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\S 1. Introduction.

In this article we are concerned with the asymptotic behaviour of symmetric
2-tori which are shrinking to a circle by the mean curvature flow.

The mean curvature flow Problem, in a normal Parametrization, is to find
the family of hyPersurfaces $F(M_{0}, t)=M_{t}\subset_{arrow}R^{n+1}(n\geqq 2)$ satisfying

(1) $\{$

$\frac{\partial F}{\partial t}(x, t)=-H(x, t)\cdot N(x, t)$

$F(x, 0)=F_{0}(x)$ : $M_{0}c_{\Rightarrow}R^{n+1}$

where $N$ denotes the outward unit normal and $H$ is the mean curvature with
respect to $N$. Notice that in terms of the induced metric on $M_{t}$ the right hand
side of (1) is the Laplace-Beltrami operator $\Delta_{\mathfrak{h}f_{C}}$ on $M_{t}$ .

First we briefly recall some known facts on this problem. When the initial
surface $M_{0}$ is strictly convex, Huisken [18], inspired by the work of Hamilton
[17], showed that (1) shrinks $M_{0}$ to a round point within finite time, and also
proved that for the area preserving rescaled flow $M_{0}$ really converges to a
sphere in the $C^{\infty}$-topology. Later Grayson [15] gave the counterexample which
shows the convexity assumption in Huisken’s theorem cannot be omitted; not
all compact hypersurfaces with genus zero shrink to a point without singularity.
Our previous joint work [1] with Ahara, on the other hand, dealt with the
symmetric 2-torus and proved that under some technical hypothesis the torus
might be shrunk to a circle by the mean curvature flow (see Theorem 2.1, be-
low). Symmetry enables (1) to reduce essentialy a one-dimensional parabolic
equation and hence our idea of the proof is based on applying the method of
Gage and Hamilton [11], which discuss the plane curve shortening problem, to
the equation for the generating curve. Although in our case there appears a
lower order term in addition to the plane curve equation (see (6) below), our
hypothesis in [1] makes it possible to apply the method of [11]. Indeed this
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hypothesis is imposed so that the generating curve stays convex.
The aim of the present article is to discuss the shape of the generating

curve of symmetric tori which are shrinking to a circle by the mean curvature
flow. The main result is Theorem 2.2 in section 2, which says that if the iso-
perimetric ratio of the generating curve stays bounded as shrinking then its
asymptotic shape is a circle. It is also shown that the boundedness of the ratio
follows from the convexity of curves. Therefore in a situation of our previous
work [1], which is the starting point of our research, the limit shape of the
generating curve is a circle (see Corollary 2.3, below).

The method of our proof is to utilize the backward heat kernel, which is
introduced by Struwe [21] in the study of heat flow for harmonic mappings
and later used cleverly by Huisken [19] for the mean curvature flow. Note
that tbis kind of analysis was perhaps first given by Giga and Kohn in their
study of semilinear heat equations [12][13]. We follow the idea of Huisken
but some modifications are made. The difficulty of the appearance of a lower
order term can be overcome by the assumption of the bounded isoperimetric
ratio. The fact that the limit shape is a circle is derived from purely geo-
metric consideration stated in Proposition 5.1, which is not contained in Huisken
[19]. Remark that Gage and Hamilton [11] used Bonnesen type inequality to
prove the above fact. Unfortunately this inequality does not hold in our case.

We make several comments on our problem: Recent remarkable work of
Altschuler, Angenent and Giga [2] investigate the mean curvature flow for
surfaces of rotation. They deal with the initial surface homeomorphic to a
sphere, not a torus. They discuss the pinching near the axis of rotation and
astonishingly they succeed in treating the behaviour through pinching off; after
the singurarity the solution instantaneously becomes smooth if it did not extinct.
Almost the same time Soner and Souganidis [20] discuss a similar problem.
One of their results states that symmetric tori with its generating curve being
a circle can be classified into two open sets and one point. One set is a family
of tori shrinking to a circle, and the other set is pinching at the axis. For the
latter case they also treat the through singularity behaviour and obtain a similar
result as in [2]. For the former case, however, they do not concern its
asymptotic behaviour. Remark that both above works employ viscosity solution
approach, which is formulated in Chen, Giga and Goto [7] and Evans and
Spruck [8], to deal with the behaviour through singularities. It is to be noted
that Angenent [6] found a self-similarly shrinking torus, $i$ . $e.$ , the solution $\Lambda I_{t}$

which shrinks according to $M_{t}=\sqrt{2(T-t)}M_{0}$ for some $T>0$ .
Concerning the shrinking torus there still exists a problem on tbe behaviour

before singularity; if the initial generating curve merely embedded one and it
shrinks to a point off the axis, then does it become convex before extinction?
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For the plane curve Grayson [14] already gave a positive answer. Our result
may be interPreted as a Partial answer to this: if the isoPerimetric ratio stays
bounded then it becomes circular. However it seems to be a difficult task to
give a general answer. Finally about the formation of singularity of curves
on surfaces with various normal velocity, we refer to papers of Angenent [3],
[4], [5].

The author is greatly indebted to Prof. Hiroshi Matano for helpful sugges-
tions and to Dr. Kazushi Ahara for discussions. Thanks also go to the referee
for his insightful comments and instructions.

\S 2. Notation and results.

Let $M_{t}$ be a family of an embedding of a 2-torus $F_{t}$ : $T^{2}cR^{3}$ such that they
are rotationally symmetric about the $z$-axis. We represent them by

$F_{t}(u, \varphi)=(f(t, u)\cos\varphi,$ $f(t, u)\sin\varphi,$ $g(t, u))$ ,

where $u\in S^{1}$ is a parameter independent of $t$ and OSg $<2\pi$ . We call $M_{t}$ dough-
nuts hereafter. Let $C_{t}$ be their generating curves, $i$ . $e.,$ $C_{t}$ are the intersection
of $M_{t}$ with the half $xz$-plane $\{(x, 0, z)|x>0\}$ . $C_{t}$ are represented by

$C_{t}(u)=(f(t, u),$ $0,$ $g(t, u))$ .

We define the speed $v(t, u)$ of $C_{t}$ by

$v(t, u)^{2}\equiv f’(t, u)^{2}+g’(t, u)^{2}$

where $’=\partial/\partial u$ . The mean curvature $H(t, u)$ of $M_{t}$ is then given by

$H(t, u)= \frac{f’g’’-f^{\chi}g’}{v^{3}}+\frac{g’}{fv}\equiv k_{m}+k_{l}$ .

Here

$k_{m}= \frac{f’g’’-f’’g’}{v^{3}}$ : the meridional sectional curvature.

$k_{l}= \frac{g’}{fv}$ : the latitudinal sectional curvature.

Notice that $k_{m}$ is a planar curvature of the generating curve $C_{t}$ and $k_{l}$ is a
curvature of rotation. Since the outer unit normal $N$ on $M_{t}$ is given by

$N=( \frac{g’}{v}\cos\varphi,\frac{g’}{v}\sin\varphi,$ $- \frac{f’}{v})$ ,

the equation (1) is described as the one for the generating curve:
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(2) $\frac{\partial}{\partial t}(\begin{array}{l}fg\end{array})=-(k_{m}+k_{l})\cdot\frac{1}{v}(\begin{array}{l}g’-f’\end{array})$ ,

or explicitly

(3) $\{$

$\frac{\partial f}{\partial t}=\frac{1}{v}(\frac{f’}{v})’-\frac{g^{\prime 2}}{fv^{2}}$

$\frac{\partial g}{\partial t}=\frac{1}{v}(\frac{g’}{v})’+\frac{f’g’}{fv^{2}}$ ,

with the periodic condition

$\{$

$f(t, u+2\pi)=f(t, u)$

$g(t, u+2\pi)=g(t, u)$

and the initial condition.
For plane curve shortening, second terms of the right hand side of (3) does

not appear. Therefore we regard (2) as the perturbed equation and so, dropp-
ing the $y$ -coordinate, we take a coordinate $(x, z)$ only in the sequel.

For later use we denote the length of $C_{t}$ and the area enclosed by $C_{t}$ by
$L$ and $A$ , respectively:

$L= \int_{c_{t}}ds$ , $A= \frac{1}{2}\int_{c_{t}}\langle F, N\rangle ds$ ,

where $ds=vdu$ is the arc-length parameter.

Our previous result is now stated as follows.

THEOREM 2.1 ([1]). SuPPose $M_{0}$ satisfies the following assumption $(A)$ . Then
the mean curvafure flow shrinks $M_{0}$ to a circle within finife fime.

$(A)$ There exists a Positive consfant $\epsilon$ such that

$f>\epsilon$ and $k_{m}> \frac{1}{\epsilon}\frac{1+\sqrt{5}}{2}$ .

The key observation in [1] is that the assumption (A) forces the generat-
ing curve to stay convex.

The next question naturally arises; how is the shape of the generating
curve becomes? Is it becoming circular as in the case of plane curve shorten-
ing [9], [10]? The answer is positive when the isoperimetric ratio stays
bounded. This is the focus of this article.

NOW let $(f, g)$ be the solution of (2). We assume $(f, g)$ converges to $(1, 0)$

smoothly as $tarrow T$ . Let $\rho(X, t)$ be the backward heat kernel at $((1,0),$ $T)$ , namely
(see [19], [21]),

(4) $\rho(X, t)=\frac{1}{\sqrt{}\overline{4\pi(T-t)}}\exp\{-\frac{|X|^{2}}{4(T-t)}\}$ $t<T$ .



Shrinking doughnuts 573

Here we put $X=(f-1, g)$ .
We next define the rescaled immersions $\tilde{X}\equiv(\tilde{f}-1,\tilde{g})$ by

(5) $\tilde{X}(\cdot,\tilde{t})=\frac{1}{\sqrt{2(T-t)}}X(\cdot, t)$ , $\tilde{t}(t)=-\frac{1}{2}\log(T-t)$ .

Similarly we denote the rescaled quantities by
$\sim$

(for example, $\tilde{A},\tilde{L},$
$\cdots$ ). Notice

that we take the point $(1, 0)$ to be the center of rescaling.
Our main result is then stated as follows:

THEOREM 2.2. Suppose the solution $(f, g)$ of (2) converges smoothly to $(1, 0)$

as $tarrow T$ . Suppose also that the isoperimetric ratio $L^{2}/A$ of $C_{t}$ is bounded as it
converges. Then the generating curve $C_{t}$ of $\tilde{M}_{t}\equiv\hat{F}(\cdot,\tilde{t})=(;(\tilde{t}),\tilde{g}(t))$ converges
smoothly to a unit circle centered at $(1, 0)$ .

In particular when $C_{t}$ stays convex as it converges then the corresponding
isoperimetric ratio remains bounded and hence $\tilde{C}_{\overline{t}}$ converges smoothly to a circle
centered at $(1, 0)$ .

COROLLARY 2.3. If the initial torus satisfies the assumption $(A)$ in Theorem
2.1, then the limit shape of its generating curve is a $c\iota rcle$ .

We remark here that the boundedness of the isoperimetric ratio seems to
be an unpleasant assumption. However it is relevant to the curve shortening
problem. Indeed in [16] Grayson showed that in a figure-eight curve shortening
the unboundedness of the isoperimetric ratio is equivalent to that the loops

bound regions of equal area. We also notice that in a convex plane curve
shortening Gage [9] proved that the isoperimetric ratio is monotone decreasing
and so it is bounded.

\S 3. Preliminaries.

Before proving the theorem we make some preliminaries. Many of them
are variants of [1]. But we present them for completeness.

We first show the curvature $k_{m}$ evolves according to

PROPOSITION 3.1.

$\frac{\partial k_{m}}{\partial t}=\frac{\partial^{2}}{\partial s^{2}}H+k_{m}^{2}H$ .

For the proof we need some lemmas.

LEMMA 3.2.

(i) $\frac{\partial v}{\partial t}=-k{}_{m}H_{l)}$
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(ii) $\frac{\partial}{\partial t}\frac{\partial}{\partial s}=\frac{\partial}{\partial s}\frac{\partial}{\partial t}+k{}_{m}H\frac{\partial}{\partial s}$ .

PROOF.
(i) Using Frenet’s equality $\partial N/\partial s=k_{m}T$ we have

$\frac{\partial(v^{2})}{\partial t}=\frac{\partial}{\partial t}\langle\frac{\partial F}{\partial u},$ $\frac{\partial F}{\partial u}\rangle=2\langle\frac{\partial}{\partial u}(-HN),$ $\frac{\partial F}{\partial u}\rangle$

$=-2H \langle\frac{\partial N}{\partial u},$ $\partial\partial^{\frac{F}{u}\rangle=}-2k{}_{m}H_{l)^{2}}$

Here $\langle\cdot, \cdot\rangle$ denotes the inner product.

(ii) $\frac{\partial}{\partial t}\frac{\partial}{\partial s}=\frac{\partial}{\partial t}\frac{1}{v}\frac{\partial}{\partial u}=\frac{\partial}{\partial s}\frac{\partial}{\partial t}+k{}_{m}H\frac{\partial}{\partial s}$ . $\blacksquare$

LEMMA 3.3.

(i) $\frac{\partial T}{\partial t}=-\frac{\partial H}{\partial s}N$ (ii) $\frac{\partial N}{\partial t}=\frac{\partial H}{\partial s}T$ .

PROOF.
(i) From Lemma 3.2 (ii) we compute

$\frac{\partial T}{\partial t}=\frac{\partial}{\partial t}\frac{\partial F}{\partial s}=\frac{\partial}{\partial s}(-HN)+k{}_{m}HT=-\frac{\partial H}{\partial s}N$ .

(ii) $\frac{\partial N}{\partial t}=\langle\frac{\partial N}{\partial t},$ $T \rangle T=\langle^{1}\frac{\partial N}{\partial t},$ $N \rangle N=-\langle N,\frac{\partial T}{\partial t}\rangle T=\frac{\partial H}{\partial s}N$ ,

since $\partial N/\partial t$ is orthogonal to $N$ and $\langle N, T\rangle=0$ . $\blacksquare$

Locally we take parameter $\theta$ which is an angle between the $x$ -axis and
the tangent line to the curve $C$ . The unit tangent vector $T$ and the unit outer
normal vector $N$ is given by

$T=(\cos\theta, \sin\theta)$ $N=(\sin\theta, -\cos\theta)$ .

Then there holds the following

LEMMA 3.4.

(i) $\frac{\partial\theta}{\partial s}=k_{m}$ (ii) $\frac{\partial\theta}{\partial t}=\frac{\partial H}{\partial s}$ .

PROOF.
(i) In view of Frenet’s equality we get

$\frac{\partial\theta}{\partial s}N=-\frac{\partial}{\partial s}(\cos\theta, \sin\theta)=-\frac{\partial T}{\partial s}=k_{m}N$ .
(ii) Lemma 3.3 (i) leads to
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$\frac{\partial\theta}{\partial t}N=-\frac{\partial}{\partial t}(\cos\theta, \sin\theta)=\frac{\partial H}{\partial s}$ N. $\blacksquare$

PROOF OF THE PROPOSITION 3.1. From Lemmas 3.4 and 3.2 (ii) we derive

$\frac{\partial k_{m}}{\partial t}=\frac{\partial}{\partial t}\frac{\partial\theta}{\partial s}=\frac{\partial}{\partial s}\frac{\partial\theta}{\partial t}+k{}_{m}H\frac{\partial\theta}{\partial s}=\frac{\partial^{2}H}{\partial s^{2}}+k_{m}^{2}H$ . $\blacksquare$

We compute the explicit formulation for the evolution of $k_{m}$ .

COROLLARY 3.5.

$\frac{\partial k_{m}}{\partial t}=\frac{\partial^{2}k_{m}}{\partial s^{2}}+\frac{1}{f}\frac{\partial f}{\partial s}\frac{\partial k_{m}}{\partial s}+(k_{l}^{2}-\frac{2}{f^{2}}+\frac{2k_{l}^{2}}{f^{2}})k_{m}+k_{m}^{3}+\frac{2}{f^{2}}(1-k_{l}^{2})k_{l}$ .

PROOF. It ls easy to check

$\frac{\partial k_{l}}{\partial s}=\frac{\partial}{\partial_{S}}(\frac{g’}{fv})=\frac{1}{f}\frac{\partial f}{\partial s}k_{m}-\frac{1}{f}\frac{\partial f}{\partial s}k_{l}$ ,

since $\partial/\partial_{S}(g’/v)=(f’/v)k_{m}$ and

$\frac{\partial^{2}k_{l}}{\partial s^{2}}=\frac{\partial}{\partial s}(\frac{1}{f}\frac{\partial f}{\partial s})(k_{m}-k_{\iota})+\frac{1}{f}\frac{\partial f\partial k_{m}}{\partial_{S}\partial s}-\frac{1}{f}\frac{\partial f}{\partial s}\frac{\partial k_{l}}{\partial s}$

$=(- \frac{1}{f^{2}}(\frac{\partial f}{\partial s})^{2}-\frac{1}{f}\frac{\partial g}{\partial s}k_{m})(k_{m}-k_{l})+\frac{1}{f}\frac{\partial f\partial k_{m}}{\partial_{S}\partial s}$

$- \frac{1}{f^{2}}(\frac{\partial f}{\partial s})^{2}(k_{m}-k_{l})$

$= \frac{1}{f}\frac{\partial f\partial k_{m}}{\partial_{S}\partial s}-k_{m}k_{l}(k_{m}-k_{l})-2(\frac{1}{f^{2}}-k_{\iota}^{2})(k_{m}-k_{l})$ . $\blacksquare$

One can give the evolution of $L$ and $A$ .

PROPOSITION 3.6.

(i) $\frac{\partial L}{\partial t}=-\int_{c}k{}_{m}Hds$ (ii) $\frac{\partial A}{\partial t}=-\int_{c}Hds$ .

PROOF.
$(i)$ From Lemma 3.2 $(i)$ one has

$\frac{\partial L}{\partial t}=\frac{d}{dt}\int_{0}^{2\pi}vdu=-\int_{c}k{}_{m}Hds$ .

(ii) Using Lemma 3.3 (ii) and the integration by parts one gets
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$\frac{\partial A}{\partial t}=\frac{1}{2}\frac{d}{dt}\int_{0}^{2r}\langle F, N\rangle vdu$

$= \frac{1}{2}\int(-Hv+\langle F, T\rangle\frac{\partial H}{\partial s}v-k{}_{m}H\langle F, N\rangle v)du$

$= \frac{1}{2}\int(-H-H\frac{\partial}{\partial s}\langle F, T\rangle-k{}_{m}H\langle F, N\rangle)ds$

$=- \int_{c}Hds$ . $\blacksquare$

Following the idea of Huisken [19] we next examine the evolution formula
for the backward heat kernel. Due to the effect of the latitudinal curvature
$k_{l}$ we do not expect a monotonicity formula in general.

PROPOSITION 3.7. Let $C_{t}$ be a plane curve satisfying (2) for $t<T$ , then we
have

$\frac{d}{dt}\int_{c_{t}}\rho(X, t)ds=-\int_{c_{t}}(k_{m}-\frac{\langle X,N\rangle}{2(T-t)})^{2}\rho ds$

$- \int_{c_{t}}k_{l}(k_{m}-\frac{\langle X,N\rangle}{2(T-t)})\rho ds$ ,

where $\rho(X, t)$ is given in (4) and $X=(f-1, g)$ .

PROOF. From (2) we derive

$\frac{d}{dt}\int_{c_{t}}\rho(X, t)ds$

$=- \int_{c_{t}}\{k{}_{m}H-\frac{1}{2(T-t)}+\frac{X\cdot dX/dt}{2(T-t)}+\frac{|X|^{2}}{4(T-t)^{2}}\}\rho ds$

$=- \int_{c_{t}}\{|k_{m}N-\frac{X}{2(T-t)}|^{2}+(k_{m}k_{l}-\frac{1}{2(T-t)})+\frac{k_{m}-k_{l}}{2(T-t)}\langle X, N\rangle\}\rho ds$ .

Invoking the ldentity

$\int_{c_{t}}\langle T,$ $\frac{\partial}{\partial s}(\rho X)\rangle ds=\int_{c_{t}}k_{m}\langle N, \rho X\rangle ds$ ,

which follows from integration by parts, we finally $obta^{i}n$

$\frac{d}{dt}\int_{c_{t}}\rho(X, t)ds$

$=- \int_{c_{t}}\{|k_{m}N-\frac{X}{2(T-t)}|^{2}+(k_{m}k_{l}-\frac{1}{2(T-t)})-\frac{k_{l}}{2(T-t)}\langle X, N\rangle\}\rho ds$

$- \int_{c_{t}}\{\frac{1}{2(T-t)}-\frac{\langle X,T\rangle^{2}}{4(T-t)^{2}}\}\rho ds$
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$=- \int_{c_{t}}(k_{m}-\frac{\langle X,N\rangle}{2(T-t)})^{2}\rho ds-\int_{c_{t}}k_{l}(k_{m}-\frac{\langle X,N\rangle}{2(T-t)})\rho ds$ ,

which proves the desired formula. $\blacksquare$

In the rescaled setting we define a corresponding function $\tilde{\rho}$ by

$\tilde{\rho}(\tilde{X})=\exp\{-\frac{|\tilde{X}|^{2}}{2}\}$ .

PROPOSITION 3.8. For the rescaled immersions (5) we have

(6) $\frac{d}{d\tilde{t}}\int_{c_{i}}\sim\tilde{\rho}(\tilde{X},\tilde{t})d_{S}^{\sim}=-\int_{c_{\tilde{t}}}\sim(\tilde{k}_{m}-\langle\tilde{X},\tilde{N}\rangle)^{2}\tilde{\rho}ds\sim$

$- \int_{c_{t}\sim}\sim\sqrt{2T}e^{-t}k_{l}(\tilde{k}_{m}-\langle\tilde{X},\tilde{N}\rangle)\tilde{\rho}d_{S}^{\sim}$ .

Here $\tilde{X}=(\tilde{f}-1,\tilde{g})$ .

PROOF. From the identity

$\frac{d}{d\tilde{t}}\int_{c_{i}}\sim\tilde{\rho}d\tilde{s}=2(T-t)\frac{d}{dt}\int_{c_{t}}\sqrt{2\pi}\rho ds$

and an analogous calculation to the proof of Proposition 3.7 we obtain the
result. $\blacksquare$

One can give the rescaled evolution for the curvature $\tilde{k}_{m}$ . See Corollary 3.5.

PROPOSITION 3.9.

(7) $\frac{\partial\tilde{k}_{m}}{\partial\tilde{t}}=\frac{\partial^{2}\tilde{k}_{m}}{\partial_{S^{2}}^{\sim}}+\sqrt 2\overline{\pi}\frac{e^{-t}\partial f\partial\tilde{k}_{m}\sim}{f\partial S\partial_{S}^{\sim}}$

$+2Te^{-2}t(k_{\iota}^{2}- \frac{2}{f^{2}}+\frac{2k_{\iota}^{2}}{f^{2}})\tilde{k}_{m}-E_{m}+\tilde{k}_{m}^{3}$

$+(2T)^{3/2}e^{-t} \frac{2}{f^{2}}(1-k_{\iota}^{2})k_{l}\sim$ .

We end this section with the following formula on the evolution for $L$ ,
which will be useful in the next section.

LEMMA 3.10. We have

$\frac{dL}{dt}=-\int_{c}k_{m}^{2}ds+\int_{c}\frac{(f’)^{2}}{f^{2}v^{2}}ds$ .

PROOF. From Proposition 3.2 (i) one derives
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$\frac{dL}{dt}=-\int k_{m}^{2}ds-\int k_{m}k_{l}ds$

$=- \int k_{m}^{2}ds-\int\frac{f’g’g’-(g’)^{2}f^{\chi}}{fv^{4}}ds$

$=- \int k_{m}^{2}ds-\int(-\frac{f^{\chi}}{fv^{2}}+\frac{f’}{f}\frac{v’}{v^{3}})ds$

$=- \int k_{m}^{2}ds+\int\frac{(f’)^{2}}{f^{2}v^{2}}ds$ .

$ln$ the last equality we performed the integration by parts. $\blacksquare$

\S 4. Proof of the main theorem.

The assumption that $(f, g)$ converges to $(1, 0)$ smoothly as $tarrow T$ implies
that $Larrow 0,$ $Aarrow 0$ and the latitudinal curvature $k_{l}$ is uniformly bounded. We
first show that the boundedness of the isoperimetric ratio yields a bound for
the rescaled length $\tilde{L}$ .

From Proposition 3.2(ii) one obtains

$\frac{dA}{dt}=-\int k_{m}ds-\int k_{l}ds$

$=-2\pi+O(v)$ .

In view of $varrow 0$ as $tarrow T$ we conclude that for all $t$ sufficiently near $T$ we have,
for some constant $\delta$ ,

$A(t)\leqq(2\pi+\delta)(T-t)$ ,

which implies $\tilde{A}\leqq(2\pi+\delta)$ for all sufficiently large $\tilde{t}$ . Since $L^{2}/A=\tilde{L}^{2}/\tilde{A}$ is
bounded we get a bound for the rescaled length $\tilde{L}$ .

We also have a bound for the rescaled coordinate $(\tilde{f},\tilde{g})$ since we know
the relation

$\tilde{L}\geqq\max\{|f-1|, |\tilde{g}|\}$ .
We remark that in the rescaled flow analysis the exact determination of

blow-up rate is rather a complicated task (see [5], [19]). In our situation,
however, the boundedness of the isoperimetric ratio plays a crucial r\^ole and
we do without determining it.

Let us now turn our attention to the relation (6). The boundedness of
$(f, g)$ yields

$\int_{t_{0}}^{\infty}(\frac{d}{dt}\int_{Ct}\sim\tilde{p}(\tilde{X},\tilde{t})dS)d\tilde{t}\geqq-\delta(\tilde{t}_{0})$ ,

for some function $\delta(\tilde{t}_{0})$ . Therefore we integrate (6) with respect to $\tilde{t}$ and
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invoke the Cauchy-Schwarz inequality to obtain

$- \delta(\tilde{t}_{0})\leqq-\int_{t_{0}}^{\infty}\int_{ct}\sim(\tilde{k}_{m}-\langle\tilde{X},\tilde{N}\rangle)^{2}\tilde{\rho}d\zeta d\tilde{t}$

$+Ce^{-t_{0}} \sim(\int_{c_{0}^{\sim}}^{\infty}\int(\tilde{k}_{m}-\langle\tilde{X},\tilde{N}\rangle)^{2}\tilde{\rho}d_{S}^{\sim}d\tilde{t})^{1/2}$

for some constant $C$ . Here the constant $C$ is related to the bound

$\int_{C\oint}\sim k_{\iota}^{2}dS<\infty$ ,

which follows from the boundedness of $k_{l}$ and $\tilde{L}$ . Elementary calculus now
implies

$\int_{t_{0}}^{\infty}\int(\tilde{k}_{m}-\langle\tilde{X},\tilde{N}\rangle)^{2}\tilde{\rho}d\tilde{s}d\tilde{t}<\infty$ .

Moreover for each sequence $\tilde{t}_{j}arrow\infty$ there exists a subsequence $\tilde{t}_{jk}arrow\infty$ such that
$\{\tilde{C}_{t_{jk}}\sim\}$ converges smoothly to $\tilde{C}_{\infty}$ and hence $\int_{c_{l_{jk}}}\sim\tilde{\rho}d^{\sim}s$ converges. For this
sequence $\tilde{t}_{jk}$ we have

$\int_{\iota_{jk}^{\sim}}^{\infty}\int(\tilde{k}_{m}-\langle\tilde{X},\tilde{N}\rangle)^{2}\tilde{\rho}d_{S}^{\sim}d\tilde{t}arrow 0$ .

In view of again the fact that the rescaled coordinate $(\tilde{f},\tilde{g})$ are bounded and
the parabolic regularity theory applied to the equation (7) we deduce that

$\tilde{k}_{m}-\langle\tilde{X},\tilde{N}\ranglearrow 0$

smoothly as $\tilde{t}_{jk}arrow\infty$ .
From Proposition 5.1 in the next section we finally conclude that the limit-

ing $\tilde{C}_{\infty}$ is a unit circle centered at $(1, 0)$ . This proves the main theorem.

Finally we prove tbat when $\{C_{t}\}$ stay convex the isoperimetric ratio is
bounded. To do that from Lemmas 3.6 and 3.10

(8) $\frac{d}{dt}(\frac{L^{2}}{A})=2\frac{L}{A}\frac{dL}{dt}-\frac{L^{2}}{A^{2}}\frac{dA}{dt}$

$=-2 \frac{L}{A}(\int k_{m}^{2}ds-\pi\frac{L}{A})+\frac{L^{2}}{A^{2}}\int k_{l}ds$

$+2 \frac{L}{A}\int\frac{1}{f^{2}}(\frac{\partial f}{\partial s})^{2}ds$ .

Gage [9] showed that for convex plane curve, the inequality

$\int k_{m}^{2}ds\leqq\pi\frac{L}{A}$

holds. For the second term of (8) we have, since $k_{m}\geqq 0$ and $f=1+O(v)$
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$\frac{d}{dt}\int k_{l}ds=\int_{0}^{27}(-\frac{g’}{f^{2}}\frac{\partial f}{\partial r}+\frac{1}{f}\frac{\partial}{\partial t})g’du$

$= \int_{c}\frac{(g’)^{2}+(f’)^{2}}{f^{2}v^{2}}(k_{m}+k_{\iota})ds$

$\geqq\int_{c}\frac{1}{f^{2}}k_{l}ds=(1+O(v^{2}))\int_{c}k_{l}ds$ ,

which implies $\int_{c}k_{l}ds\leqq 0$ for all $t$ sufficlently near $T$ . Therefore (8) can be
estimated as

$\frac{d}{dt}(\frac{L^{2}}{A})\leqq C\frac{L^{2}}{A}$ ,

for some constant $C$ for all $t$ sufficiently near $T$ , from which we conclude that
the isoperimetric ratio is bounded in this convex case.

\S 5. Limit shape.

In this final section we prove the following geometric Proposition. Although
it is elementary there seems to be no presentation in the literature.

PROPOSITION 5.1. Suppose that the closed embedded plane curve $C$ satisfies
(9) $\langle X, N\rangle=k$ .

Here $X,$ $Nk$ denote the $pos\iota tion$ vector, the outer unit normal, the curvature,
respectively. Then $C$ is the unit circle centered at the origin.

PROOF. We introduce the coordinate $X=(x(s), y(s))$ parametrized by arc
length. Then the unit tangent vector $T$ and the unit outer normal vector $N$

are given by

$T=(\dot{x}(s),\dot{y}(s))$ $N=(\dot{y}(s), -\dot{x}(s))$ ,

where
implies that (9) is equivalent to

$\langle X,$ $- \frac{d^{2}X}{ds^{2}}\rangle=1$ ,

that is, $1=-x\ddot{x}-y\ddot{y}$ . Since at the point where $|k|$ attains its maximum we
have $\langle$X, $T\rangle$ $=0$ , we obtain

$k^{2}|_{\max}=\langle X, N\rangle\cdot(\dot{x}\ddot{y}-\ddot{x}\dot{y})$

$=(x\dot{y}-y\dot{x})(\dot{x}\ddot{y}-\ddot{x}\dot{y})$

$=x\dot{x}\dot{y}\ddot{y}-x\ddot{x}\dot{y}^{2}-\dot{x}^{2}y\ddot{y}+\dot{x}\ddot{x}y\dot{y}$
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$=-y\dot{y}^{2}\ddot{y}-x\ddot{x}\dot{y}^{2}-\dot{x}^{2}y\ddot{y}-x\dot{x}^{2}\ddot{x}$

$=$ -xx-yy $=1$ .
On the other hand (9) and Frenet’s equality leads

$\frac{\partial k}{\partial s}=k\langle X, T\rangle$

(10) $\frac{\partial^{2}k}{\partial s^{2}}=\frac{1}{k}(\frac{\partial k}{\partial s})^{2}+k-k^{3}$ ,

for any interval where $k\neq 0$ . Here we note that since $k(s)\leqq 0$ for all $s$ yields
an obvious contradiction we do have a point where $k>0$ . Then at the point
where $k|_{\max}$ attains there holds $0\geqq k-k^{3}$ . More precisely $k|_{\max}$ Il; 1. From
the uniqueness for (10) we therefore deduce $k\equiv 1$ . This immediately implies
our statement. $\blacksquare$
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