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1. The main result.
We consider the nonlinear boundary value problem
| d®u
(1.1) dx®
u0) =u(x) =0,

+Au =uf(u), 0<x<m,

where A is a real parameter and f is a Lipschitz continuous, real function de-
fined on R. Without loss of generality, we assume that f(0)=0. By a solution
of we mean a pair (4, u)eRxC?*0, r] satisfying (1.I). Let I'.(f), n=
1, 2, ---, denote the set of (1, h)eR? for which there exists a solution (4, u) of
satisfying the following conditions :

(i) wu(x) has exactly n—1 zeros in (0, w);

(i) The first stationary value of u(x) is equal to A.

The set I',.(f) is considered to be a representation in R? of a set of nontrivial
solutions of bifurcating from the trivial solution (n? 0) (note that n® is
the n-th eigenvalue of the linearized problem of [(1.1)).

In the previous paper [2] the author established a result that a nonlinear
term f is determined uniquely from its solution set I';(f) and, in particular,
that '

I'(f)=1{1, hyeR?*: h+0}

implies f=0. The purpose of the present paper is to show that a nonlinear
term f is not determined uniquely by the condition

(1.2) I:(f) = {4, h)yeR*: h+0}

and to find nonlinear terms f satisfying the condition (1.2).
To state our result precisely we need some terminology. Let 0<a<1/2
and let X, be the function space

(1.3)  X.:={gh)eC'[0, ©): g(0)=0; |glot+1g" ()| +]g la=:lglx. <o},
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where
lglo:= sup |g(h)],
0<h<oo

and

g = [A+k* g (R)=(1+h**) g (h)]

T osh k<o ntk lk—h|* ’

Also we let
(1.4) X_ = {g(h)eC'(—oo, 0]: g(—m)eX.}
and let | gllx_:= |g(—h)|x,. It is routine to verify that X. become Banach

spaces when furnished with the norms |l gllx,, respectively. Moreover we de-
fine the sets U, by
(15) U.:= {f:exr:”ft”/l’t<5}'

With this notation, the main result of this paper can be stated as follows:

THEOREM 1.1. Let 0<a<1/2, let ¢ be sufficiently small and let U. be the
sets defined by (1.5). Then, for any f_€U._, there exisis a unique function
f.€U, such that the function v

folhy, if hz0,

(1.6) f(h)2={
f-(h)y, if h=0,

satisfies the condition (1.2).

implies that a nonlinear term f of is determined uniquely
if, not only the condition [1.2), but also the section of f on the half interval
(—o0, 0] (or [0, «)) is prescribed. However, in the case f is an even function,
the following uniqueness result can be proved:

THEOREM 1.2. Suppose f is a Lipschitz continuous, real, even funclion defined
on R. If f satisfies the condition (1.2), then f=0.

For the nonlinear boundary value problem

du
dx?

u(0) =u(x)=0,

+Ag(u) =0, 0<x<m,

where g(u) is a continuous function on R satisfying the condition ug(u)>0 for
all u+0, a solution set I»(g) can be defined by the same way as for and
the problem of finding nonlinear terms g satisfying the condition 7I%(g)=
{4, h)eR?: h+0} can be posed. But, as is easily seen by the substitution
AV2x=t, this problem is reduced to the problem of finding g such that every
solution of ii+g(u)=0 ("=d/dt) have the same period 2z, which has been
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studied by Urabe [8, 9, 10], Levin and Schatz and Obi [5, 6].

The present paper is organized as follows: In Section 3 we derive a neces-
sary and sufficient condition for f to satisfy the condition [1.Z), which is des-
cribed as a nonlinear integral equation of f,. In Section 4 we solve the inte-
gral equation. To this end we need some estimates, which are picked out in
Section 2. is proved at the end of Section 4. In Section 5 we
treat the case f is an even function. [Theorem 1.2is an immediate consequence
of [Theorem 5.4

2. Function spaces.

In this section we shall present some estimates of functions in the function
spaces X. defined in (1.3), and a function space Y ,, which will be defined
in (2.5). The following is elementary.

LEMMA 2.1. Let g be in X,. Then:
(i) For any he[0, o),
2.1) [(I+h)g' ()| < 3liglx, .
In particular, for any he[0, o),
(2.2) lhg'(h)] < 3lglx, -
(ii) For any h, k[0, ),
2.3 lg'(k)—g' (M| = M| k—h|"lglx,,
where M, is independent of h, k, g.
(iii) For any h, k[0, o),
2.4 lkerig/(R)—h*1g'(h)| < Milk—h|"|glx. ,
where M7 is independent of h, k, g.
PrROOF. From (1.3) we have, for any h&[0, <o),
[A+h** g (M) = [(1+h**Y) g (h)—g'(0)|+1g7(0)]
< A+hr)lglx, -

This proves (i). It follows from (1.3) and that, for 0<h<k,

, o _ ‘_—.1_~7 a+1 7 . a+1 ’ _M
&/ ()—g' (| = | (R 0g ()= (L4 h** g () = s
<

(k—h) o (RT=R) o
= 1+ka+1!lgl|X++(1+h)(1+ka+1)31[g‘|x+

<M | k—h|“lglx, -

g'(h)
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This proves (ii). The assertion (iii) is immediate from (1.3) and (2.3).

We now define a Banach space Y. by
(2.5) Y.:={d(h)cC'[0, 0): $(0)=0; [@|o+ "0+ 18| as1r2=: || @lly, <0},
where '

l¢ |a+1/2 -
qp LA RTDG (R)—¢ (O] A [(L+h g (h)—¢'(0)]]
D

0sh, k<o, B2k [k h[a+1/2

The following estimate will be used later.

LEMMA 2.2. Let ¢ be inY,. Then, for 0<h<k,
(2.6) H1+k* g (R)—(1+h**)g'(h)] < Mz(l""’") (k=h)*lly. ,
where M, is independent of h, k.

PROOF. Let ¢V, and 0<h<k. By the definition (2.5) we have
|1+~ )" (R)—(1+h**)g (h)]

= ‘ k]‘-’r"' {kllz[(l—l-k“+1)¢’(k)——¢’(0)]——hl/zf(l-l-h“+1)¢’(h)-—¢’(0)]}

—(1- 2t hmg -] |

< {ra (k= (1= N kel gy,

< M (1-2) “Ce=nyllr. .

The following is an immediate consequence of Lemma 2.2

LEMMA 2.3. Let 0=a<1/2 and let X, and Y, be function spaces defined by
(1.3) and (2.5) respectively. Then Y ,CX,.

3. Boundary value problem.

In this section we shall give a necessary and sufficient condition for f to
satisfy the condition [(1.2). We start with the following

LEMMA 3.1. A point (X, h)eR? belongs to the set I's(f) if and only if the
point (A, h) satisfies the following conditions:

(a) h=0;

(b) For any t<[0, 1),
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3.1) x(1~z2)—gi2s Fhs)ds > 0;

(c) There exists a number HER such that
(¢} for any t€[0, 1),

3.2) aa-e)-2s f(Hs)ds > 0;
(©) the equality
3.3) n(3—{ 25 fhs)ds) "+ H(3—{ 2s fets)as) " =0
holds ;

(c)s the equality

G4 Sl(m_tz)—S:zsf(hs)ds)_l/deSZ('z(l*fz)—gzzsf(Hs)dsyllzdt

z
2
holds.

PROOF. Suppose that (A, h)el(f) and let (A, u) be a solution of
Let  denote the zero in (0, ) of u. By an argument similar to that in the
proof of [2, Lemma 2.1], it follows that u’(w/2)=0 and u/(x)#0 for any x&
0, 0/2)U(w/2, (w+=x)/2). By multiplying both sides of the differential equation
in by 2u’(x) and integrating from /2 to x, we have

(35) w(xy = h—ue)+| s

The fact that u/(x)#0 for any x<(0, w/2) implies [(3.1).
Let H be the second stationary value of u(x). Since the above argument
remains true if 2 is replaced by H, we obtain

ulx)
(36) w(xr = AH = u(e)+| 2 1@,
and [3.2). Substituting x=w for and and noticing that AH<0 lead
to [3.3). Furthermore, from and [(3.6), it follows that

Sz(l(l——tz)—g:Zs f(hs)ds)_mdt =2, S:(x(l—tz)—S:2s f(Hs)ds) " dt = =L |

This proves (3.4).
Conversely, suppose that (4, h) satisfies the conditions (a), (b), (c). Let
h>0. By the function
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x(u) = H AQ1—1t)— 123f(hs)ds _mdt
SO t

is a monotonically increasing function of u, defined on the interval [0, A).
From (3.4), we have w:= 2x,(h)<oo. Let u;(x) be the inverse function of x,(u).
Then the function u,(x) satisfies u,(0)=0, u(w/2)=h and ui(w/2)=0. In view
of uj(w/2)=0 we extend u,(x) as a function on the interval [0, w], by letting
u(x)=u(w—x). Similarly, using H which satisfies the condition (c), we define
a function u, as the inverse of the function

-1/2

o) = n'——S:/H(Z(l—tZ)——SiZs f(Hs)ds) " dt.

Then, from (3.4), we have x,(H)=(w+r)/2 and therefore u,(x) can be defined
as a function on the interval [w, #]. By the assumption [3.3), it follows that
the function

satisfies and has exactly one zero in (0, ). This proves (4, h)el(f).
The case h<0 can be treated in a similar fashion.

We turn to the equation with 2=4. Let f, and f_ denote the restric-
tions of f on the intervals [0, o0) and (—oo, 0], respectively and let U. be sets
defined by (1.5).

LEMMA 3.2. Let 0a<1/2, let 0<e<4 and let f.=U. respectively. Then
there exisls a unique function H(h), defined on the interval [0, ), salisfving,
for any h=0,

(3.7) n(4={ 25 (hs)ds) "+ H(w(4( 257 (H()Es) " =0.

The function H(h) possesses the following properties:

(i) H(0)=0.

(ii) H'(0)=-1.

(iii) There exist positive numbers C, and C, independent of h such that, for
any hz=0,

3.8 —Ch £ H(h) £ —C;h.
In particular

(3.9) lim H(h) = —

h—o0
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(iv) The function H(h) is of class C' with the derivative

o R(A—f (k)
(3.10) H' (W = gasa=r amy -
PROOF. Put
(3.11) Oh, Hy:=(4h={ 27, @a8)~ (4~ [ (221 @1c5).

For any H<O0, in view of the assumption f.€U.,
Ou(h, Hy= —2HA—f_(H)) > 0.

Hence, for each =0, @(h, H) is a monotonically increasing function of H on
the interval (—co, 0]. Since, in view of the assumption f.eU.,

Ok, H) < (ahe=| 261 .©)d§)—U—e)H?,

O(h, H—»— as H—>—o. Moreover @(h, 0)=0. Therefore, by virtue of the
intermediate-value theorem, we conclude that, for each #=0, there exists exactly
one number H(h)e(—o, 0] satisfying @(h, H(h))=0, this is,

(3.12) ni(a—{ 27 (ns)ds) = Hwy(4—( 257 -(H(s)ds).

Since H(h)<0, the relation may be rewritten as [3.7).
Obviously H(0)=0. Also, by and the assumption f.(0)=0, we have
H'(0)=—1. It follows from and the assumption f.<U. that

4—5£H(h)234+s
44~ h* T 4—¢

This proves (iii). Applying the implicit function theorem to the mapping
@(h, H) defined in proves (iv).

The following result is basic for our work.

LEMMA 3.3. Let 0=5ax1/2, let 0<e<], let f.€U. respectively and let H(h)
be the function defined in Lemma 3.2. Then a function f, defined by (1.6),
satisfies the condition (1.2) if and only if f. satisfies, for any h=0,

(3.13) S:(él(l—t’)—g;23f+(hs)ds)_1/2dt+S (4(1—t2)—S:2s f(H(hs)ds) " dt =

1
0

ol

PROOF. Suppose that f. satisfies (3.13) for any ~=0. Then, from
3.1, 4, h)el'(f) for any h>0. An elementary observation shows that if u(x)
satisfies then #i(x):= u(x—x) satisfies [1.1)} It follows from this fact and
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the definition of I%(f) that, for each A>0, if 4, h)el',(f) then 4, H(h))e
Iy(f). Therefore (4, Hh))=I'.(f) for any h>0. This and the property (iii)
of prove that {4, h)eR?*: h=+0}C (/).

To prove that {(4, h)eR?: h+0} DI'.(f), suppose that (2, h)eI(f). Then,
from Cemma 3.1, (4, h) satisfies (3.4) for some H. But the assumption f.€U.
yields

g (200 2ss.hods) a4 (30—~ [2s s (Hs)as) .
Hence we have (A+¢&)Y*z<rn/2. This proves that if (4, h)eI(f) then 1=
4—¢(>3). Therefore, to prove that {(4, h)eR?: h+0} DIy (f), it suffices to
show, for each fixed hR, the uniqueness of 4 such that (4, h)el(f) in 1=3.
It follows from an argument used in the proof of that there exists
a unique function H(A, h) satisfying

H(A,h) h
2HG, hy={ " 2er @©de = ane= 261 @)z,

that the function H(4, h) can be estimated as

A—¢ h? Ate
@.19) ATe =H@ By =1—s

and that the derivative H;(4, h) of H(A, h) with respect to A is written as

h®*—H(2, h)? 1

(3.15) Hid W)= =35 ) —F(HA )

From and we have

lH}(], h)

&
(3.16) HG, h) = G—ef

We now put

U = Sz(Z(l—tz)—SZZs folhs)ds) a1
-1/2

+{ (a—e={2s G, msyas) ™" ar.

A calculation shows that
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U:() = ——%—S:(l—tz)(l(l—tz)-SiZs f+(hs)ds)_3/2dt

*%Si(ﬂ—f”—Slstf-(H(z, ms)dsHa(h, )(a1—1)=| 25 f(HA, Ws)ds)™"d1.

But, from [2.2) and [3.16), we obtain, for 1>3,

(1—12)—51252 F_(HQA, h)s)dsH(A, h)

_ o 1 \ Hl(z) h’)
=(1-2) S:ZS(H(Z, h)s f-(HQA, Ms)ds g7y
> (l_tz)_S?s?’sds(zjs)g

_ 352 2

_ (1_(2_:?)—2)(1—0

=0.

Therefore, for 1=3, U;(4)<0, which leads to the uniqueness of 4 such that
(4, el (f) in A=3. This proves that f satisfies the condition (1.2} The
converse is a direct consequence of [Lemma 2.].

We conclude this section with the following estimates of the function H(h).

LEMMA 3.4. Under the same assumption as in Lemma 3.2, the function H(h)
possesses the following properties:
(i) There exist constants Cs, C, independent of h such that, for any h=0,

3.17) |H'(W)| = Cs;  |RH'(R)] = Cu|H(R)|.

(i1) There exists a constant C; independent of h, k such that, for 0Sh<k,
(3.18) vI(1+k““)H’(k)——(1+h"‘*‘)H’(h)I < Cs(1+ kYA (R—h)**12,

(iii) There exists a constant Cq independent of h such that, for h=0,
(3.19) |[(L+h*DH (h) fL(H(M)+ fL0)] < Coh®.

(iv) There exists a constant C, independent of t, h such that, for h=0, t<0,
(3.20) [t(1+h*DH ()X fLO— fLHRD| = Co(1t]+ | H(R) )| H(R)—t]* .

ProoF. Using [3.10) and [3.8), we obtain
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, 4+ fllxe .
|H’(h)| §“m—:e—)— =:C;.

Hence |hH'(h)|E£C:h<C3C3H H(R)|. This proves (i).
From {3.10) we have

(L pery =1+ bR = [ SO RAn O g

But, using [3.12), [(3.8), (2.1}, [2.2), [3.17) and a tedious calculation, it follows
that, for £§=0,

|4 (e s

&\ HOGE—f(HE)

(s-{2srt@9ds) " ;o)
(1257 eoras)” T -(HED)

d

d§

(1+Ea+l)

< Cy(1+69),
where C, is independent of &. Hence

|A+k**DYH' (R)—(1+h**YH'(h)| < Cs

[l a+eae|
h
g C5(1+k1/2)(k_h)a+1/2 ,

where C; is independent of h, k. This proves (ii).

From (ii) of (3.18), [2.1)}, (2.3) and we have
|(1+h**DH'(h) fL(H(R)+ FL(0)]
= [{(1+h*")H'(h)—H'(0)} fL(H(h)—(f(H(h)— f2(0))]
< Cs(L+hY2) R 31+ | H(R) )T3) f e+ M HR) 1| f -]l 22
< Cs(+hY)R A+ Coh) 3] f -l x . +MCER|| f | x_
< Csh*.

This proves (iii).
To prove (iv), let g(h):= f_(—h). It follows from the assumption f.eX_,
(3.8), and that

[t(1+ k") H (R)(f2()— fL(H(h)))]

= |H (M| [1A+h*)(f'(—H(h)—g'(—1)]

1+ha+1

= O Thg =

A+ THR) | * g (| H(R) ) — 1+ —t* g’ (— 1)}
—(IH(h)l”“—Itl‘”‘)ll‘lg’(ltl)]
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l+ha+1
l+cg+1ha+1

< Gt +[H(M DI HCh)—t]|«,

< ¢ N1t 1=Hm il x.+ || HI = 81413l g1 .}

where C, is independent of £, t. This proves (iv).

4. Integral equation.

Let e<4, f.€U. respectively and set

@D ot £={ (1= o7, hsrds) et

1
+{ (s0—m—{ 25 ctwsyas) a2,
0 t
where H(h) is the function defined in Lemma 3.2 Note that (3.13) is rewritten
as 2(f,, f-)=0. In this section we shall solve the integral equation Q(f,, f-)
=0, where f_ is given in U_.

To facilitate matters, we let

4.2) D(h, t):= 4(1—t2)—S125f_(H(h)s)ds .

Then, by putting 0 :=4—e>0, we have
(4.3) D(h, t) > (1—1%)0 .

The following estimate is useful.

LEMMA 4.1. Let 0<a<sl1/2, let f.eU. respectively and let D(h, t) be de-
fined in (4.2). Then:
(i) For 0<h<k and 051<1,
l 1 _ 1 ‘ < M, (k—h)a+i?
D(k, 0/ D(h, 07| = (A=) T4 heP

(4.4)
where M, is independent of h, k, t.
(i) For 0=h<k and 0Z5t<1,

11
D(k, "~ D, "

M;

S qoppr kP,

4.5) (kY2—h'?)

where M} is independent of h, k, t.

Proor. It follows from [(4.3), (2.1), [(3.17), [3.8) that
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1
D(k, 1)**  D(h, {)®

— o d§ 1, ’
B IBSnD@,‘WS,S FLUH@s)H §)ds
= 3621211 stds| S+ HO15)MdEC,l £ -

< 357521 — ) sds 30+ Co)1d6 Cll £

1+C,k
14+C.h

< 9C.0752(1—12)"%2 log 1 f-llx-

M4 (k_h)aﬂ/z
- (1—t2)3/2 1+ha+1/2 ’

where M, is independent of 42, k. This proves (i).
In the case of 2<1, it follows from [4.4) that

11y M
Dk, t)*®  D(O, 121 = (1—t7)**

M
In the case of £=1, it follows from that
11
D(k, 1)**  D(O, 1)°

(k1/2_h1/2)

(kl/Z_hl/2)ka+l/2

1
D(k, 1)*®

(kl/Z_h1/2) é (kl/Z_hl/Z){‘

}

+ |D(O, PR
1
¢

< 20-3/2 ____hl/Z)

MI
- (1 — 7)Y

Since the constants M;, M; are independent of i, &, the proof of (ii) is complete.

- (k h)a+1/2

We are now in a position to prove the following

LEMMA 4.2. Suppose that 0=a<1/2, e<4. Let U. be the sets defined by
(1.5), let Y, be the function space defined by (2.5) and let 2(f., f.) be the
mapping defined by (4.1). Then:

(i) Q(f., f-) is a continuous mapping of U xXU_ to Y,.

(i) Q(f,, f-) is Fréchet differentiable with respect to f, in U,xXU_. The
Fréchet derivative 2,,(0, 0) of 2(f., f-) at (0, 0) is written in the form

(4.6) (Q,.(0, 0)F)(h) = S‘ e dtz)s/Zsz(hs)ds.
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(iii) The Fréchet derivative 2, (f., f-) is continuous in U, XU_.

ProOOF. We shall show only that if (f,, f.)€U,xU_ then Q(f,, fO)EY,,
because other assertions can be shown similarly.
Let (f,, f-) be fixed in U, xU_ and put

d(h) = 51(4(1—;‘2)— Stzs f(HR)s)ds) " dt.
By (i), (ii) of a calculation shows that

(1) (h) =g (0) = pi(h)+po(h),

where

pu(h) = S:.D(T‘”ﬁﬁgzsz ((L+RE DY H (h) f(H()s)+ FLO)} ds ;

1py 1 1
puhy = — 5| ( B 5~ B 3572 Da 0, Dt

This yields
RUPL(L+k** D (R)—¢'(O)]— AP [(1+h** N (R)—¢'(0)]
4.7)
= 2 kY2 p(R)—h 2 ps(h)}.

t=1

We assume that 0<h< k% and shall estimate £'V2p,(k)—h'V?p,(h), i=1, 2, sepa-
rately.

From and [4.5), we have
| 172 pa(R)— h'/2 po( )|

= .__1- 1/e__ p1/2 ! 1 _ l
__]‘_ 12! 1 _ 1
215, o~ D, )P0 e

S (@/OMEl - x _(k—h)a*12

1/2
+(7r/4)M3]]f_j|X_T_|__hhm (b— hyesure

from which it follows that there exists a constant M, independent of 4, k2 such
that

(4.8) | B2 po(R)— R po(R)| < Mo(k—R)e*V2,

Changing the order of integration shows that
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k2 py(k)—h'"2 py(h)

12( e a+1y Ly’ ! ! t as
= el pe B e 7LD+ FLO) ] D(k, 577

_hl/ZS:tz{(1+h‘”1)H'(h)f/—(H<h>t)+f,“(O) S D(h )3/2

= h”zg {(l+hHH'(h) fL(Hh)H+ fL(0)} dtSL( )3/2 D(hls)3/2>ds

+ k) 2 {1+ ROH () L (HD+ 0) dtSCD(k DI

— 12 PR H ) £+ 100 i, D(k PLE

¢ 1
= 7 (L R DH ) £+ O ) (s — e 5 )49

H (k) ds
D(k, s)**

H(n) ds
D(k, s)**

+k1,25:’”’” (1B YH (B fL()+ fL <0>}dt§

H(k)

1/2 nmw a+1 ’
—h So H(h)3{(1+h JH!(h) fL()+ fL (0)}612‘5

= f1+]2+]3+.[4+]5 ’

where

Jyi= w0 i ne ) B L HO+ 72O a8 (5o — e )is;

L (H® R t/H (k) ds arINEIP By At NI .
Jo= iy - 0| Dt gy (R DH ()= (L h= ) H ()} 5

0

H(py pl2g2 her Y B b /H (k) ds .
gH(h)H(k)3<1+ YVH'(h)(F'()— f(H( >>>dt§ T

0

L (Ew B2 ctiH (R) ds h/2 (t/H ) ds
= {H<k>3go Dk, s>3f2“H<h>3So D(k, s)''?

XE(1+h*DH (R)(fL(0)— fL(H(h)))dt;

L [{E® k122 ; t/H (k) ds H(h) pl/242 t/H(h) ds
Joi= {So H(k) So D(F, 3)3/2’50 H(hy’ zj D(k, 5)3/2}

XA +h*HH(h) fL(H(R)+ fL(0)}.
Since, by (2.1}, [3.17), [3.8),
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[t{(1+A*"H)H"(R) fLH(R)D+ f7(0)} |
= H{A+r*DIH (WI3A+THM D fllx-+1 f -l x}
S HA+A"C3A+Coht) M f x4 -l x}

< 3C(1+h* )A+Coh) M f N+ f -l 2o

for 0<t<1, it follows from that there exists a constant M, independent of
h, k such that |J,| <M,(k—h)**12,

Next, from [3.18), [2.1), [4.3), [3.8), we have

=l = S:kl/zﬂlf/‘(H(k)t)!dtg:"@%)?fz—C5(1+k”2)(k'h)a+”2

= S:kl/2t33(1+ LH(R) )™M oIl ¢ 87221 —12)"12dtC (1 + kY2 (R — h)*+112
= 35—3/2C5S:t3(1+Czkt)‘l(l—tz)—x/zdt”f_”X_k1/2(1+ k1/2)(k_h)a+1/z

< 857002, P(L— )Rt £ _|Lx (1 Col) RN L+ R — )2

= My(k—h)**12,

where M, is a constant independent of h, k. Moreover, by virtue of (3.20),
(4.3), [(3:8) and [3.17), the term J, may be estimated as

w1 g It
sl = \SH(I’L) \H(k)132C7It| | H(m)—t]767" (H(R)*— t2)l/2dt
205 H(n) plie H(h)—)*(t— H(k)-V2dt
= T SH(k)—[—W( () =0t —H(

H(h)
g 2C7C51/26—3/25 (H(h)__t)a(t__H(k))—llzdt
H (k)
= 2C,C3"%57%2B(1/2, a-+1)(H(h)— H(k))**1/?,
< My(k—h)x+12,

where B(-, -) denotes the beta function.
The estimate (3.20) yields

0

kY2 (ci/H () ds ht/? StlH(h) ds
H(k)sgo D(k, s)'’*  H(hyJo  D(k, s)''®

X2C,|t| | H(h)|(t—H(h))*dt

T =

H(h)
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3‘0
H(h)

IA

1/2__ h1/2
ugtly(k) ds_\ac.1t11 Homy — Hehye dt

HEY Yo D(E, sFr
0 12 1 t/H (k) ds B 1 t/H(h) ds
+Smh>h H(k)“‘go Dk, )P H(h)SSo Dk, 5P

X2C, | t| | H(h)|(t—H(h))*dt .
From and we have

0 k12— hY2ce/H (k) ds
Sﬂcm H(k) So D(k, s)**

s 2k1/2_ h1/2
<ot 1H<h>|g

pliz__ pl/2
|H(k)|™'®

< 57 @1/ R = R Col) I Co )

|t] | H(h)|(t—H(h))"dt

t*(t—H(h))*

wen (AR —7 41

< 5o |H<h>|ﬂ;m(z—H(h»a-mdt

< Mi(k—h)**12,

where M,, is independent of 4, k. Change of variables shows that

0
S h1/2
H(h)

s 1 t/H (h) ds B 1 t/H (k) ds
= hY Smm{——lﬂ(h)’as" D(k, s)*® IH(k)ISSO D(k, 8)3/2}
X [t |H(h)|(t—H(h))*dt

[t] | H(h)|(t—H(h))*d

1 (uHM® ds 1 (uvEML® ds
H<k)350 D(%, s)ﬁf“"H(h)sSo D(k, s)*'*

ds

= wor— {1t 5%

SH(h)/H(k) H(h)

o ds
L e =G HOe ] )

D(k,

1/2 a ! a dS
= (= H(h)) {XHm)/H(k)t(l——t) dtg D(k, s)'®

H(n) I H ) . H(h) a _d____s
+ 7 e G a— ey Howr a5

which, by a similar argument to that in the end of the proof of [2, Lemma
3.1], may be bounded from above by the quantity constantXx |H(k)—H(h)|**1/2
and therefore, in view of [3.17), by the quantity constantXx(k—h)**¥2. Thus
the term J, may be estimated as | J,| <M, (k—h)**'/%, where M,, is independent
of h, k.

By changing the order of integration and using [3.19), [4.3), it follows that
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Sl ds (SH(k) plizg? Sy(h) hlzge

< __as I
WIS oD(k, s)*2\)a (ks H(k)®? H<h)sH(h)3

_.(1/3)5 D(k )3/zd sCo(kY2—hY2)p

< Mip(k—h)*t2,
where M,, is independent of A, k. Thus we conclude that
(4.9) | kY2 pu(R)—h* py(h)| < Mig(k—R)**1/%
Combining (4.7), (4.8, shows that ¢V ,. Similarly, the first term in the
right side of (4.1) belongs to the space Y .. Therefore 2(f,, f.)EY,.

The following lemma is an analogue of [2, Theorem 4.1].

LEMMA 4.3. Suppose that 0<a=<1/2, e<4. Let U, be the sets defined by
(1.5), let Y, be the function space defined by (2.5) and let 2(f., f.) be the map-
ping defined by (4.1). Then the Fréchet derivative 2,.(0,0) of Q2(f., f-) at
0, 0) is a linear homeomorphism of X, onto Y ..

PROOF. In view of the mapping £2,,(0, 0) may be written in the form

1 1 12F(h
(4.10) 82,0, 0 = — i dtﬁ)s,zgs f(hs)ds:So(—i{(tz—;)ﬁdt.

By the open mapping theorem, to prove the lemma, it suffices to show that the
equation

4.11) Sl(lt f;gfl)z t=g(h),

where ¢ is given in Y,, has a unique solution f in X,. But, as was shown
in [2, §4], the equation [4.11) may be solved as

. o(1_'¢(h)
f(h) = @/m)h- ‘Mu st
1 t3¢(ht) g’ (ht)
(1 t2)1/2 (1 t‘z)l/z

Hence, to prove the lemma, it suffices to show that, for each ¢V ,, the func-
tion f defined by (4.12) belongs to the space X.. To facilitate matters we let

1 Bé(h 4
gCh) = SO%%&; r(hyi=h | (’i‘b;’;’;ﬁdt.

Obviously, suposr<e|q(h)| =(2/3)4lr,. By Lemma 2.3, the assumption ¢V,
implies ¢=X,. Therefore, using (2.3), we obtain

(4.12)

= ©6/x )S dt+(2/r:)hg dt.
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[t {1+ k)@ (RE)—(1+h )¢’ (hD)} |
= [(t* =1)(¢' (kD) — ' (h)+ {(1+(kD)** )¢’ (kt)— (L+(R1)** ") (RD} |
= (Mi+Dlglx,(—h),

from which it follows that

(4.13) |A+ -4 g (R)—(1+h* g (W) = (=m/2)(Mi+DI gl x (k—h)*.

We now turn to the function r(h). By virtue of [2.2), suposn<e|7(h)| <
2|@llx,. By integrating by parts, the function »(h) may be rewritten as

a ¢
r(h) = S {dt(l tZ)l/Z}(¢ h)—'¢(ht))dt .
Differentiating this with respect to & leads to

d £

(k) = (/163 | {1 s (6 (g (ht)d1.

Hence, for 0<h<k, we have
(A4~ D' (R)—A+h* )" (h)
= (37/16) {(1+~** 1)’ (R)— L+ h** 1)@’ (h)}

(4.14) +S’”k{ a__t

1 e H+ R ()= e ()

0

—((L+E** )¢ (kD) —(1+h*" )¢’ (h1))} dt

+, {5 Hat e —gen)
(L ()~ () dt
By the first term in the right side of may be estimated as
|3 /16) (14 =) (B)— (LA™ g/ ()} | < (37/16)Mal gl (b— )",

It follows from and that

[(A+ke )¢ (R)—(1+h* g (h)—((1+ k)¢’ (k1) —(1+h*" )¢’ (h1))|
< [A+kE0¢ (R)—(1+h* g’ (R)]
+ (14 (k) )@ (RO —(1+(h1)* )¢’ (A1)

+ [ (L=t ) (kD)1 (k) — (ht)** ¢! (ht))]

< 20,12 = Wil + MU =17 k= )l .,
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Hence the second term in the right side of may be estimated as

hik( d # etas B e
S {dt(l tZ)uz}{((Hk )¢’ (B)—(1+h** V)¢’ ()

0

—((1+ k=g’ (k) —(1+h** )¢’ (ht))} di

< 2M(1- k>”2§:/ka 5t>3’2dt”¢“x*(k h*

M 0=t G g = bt

= M14(k"h)a s

where M,, is independent of h, k. It follows from [2.2), that there exists
a constant M,;; independent of 2 such that

|14k )@ (k) —¢' (k)]
= H{A+E* ) (R)—(1+(kt)* )@’ (R} —(1—t*" )1’ (k1)]
= M(1=0)*"12| @l x ko437 (A —1*" D) @]l x, &
S Mt (1= 12k .

Hence the third term in the right side of may be estimated as

nik

0 e e} (A B2 (=g )= X ()= (D))

< 4M15<ka+ha)Sl/ku—-t)“*dz

§ 8M15(k——h)“ .
Thus we have proved that
(4.14) [A+E**Dr'(R)—(L+h* Hr'(h)| < My(k—h)*,

where M, is independent of h, k.
Combining (4.12), [(4.13 shows that feX,.

We now present

PROOF OF THEOREM 1.1. and enable us to apply
the implicit function theorem (see e.g., [4, Theorem 2.7.2]) to the operator
Q(f,, f-) and to conclude that there exists a neighborhood V_ and a unique
continuous mapping S: f_—f,, defined in V_, such that Q(f,, f_)=0 with
f-€V_ is uniquely solvable as f,.=S(f.). Combining this observation and

Lemma 3.3 proves [Theorem 1.1
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5. Even nonlinear term.

In this section we shall treat the case the nonlinear term f of [1.I}is even.
We start with the following elementary lemma.

LEMMA 5.1. Suppose that f is a Lipschitz continuous, even, real function de-
fined on R. Let u(x) be a solution of (1.1) with exactly one zero in (0, @) and
let h be the first stationary value of u(x). Then the second stationary value H is
equal to —h.

PROOF. Let w denote the zero of u(x) in (0, #). As is easily seen from
the assumption that f is even, the function v(x):= —u(2w—x) is a solution of
u”+Au=ujf(u) satisfying v(w)=u(w), v'(w)=u’(w). Hence, by the uniqueness
theorem for an initial-value problem, v(x)=u(x), that is,

(5.1) u(x) = —uw—x).

By substituting x=0 for [5.1), we have w=x/2. Therefore, from [5.I}, it fol-
lows that u(x)=—u(r—x), which proves the lemma.

The following is an analogue of the corresponding result [2, Lemma 2.2}
for I'\(f).

LEMMA 5.2. Under the same assumption on f as in Lemma 5.1, a point
(X, h)ER belongs to I'\(f) if and only if the point (A, h) satisfies the following
condition :

(a) h=+0;

(b)

z<1-t2)—5123f<hs)ds >0 for any t€[0, 1) ;
(©)
(5.2) S:(z<1—t2)~§:23 f(hs)ds)—mdt _r

PrOOF. Let (4, h)el',(f) and let u be a solution of associated with
(2, h). The condition implies that H is the second stationary value of
u(x). Therefore, by Lemma 5.1, the equation of H has a unique solution
H=—h. In view of this observation, is direct from Cemma 3.1

The methods in the proof of [2, Theorem 2.3] apply to the equation [(5.2),
giving the following result. ‘

THEOREM 5.3. Suppose that f is a Lipschitz continuous, even, real function
defined on R. Then there exists a continuous, even function A(h), defined on R,
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such that I's(f)={(A(h), h): heR}.
The main result of this section can be stated as follows:

THEOREM 5.4. Suppose that f,, f. are Lipschitz continuous, even, real func-
tions defined on R. If I's(fy)=1%(f,) then f,=f..

PROOF. By there exists an even function A(h) defined on R
such that, for any h=0,

(5.3) S:(z(h)a—ﬁ)—gzzs fi(hs)ds)””zdt =% @=12.

Put

Dy(h, t):= Z(h)(l—tz)—gz.?sfi(hs)ds G=1,2).

Using and an interchange of the order of integration, we obtain, for any
h=0,

0

I

Sl dt _Sl dt
oDy(h, )% JoDy(h, 1)V*

1 dt 1
N D D B D BT D T 2 A= Fi(hds

1 s dt
\ 25U Ah)= bV, 5 ey e D T D

Therefore, for any h=0,

n &ln dt
(5.4) SOZE(fZ(S)——fl(E))dESo Dy(h, '2Dy(h, D) {Dy(h, 1)"*+Dy(h, 1)/?} =0.

If the assertion is not true, then there exist numbers a, b (0<a<b) such

that (i) f.(6)—f1(§)=0 for 0=6=a, (i) fu(§)—Ff(E)>0 (or <0) for a<ED.
Substituting A=b to (5.4) yields a contradiction and proves Theorem.
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