17ds].
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We note that p 2272+ p~3(p—1)22P-3qP < p~12P-!. Therefore setting 4,= p~ 127K,
we obtain for A<—max (1, 4,)

SDalayvl”dx < C[(1+K)Illpsra(iu1”+|Vu]")dS

+exp(pad)-|,  (lul*+Vul?)ds].

Using again we see that

(3.6) SDalvl”dx < C[(i—l—K)M[”Sra([u[”—{—[Vu]”)dS

+arexp(pad- | (lulP+|Vu|nds].

Since exp(piy)-|0,u|?<C({d,v|?+]4|?|v|?), we conclude that

@7 |, exppiy)10,ulrdx < C[a+IO121% [ (ulr+Vul)ds

+(1+a? 217 exp(pad- |, (lulP+[Tu|?)dS).

Dnty

Next we estimate the integrals SD exp(pAy)|0z-,u|?dx, i=1, ---, N—1. By
the definition we have ¢

g(exp(ply), [0z,u|?) = —(exp(pay), |0,ul?)
— pA(exp (pAy), 10,u|?7%0,u-u)—(Ly(u), exXp (pAy)-u)

N-1
+ Elsana exp (pAy)+ |0z,u|? %0z, 1 u cos (n, x,)dS

+Sao exp (pAy)-|0,u|?"%0,u-u cos (n, y)dS.
Using the inequality

|A(exp (pAY), |0,u|P %0, u-u)|

< (=1, exp(pay)- 8,u|7dx

+p71217(, exp(pay)-[ul?dx,

we obtain
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S, exp($23)- 10:,u]7dx

i=1J)D

< (0—D|, exp(p1y)-19,u17dx+1217] exp (piy)-1uidz

+K|  exp(p23)- 1ul?dx

+1§1S3Da exp (plzy)‘ laxiu|p'1|uldS+SaDaexp(pzy). |ayu1p—1|u|dS.
Hence

N-
=1, exp (09 10: u17dx < C[ | exp(p29)-13,u17dx
+E+1217) ) exp(p2y)-1ul7dx

+{,,. exp (pa3)-(lu |7+ u|?)as].
Combining this with and we finally conclude that

38 | exp(sa3)-(lu)7+Vul)dx
< Cla+ErIA |, (1ul?+|Tu|Mds

+HAHE+a? 1217 exp (pad)- [, (Jul?+|Tul?)ds).

Dnty
From it follows immediately that
[, (1417 +Iu19)dx < C exp (pal2l/2):
a/2

[A+K)*e|2|?*4+(1+K)1+a?|A|P)Mexp (pad)].
Here we use the trivial inequalities :

a®?|A|%?, 1+a?|A|? < Cexp(palil|/4).
Then the above inequality becomes

3.9) Spa,z<lul”+ |Vu|?)dx < CA+K)[(1+K)a ¢

exp (3pald|/4)+Mexp (pal/b)].

Writing ¢’=ea™?? and setting A=—2p""log (M/¢’), we have
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3pall|/4=%a10g (M/¢), pa2/4=——‘2£10g(M/e')

and
s/ (Z—Sa)/ZMSa./Z é sIa,/21\4 2-a)/2 .

The condition A<—max (1, 4,) is equivalent to ¢’ exp (2?'K), & exp(p/2)<M.
Accordingly it follows from that if eexp (2°7'K), sexp (p/2)<a** M,

SD (l|?+1Vu|?)dx < C(1+K)*a ?2e??M @)/,
al/2

Since a~* is bounded, we finally obtain the required estimate. Q.E.D.

4, Proof of Theorem 2.

We may assume that u is of class C?in a neighborhood of D,. We define
the function v for A<—1 as in the previous section. We proceed along the
different line from the proof of [Theorem 1. We will not use The
proof below is entirely independent from that of [2]. The situation is delicate,
if p is close to 1. So we proceed carefully.

We set for 6>0

LA(u) = 300 (00 +0) 27, 1),
In place of (3.1) it holds that
(L3 (), exp (p—1)33)-8,D}v)
= S (@ 1 +D) P10, 1, €xp (D~ 1)23)-0+5, D)
— (@ w4815, 1, 3,(exp (H—1)39)-8, D3N+ Li(h, 8)
= S (@ 0+ exp QYD 7%, 0, 3.,3,D)

—(((0,v—Av)*+0 exp (22)) P~ /%3 ,v—Av) ,

0% Dty +(p—1)29,Drv)+Iu(h, 8),
where

I4(h, 5) = Ijg—llSBD ((3ziv)2+5 exXp (Z,Iy))(P-z)/zaziv.
0,Djv cos (r, x,)dS

(0,v—2v)d,D2v cos (n, y)dS .
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The limit of I,(h, 0) as h—0 is written by I1,(0).
From now on we set

fo=(@:,0)*+dexp(22y)¥?, 1<i<N-1,
= (@,v— )"+ exp 2A9)"".
By integration by parts
~(f2%2,p, 82,0, D) = (f37%,02,v, 82, D}v)
+ﬂ(1>~2)(f P=402,v0,05,v+40 xp (22))0.,v, 6, D)
—Saba F27%9.,0+8, D cos (n, $)dS.
And
—(f%%@,v—2Av), 32D+ (p—1)Ad,D%v)
= —(f%%0,v—2Av), 8,D40,v—Av))
— PA(fR*0,v—4v), 8,D3v)
= (f57%,(0,v—4v), D3 ,v—v))
+(P—2)fE*((0,v—Av)0,(0,v—Av)+20 exp (24y))-
(0,v—Av), DXa ,v—Av))
— PA(FE XD, v—2Av), 8,D%)
—Saba FE%3, v—A0) DA, v— ) cos (n, )dS.
Hence it follows that

(4.1) (L3(u), exp ((p—1)2)-8,D%v)

= S B (D~ D@+ 27+ exp (229)0,0: 9, Do)

+(p—2)25§( 274 exp (229)+0s.v, Dd2v)

H(FE (D~ 1)@, v—10)*+D exp (227))-

0,(0,v—2v), D0, v—2v))
+(p—2)28( /5 exp (249)- @,0—4v), Dy(@yv—20)
~ PASE @ y0—20), D330+ B L(h, 9),

where I,(h, 0) and I (h, d) are two surface integrals such that if h—0
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N-
Ih, &) —> L@ = — 5| f10:,0:0: 8y 08 (n, )dS,

I(h, 0) —> I(0) = “Sap fE¥o,v—2v)-0,(0,v—Av)-cos(n, ¥)dS.
From (4.1) we see that
4.2) (L%(u), exp ((p—1)2y)-0%v)

= S (= 102,08 €XD (243))-8,D,2, 8,0,0)

+(p—228 3] (F1 XD (249) 2,0, 8,02,)

+(F5 (D= 1)@y 20)+3 exp (243))-
8,(0,v—10), ,(3,v—0))

+(p—2)20(f5* exp (24y)- (0 ,v—2v), 0,(0,v—2v))

— DA @yo—20), B50)+ 3 L)

If p=2, we can take naturally d—+0 in [4.2) Thus we may assume that
1< p<2. By Cauchy’s inequality

|72 exXp (249)-82,0] < 5-04% exp (1)1

S CoPhE— as 0—+0.
Similarly

| 5745 exp (22y)-(0,v—Av)| —> 0  uniformly as 6—-+0-
Further it is seen that
(4.3) (L3(u), exp ((p—1)Ay)-03v) —> 0  as d—-+0.

In fact, if u is in C?®, this is clear by integration by parts. If u is in C? and
|02,u|?%02 us LY(D,), i=1, -+, N, (4.3) is correct by the following inequalities
and Lebesgue’s convergence theorem:

102(02,u)+0) P20, u| < Clo-ulP?|0jul, 7=l -, N.

Therefore, taking 6—+0 in and using Fatou’s lemma, we obtain from
(4.3)
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“.4) 02 (p=1) '8 (13: 217,820, 8,02,2)
+(p—1)(|0,v—Av|?~%0,(0,v—Av), 0,(0,v—AV))
— A8y v—Av| 2@, v— ), 820)+ izilf,. ,

where [;=lims.,, I;(0), i=4, 5, 6. And we remember the final part of the first
section.
We write
— pA(10,v—Av| P30 v —Av), 0%v)

= — pA(|0,v—Av|?~*d,v—Av), 0,(0,v—Av))

— pA¥(|8,v—Av|P~¥ (0 ,v—Av), d,v)
and
— pA(|0,v—Av| P30, v—Av), 0,(0,v—Av))

= —ZSaDala,,v—}lvl” cos (n, y)dS=1,, say.

Here I,=pAl,. Then becomes
(4.5) 0= (p-l)[g(taqvip-za,,a,iv, 0,0z,0)

(18,v— 0] =%, (8 ,v—Av), a,,(a,,v-—zv))]

— P18, v— 20| P2 v—Av), B,0)+ E L.
On the other hand it follows from the proof of that

(Lp(u), exp (p—1)Ay)-9,v)

= — pA(18,v—Av|P~@yv— ), 3,0)+ ;_3 1.
Combining this with we obtain
4.6) (p—1) [gua,iv] 223,82 v, 8,02 V)

(18, 0—20] 7%, (3, v—2v), ay(a,,v—zv»]

[—31,.
i=1

Mm

A

A

=1

Note that
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(0, F2%)% < (9%/2) f54((00)%(0,0:,v)*+2%0% exp (42Y)),
@y fF7 < (P*/2) 5 (@ v—Av)*+ (0,0, v—Av)*+2%0% exp (44))).
Using and taking d—-0, we have

N-1
p) Spa |a,,.v|de+SDa 18, v—2v|Pdx
N-1 '
zcleg Srala"’vl "dS-I—aSraIayv—-Zvl »4S
+a'8 | 18. 017740, 005
i=1JDg

+aZSD layv——lvlp'”(ay(ayv——lv))zdx]

(from ((4.6))
N-1 »
<cCo[ 1, 10: 01745+ 18,0-017as
3 T
+ai2l 3 1Ll +a B 1L].
{=1 i=4
Obviously

DI s CRl | exp(pay)-(lu|?+1Tul?+ |V |7)dS

Therefore from the above and (3.5) it follows that

@ SD exp (p2y): [Vu|?dx < CUF exp (p1y)- |Vu|?dS

+a | exp(pAy)-(1ulP+(Vu|? +|Vu|)dS).
Using the inequalities
exp (22y)+(0,02,u)* < 2((0,0:,0)*+4%0:,0)%) ,
exp (24)-(05u)* < 2((0,(0,v—Av))*+2%@,v—v)),
we have from

N-1

S, €XD (p9): 10.,u17-3,3. 4 dx

i=1JD

+,. exp (p13): [0,u1-*@uytd
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<2p-0"(A3 - 1)

+222(’:§S% 102 ] ”dx—i—SDa 1,0~ vl7dx).

Combining this with [4.7) we conclude that

§Da exp (pAy)- |Vu|?dx

+a2[ 21 SDG exp (pAy)- 10z,u|P"%0,0-,u)dx

1=

+1,, exp (629)- 13,177 *03dx |

< CA+a2|,  exp(pR3)-(1ul?+|Tu|?+ [Vu|?)dS

= CA+a’)(e+Mexp (pad)).

Here we note that (1+a%2>)<C exp (pa|i|/4). Therefore

N-1

SDM Vu|?dx+a? [ ) ﬁpmia,,u 17%3,8 u)d x

i=1
+SDa/2 10yu] p"z(agu)zdx}

< Cexp(3palil/d)e+Mexp(pal).

Setting A=—2p"'log (M/e), we complete the essential part of the proof of
The remaining part is immediately obtained by the above inequality
and Lemma 3. Q.E.D.
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