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Introduction and results.

This paper is devoted to the study of hypoellipticity for second-order de-

generate ellzptic differential operators P(x, D) with real coefficients on R"* of
the form:

32 n a ij a 2 i
P(x, D) = e + 3 ax_(a (x) axj)+§1b<x)

1 i j=2 i

d
0x;

+c(x),

where :
1) The a% are the components of a C= symmetric contravariant tensor of

type (g) on R”, and

3} 006620 on T*RM.

Here T*(R™) is the cotangent bundle of R™.

2) b'eC=R").

3) c=C=(R").

Let u be a distribution on an open subset £ of R". The singular support
of u, denoted by sing supp u, is the complement of the largest open subset of
£ on which u is of class C~. A differential operator P(x, D) is said to be
hypoelliptic in £ if it satisfies the condition :

sing supp ¥ = sing supp Pu for all u e 9(Q).

This condition is equivalent to the following:
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{ For any open subset £’ of @, we have
ues 9'Q), Pucs C(2)=—u c C(Q").

We say that P(x, D) is globally hypoelliptic in £ if it satisfies the weaker
condition :
ues 9Q), Pucs C(2)—uc C=().

To state our fundamental hypothesis for the operator P(x, D), we let

0 0 nL 0 0
x ®8—x;+i,;z=za (%) 7, ®Sa—xj’

O =

0

which®lies in the space I'(R", T(R")QsT(R")) of C> symmetric contravariant
tensor fields of type (g) on R®. Here the notation ®s stands for the sym-

metric tensor product:

0 a 1,0 0 0 0
0x; ©s ox; 2<axi®ax]' T axj®6xi)'

Denote by I'(R", T*(R™)) (resp. I'(R™, T(R™))) the space of C* covariant (resp.
contravariant) vector fields on R*. Then, making use of @, we can define a

mapping

¥: I'R*, T*R") — I'(R", T(R"™))
— oG, ).

In terms of local coordinates x=(x,, x,, -+, x,), we have for {=>7.,{,dx,
0 no 0
= B — Y e
7o) =¢ o, T2, (2)&: ox,

We let
X, = the image of ¥

= {¥Q); Lel'R", TXR")}.
Further we define the drift vector field X, by

0
ox;

X, = 2 b¥(x)

The fundamental hypothesis for the operator P(x, D) is the following:
(H) The Lie algebra L£(X) over R generated by X=X ,\UX, has rank n outside
a closed subset S of the hypersurface {x=(x,, x,, -+, x,)ER™; x,=0}.
By the celebrated theorem of Hormander ([Hrl, [Theorem 1.I]), we know
that the operator P(x, D) is hypoelliptic outside the set S. Furthermore, Oleinik
and Radkevi¢ proved (cf. [OR, Theorem 2.6.3]; [A, Theorem 1) that:
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If the set S is compact in Q, then the operator P(x, D) is globally hypoelliptic
in Q.

The purpose of this paper is to give sufficient conditions for hypoellipticity
for the operator P(x, D) under condition (H). Some previous results in this
direction are due to Fedii [F], Kusuoka-Stroock [KS], Morimoto [Mo], Hoshiro
[Ho] and also Morioka [Ma]. The results here extend and improve substantially
those results in a unified theory.

To state hypotheses for the a'/, we let

1 2

alx, &) =aln, &, §) = 3 0¥, )k,
where

X' = (xe, =, Zn), & =&, -, &n)s

and the variable x, is considered as a parameter.
For the a%, we assume that:
(A.1) There exists a constant a,>0 such that

n aza 2
3 |y, &, &) £ acalxy, x’, &) on THR).

i, j=2 axla&

This condition is satisfied if a(x, &) is diagonal, that is, if a®(x)=0 for 7+7].
(A.2) The function

p(x) = p(xy, x') = lrer}fl__lloz(xl, x’, &)

is Lipschitz continuous in the variable x, and is of class C* in the
variables x/, and satisfies the condition :

plxy, x) >0 outside the set S.

We remark that condition (A.2) implies that the operator P(x, D) is elliptic
outside the set S, so condition (H) is satisfied.

For the 5%, we assume that:

(B) There exists a constant b,>0 such that

2 160)] < bVe®  on Rr.
Now we can state our main result (cf. [WS, Theorem 4.9]):

THEOREM 1. Assume that conditions (A.1), (A.2) and (B) are satisfied and
that

. i(xl, xl) IOg#(xlﬁ x,) —
0.1) lxllrzlo Vx4, x7) =0

uniformly in the variables x’=(x,, -, X,) over compact subsets of R™' which
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intersect the set S, wheve

My, 1) = Fatn, ¥,

Axy, x) = S:ll(t. x’)dt.
Then the operator P(x, D) is hypoelliptic in R", that is,

sing supp Pu = sing supp u for all u = 9'(R™).

REMARK. If the function A(x,, x’) is monotone increasing for x,>0 and is
monotone decreasing for x,<0, that is, if we have

XAz, (%1, ) 20 on R",
then the above condition may be replaced by the following simpler one:
0.1 lim0 VA(xy, x7) x, logu(x,, x7) =0.
Il—a

In fact, it suffices to note that we have
e, 201 = |( 726, 20dt| < 26, 2013l on R
0
Thus is a generalization of Theorem 4 of Hoshiro [Ho2].

ExaMPLE 1. Consider the following operator P(x, D) on R*:

0* 0 0 0 0
0x? +8—x2<f(x) 0%, >+ 0x4 (g(x) 0x, >’

where f and g are non-negative functions on R?® such that

P(x, D)=

flxy, x5, x3) >0 for x,+0,
g(x,, x5, x5) >0  for x;,+#0.

Then the operator P(x, D) is hypoelliptic in R® if the following two con-
ditions are satisfied:

lef(t, x")dt logg(x,, x’)

lim =* =0.
IIIIEIO '\/f(xl, xl)

g, xdtlogs (a2
lim == =0.
s Ve, ¥)

Here the convergence is uniform in the variables x’ = (x,, x;) over compact
subsets of R?2.
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Our method can be applied to the study of hypoellipticity for second-order

degenerate parabolic differential operators Q(x, D) with real coefficients on R"
of the form:

S N I
Qx, D)= gt 3 5o=(0¥0) 5 )+ () g +e),

where :
1) The a¥ are the components of a C* symmetric contravariant tensor of

type (g) on R", and

i"gjzaw(x)sisj >0 on T*RM.

2) b= C>(R™).

3) ceC=(R™).

The next result is due to Oleinik and Radkevié (cf. [OR, Theorem 2.6.3];
[A, Theorem 2]):

If condition (H) is satisfied for Q(x, D) and the set S is compact in , and
if b*(x)#0 on S, then the operator Q(x, D) is globally hypoelliptic in £2.

Now we let

n-1 .
a(x, &) = a(x,, x', §") = ijzﬂa”(xl, x")6&;,
where

E” = (EZ’ Tt En-—l)-

For the a%, we assume that:
(A.1) There exists a constant a,>0 such that

d’a 2
2, | Fge (0 0 80| S aaln, 7,80 on THRY.
2;31;1]1—1 Wy

This condition is satisfied if a(x, £”) is diagonal, that is, if a*(x)=0 for 7+7.
(A.2”) The function

px) = p(x,, x) = min alx,, x’, §)

is Lipschitz continuous in the variable x, and is of class C* in the
variables x’, and satisfies the condition:

plxy, ) >0 outside the set S.

For the function 5", we assume that:

B’) b™(x,, x)#0 outside the set S, and either 5*(x)=0 on R™ or b*(x)<0
on R”,

We remark that conditions (A.2") and (B’) imply that condition (H) is satisfied.
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Then we have the following:

THEOREM 2. Assume that conditions (A.1"), (A.2") and (B’) are satisfied and
that

A(xy, x) log|b(x,, &%)

0-22) T VG, %) =0,
. br(xy, x")?logp(x,, x7)
020 o, b™(x3, x7) =0
. Alxy, x)logp(x,, x7)
: =0,
020 b = e, )

where
n-1 .
My, )= "8 ati(x,, 1),
Ax,, x') = S:li(t, x")dt,

bn(x,, x') = S:‘bn(t, x)dt.

Here the convergence is uniform in the variables x'=(x,, ---
subsets of R™ ' which intersect the set S.
Then the operator Q(x, D) is hypoelliptic in R™.

Xn) over compact

b

The next example is a generalization of Theorem 4 of Hoshiro [Hol].

ExAMPLE 2. Consider the following operator Q(x, D) on R?:

0° 0 0 0
A, D) = g+ 5 (S0 ) Ta -

where f and g are non-negative functions on R® such that
f(xy, x5, x5) >0 for x,#0,
g(xy, x5, x3) >0  for x,#0.
Then the operator Q(x, D) is hypoelliptic in R® if the following two con-

ditions are satisfied :

S:lf(t, x")dtlogg(x,, x")

LIEIO \/f<x1, x") =0.
131 2
(S g, x’)dt) logf(x,, x%)
lim ~2 =0.

z1-0 g(x,y, x”)
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Here the convergence is uniform in the variables x'=(x,, x;) over compact
subsets of R?. (We remark that condition [0.2¢c) is superfluous for Example 2,
since one may take pg=2 in inequality [3.9) in the proof of [Theorem 2.)

The rest of this paper is organized as follows. In Section 1, we consider
a family of modifications Ps,(x, D) of the operator P(x, D) which is adapted to
the study of hypoellipticity. The operators P,,(x, D) are introduced in the study
of propagation of singularities for hyperbolic pseudodifferential operators with
double characteristics by Kajitani-Wakabayashi [KW]. We give a general
criterion for hypoellipticity for the operator P(x, D) under a weaker condition
(H) in terms of the operators Ps(x, D) (Theorem 1.I). This criterion is more
useful if it is combined with the well-known Poincaré inequality (Corollary 1.2).

Sections 2 and 3 are devoted to the proof of Theorems 1 and 2, respectively,
indicating applications of such a criterion to the study of hypoellipticity for the
operators P(x, D) and Q(x, D). The proof follows the pattern given in Section
5 of Kajitani-Wakabayashi [KW]. That is, we calculate the symbol of the
operators P,;(x, D) in question, and then apply a sharpened form of Garding’s
inequality due to Fefferman-Phong [FP] (Theorem 2.1 and Corollary 2.2) to the
operators P, (x, D). It is Lemma 2.4 that allows us to make good use of the
Fefferman-Phong inequality.

This paper is inspired by the work of Wakabayashi and Suzuki [WS]. It
is a genuine pleasure to acknowledge the great debt which [ owe to S. Waka-
bayashi, with whom I had extensive and fruitful conversations while working
on this paper. [ am also grateful to T. Hoshiro, Y. Morimoto and N. Iwasaki
for some useful comments.

1. A criterion for hypoellipticity.

In this section we give a general criterion for hypoellipticity for the opera-
tor P(x, D) which is a variant of Theorem 1.2 of Kajitani-Wakabayashi [KW].
For the sake of completeness, we reproduce here its proof due to Wakabayashi
(cf. [WS, Theorem 1.17).

First we recall the definition of the symbol class S7'(R*XR") for m<R.
We say that a C* function p(x, & on the cotangent bundle T*(R™) belongs to
the class ST:o(R" X R") if, for any multi-indices a and S, there exists a constant
Cq.,5>0 such that

10808 p(x, )] = Ca s(L+1E|H™ 1202 for all (x, §) & T*R™).

Here we have identified the cotangent bundle T*(R") with the space R*xXR".
Let A(&) be a real-valued symbol in the class Si ,(R*»Xx R") such that
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& it g1z 418 ad 1824,
=1, X
T@ i g1 7IEl and (8] 24,
and that
TOSs© W=,
where

E = (51} 5/)7 El - (52, B En);
& =(QA+1&1H2,
&> = A+1§15)M.

Let x°=(x$, x3, ---, x3) be a point of a subset T of the (n—£k) dimensional
surface {x=(x,, X5, -=-, X,) ER"; x,=x,= - =x,=0}. If 0<0<L1, a=0, N=0
and s=R, we let

As(x", & = As(x", &; a, N, s)
= (—s+a|x"—x"|?)logd(§)+ N log(1+04(£)),
where
x" = (-xk+1, Tty xn);
X% = (Xps1, 7, X0).
We remark that
el = J() T4,
e D = (G-I (1 452(8) Y,
andfthat

002 0" 9)| < Co, 9O (1+log ) Fle=1a=",

where the constant C,, s is independent of 4.
Furthermore we introduce a family of second-order pseudodifferential opera-
tors P,,(x, D) defined by the formula

PAB(x’ D) = e-Aa(x”/, D)P(x’ D)eAa(x”I; D);

where e*45(x”, D) are properly supported pseudodifferential operators with sym-
bols ¢*46¢=" 9 respectively.

Now we can state a criterion for hypoellipticity for the operator P(x, D):

THEOREM 1.1. Assume that:
(H) The operator P(x, D) is hypoelliptic outside a closed subset T of the
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(n—Fk) dimensional surface {x=(x", x")R"; x"=0}, where x"=(x,,
o, xg) and X"=(Xp4y, 0, Xn) for 1£k<n—1.
Furthermore, assume that, for each point x° of the set T, there exist an open
neighborhood U(x°) of x° and numbers a,=0, N,=0 and s,=R such that:
For any a=a,, any N=N,, and any s=s,, there exist functions 6(x")&
C>(R"*) and ¢(x)=C=(R™) with supp(1—0)N{x""} =@ and supp yNT=@ and
constants 0<0,<1 and C>0 such that the estimate

(1.1 loll = CIPay(x, Dyvll+[|A—8x")ll+lld(xwlD)

holds for all veC3U(x®) and all 0<8<0,. Here ||-|| is the norm of the space
LA R™),
Then the operator P(x, D) is hypoelliptic in R".

PROOF. Let x° be an arbitrary point of the set 7. Assume that u=9’(R")
and the function

f = P(x, Dyu

is of class C* in a neighborhood of x,.
Without loss of generality, one may assume that

x*=(0,0),
Ux)={x =", xMeR"; [x"] <1, [x"] <1}

We take three open neighborhoods U,, U,, U; of x°=(0, 0) such that

— — ” Vi n . ” __3_ " i
Ul—{x—(x , x"M e R"; |x |<4, | x l<4},
” " n . ” 1 w l
Uz—{x—(x , x"M e R”; |x I<-—2, | x |<2},
” A= n . ” _}_ " _1_
Ua—{x-—(x ,xM e R |x |<4,Ix |<4}.

One may assume that for some s'=R
ue &'(RYNHY(R"),

and that the function f is of class C* near the set U,. For each o>s’, we
can choose numbers a=a, and s=s, such that

1o
S—1g2> 9>

3—7}:0 <s'—1,

and also choose a number N =N, such that
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N> s—s'+2.

Now, by the calculus of pseudodifferential operators, one can find an el/iptic
symbol gs(x”, &) =qs(x", &; a, N, s) in the class S? ,(R*xX R®) such that

e3(x", Dye~15(x", D)gs(x”, D) = I modulo an operator of order —oo.
If X and X, are functions in C%(U,) such that
{ Xx)=1 on U,,

Xi(x)=1 near suppX,
we let

vs = Ly(x)e~"3(x", D)gs(x", DY(Au).

Then we have

1P15(x, Dyvs—e "3(x", DYAf)—e "5(x", D)LP, XJu]
(1.2) = |e(x", D)P(x, D)(e"a(x", D)y(x)e~"o(x", D)gs(x", D)—I)Aw)|

= Clulfs .
Here and in the following the letter C denotes a generic positive constant zn-
dependent of 6(0<d<é,), and ||-|; is the norm of the Sobolev space H*(R") of
order s.

Furthermore, since the operator e “5(x”, D) is of order at most s, it follows
that

1.3) lie=o(x", DYXS) < CILSfls.
We also have
(1.4) le=a(x", D)[P, XJu| < Clluls .

In fact, if ¥ is a function in C3(U),) such that ¥(x)=1 on U, and 7X=Z and if
7 is a function in C*(R") such that 5(x)=1 near supp (1—%) and supp y"\U,= 3,
then it follows that

e~"a(x", D)LP, XJu = e~"a(x", D)ALP, X]u+ne~"3(x", D)1 —D)LP, L]u
+(1—ne~o(x", DY1—DLP, L]u.

But we remark that the operators Z[P, X] and (1—9x)e 48(x”, D)(1—7) are of
order —oo, and the operator ne 15(x”, D)(1—17) is of order at most s’—1, since
s—al|x"|*<s’—1 for |x”|=1/2. Hence we find that

lle="s(x", D)[P, XJul| < Cllu]s .
Therefore, we obtain from inequalities (1.2), and that
1.5) [Pa5(x, Dyvsll < CUXS s+ uellsr).
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For the term [[(1—68(x"))vs|, without loss of generality, one may assume that

supp(1—6) = [e" = R*=*; 127 = 3 ).

Then we have
1.6) [L—=8(x")vsll < Cllulls-s,

since the operator (1—8@)e“é(x”, D) is of order at most s’—1.
On the other hand, if § is a function in C*(R™) such that ¢¢=¢ and
suppdN\T =@, then it follows from condition (H’) that

IpG)vall < PQx)Ai(x)e"o(x", D)gs(x", DN(L—Gu)|
1.7) + ) Xi(x)e"o(x”, D)gs(x", D)NGAu))]
< Cluls +lg@wlls),

since the operator ¢e~43(x"”, D)gs(x", D)(1—¢) is of order —co and the function
J(Xu) is of class C*. Further we find that the function ¢uvs is of class C~.
If we take another function X, in C%(U,) such that

X.(x) =1 near suppX,,
then we have for all >0
v = Xipus+ (1 =X devs < HZ(R")f\é’_'(Ul) ’

since the operator e 4é(x”, D) is of order s—N and s’—(s—N)>2. But, if {w;}
is a sequence in C%(U,) such that

w; —> X5 in H¥R™),

then it is easy to Verify the following :

(@) W;=X¢v;+A-XQw;eCTU)cCTU ().

(b) W;—v; in HXR™). S

(€) Puy(x, D)l; — Pyy(x, D)vs in LER™).

d A—=6&="))w; — (1—0(x")ws in L*R").

(&) ¢x)W; — P(x)vs in L¥R").
This proves that estimate remains valid for the functions vs.

Therefore, it follows from inequalities [1.5), (1.6) and that we have
for all 0<0<4,

lvsl < CUXS s+ ulle +IFAu)]s).
Hence, letting 0] 0, we find that

vs —> v, Wweakly in L¥R"),
where
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Vo = Xy (x)A(D) =212 g (x" DYXu) & L¥R").

But we remark that

A8 =1,

go(x”, §) =14 --- near x”" =0,

Xi(x)=1 near x°=0,
and also that we have for |x"|<1/4

s—alx"|*>g.

Thus, taking a function X, C%U,) such that

Zy(x) =1 near x°=20,
we find that
Lu s H(R).

~

1, 1 . c 1 Y P . . 3.
?ﬁlﬁ PLUVED Lildl ¢4 15 Ul Clddd U dal A4 —V, dBIINCC 0 Id dlitialy.

The nranf nf Thanram 1 1 ic naur ~anmnlata
0O NINADT Of e BONTEM <2 10T comnlata

If we combine with the well-known Poincaré inequality, we
obtain the following useful criterion for hypoellipticity (cf. [WS], [Mo]):

COROLLARY 1.2. Assume that condition (H’) is satisfied and that, for each
point x° of the set T, there exist an open neighborhood U(x°®) of x° and numbers
ao=0, No=0 and s,=R such that:

For any a=a,, any N=N, and any s=s,, there exist constants 0<0,<1,
C,>0 and C,;>0 such that we have for all veC3U(x%) and all 0<6<L0,

(1.8) [(Pay(x, D, v)| =2 CilDzv|*—Collv]®.

Here (-, +) is the inner product of the space L*(R™) and Dzlzl/v/-—_la/axl.
Then the operator P(x, D) is hypoelliptic in R™.

Proor. First we recall the Poincaré inequality :

LEMMA 1.3. Let 2 be an open subset of R™ such that each line parallel to
some line meets Q in a set of width at most L. Then we have for all usHYQ)

n 1/2
lull = L( 3 1D=u1)
Here HY(Q) is the closure of C%(L2) in the Sobolev space H(Q).

Now, without loss of generality, one may assume that
x°=(0,0),
Ux)={x=&", x"y e R"; |x"| <1, |x"| <1}.



Hypoelliptic differential operators

We choose a function ¢(f) in C5(R) such that
0Z¢@t)<1 on R,
supp¢ < {lt| < 1},
1

g0 =1 if 1] <.

If v is a function in C3(U(x%), then it can be decomposed as follows:

v = 0;+0,+0s,
where

|57]

v, = ¢(T)¢(l x"v,

ve=(1-¢(ZZ ) ga1x"1w,
vy = (1= g(1x" D,

and d>0 is a small parameter and will be chosen later on.
Then, applying Poincaré’s inequality to the function v,, we have

(1.9) vl < V2 d||Dzyvs)
But we remark that
Do) = $(L ) g1 7D+ 3 D (L5 )i gt o),
and
Dog(E =0 for 1z 2.

Thus, if we let

a0 = (-9 5

we obtain that

| x”|

gu()=1on supp| D, (- )g1x"))|,

8o that

Do ()2 gt 000) = D (L) i g 27Dt

d 1xlll 1xlli

Hence we have

(1.10) 1Dzl = ‘IDxlvll-i-—(li—CdlIf/'d(X)vﬂ )

403
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with

Cq :max‘Drlgb(Ii;I )‘

Therefore, combining inequalities [1.9) and [1.10), we obtain that
ol < Vfdllelvll+x/7C¢|!</’d(x)v||-
Similarly, we have for the function vzb
lv:]l < el -

In fact, it suffices to note that

¢a(x)=1 on supp[(l—gb( lvx(;‘ )>¢(| x’”[)].

Hence we have for all veC5U (")

[v]I* = vi+vetvs|®
(1.11) < 3(Jvu P +lvall 2+ llvsl®)
< 12d2![D11v||?+C&(II(1—¢(I x"INlE+ e,

with a constant Cg>0.
On the other hand, we have by the Schwarz inequality

(1.12) | (Pas(x, Dyv, v)| < 4| Pay(x, Dyv|*+Ivl}*.

Therefore, combining inequalities [1.8), and [1.12), we have for all
veCTU(x") and all 0<0=<0,

vl = Ca(ll Pay(x, Dl +II1—=g( x" Dl +l¢a(x)vl),
if we take
VCi
2v/ 34 Cot1"
Thus follows from an application of [Theorem 1.1l

0<d<

2. Proof of Theorem 1.

Our proof of is based on [Corollary 1.2

1) First we give a version of the criterion in adapted to the
present context.

Let x°=(x9, x3, ---, x3) be a point of a closed subset S of the hypersurface
{x=(x,, x)eR™; x,=0}, where x'=(x,, --, x,). Without loss of generality,
one may assume that
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x°=(0, 0).

Let A(6) be a real-valued symbol in the class S? ,(R”xR"™) such that

& i 1glzlgl and 824,
=1 :
@ i 1gl=plel and 1824,

and that
TO=AO=®, 121

If 0501, a=0, N=>0 and s=R, we let

As(x!, &) = As(x’, &5 a, N, s)
= (—s-+a|x’|*) loga(§)+Nlog (1+04(8)),

and
Pyy(x, D)= e~"(x’, D)P(x, D)e's(x’, D),

where e*45(x’, D) are properly supported pseudodifferential operators with sym-
bols e*43¢"- 9 regpectively :

e8¢z 6 = J(g)¢-sraiz D1 L HAUE))Y,
e 18 B = F(£)¢=a1= D (14-52(8) 7Y .

By virtue of |Corollary 1.2, in order to prove the hypoellipticity for the
operator P(x, D), it suffices to show that there exists an open neighborhood

U,={x=(x,, x)ER"; x| <s, [x"]<1} of x°=(0, 0) such that we have for
all veC5WU.,) and all 0<0=1

@.1) Re(Pys(x, D)v, v) 2 Cif|Dzl*—Callvll?,

with constants C;>0 and C,>0 independent of 4.
2) In the proof of inequality [2.I], we make good use of the following
Fefferman-Phong inequality (cf. [FP, Theorem]; [Hr2, Corollary 18.6.117]):

THEOREM 2.1. If p(x’, &) is a symbol in the class S? (R"*XR™ ') such
that p(x’, &)=0 on R*'XR™"', then we have for all veC(R™)

Re(p(x’, D', v) = —Cl*.

Here the constant C may be chosen uniformly in the p(x’, §) in a bounded subset

of S%(R**XR").

COROLLARY 2.2. Let p(x,, x’, &) be a symbol in the class S} (R"*XR"™%)
such that p(x,, x’, &)=0 on R*'XR""', where the variable x,is considered as a
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parameter. If the family {p(x,, x’, &)} z,er forms a bounded subset of ST (R"™*
X R"Y), then we have for all usC%H(R™)

2.2) Re(p(x,, x/, D)u, u) = —C|ul?®.

Here the constant C may be chosen uniformly in the p(x,, x’, &).

Proor. If we apply to the functions u(x,, -)€CT(R" ") (x,ER),
we obtain that

Regﬂn_lp(xl; x/, D/>u(x1, x’).u(xl, x/)dx/g‘_cgkn—llu<x1, x’)Ide/.

Hence inequality follows by integrating the both sides with respect to x,.

3) In order to calculate the symbol of the operator Ps(x, D), we remark
that the operator P(x, D) is micro-elliptic outside a conic neighborhood of a
point (x° &)=(x° 0, &, ---, &)) in the bundle T*(R")\0 of non-zero cotangent
vectors. Here a conic subset € of T*(R™) is such a set that (x, §)C implies
(x, r&<C for all r>0. Hence, without loss of generality, one may assume that

4< 18 2218, 6=, 8D,
and that

A& =1A+[&19)* =&,
{ As(x’, &) = As(x’, &) = (—s+alx’|?)1og<&’ >+ Nlog (1+0<E7).
Then, for the derivatives of the symbol As(x’, &), we have the following:
Aoz (%7, &) = 2ax;10g<§">, 257,
Aozjz,(x', &) = 2ad;, 10g<&», 2=<j, k<n,

s, ) = {[(—stalw e S L gisa,

T+o&y [l @ 257 =
R RPN Y & &
A5$j§k(x ,8) = {I:( s+alx’'|)+N 150> ](51'16 <§f> & )

N a<&> gy & Sk} 1
140K 14+0<E")Y <& <& 1<En?’

Here and in the following, for the derivatives of a symbol p(x, &), we use the
shorthand

2=, ksn.

pov= D5, © =225, §),
peo= pesr, =Lz, 8.

9§



Hypoelliptic differential operators 407

But, since [&|<|&/<2|&| in a conic neighborhood of &°=(0, &, ---, £9), it
follows that

Aaxj(x,) E/> e mp>OS€, O(RnXRn)) 2 é é
Aszz, (%7, &) € NSt R*XR™), 2
Aﬁfj(x,y EI) S Sl.,lo(RnXRn); 2 é ] é n,

Asgie,(x’, &) € STHR"XR™), 2<j,k=n.

JEmn,
=/, k

AN

n,

Therefore, we find that the symbol Ps,(x, §) of P4 (x, D) is given by the
following (cf. [KW, Section 57):

Pis(x, §) = (4+aix’, )] px, ©-+V=T 5 (9, sz~ ba sy

1

2 155 Desenoz; Aoz +j.k2=2 Pe oy Aoz Az,
1

2

mod S3, ((R* X R"™).

Here p(x, &) is a symbol in the class S? ,(R* X R") given by

a®

0
3x,~

plx, § =8+ 3 a90EE—vV =T 3 (b0+ B F5—®))e—c(x),
» j=2 i=1 j=1

and gs(x’, §)=gs(x’, &; a, N, s) is a symbol in the class NS5 (R* X R")
given by

n 1 =
But, since we have for |&| sufficiently large (uniformly in §>0)

1
E‘é l1+45(x,, é)l é 2’

one can find an elliptic symbol 7;(x’, &) =rs(x’, &; a, N, s) in the class S? (R X
R™) such that we have for |£&| sufficiently large (uniformly in §>0)

ro(x’, E)(1+qs(x’, §)) = 1.
We let

2.3) B j(x, D) = rs(x’, D)Psy(x, D),

where rs(x’, D) is a properly supported, elliptic pseudodifferential operator with
symbol r5(x’, &) such that we have for |&| sufficiently large (uniformly in 0>0)
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1
2

Then we have by a direct calculation

= Irs(x’, )1 = 2.

@4 Bix, & =&+al, &)+ éﬁbi(xmaxj 3 ey is o,

n 1 =
+JX§=2 JxkAMJAofk ?j.%zafjfk/lészk
2 n
t j,azaff/l55k/1“i"k+ j-%zaxj*/lﬁxk/lﬁij;’k

+VTI[ = B U+ D lon— B e a]

mod S? (R* X R"),
where

alx, &)= 3 a¥@8é;.

In order to estimate the terms angagkAazjxk and ay;Asz, Aoz, in formula
2.4), we need the following:

LEMMA 2.3. Let d(x, & and e(x, &) be symbols in the classes S7\F*(R" X R™)
and Si5P(R*XR™) for some 0<p<1, respectively. Then, for every ¢>0, one
can find constants C.>0 and C.>0 such that

(2.5) lag(x, §)d(x, | < ea(x, §)+C. on THR"),
(2.6) ' laz(x, §)e(x, §)] < ealx, §)+C. on THR").

PROOF. Since a(x, £&)=0 on T*(R"), it follows from an application of
Lemma 1.7.1 of Oleinik-Radkevi¢ [OR] that

@.7) | (x, €)1 < a¥(¥)alx, &) on THR™),
@8  lan )P =2( sup lasz,(x )])ax, &) on THRY).

Thus, using the Schwarz inequality, we obtain from inequality that for
every ¢>0

las (x, §)d(x, §)| < ealx, E)—{—ia“(x)d(x §?* on T*R™).

This proves estimate [2.5) , since d(x, §)* belongs to the class ST%"2°(R™ X R™) for
some 0<p<1,
Similarly, estimate can be proved by using inequality [2.8).

Now we recall that for all E:(él, &) in a conic neighborhood of £=(0, &)
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: 1§’ = 161 =£21¢'],
and hence that

Asey (2, §N o252, (27, &) € Moo STHHR"XR®), 2<], k<mn,
Asz (57, E)Aogje, (27, &) € Moo STTARXR®), 2=, k=n.

Therefore, applying to the terms a; Aoz, Asz;z, and azjdsz, Ascje,,
we have for every ¢>0

ag(x, &) Ao, (x', ) sz ;0 (%7, &) 2 —ea(x, &) mod S, (R*XR"),
@z (x, ENAsz (X7, ) Ao, (', &) 2 —ea(x, §) mod ST ((R"XR").

On the other hand, by virtue of conditions (B) and (A.l), we can estimate
the terms b/As.; and gz, 452,45, in formula as follows:

b(x) Aoz (x', &) Z —ea(x, §) mod S, (R*XR").
gz, (%, &) Ao (2, §) Ase (%', &) =2 —ealx, §) ‘mod SY,o(R" X R™).
Summing up, we obtain from formula that in a conic neighborhood
of (x°, &)
Re Pyy(x, & 2 i+ atx, £)—C( 31 107()] ) log<e>)
mod S9, (R* X R"),

where C>0 is a constant independent of §. But we remark that
@) £ VTR < 3 @00+ ).
Hence we have in a conic neighborhood of (x° &°)

2.9) Re Byx, & = &1+ 5 alx, £)-2C (3 () log<e )"

Jj=

1 1
:—;’12_ 24 [? §+7a(x, 5’)—2C2(x)(10g<$’>)2]

mod S} (R*XR"),
where

A(x) = jz; @i (x).

4) The next lemma allows us to replace the symbol (1/2)&2 in the bracket
in formula [2.9) by a symbol of a pseudodifferential operator on R*"':

LEMMA 2.4. Let F(x) be a non-negative C* function on R* and | a positive
integer. If a(x,, x’, D’) is a properly supported, pseudodifferential operator on
R*-' with symbol
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a(xy, x’, §) = F(x,, x")(log<&">)*,
where the variable x, is considered as a parameter, we define a formally self-
adjoint operator A(x,, x’, D’) by the formula

Ax, ', D) = Ta(x, =7, D)+als,, ), D

Then we have for all usCy(R™)
(Diu, u) = (Azy(x, D)—A(x, D")’)u, u).
Here A, (x, D) = 0A(x, D")/0x,.
PROOF. Since A*=, it follows that
(D2,u, u) = (Do, A+~ —TA(x, D')(D2,—~—TA(x, D), u)
+((Az,(x, D)—A(x, D")®)u, u)
= [(Dz,—~/—1A(x, D)ull*+((Az,(x, D)—A(x, D)*u, u)
2 (Az,(x, D)—(x, D)*)u, u).

This proves the lemma.

tells us that the differential operator D2 can be estimated from
below by the pseudodifferential operator A (x, D)—A(x, D’)* on R*™' in the
sense of the inner product of L2(R"™). In terms of symbols, one may estimate
the symbol & as follows:

&t = Fu (x1, x7) (log<&">)! —F (x4, x")*(log<&">)*
mod S}, o((R™* ' X R"™').

This trick is due to Wakabayashi.
5) Now, applying with

atx, #, &) =22C+1)({ 3¢, x)dt) g8y,

we find that the symbol (1/2)&% may be replaced by the following:

Q2C+D)A(xs, x')(log<&»)*~2(2C+1)%A(x,, x")*(log<&">)*,

where
i(x, x) = g:ll(t, x)dt .

In view of formula [2.9), this proves that in a conic neighborhood of (x°, &%
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Re Pylx, 8 2 361+ | 3 814 alr, ©/, €)-2C(x, x)0g(&]

2 28z, 1, &) mod SR IX R,

where w(x,, x’, &) is a symbol in the class S? ,(R®*'XR""') given by the fol-
lowing formula:

7(xy, ', §) = g aln, ¥, )10, ¥)(1ogE))

—2QC+1)*2(x1, x")*(log<&")".

Thus we are reduced to the positivity of the symbol =(x,, x’, &).
(a) First, if we have

A(x,, x7)(log<&"»)?—2(2C+1)*A(x,, x")*(log<&"»)* = 0,
then it follows that
x(xh x,’ $’> z O'

(b) Next we assume that

A(x, x")(log<&">)?—2(2C+1)%A(x,, x")*(log<&’»)* <0,
that is,

VA(xy, x7)

@10 lg<> 2 Tr ezt W

Then we shall show that condition implies that in a conic neighborhood
of (x° &)

2.11) %a(xl, ', &) 2 2QC+1)%A(x,, x7)*(log<&" )",

which proves that
m(xy, x/,§)20.

By condition (A.2), it follows that
a(x,, x', &) =z p(x,, x)E1* on TH*R"™).
Thus it suffices to show that
(2.12) g, x)1E1* = 42C+1)*A(x,, x7)*(log<é")*.
If we take the logarithm of the both sides, we obtain that

log pu(x,, x")+2log|&’| = log[4(2C+1)*]+2 log|A(x,, x")]
+4 log(log<&’>).
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This condition is satisfied if we have for |&’| sufficiently large
(2.12) log pr(x,, x")+1og<&’y = 2log | A(x,, x7)1.

Therefore, combining inequalities [2.10)}and (2.12’), we obtain that condition
is satisfied if we have for |x,| sufficiently small

VA, )
V2 @CHD|A(xy, 1) =

log p(xy, x")+

since log|A(x,, x’)] <0 for |x,| sufficiently small.
Summing up, we have proved that if the condition

. Axy, x)logpu(xy, x7)
.1 I —— 7. =

is satisfied, then we have

Re Bz, § = 5 fi+a(x, , &) mod SLo(R* xR,

and further the symbol n(x,, x’, &) is non-negative and forms a bounded subset
of the class SZ ((R*'XR"!) for |x,]<¢g, if >0 is sufficiently small.

6) Therefore, applying to the operator =(x,, x’, D), we

obtain that if &,>0 is sufficiently small, then we have for all v&eC3(U.) and
all 0<o<l

Re(Pyy(x, Div, ) 2 5 IDappll*—Clvl?,

with a constant C>0 independent of 8. Hence, in view of formula [2.3), this

proves inequality [2.1).
The proof of is now complete.

3. Proof of Theorem 2.

The proof of is essentially the same as that of [Theorem 1.

1) Let x°=(x}, x3, ---, x5) be a point of a closed subset S of the hyper-
surface {x = (x;, x)e R"; x, =0}, where x'=(x, -, X,). Without loss of
generality, one may assume that

x°=(0, 0).
If 0201, a=0, N=0 and s=R, we let
As(x’, §) = As(x’, &5 a, N, s)

= (—s+alx’|*)1logA(6)+Nlog(1+04(8)),
and
Q.5(x, D) = e~ 43(x’, D)Q(x, D)e's(x’, D),
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where e¢*%(x’, D) are properly supported pseudodifferential operators with
symbols e*46¢2"- 9 respectively :

0" = 2§ = (LAY,
e o= = e DA BAE) Y

By virtue of [Corollary 1.2, it suffices to show that there exists an open
neighborhood U.,={x=(x,, x)ER"; |x,| <&, |x'| <1} of x°=(0, 0) such that
we have for all veCF(U,,) and all 0<d<1

@.D HQuy(x, Dv, v)| = Cil| Dz pl*—Collvl?,

with constants C;>0 and C,>0 independent of 4.

2) Since the operator Q(x, D) is micro-elliptic outside a conic neighborhood
of a point (x°, &)=(x°, 0, &3, ---, £3) in the bundle T*(R")\0 of non-zero cotan-
gent vectors, one may assume that

4= 161 =218, €=¢L 8D,
and that

{ A = (L+ |89 = (&,
As(x’, &) = Ao, &) = (—s+a|x'|%) log &>+ N log (1-+3<E"S).

Then, arguing as in the proof of (cf. formula [2.4)), one can find
an elliptic symbol s;(x’, &)=ss(x’, &; a, N, s) in the class S?,(R*xXR™ such
that we have for |&] sufficiently large (uniformly in §>0)

1 n-1
ss(x’, §)Q5(x, &) = E+alx, S”)-*—b”(X)Aa-xn—fjkzﬂaéﬁk/l“j/lﬁ%
1 n-1
+ 2 aejrkAﬁszagk_‘_ ?jy%zaﬁjfk/lﬁxjﬁk

+ 2 aé'jA5EkA5.‘rj1‘k+ axjAﬁzkABEjfk

3=
o n-1 L

mod S} (R*xXR"),
where

alx, £)= 3 a¥®EE, &= -, ba).
We let
(3.2) Qa5(x, D) = sa(x", D)Quylx, D),

where s;(x’, D) is a properly supported, elliptic pseudodifferential operator with
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symbol ss(x’, &) such that we have for |£| sufficiently large (uniformly in 6>0)
1
fé Isa(x’, )| = 2.
Now we remark that
@.3)  [(Quslx, D, v)| = [(Re(Q 45(x, D)v, 1))’ +{Im(Q 45(x, D)v, v))*]*/?
e

= 5~ Re(@ 1,(x, D), v)+1Im@ 15(x, DIy, V)1).

First we estimate the term ]Im(@ 45x, Dv, v)|. To do so, arguing as in
the proof of we have for every £>0

e (x, €3 (', )] S calx, &)+ 2 atria(x)(10g &)’
mod S, (R* X R™),
s (x, £ Aus(x/, &)] < calx, &) mod S, (R X R™).
Here we recall that for all £=(¢,, &) in a conic neighborhood of £°=(0, &)
&1 < 1€l =21€].

Furthermore, condition (B’) implies that the function 5™ does not change sign.
Hence, for every >0, one can find a constant C.>0 such that

ITm(Q 45(x, D)v, v)| = Re(]b,(x)[<D, >v, v)—e Re(a(x, D")v, v)
—C.'S] Re(a(x)(log<D"»), v),

where <D, > and log<{D’) are pseudodifferential operators with symbols <&,>=
(14+£2)'% and log((1+1&]%)"/%), respectively.

Next we estimate the term Re(Q 45(x, D)v, v). Similarly, applying
2.3 to the terms anA55kA,;rjxk and a;;A5z2,As;:,, We have for every ¢>0

(%, &) gy (%, €) Mgy, (%, &) Z —ea(x, &) mod S2o(R*XR™),
o (%, EN sz (%', &) Aaeye (%', &) Z —sa(x, &) mod S2o(R*XR™).

Moreover, by virtue of condition (A.1’), we can estimate the terms Qg Aoz Ao,
as follows:

gz, (%, §") Aoz (7, §) Ase, (27, §) = —ea(x, §”) mod SY,(R*XR™).
We also have
b*(x) A5z (%', &) 2 —2a|x,]|b*(x)|logd€’> mod S (R*XR").

Hence, arguing as in the proof of formula [2.9), we obtain that for some
constants C;>0 and C,>0 independent of 9
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Re(Q 45(x, Dv, v) = (D%, v)—l—ii—Re(a(x, D", v)
—C, Re(]ba(x)]|log{D">v, v)
—cz’g Re(a?(x)(log<D’>), v).

Therefore, we can find a second-order pseudodifferential operator R 45x, D)
with symbol R, (x, & such that

(3.3 (@, Dw, )] = Y2 ReRotx, D, ),

and that in a conic neighborhood of (x°, &%
1
(3.4 Bx, & 2 &+ 5 alx, £)+ 16" (x)<6>

—A|b™(x)|10g<&">—BA(x)(log<&">)
mod S? (R* X R™).
Here A>0 and B>0 are constants independent of J, and
) = 'S a¥(x).
j=2

Thus we are reduced to the study of the symbol R 4%, &).
3-i) Assume that

°=(0, &, -+, §a-1, §2) with §3# 0.

Then we remark that, for all £ in a conic neighborhood of &° there exists a
constant ¢,>0 such that

alé'l S 16l S 18N, & =&, -, Enoy, En).
Hence, by formula [3.4), we have for |&,| sufficiently large (uniformly in d>0)

~ 1 '
Ryi(x, &) = &1+ fa(X, M+ 1b6™(x) <>

—Alb™(x)|log<&,>—BA(x)(log<&a>)*

1 1 1
= —2—§?+[75H——2— |6 (x1, x7)| [En| —BA(xy, x,)(10g<$n>)2]
mod S ((R™ X R*Y).

Therefore, arguing as in step 5) of the proof of [Theorem 1, we find that if
the condition

. Axy, x) log|b™(x,, x7)]
(023) lxlf-{lo '\/Z(xb X’)

=0
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is satisfied, then we have in a conic neighborhood of (x°, &°
~ 1
Rix, 6= 75?-!-‘0&?»‘1, x’, &) mod S} (R*'XR"™),

and the symbol p,(x,, x’, &) is non-negative and forms a bounded subset of the
class S (R* 'XR™) for |x,|<e, if ¢,>0 is sufficiently small.
3-ii) Assume that

& =1(0,&", &) with & = (&, -, &) # 0.

Then we remark that, for all & in a conic neighborhood of &° there exists a
constant ¢,>0 such that

& =187 <18, &=, 8&).
Hence, by formula [3.4), we have in a conic neighborhood of (x°, &%)

35 Rux, &= s%+%a<x, £ [ 57(x) | <Ea>— A b7(x) | log<&”
— Ba(x)(log<&”y)?
= 26+ [ T8 alx, 8- Al log(e") — BA)log<&")']
=551 AL 2 ’ g<& 3
mod S, (R*" X R™).
Now, applying with
ate, ), &) =24+D([ 157, #)1dt)logee”,

we find that the symbol (1/2)£% in the bracket in formula (3.5) may be replaced
by the following:

(A+D)1b™(xy, x")]log<€”y—2(A+1)2D"™(x,, x")*(logl&”>)?,

where
Brxs, ) = {1670, ) d
This proves that in a conic neighborhood of (x°, &%)

Rin, & 2 380+ [ 3 814 atr, o, 89— Alb(, 2)/l0g"

—Bi(x,, x")og(¢")]

1
Z &Py, ¥, §) mod SY(RIXR™Y,

where p,(x,, x’, §) is a symbol in the class S% (R*"* X R™"') given by the follow-
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ing formula:
1
poxs, X7, &) = Sa(x,, x', §)+[b7(x,, x)|logde”)

—CO™(xy, x")2A(x1, x"))(logl&"),
with
C = max(2(A+1)% B).

Thus we are reduced to the positivity of the symbol p.(x,, x’, §).
(a) First, if we have

[b™(xs, 27)[10g<&” > —C(O™(x,, x7)*+A(x1, x")(logdg”>)* = 0,

then it follows that
Pz(xl, x',§=z0.

(b) Next we assume that
b(xy, x7)|logl€”y—C(h™(xy, x")2+A(x,, x"))(logd€"»)* £ 0,
that is,

16" (x5, 27|
CO™(xy, x')+A(xs, x7))

Then we shall show that conditions and imply that in a conic
neighborhood of (x°, &%)

3.6) log<¢”) =

3.7 —;—a(xl, %', &) z Co™(xy, #')+A(xy, x)(logd€”>)?,

which proves that
(3.8) pxy, x/, §7) 2 0.
By condition (A.2’), it follows that
a(xy, x', §) Z pu(xy, x7)1§7]* on T*(R™).
Thus it suffices to show that
3.9) p(xy, 1918712 Z 2C0™(x1, x')*+A(x1, x))(loglE"))* .
If we take the logarithm of the both sides, we obtain that
log p(x,, x")+21log|é”| = log 2C+log(h™(x,, x")2+A(x,, x7))
+2 log (log<¢&”y).
This condition is satisfied if we have for |§”| sufficiently large

3.9) log p(x, x")+10g<€”> = log (6™ (xs, x')*+A(x,, 7).
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Thus, combining inequalities and (3.9’), we obtain that condition [3.7)
is satisfied if we have for |x,| sufficiently small

16™(x1, x7)]
Ch™(x, x')*+4(x,, x7))

IOg‘u(xh x’)+ 20,

since log(h™(x,, x")?4A(x,, x/))<0 for |x,| sufficiently small.
Therefore, we find that the conditions

(0.25) fjm 22 £ log plxn, 1) _
' 2120 b*(x1, %) o
(O ZC) lim /2(?(:1, x’) IOg #(xl,- x’> — 0
: am, b(x,, %)

imply the desired condition and hence condition [3.8).

Summing up, we have proved that if conditions [0.2a), [0.2b) and [0.2c) are
satisfied, then we have

~ 1
Rayx, 8 = E&%_{_(o(xb x’, &) mod S, o(R**XR™),

and further the symbol p(x,, x’, &) is non-negative and forms a bounded subset
of the class S2 ((R*"*XxXR"Y) for |x,]<eg, if &>0 is sufficiently small.

4) Therefore, applying [Corollary 2.2 to the operator p(x,, x’, D’), we obtain
that if ¢,>0 is sufficiently small, then we have for all v&C3(U.) and all 0<d=<1

Re(B1,(x, D), v) = — [ Dawl— o],

with a constant C>0 independent of 8. In view of inequality (3.3’) and formula
[3.2), this proves inequality [3.1).
The proof of is now complete.
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