On a class of hypoelliptic differential operators with double characteristics

Dedicated to Professor Mutsuhide Matsumura on his 60th birthday in 1991

By Kazuaki TAIRA

(Received Nov. 18, 1991) (Revised May 21, 1992)

Introduction and results.

This paper is devoted to the study of hypoellipticity for second-order degenerate elliptic differential operators P(x, D) with real coefficients on \mathbb{R}^n of the form:

$$P(x, D) = \frac{\partial^2}{\partial x_1^2} + \sum_{i,j=2}^n \frac{\partial}{\partial x_i} \left(a^{ij}(x) \frac{\partial}{\partial x_j} \right) + \sum_{i=1}^n b^i(x) \frac{\partial}{\partial x_i} + c(x),$$

where:

1) The a^{ij} are the components of a C^{∞} symmetric contravariant tensor of type $\binom{2}{0}$ on \mathbb{R}^n , and

$$\sum_{i,j=2}^n a^{ij}(x)\xi_i\xi_j \ge 0 \quad \text{on } T^*(\mathbf{R}^n).$$

Here $T^*(\mathbf{R}^n)$ is the cotangent bundle of \mathbf{R}^n .

- 2) $b^i \in C^{\infty}(\mathbf{R}^n)$.
- 3) $c \in C^{\infty}(\mathbb{R}^n)$.

Let u be a distribution on an open subset Ω of \mathbb{R}^n . The singular support of u, denoted by sing supp u, is the complement of the largest open subset of Ω on which u is of class C^{∞} . A differential operator P(x, D) is said to be hypoelliptic in Ω if it satisfies the condition:

sing supp
$$u = \operatorname{sing supp} Pu$$
 for all $u \in \mathcal{D}'(\Omega)$.

This condition is equivalent to the following:

This research was partially supported by Grant-in-Aid for General Scientific Research (No. 03640122), Ministry of Education, Science and Culture.

$$\left\{ \begin{array}{l} \text{For any open subset } \varOmega' \text{ of } \varOmega, \text{ we have} \\ \\ u \in \mathscr{D}'(\varOmega), \, Pu \in C^\infty(\varOmega') \Longrightarrow u \in C^\infty(\varOmega'). \end{array} \right.$$

We say that P(x, D) is globally hypoelliptic in Ω if it satisfies the weaker condition:

$$u \in \mathcal{D}'(\Omega)$$
, $Pu \in C^{\infty}(\Omega) \Longrightarrow u \in C^{\infty}(\Omega)$.

To state our fundamental hypothesis for the operator P(x, D), we let

$$\Phi = \frac{\partial}{\partial x_1} \otimes \frac{\partial}{\partial x_1} + \sum_{i,j=2}^n a^{ij}(x) \frac{\partial}{\partial x_i} \otimes_S \frac{\partial}{\partial x_j},$$

which lies in the space $\Gamma(\mathbb{R}^n, T(\mathbb{R}^n) \otimes_S T(\mathbb{R}^n))$ of C^{∞} symmetric contravariant tensor fields of type $\binom{2}{0}$ on \mathbb{R}^n . Here the notation \otimes_S stands for the symmetric tensor product:

$$\frac{\partial}{\partial x_i} \otimes_S \frac{\partial}{\partial x_j} = \frac{1}{2} \Big(\frac{\partial}{\partial x_i} \otimes \frac{\partial}{\partial x_j} + \frac{\partial}{\partial x_j} \otimes \frac{\partial}{\partial x_i} \Big).$$

Denote by $\Gamma(\mathbf{R}^n, T^*(\mathbf{R}^n))$ (resp. $\Gamma(\mathbf{R}^n, T(\mathbf{R}^n))$) the space of C^{∞} covariant (resp. contravariant) vector fields on \mathbf{R}^n . Then, making use of $\mathbf{\Phi}$, we can define a mapping

$$\Psi: \Gamma(\mathbf{R}^n, T^*(\mathbf{R}^n)) \longrightarrow \Gamma(\mathbf{R}^n, T(\mathbf{R}^n))$$
$$\zeta \longmapsto \Phi(\zeta, \cdot).$$

In terms of local coordinates $x=(x_1, x_2, \dots, x_n)$, we have for $\zeta=\sum_{i=1}^n \zeta_i dx_i$

$$\Psi(\zeta) = \zeta_1 \frac{\partial}{\partial x_1} + \sum_{i,j=2}^n a^{ij}(x) \zeta_i \frac{\partial}{\partial x_i}.$$

We let

$$X_1 =$$
the image of Ψ
= $\{ \Psi(\zeta) : \zeta \in \Gamma(\mathbf{R}^n, T^*(\mathbf{R}^n)) \}.$

Further we define the drift vector field X_0 by

$$X_0 = \sum_{i=1}^n b^i(x) \frac{\partial}{\partial x_i}.$$

The fundamental hypothesis for the operator P(x, D) is the following:

(H) The Lie algebra $\mathcal{L}(X)$ over \mathbf{R} generated by $X = X_1 \cup X_0$ has rank n outside a closed subset S of the hypersurface $\{x = (x_1, x_2, \dots, x_n) \in \mathbf{R}^n; x_1 = 0\}$.

By the celebrated theorem of Hörmander ([**Hr1**, Theorem 1.1]), we know that the operator P(x, D) is hypoelliptic outside the set S. Furthermore, Oleinik and Radkevič proved (cf. [**OR**, Theorem 2.6.3]; [**A**, Theorem 1]) that:

If the set S is compact in Ω , then the operator P(x, D) is globally hypoelliptic in Ω .

The purpose of this paper is to give sufficient conditions for *hypoellipticity* for the operator P(x, D) under condition (H). Some previous results in this direction are due to Fedii [F], Kusuoka-Stroock [KS], Morimoto [Mo], Hoshiro [Ho] and also Morioka [Ma]. The results here extend and improve substantially those results in a *unified* theory.

To state hypotheses for the a^{ij} , we let

$$\alpha(x, \xi') = \alpha(x_1, x', \xi') = \sum_{i, j=2}^{n} a^{ij}(x_1, x') \xi_i \xi_j,$$

where

$$x' = (x_2, \dots, x_n), \quad \xi' = (\xi_2, \dots, \xi_n),$$

and the variable x_1 is considered as a parameter.

For the a^{ij} , we assume that:

(A.1) There exists a constant $a_0 > 0$ such that

$$\sum_{i,j=2}^{n} \left| \frac{\partial^2 \alpha}{\partial x_i \partial \xi_j} (x_i, x', \xi') \right|^2 \leq a_0 \alpha(x_i, x', \xi') \quad \text{on } T^*(\mathbf{R}^{n-1}).$$

This condition is satisfied if $\alpha(x, \xi')$ is diagonal, that is, if $a^{ij}(x)=0$ for $i \neq j$.

(A.2) The function

$$\mu(x) = \mu(x_1, x') = \min_{\xi' = 1} \alpha(x_1, x', \xi')$$

is Lipschitz continuous in the variable x_1 and is of class C^{∞} in the variables x', and satisfies the condition:

$$\mu(x_1, x') > 0$$
 outside the set S.

We remark that condition (A.2) implies that the operator P(x, D) is elliptic outside the set S, so condition (H) is satisfied.

For the b^i , we assume that:

(B) There exists a constant $b_0 > 0$ such that

$$\sum_{i=0}^{n} |b^{i}(x)| \leq b_{0} \sqrt{\mu(x)} \quad \text{on } \mathbf{R}^{n}.$$

Now we can state our main result (cf. [WS, Theorem 4.9]):

Theorem 1. Assume that conditions (A.1), (A.2) and (B) are satisfied and that

(0.1)
$$\lim_{x_1 \to 0} \frac{\tilde{\lambda}(x_1, x') \log \mu(x_1, x')}{\sqrt{\lambda(x_1, x')}} = 0$$

uniformly in the variables $x'=(x_2, \dots, x_n)$ over compact subsets of \mathbf{R}^{n-1} which

intersect the set S, where

$$\lambda(x_1, x') = \sum_{i=2}^{n} a^{ii}(x_1, x'),$$

$$\tilde{\lambda}(x_1, x') = \int_0^{x_1} \lambda(t, x') dt.$$

Then the operator P(x, D) is hypoelliptic in \mathbb{R}^n , that is,

$$\operatorname{sing} \operatorname{supp} Pu = \operatorname{sing} \operatorname{supp} u \quad \text{for all } u \in \mathcal{D}'(\mathbf{R}^n).$$

REMARK. If the function $\lambda(x_1, x')$ is monotone increasing for $x_1 > 0$ and is monotone decreasing for $x_1 < 0$, that is, if we have

$$x_1 \lambda_{x_1}(x_1, x') \ge 0$$
 on \mathbf{R}^n ,

then the above condition (0.1) may be replaced by the following simpler one:

(0.1')
$$\lim_{x_1 \to 0} \sqrt{\lambda(x_1, x')} x_1 \log \mu(x_1, x') = 0.$$

In fact, it suffices to note that we have

$$|\tilde{\lambda}(x_1, x')| = \left| \int_0^{x_1} \lambda(t, x') dt \right| \le \lambda(x_1, x') |x_1| \quad \text{on } \mathbb{R}^n.$$

Thus Theorem 1 is a generalization of Theorem 4 of Hoshiro [Ho2].

EXAMPLE 1. Consider the following operator P(x, D) on \mathbb{R}^3 :

$$P(x, D) = \frac{\partial^2}{\partial x_1^2} + \frac{\partial}{\partial x_2} \left(f(x) \frac{\partial}{\partial x_2} \right) + \frac{\partial}{\partial x_2} \left(g(x) \frac{\partial}{\partial x_2} \right),$$

where f and g are non-negative functions on \mathbb{R}^3 such that

$$f(x_1, x_2, x_3) > 0$$
 for $x_1 \neq 0$,
 $g(x_1, x_2, x_3) > 0$ for $x_1 \neq 0$.

Then the operator P(x, D) is hypoelliptic in \mathbb{R}^3 if the following two conditions are satisfied:

$$\lim_{x_1 \to 0} \frac{\int_0^{x_1} f(t, x') dt \log g(x_1, x')}{\sqrt{f(x_1, x')}} = 0.$$

$$\lim_{x_1 \to 0} \frac{\int_0^{x_1} g(t, x') dt \log f(x_1, x')}{\sqrt{g(x_1, x')}} = 0.$$

Here the convergence is uniform in the variables $x' = (x_2, x_3)$ over compact subsets of \mathbb{R}^2 .

Our method can be applied to the study of hypoellipticity for second-order degenerate *parabolic* differential operators Q(x, D) with real coefficients on \mathbb{R}^n of the form:

$$Q(x, D) = \frac{\partial^2}{\partial x_1^2} + \sum_{i, j=2}^{n-1} \frac{\partial}{\partial x_i} \left(a^{ij}(x) \frac{\partial}{\partial x_i} \right) + b^n(x) \frac{\partial}{\partial x_n} + c(x),$$

where:

1) The a^{ij} are the components of a C^{∞} symmetric contravariant tensor of type $\binom{2}{0}$ on \mathbf{R}^n , and

$$\sum_{i,j=2}^{n-1} a^{ij}(x)\xi_i\xi_j \ge 0 \quad \text{on } T^*(\mathbf{R}^n).$$

- 2) $b^n \in C^{\infty}(\mathbf{R}^n)$.
- 3) $c \in C^{\infty}(\mathbb{R}^n)$.

The next result is due to Ole**i**nik and Radkevič (cf. [**OR**, Theorem 2.6.3]; [**A**, Theorem 2]):

If condition (H) is satisfied for Q(x, D) and the set S is compact in Ω , and if $b^n(x) \neq 0$ on S, then the operator Q(x, D) is globally hypoelliptic in Ω .

Now we let

$$\alpha(x, \, \xi'') = \alpha(x_1, \, x', \, \xi'') = \sum_{i, j=2}^{n-1} a^{ij}(x_1, \, x') \xi_i \xi_j,$$

where

$$\xi'' = (\hat{\xi}_2, \dots, \hat{\xi}_{n-1}).$$

For the a^{ij} , we assume that:

(A.1') There exists a constant $a_0 > 0$ such that

$$\sum_{\substack{2 \le i \le n \\ 2 \le j \le n-1}} \left| \frac{\partial^2 \alpha}{\partial x_i \partial \xi_j}(x_1, x', \xi'') \right|^2 \le a_0 \alpha(x_1, x', \xi'') \quad \text{on } T^*(\mathbf{R}^{n-1}).$$

This condition is satisfied if $\alpha(x, \xi'')$ is diagonal, that is, if $a^{ij}(x)=0$ for $i \neq j$. (A.2') The function

$$\mu(x) = \mu(x_1, x') = \min_{|\xi''|=1} \alpha(x_1, x', \xi'')$$

is Lipschitz continuous in the variable x_1 and is of class C^{∞} in the variables x', and satisfies the condition:

$$\mu(x_1, x') > 0$$
 outside the set S.

For the function b^n , we assume that:

(B') $b^n(x_1, x') \neq 0$ outside the set S, and either $b^n(x) \geq 0$ on \mathbb{R}^n or $b^n(x) \leq 0$ on \mathbb{R}^n .

We remark that conditions (A.2') and (B') imply that condition (H) is satisfied.

Then we have the following:

Theorem 2. Assume that conditions (A.1'), (A.2') and (B') are satisfied and that

(0.2a)
$$\lim_{x_1 \to 0} \frac{\tilde{\lambda}(x_1, x') \log |b^n(x_1, x')|}{\sqrt{\lambda(x_1, x')}} = 0,$$

(0.2b)
$$\lim_{x_1 \to 0} \frac{\tilde{b}^n(x_1, x')^2 \log \mu(x_1, x')}{b^n(x_1, x')} = 0,$$

(0.2c)
$$\lim_{x_1 \to 0} \frac{\lambda(x_1, x') \log \mu(x_1, x')}{b^n(x_1, x')} = 0,$$

where

$$\lambda(x_1, x') = \sum_{i=2}^{n-1} a^{ii}(x_1, x'),$$

$$\tilde{\lambda}(x_1, x') = \int_0^{x_1} \lambda(t, x') dt,$$

$$\tilde{b}^n(x_1, x') = \int_0^{x_1} b^n(t, x') dt.$$

Here the convergence is uniform in the variables $x'=(x_2, \dots, x_n)$ over compact subsets of \mathbb{R}^{n-1} which intersect the set S.

Then the operator Q(x, D) is hypoelliptic in \mathbb{R}^n .

The next example is a generalization of Theorem 4 of Hoshiro [Ho1].

EXAMPLE 2. Consider the following operator Q(x, D) on \mathbb{R}^3 :

$$Q(x, D) = \frac{\partial^2}{\partial x_1^2} + \frac{\partial}{\partial x_2} \left(f(x) \frac{\partial}{\partial x_2} \right) + g(x) \frac{\partial}{\partial x_3},$$

where f and g are non-negative functions on \mathbb{R}^3 such that

$$f(x_1, x_2, x_3) > 0$$
 for $x_1 \neq 0$,
 $g(x_1, x_2, x_3) > 0$ for $x_1 \neq 0$.

Then the operator Q(x, D) is hypoelliptic in \mathbb{R}^3 if the following two conditions are satisfied:

$$\lim_{x_1 \to 0} \frac{\int_0^{x_1} f(t, x') dt \log g(x_1, x')}{\sqrt{f(x_1, x')}} = 0.$$

$$\lim_{x_1 \to 0} \frac{\left(\int_0^{x_1} g(t, x') dt\right)^2 \log f(x_1, x')}{g(x_1, x')} = 0.$$

Here the convergence is uniform in the variables $x'=(x_2, x_3)$ over compact subsets of \mathbb{R}^2 . (We remark that condition (0.2c) is superfluous for Example 2, since one may take $\mu=\lambda$ in inequality (3.9) in the proof of Theorem 2.)

The rest of this paper is organized as follows. In Section 1, we consider a family of modifications $P_{A_{\bar{\delta}}}(x, D)$ of the operator P(x, D) which is adapted to the study of hypoellipticity. The operators $P_{A_{\bar{\delta}}}(x, D)$ are introduced in the study of propagation of singularities for hyperbolic pseudodifferential operators with double characteristics by Kajitani-Wakabayashi [KW]. We give a general criterion for hypoellipticity for the operator P(x, D) under a weaker condition (H') in terms of the operators $P_{A_{\bar{\delta}}}(x, D)$ (Theorem 1.1). This criterion is more useful if it is combined with the well-known Poincaré inequality (Corollary 1.2).

Sections 2 and 3 are devoted to the proof of Theorems 1 and 2, respectively, indicating applications of such a criterion to the study of hypoellipticity for the operators P(x, D) and Q(x, D). The proof follows the pattern given in Section 5 of Kajitani-Wakabayashi [KW]. That is, we calculate the symbol of the operators $P_{A\delta}(x, D)$ in question, and then apply a sharpened form of Gårding's inequality due to Fefferman-Phong [FP] (Theorem 2.1 and Corollary 2.2) to the operators $P_{A\delta}(x, D)$. It is Lemma 2.4 that allows us to make good use of the Fefferman-Phong inequality.

This paper is inspired by the work of Wakabayashi and Suzuki [WS]. It is a genuine pleasure to acknowledge the great debt which I owe to S. Wakabayashi, with whom I had extensive and fruitful conversations while working on this paper. I am also grateful to T. Hoshiro, Y. Morimoto and N. Iwasaki for some useful comments.

1. A criterion for hypoellipticity.

In this section we give a general criterion for hypoellipticity for the operator P(x, D) which is a variant of Theorem 1.2 of Kajitani-Wakabayashi [**KW**]. For the sake of completeness, we reproduce here its proof due to Wakabayashi (cf. [**WS**, Theorem 1.1]).

First we recall the definition of the symbol class $S_{1,0}^m(\mathbf{R}^n\times\mathbf{R}^n)$ for $m\in\mathbf{R}$. We say that a C^∞ function $p(x,\xi)$ on the cotangent bundle $T^*(\mathbf{R}^n)$ belongs to the class $S_{1,0}^m(\mathbf{R}^n\times\mathbf{R}^n)$ if, for any multi-indices α and β , there exists a constant $C_{\alpha,\beta}>0$ such that

$$|\partial_{\xi}^{\alpha}\partial_{x}^{\beta}p(x,\xi)| \leq C_{\alpha,\beta}(1+|\xi|^{2})^{(m-|\alpha|)/2}$$
 for all $(x,\xi) \in T^{*}(\mathbb{R}^{n})$.

Here we have identified the cotangent bundle $T^*(\mathbf{R}^n)$ with the space $\mathbf{R}^n \times \mathbf{R}^n$. Let $\lambda(\xi)$ be a real-valued symbol in the class $S_{1,0}^1(\mathbf{R}^n \times \mathbf{R}^n)$ such that

$$\lambda(\xi) = \left\{ \begin{array}{ll} \langle \xi' \rangle & \text{if} \quad |\xi'| \geq \frac{1}{2} |\xi| \quad \text{and} \quad |\xi| \geq 4 \,, \\ \\ \frac{1}{4} \langle \xi \rangle & \text{if} \quad |\xi'| \leq \frac{1}{4} |\xi| \quad \text{and} \quad |\xi| \geq 4 \,, \end{array} \right.$$

and that

$$\frac{1}{4}\langle \xi \rangle \leqq \lambda(\xi) \leqq \langle \xi \rangle, \qquad \lambda(\xi) \geqq 1,$$

where

$$\xi = (\xi_1, \, \xi'), \qquad \xi' = (\xi_2, \, \cdots, \, \xi_n),$$

$$\langle \xi' \rangle = (1 + |\xi'|^2)^{1/2},$$

$$\langle \xi \rangle = (1 + |\xi|^2)^{1/2}.$$

Let $x^0=(x_1^0, x_2^0, \cdots, x_n^0)$ be a point of a subset T of the (n-k) dimensional surface $\{x=(x_1, x_2, \cdots, x_n) \in \mathbb{R}^n ; x_1=x_2=\cdots=x_k=0\}$. If $0 \le \delta \le 1$, $a \ge 0$, $N \ge 0$ and $s \in \mathbb{R}$, we let

$$\Lambda_{\delta}(x''', \xi) = \Lambda_{\delta}(x''', \xi; a, N, s)$$

= $(-s + a | x''' - x^{0'''}|^2) \log \lambda(\xi) + N \log(1 + \delta \lambda(\xi)),$

where

$$x''' = (x_{k+1}, \dots, x_n),$$

 $x^{0}''' = (x_{k+1}^0, \dots, x_n^0).$

We remark that

$$\begin{split} e^{A_{\delta}(x''',\,\xi)} &= \lambda(\xi)^{(-s+a+x'''-x^{0'''}+2)} (1+\delta\lambda(\xi))^{N}, \\ e^{-A_{\delta}(x''',\,\xi)} &= \lambda(\xi)^{(s-a+x'''-x^{0'''}+2)} (1+\delta\lambda(\xi))^{-N}, \end{split}$$

and that

$$|\partial_{\xi}^{\alpha}\partial_{x'''}^{\beta}(e^{\pm A_{\delta}(x''',\xi)})| \leq C_{\alpha,\beta}\langle \xi \rangle^{-|\alpha|}(1+\log\langle \xi \rangle)^{|\beta|}e^{\pm A_{\delta}(x''',\xi)},$$

where the constant $C_{\alpha,\beta}$ is independent of δ .

Furthermore we introduce a family of second-order pseudodifferential operators $P_{A\delta}(x, D)$ defined by the formula

$$P_{\Lambda_{\delta}}(x, D) = e^{-\Lambda_{\delta}}(x''', D)P(x, D)e^{\Lambda_{\delta}}(x''', D)$$
,

where $e^{\pm A}\delta(x''', D)$ are properly supported pseudodifferential operators with symbols $e^{\pm A}\delta^{(x''',\xi)}$, respectively.

Now we can state a criterion for hypoellipticity for the operator P(x, D):

THEOREM 1.1. Assume that:

(H') The operator P(x, D) is hypoelliptic outside a closed subset T of the

(n-k) dimensional surface $\{x=(x'', x''')\in \mathbb{R}^n; x''=0\}$, where $x''=(x_1, \dots, x_k)$ and $x'''=(x_{k+1}, \dots, x_n)$ for $1\leq k\leq n-1$.

Furthermore, assume that, for each point x^0 of the set T, there exist an open neighborhood $U(x^0)$ of x^0 and numbers $a_0 \ge 0$, $N_0 \ge 0$ and $s_0 \in \mathbb{R}$ such that:

For any $a \ge a_0$, any $N \ge N_0$, and any $s \ge s_0$, there exist functions $\theta(x''') \in C^{\infty}(\mathbf{R}^{n-k})$ and $\phi(x) \in C^{\infty}(\mathbf{R}^n)$ with $\sup(1-\theta) \cap \{x^{0'''}\} = \emptyset$ and $\sup \phi \cap T = \emptyset$ and constants $0 < \delta_0 \le 1$ and C > 0 such that the estimate

$$||v|| \le C(||P_{A_{\delta}}(x, D)v|| + ||(1 - \theta(x'''))v|| + ||\phi(x)v||)$$

holds for all $v \in C_0^{\infty}(U(x^0))$ and all $0 < \delta \le \delta_0$. Here $\|\cdot\|$ is the norm of the space $L^2(\mathbf{R}^n)$.

Then the operator P(x, D) is hypoelliptic in \mathbb{R}^n .

PROOF. Let x^0 be an arbitrary point of the set T. Assume that $u \in \mathcal{D}'(\mathbf{R}^n)$ and the function

$$f = P(x, D)u$$

is of class C^{∞} in a neighborhood of x_0 .

Without loss of generality, one may assume that

$$x^0 = (0, 0),$$
 $U(x^0) = \{x = (x'', x''') \in \mathbf{R}^n : |x''| < 1, |x'''| < 1\}.$

We take three open neighborhoods U_1 , U_2 , U_3 of $x^0 = (0, 0)$ such that

$$U_{1} = \left\{ x = (x'', x''') \in \mathbf{R}^{n} \; ; \; |x''| < \frac{3}{4}, \; |x'''| < \frac{3}{4} \right\},$$

$$U_{2} = \left\{ x = (x'', x''') \in \mathbf{R}^{n} \; ; \; |x''| < \frac{1}{2}, \; |x'''| < \frac{1}{2} \right\},$$

$$U_{3} = \left\{ x = (x'', x''') \in \mathbf{R}^{n} \; ; \; |x''| < \frac{1}{4}, \; |x'''| < \frac{1}{4} \right\}.$$

One may assume that for some $s' \in \mathbb{R}$

$$u \in \mathcal{E}'(\mathbf{R}^n) \cap H^{s'}(\mathbf{R}^n)$$
,

and that the function f is of class C^{∞} near the set U_1 . For each $\sigma > s'$, we can choose numbers $a \ge a_0$ and $s \ge s_0$ such that

$$\left\{ \begin{array}{l} s-\frac{1}{16}a>\sigma\,,\\ s-\frac{1}{4}a< s'-1\,, \end{array} \right.$$

and also choose a number $N \ge N_0$ such that

$$N > s - s' + 2$$
.

Now, by the calculus of pseudodifferential operators, one can find an *elliptic* symbol $q_{\delta}(x''', \xi) = q_{\delta}(x''', \xi; a, N, s)$ in the class $S_{1,0}^{0}(\mathbf{R}^{n} \times \mathbf{R}^{n})$ such that

$$e^{\Lambda_{\delta}(x''', D)}e^{-\Lambda_{\delta}(x''', D)}q_{\delta}(x''', D) \equiv I \mod \text{an operator of order } -\infty.$$

If χ and χ_1 are functions in $C_0^{\infty}(U_1)$ such that

$$\left\{ \begin{array}{ll} \hbox{$\chi(x)=1$ on U_2,} \\ \\ \hbox{$\chi_{\rm I}(x)=1$ near supp$$\chi$,} \end{array} \right.$$

we let

$$v_{\delta} = \chi_1(x)e^{-\Lambda_{\delta}(x''', D)}q_{\delta}(x''', D)(\chi u)$$
.

Then we have

$$\begin{split} \|P_{A\delta}(x, D)v_{\delta}-e^{-A\delta}(x''', D)(\chi f)-e^{-A\delta}(x''', D)[P, \chi]u\| \\ &=\|e^{-A\delta}(x''', D)P(x, D)(e^{A\delta}(x''', D)\chi_{1}(x)e^{-A\delta}(x''', D)q_{\delta}(x''', D)-I)(\chi u)\| \\ &\leq C\|u\|_{s'}. \end{split}$$

Here and in the following the letter C denotes a generic positive constant *in-dependent* of $\delta(0 < \delta \le \delta_0)$, and $\|\cdot\|_s$ is the norm of the Sobolev space $H^s(\mathbb{R}^n)$ of order s.

Furthermore, since the operator $e^{-A\delta}(x''', D)$ is of order at most s, it follows that

We also have

In fact, if $\tilde{\chi}$ is a function in $C_0^\infty(U_1)$ such that $\tilde{\chi}(x)=1$ on U_2 and $\tilde{\chi}\chi=\tilde{\chi}$ and if η is a function in $C^\infty(R^n)$ such that $\eta(x)=1$ near supp $(1-\tilde{\chi})$ and supp $\eta \cap U_2=\emptyset$, then it follows that

$$\begin{split} e^{-\varLambda}\delta(x''',\ D) \llbracket P,\ \varUpsilon \rrbracket u &= e^{-\varLambda}\delta(x''',\ D) \widetilde{\chi} \llbracket P,\ \varUpsilon \rrbracket u + \eta \, e^{-\varLambda}\delta(x''',\ D) (1-\widetilde{\chi}) \llbracket P,\ \varUpsilon \rrbracket u \\ &+ (1-\eta) e^{-\varLambda}\delta(x''',\ D) (1-\widetilde{\chi}) \llbracket P,\ \varUpsilon \rrbracket u \ . \end{split}$$

But we remark that the operators $\tilde{\chi}[P, \chi]$ and $(1-\eta)e^{-A\delta}(x''', D)(1-\tilde{\chi})$ are of order $-\infty$, and the operator $\eta e^{-A\delta}(x''', D)(1-\tilde{\chi})$ is of order at most s'-1, since $s-a|x'''|^2 < s'-1$ for $|x'''| \ge 1/2$. Hence we find that

$$||e^{-\Lambda_{\delta}(x''', D)}[P, \chi]u|| \leq C||u||_{\mathfrak{s}'}.$$

Therefore, we obtain from inequalities (1.2), (1.3) and (1.4) that

For the term $\|(1-\theta(x'''))v_{\delta}\|$, without loss of generality, one may assume that

$$\operatorname{supp}(1-\theta) \subset \left\{x''' \in \mathbf{R}^{n-k} \; ; \; |x'''| \ge \frac{1}{2} \right\}.$$

Then we have

$$(1.6) ||(1-\theta(x'''))v_{\delta}|| \leq C||u||_{s'-1},$$

since the operator $(1-\theta)e^{-\Lambda_{\delta}}(x''', D)$ is of order at most s'-1.

On the other hand, if $\tilde{\psi}$ is a function in $C^{\infty}(\mathbb{R}^n)$ such that $\tilde{\psi}\psi=\psi$ and $\sup \tilde{\psi} \cap T=\emptyset$, then it follows from condition (H') that

$$\|\phi(x)v_{\delta}\| \leq \|\phi(x)\chi_{1}(x)e^{-A_{\delta}}(x''', D)q_{\delta}(x''', D)((1-\widetilde{\phi})\chi u)\|$$

$$+\|\phi(x)\chi_{1}(x)e^{-A_{\delta}}(x''', D)q_{\delta}(x''', D)(\widetilde{\phi}(\chi u))\|$$

$$\leq C(\|u\|_{s'} + \|\widetilde{\phi}(\chi u)\|_{s}),$$

since the operator $\psi e^{-A_{\delta}}(x''', D)q_{\delta}(x''', D)(1-\widetilde{\psi})$ is of order $-\infty$ and the function $\widetilde{\psi}(\chi u)$ is of class C^{∞} . Further we find that the function ψv_{δ} is of class C^{∞} .

If we take another function χ_2 in $C_0^{\infty}(U_1)$ such that

$$\chi_2(x) = 1$$
 near supp χ_1 ,

then we have for all $\delta > 0$

$$v_\delta = \chi_{\scriptscriptstyle 1} \phi v_\delta + (1 - \chi_{\scriptscriptstyle 1} \phi) \chi_{\scriptscriptstyle 2} v_\delta \in H^{\scriptscriptstyle 2}(I\!\!R^n) \cap \mathcal{E}'(U_{\scriptscriptstyle 1})$$
 ,

since the operator $e^{-\Lambda}\delta(x''', D)$ is of order s-N and s'-(s-N)>2. But, if $\{w_j\}$ is a sequence in $C_0^\infty(U_1)$ such that

$$w_i \longrightarrow \chi_2 v_\delta$$
 in $H^2(\mathbf{R}^n)$,

then it is easy to verify the following:

- (a) $\tilde{w}_j = \chi_1 \phi v_\delta + (1 \chi_1 \phi) w_j \in C_0^\infty(U_1) \subset C_0^\infty(U(x^0))$.
- (b) $\tilde{w}_j \to v_\delta$ in $H^2(\mathbf{R}^n)$.
- (c) $P_{\Lambda_{\delta}}(x, D)\tilde{w}_{j} \to P_{\Lambda_{\delta}}(x, D)v_{\delta}$ in $L^{2}(\mathbf{R}^{n})$.
- (d) $(1-\theta(x'''))\tilde{w}_j \rightarrow (1-\theta(x'''))v_\delta$ in $L^2(\mathbf{R}^n)$.
- (e) $\phi(x)\tilde{w}_i \to \phi(x)v_{\delta}$ in $L^2(\mathbf{R}^n)$.

This proves that estimate (1.1) remains valid for the functions v_{δ} .

Therefore, it follows from inequalities (1.5), (1.6) and (1.7) that we have for all $0 < \delta \le \delta_0$

$$||v_{\delta}|| \le C(||\chi f||_{s} + ||u||_{s'} + ||\widetilde{\phi}(\chi u)||_{s}).$$

Hence, letting $\delta \downarrow 0$, we find that

$$v_{\delta} \longrightarrow v_0$$
 weakly in $L^2(\mathbb{R}^n)$,

where

$$v_0 = \chi_1(x)\lambda(D)^{(s-a+x'''+2)}q_0(x''', D)(\chi u) \in L^2(\mathbb{R}^n).$$

But we remark that

$$\left\{ \begin{array}{l} \lambda(\xi) \geqq 1\,,\\ \\ q_0(x''',\,\xi) = 1+\cdots \quad \text{near} \ x''' = 0\,,\\ \\ \chi_1(x) = 1 \quad \text{near} \ x^0 = 0\,, \end{array} \right.$$

and also that we have for $|x'''| \le 1/4$

$$s-a|x'''|^2 > \sigma$$
.

Thus, taking a function $\chi_3 \in C_0^{\infty}(U_3)$ such that

$$\chi_3(x) = 1$$
 near $x^0 = 0$,

we find that

$$\chi_3 u \in H^{\sigma}(\mathbf{R}^n)$$
.

This proves that u is of class C^{-} at $x^{-}=0$, since v is arbitrary.

The proof of Theorem 11 is now complete

If we combine Theorem 1.1 with the well-known Poincaré inequality, we obtain the following useful criterion for hypoellipticity (cf. [WS], [Mo]):

COROLLARY 1.2. Assume that condition (H') is satisfied and that, for each point x^0 of the set T, there exist an open neighborhood $U(x^0)$ of x^0 and numbers $a_0 \ge 0$, $N_0 \ge 0$ and $s_0 \in \mathbb{R}$ such that:

For any $a \ge a_0$, any $N \ge N_0$ and any $s \ge s_0$, there exist constants $0 < \delta_0 \le 1$, $C_1 > 0$ and $C_2 > 0$ such that we have for all $v \in C_0^{\infty}(U(x^0))$ and all $0 < \delta \le \delta_0$

$$|(P_{A_{5}}(x, D)v, v)| \ge C_{1} ||D_{x}, v||^{2} - C_{2} ||v||^{2}.$$

Here (\cdot, \cdot) is the inner product of the space $L^2(\mathbb{R}^n)$ and $D_{x_1}=1/\sqrt{-1}\,\partial/\partial x_1$. Then the operator P(x, D) is hypoelliptic in \mathbb{R}^n .

PROOF. First we recall the Poincaré inequality:

LEMMA 1.3. Let Ω be an open subset of \mathbb{R}^n such that each line parallel to some line meets Ω in a set of width at most L. Then we have for all $u \in H_0^1(\Omega)$

$$||u|| \le L \Big(\sum_{j=1}^n ||D_{x_j}u||^2 \Big)^{1/2}.$$

Here $H_0^1(\Omega)$ is the closure of $C_0^{\infty}(\Omega)$ in the Sobolev space $H^1(\Omega)$.

Now, without loss of generality, one may assume that

$$x^0 = (0, 0),$$

$$U(x^0) = \{x = (x'', x''') \in \mathbf{R}^n; |x''| < 1, |x'''| < 1\}.$$

We choose a function $\phi(t)$ in $C_0^{\infty}(\mathbf{R})$ such that

$$\left\{ \begin{array}{ll} 0 \leqq \psi(t) \leqq 1 & \text{on } R, \\ \sup \psi \subset \{|t| \leqq 1\}, \\ \psi(t) = 1 & \text{if } |t| \leqq \frac{1}{2}. \end{array} \right.$$

If v is a function in $C_0^{\infty}(U(x^0))$, then it can be decomposed as follows:

$$v = v_1 + v_2 + v_3$$

where

$$v_{1} = \phi\left(\frac{|x''|}{d}\right)\phi(|x'''|)v,$$

$$v_{2} = \left(1 - \phi\left(\frac{|x''|}{d}\right)\right)\phi(|x'''|)v,$$

$$v_{3} = (1 - \phi(|x'''|))v,$$

and d>0 is a small parameter and will be chosen later on.

Then, applying Poincaré's inequality to the function v_1 , we have

$$||v_1|| \le \sqrt{2} d ||D_{x_1} v_1||.$$

But we remark that

$$D_{x_1}v_1(x) = \phi\left(\frac{|x''|}{d}\right)\phi(|x'''|)D_{x_1}v(x) + \frac{1}{d}D_{x_1}\phi\left(\frac{|x''|}{d}\right)\frac{x_1}{|x''|}\phi(|x'''|)v(x),$$

and

$$D_{x_1}\phi\left(\frac{|x''|}{d}\right) = 0 \quad \text{for } |x''| \le \frac{d}{2}.$$

Thus, if we let

$$\psi_d(x) = \left(1 - \psi\left(\frac{3|x''|}{d}\right)\right) \psi\left(\frac{|x'''|}{3}\right),$$

we obtain that

$$\phi_d(x) = 1$$
 on $\sup \left[D_{x_1} \phi \left(\frac{|x''|}{d} \right) \phi(|x'''|) \right]$,

so that

$$D_{x_1} \phi\Big(\frac{|\,x''\,|}{d}\Big) \frac{x_1}{|\,x''\,|} \phi(|\,x'''\,|\,) v(x) = D_{x_1} \phi\Big(\frac{|\,x''\,|}{d}\Big) \frac{x_1}{|\,x''\,|} \phi(|\,x'''\,|\,) \phi_d(x) v(x)\,.$$

Hence we have

$$||D_{x_1}v_1|| \leq ||D_{x_1}v|| + \frac{1}{d} C_d ||\phi_d(x)v||,$$

with

$$C_d = \max \left| D_{x_1} \psi \left(\frac{|x''|}{d} \right) \right|.$$

Therefore, combining inequalities (1.9) and (1.10), we obtain that

$$||v_1|| \le \sqrt{2} d||D_{x,v}|| + \sqrt{2} C_d ||\phi_d(x)v||.$$

Similarly, we have for the function v_2

$$||v_2|| \leq ||\phi_d(x)v||$$
.

In fact, it suffices to note that

$$\psi_d(x) = 1$$
 on $\sup \left[\left(1 - \psi \left(\frac{|x''|}{d} \right) \right) \psi(|x'''|) \right]$.

Hence we have for all $v \in C_0^{\infty}(U(x^0))$

$$\begin{aligned} \|v\|^2 &= \|v_1 + v_2 + v_3\|^2 \\ &\leq 3(\|v_1\|^2 + \|v_2\|^2 + \|v_3\|^2) \\ &\leq 12d^2 \|D_{x,v}\|^2 + C_d'(\|(1 - \psi(\|x'''\|))v\|^2 + \|\psi_d(x)v\|^2), \end{aligned}$$

with a constant $C'_d > 0$.

On the other hand, we have by the Schwarz inequality

$$|(P_{A\delta}(x, D)v, v)| \le 4 \|P_{A\delta}(x, D)v\|^2 + \|v\|^2.$$

Therefore, combining inequalities (1.8), (1.11) and (1.12), we have for all $v \in C_0^{\infty}(U(x^0))$ and all $0 < \delta \le \delta_0$

$$||v|| \le C_d''(||P_{A\delta}(x, D)v|| + ||(1 - \phi(|x'''|))v|| + ||\phi_d(x)v||),$$

if we take

$$0 < d < \frac{\sqrt{C_1}}{2\sqrt{3}\sqrt{C_2+1}}$$
.

Thus Corollary 1.2 follows from an application of Theorem 1.1.

2. Proof of Theorem 1.

Our proof of Theorem 1 is based on Corollary 1.2.

1) First we give a version of the criterion in Corollary 1.2 adapted to the present context.

Let $x^0 = (x_1^0, x_2^0, \dots, x_n^0)$ be a point of a closed subset S of the hypersurface $\{x = (x_1, x') \in \mathbb{R}^n ; x_1 = 0\}$, where $x' = (x_2, \dots, x_n)$. Without loss of generality, one may assume that

$$x^0 = (0, 0)$$
.

Let $\lambda(\xi)$ be a real-valued symbol in the class $S_{1,0}^1(\mathbf{R}^n \times \mathbf{R}^n)$ such that

$$\lambda(\xi) = \begin{cases} \langle \xi' \rangle & \text{if } |\xi'| \ge \frac{1}{2} |\xi| & \text{and } |\xi| \ge 4, \\ \\ \frac{1}{4} \langle \xi \rangle & \text{if } |\xi'| \le \frac{1}{4} |\xi| & \text{and } |\xi| \ge 4, \end{cases}$$

and that

$$\frac{1}{4}\langle \xi \rangle \leqq \lambda(\xi) \leqq \langle \xi \rangle, \quad \lambda(\xi) \geqq 1 \, .$$

If $0 \le \delta \le 1$, $a \ge 0$, $N \ge 0$ and $s \in \mathbb{R}$, we let

$$\Lambda_{\delta}(x', \xi) = \Lambda_{\delta}(x', \xi; a, N, s)$$

$$= (-s + a |x'|^2) \log \lambda(\xi) + N \log (1 + \delta \lambda(\xi)),$$

and

$$P_{A\delta}(x, D) = e^{-A\delta}(x', D)P(x, D)e^{A\delta}(x', D)$$

where $e^{\pm A_{\delta}(x', D)}$ are properly supported pseudodifferential operators with symbols $e^{\pm A_{\delta}(x', \xi)}$, respectively:

$$\begin{split} e^{\varLambda_{\delta}(x',\,\xi)} &= \lambda(\xi)^{(-s+a+x'+2)} (1+\delta\lambda(\xi))^N, \\ e^{-\varLambda_{\delta}(x',\,\xi)} &= \lambda(\xi)^{(s-a+x'+2)} (1+\delta\lambda(\xi))^{-N}. \end{split}$$

By virtue of Corollary 1.2, in order to prove the hypoellipticity for the operator P(x,D), it suffices to show that there exists an open neighborhood $U_{\varepsilon_0} = \{x = (x_1, x') \in \mathbb{R}^n \; ; \; |x_1| < \varepsilon_0, \; |x'| < 1\}$ of $x^0 = (0,0)$ such that we have for all $v \in C_0^{\infty}(U_{\varepsilon_0})$ and all $0 < \delta \le 1$

(2.1)
$$\operatorname{Re}(P_{A_{\delta}}(x, D)v, v) \ge C_1 \|D_{x_1}v\|^2 - C_2 \|v\|^2,$$

with constants $C_1>0$ and $C_2>0$ independent of δ .

2) In the proof of inequality (2.1), we make good use of the following Fefferman-Phong inequality (cf. [FP, Theorem]; [Hr2, Corollary 18.6.11]):

THEOREM 2.1. If $p(x', \xi')$ is a symbol in the class $S_{1,0}^2(\mathbf{R}^{n-1} \times \mathbf{R}^{n-1})$ such that $p(x', \xi') \ge 0$ on $\mathbf{R}^{n-1} \times \mathbf{R}^{n-1}$, then we have for all $v \in C_0^\infty(\mathbf{R}^{n-1})$

$$\operatorname{Re}(p(x', D')v, v) \ge -C\|v\|^2$$

Here the constant C may be chosen uniformly in the $p(x', \xi')$ in a bounded subset of $S_{1,0}^2(\mathbb{R}^{n-1}\times\mathbb{R}^{n-1})$.

COROLLARY 2.2. Let $p(x_1, x', \xi')$ be a symbol in the class $S_{1,0}^2(\mathbb{R}^{n-1} \times \mathbb{R}^{n-1})$ such that $p(x_1, x', \xi') \ge 0$ on $\mathbb{R}^{n-1} \times \mathbb{R}^{n-1}$, where the variable x_1 is considered as a

parameter. If the family $\{p(x_1, x', \xi')\}_{x_1 \in \mathbb{R}}$ forms a bounded subset of $S^2_{1, 0}(\mathbb{R}^{n-1} \times \mathbb{R}^{n-1})$, then we have for all $u \in C^{\infty}_0(\mathbb{R}^n)$

(2.2)
$$\operatorname{Re}(p(x_1, x', D')u, u) \ge -C \|u\|^2.$$

Here the constant C may be chosen uniformly in the $p(x_1, x', \xi')$.

PROOF. If we apply Theorem 2.1 to the functions $u(x_1, \cdot) \in C_0^{\infty}(\mathbb{R}^{n-1})(x_1 \in \mathbb{R})$, we obtain that

$$\operatorname{Re} \int_{\mathbb{R}^{n-1}} p(x_1, x', D') u(x_1, x') \cdot u(x_1, x') dx' \ge -C \int_{\mathbb{R}^{n-1}} |u(x_1, x')|^2 dx'.$$

Hence inequality (2.2) follows by integrating the both sides with respect to x_1 .

3) In order to calculate the symbol of the operator $P_{\Lambda_{\overline{\delta}}}(x, D)$, we remark that the operator P(x, D) is micro-elliptic outside a conic neighborhood of a point $(x^0, \xi^0) = (x^0, 0, \xi_2^0, \dots, \xi_n^0)$ in the bundle $T^*(\mathbf{R}^n) \setminus 0$ of non-zero cotangent vectors. Here a conic subset \mathcal{C} of $T^*(\mathbf{R}^n)$ is such a set that $(x, \xi) \in \mathcal{C}$ implies $(x, r\xi) \in \mathcal{C}$ for all r > 0. Hence, without loss of generality, one may assume that

$$4 \le |\xi| \le 2|\xi'|, \quad \xi = (\xi_1, \xi'),$$

and that

$$\begin{cases} \lambda(\xi) = (1+|\xi'|^2)^{1/2} = \langle \xi' \rangle, \\ \Lambda_{\delta}(x', \xi) = \Lambda_{\delta}(x', \xi') = (-s+a|x'|^2) \log \langle \xi' \rangle + N \log (1+\delta \langle \xi' \rangle). \end{cases}$$

Then, for the derivatives of the symbol $\Lambda_{\delta}(x', \xi')$, we have the following:

$$\begin{split} & \varLambda_{\delta x_{j}}(x',\,\xi') = 2ax_{j}\log\langle\xi'\rangle, \qquad 2 \leq j \leq n\,, \\ & \varLambda_{\delta x_{j}x_{k}}(x',\,\xi') = 2a\delta_{jk}\log\langle\xi'\rangle, \qquad 2 \leq j,\,\,k \leq n\,, \\ & \varLambda_{\delta \xi_{j}}(x',\,\xi') = \left\{ \left[(-s + a\,|\,x'\,|^{2}) + N\frac{\delta\langle\xi'\rangle}{1 + \delta\langle\xi'\rangle} \right] \frac{\xi_{j}}{\langle\xi'\rangle} \right\} \frac{1}{\langle\xi'\rangle}, \quad 2 \leq j \leq n\,, \\ & \varLambda_{\delta \xi_{j}\xi_{k}}(x',\,\xi') = \left\{ \left[(-s + a\,|\,x'\,|^{2}) + N\frac{\delta\langle\xi'\rangle}{1 + \delta\langle\xi'\rangle} \right] \left(\delta_{jk} - \frac{\xi_{j}}{\langle\xi'\rangle} \frac{\xi_{k}}{\langle\xi'\rangle} \right) \right. \\ & \left. - N\frac{\delta\langle\xi'\rangle}{1 + \delta\langle\xi'\rangle} \frac{\delta\langle\xi'\rangle}{1 + \delta\langle\xi'\rangle} \frac{\xi_{j}}{\langle\xi'\rangle} \frac{\xi_{k}}{\langle\xi'\rangle} \right\} \frac{1}{\langle\xi'\rangle^{2}}, \quad 2 \leq j,\,\,k \leq n\,. \end{split}$$

Here and in the following, for the derivatives of a symbol $p(x, \xi)$, we use the shorthand

$$p_{x_i} = p_{x_i}(x, \xi) = \frac{\partial p}{\partial x_i}(x, \xi),$$

$$p_{\xi_i} = p_{\xi_i}(x, \, \xi) = \frac{\partial p}{\partial \xi_i}(x, \, \xi).$$

But, since $|\xi'| \leq |\xi| \leq 2|\xi'|$ in a conic neighborhood of $\xi^0 = (0, \xi_2^0, \dots, \xi_n^0)$, it follows that

$$egin{aligned} & A_{\delta x_j}(x',oldsymbol{\xi}') \in \bigcap_{
ho>0} S_{1,\,0}^
ho(oldsymbol{R}^n imes oldsymbol{R}^n), \qquad 2 \leq j \leq n \,, \ & A_{\delta x_j x_k}(x',oldsymbol{\xi}') \in \bigcap_{
ho>0} S_{1,\,0}^
ho(oldsymbol{R}^n imes oldsymbol{R}^n), \qquad 2 \leq j, \, k \leq n \,, \ & A_{\delta \xi_j(oldsymbol{\xi}_j)}(x',oldsymbol{\xi}') \in S_{1,\,0}^{-1}(oldsymbol{R}^n imes oldsymbol{R}^n), \qquad 2 \leq j \leq n \,, \ & A_{\delta \xi_j(oldsymbol{\xi}_k)}(x',oldsymbol{\xi}') \in S_{1,\,0}^{-2}(oldsymbol{R}^n imes oldsymbol{R}^n), \qquad 2 \leq j, \, k \leq n \,. \end{aligned}$$

Therefore, we find that the symbol $P_{\Lambda_{\delta}}(x, \xi)$ of $P_{\Lambda_{\delta}}(x, D)$ is given by the following (cf. [KW, Section 5]):

$$\begin{split} P_{\Lambda_{\bar{\delta}}}(x,\,\xi) &\equiv (1 + q_{\bar{\delta}}(x',\,\xi)) \bigg[\, p(x,\,\xi) + \sqrt{-1} \, \sum_{j=2}^n (\,p_{\xi_j} \Lambda_{\delta x_j} - \,p_{x_j} \Lambda_{\delta \xi_j}) \\ &\quad - \frac{1}{2} \, \sum_{j,\,k=2}^n p_{\xi_j \xi_k} \Lambda_{\delta x_j} \Lambda_{\delta x_k} + \sum_{j,\,k=2}^n p_{\xi_j x_k} \Lambda_{\delta x_j} \Lambda_{\delta \xi_k} \\ &\quad + \frac{1}{2} \, \sum_{j,\,k=2}^n p_{\xi_j \xi_k} \Lambda_{\delta x_j x_k} \\ &\quad + \sum_{j,\,k=2}^n p_{\xi_j} \Lambda_{\delta \xi_k} \Lambda_{\delta x_j x_k} + \sum_{j,\,k=2}^n p_{x_j} \Lambda_{\delta x_k} \Lambda_{\delta \xi_j \xi_k} \bigg] \\ &\quad \mod S_{1,\,0}^0(\pmb{R}^n \times \pmb{R}^n) \,. \end{split}$$

Here $p(x, \xi)$ is a symbol in the class $S_{1,0}^2(\mathbf{R}^n \times \mathbf{R}^n)$ given by

$$p(x, \xi) = \xi_1^2 + \sum_{i,j=2}^n a^{ij}(x)\xi_i\xi_j - \sqrt{-1} \sum_{i=1}^n \left(b^i(x) + \sum_{j=1}^n \frac{\partial a^{ij}}{\partial x_j}(x) \right) \xi_i - c(x),$$

and $q_{\delta}(x', \xi) = q_{\delta}(x', \xi; a, N, s)$ is a symbol in the class $\bigcap_{\rho > 0} S_{1,0}^{-1+\rho}(\mathbf{R}^n \times \mathbf{R}^n)$ given by

$$q_{\delta}(x', \xi) = \sqrt{-1} \sum_{j=2}^{n} \Lambda_{\delta \xi_{j}} \Lambda_{\delta x_{j}} + \frac{1}{2} \sum_{j,k=2}^{n} (\Lambda_{\delta \xi_{j} \xi_{k}} + \Lambda_{\delta \xi_{j}} \Lambda_{\delta \xi_{k}}) (\Lambda_{\delta x_{j} x_{k}} - \Lambda_{\delta x_{j}} \Lambda_{\delta x_{k}}).$$

But, since we have for $|\xi|$ sufficiently large (uniformly in $\delta > 0$)

$$\frac{1}{2} \leq |1+q_{\delta}(x',\,\xi)| \leq 2,$$

one can find an elliptic symbol $r_{\delta}(x', \xi) = r_{\delta}(x', \xi; a, N, s)$ in the class $S_{1,0}^{0}(\mathbb{R}^{n} \times \mathbb{R}^{n})$ such that we have for $|\xi|$ sufficiently large (uniformly in $\delta > 0$)

$$r_{\delta}(x', \xi)(1+q_{\delta}(x', \xi))=1$$
.

We let

(2.3)
$$\widetilde{P}_{\Lambda_{\delta}}(x, D) = r_{\delta}(x', D) P_{\Lambda_{\delta}}(x, D),$$

where $r_{\delta}(x', D)$ is a properly supported, *elliptic* pseudodifferential operator with symbol $r_{\delta}(x', \xi)$ such that we have for $|\xi|$ sufficiently large (uniformly in $\delta > 0$)

$$\frac{1}{2} \leq |r_{\delta}(x', \xi)| \leq 2.$$

Then we have by a direct calculation

$$(2.4) \qquad \tilde{P}_{A_{\tilde{\delta}}}(x,\,\xi) \equiv \xi_{1}^{2} + \alpha(x,\,\xi') + \sum_{j=2}^{n} b^{j}(x) A_{\delta x_{j}} - \frac{1}{2} \sum_{j,\,k=2}^{n} \alpha_{\xi_{j}\xi_{k}} A_{\delta x_{j}} A_{\delta x_{k}}$$

$$+ \sum_{j,\,k=2}^{n} \alpha_{\xi_{j}x_{k}} A_{\delta x_{j}} A_{\delta \xi_{k}} + \frac{1}{2} \sum_{j,\,k=2}^{n} \alpha_{\xi_{j}\xi_{k}} A_{\delta x_{j}x_{k}}$$

$$+ \sum_{j,\,k=2}^{n} \alpha_{\xi_{j}} A_{\delta \xi_{k}} A_{\delta x_{j}x_{k}} + \sum_{j,\,k=2}^{n} \alpha_{x_{j}} A_{\delta x_{k}} A_{\delta \xi_{j}\xi_{k}}$$

$$+ \sqrt{-1} \left[- \sum_{k=1}^{n} b^{k}(x) \xi_{k} + \sum_{j=2}^{n} \alpha_{\xi_{j}} A_{\delta x_{j}} - \sum_{j=2}^{n} \alpha_{x_{j}} A_{\delta \xi_{j}} \right]$$

$$\mod S_{1,\,0}^{0}(\mathbf{R}^{n} \times \mathbf{R}^{n}),$$

where

$$\alpha(x, \xi') = \sum_{i,j=2}^{n} a^{ij}(x) \xi_i \xi_j.$$

In order to estimate the terms $\alpha_{\xi_j} \Lambda_{\delta \xi_k} \Lambda_{\delta x_j x_k}$ and $\alpha_{x_j} \Lambda_{\delta x_k} \Lambda_{\delta \xi_j \xi_k}$ in formula (2.4), we need the following:

LEMMA 2.3. Let $d(x, \xi)$ and $e(x, \xi)$ be symbols in the classes $S_{1,0}^{-1+\rho}(\mathbf{R}^n \times \mathbf{R}^n)$ and $S_{1,0}^{-2+\rho}(\mathbf{R}^n \times \mathbf{R}^n)$ for some $0 < \rho < 1$, respectively. Then, for every $\varepsilon > 0$, one can find constants $C_{\varepsilon} > 0$ and $C'_{\varepsilon} > 0$ such that

$$(2.5) |\alpha_{\varepsilon,\epsilon}(x,\xi')d(x,\xi)| \leq \varepsilon \alpha(x,\xi') + C_{\varepsilon} on T^*(\mathbf{R}^n),$$

$$(2.6) |\alpha_{x_i}(x, \xi')e(x, \xi)| \leq \varepsilon \alpha(x, \xi') + C'_{\varepsilon} \text{ on } T^*(\mathbf{R}^n).$$

PROOF. Since $\alpha(x, \xi') \ge 0$ on $T^*(\mathbb{R}^n)$, it follows from an application of Lemma 1.7.1 of Olejnik-Radkevič $[\mathbf{OR}]$ that

$$(2.7) |\alpha_{\varepsilon}(x,\xi')|^2 \leq a^{jj}(x)\alpha(x,\xi') \text{on } T^*(\mathbf{R}^n),$$

$$(2.8) |\alpha_{x_j}(x, \xi')|^2 \leq 2 \Big(\sup_{\substack{x \in \mathbb{R}^n \\ 2 \leq 1, m \leq n}} |\alpha_{x_l x_m}(x, \xi')| \Big) \alpha(x, \xi') \text{ on } T^*(\mathbb{R}^n).$$

Thus, using the Schwarz inequality, we obtain from inequality (2.7) that for every $\varepsilon > 0$

$$|\alpha_{\xi_j}(x, \xi')d(x, \xi)| \leq \varepsilon \alpha(x, \xi') + \frac{1}{4\varepsilon} a^{jj}(x)d(x, \xi)^2$$
 on $T^*(\mathbf{R}^n)$.

This proves estimate (2.5), since $d(x, \xi)^2$ belongs to the class $S_{1,0}^{-2+2\rho}(\mathbb{R}^n \times \mathbb{R}^n)$ for some $0 < \rho < 1$.

Similarly, estimate (2.6) can be proved by using inequality (2.8).

Now we recall that for all $\xi = (\xi_1, \xi')$ in a conic neighborhood of $\xi^0 = (0, \xi^{0'})$

$$|\xi'| \leq |\xi| \leq 2|\xi'|$$
,

and hence that

$$\Lambda_{\delta \hat{\boldsymbol{\varepsilon}}_{k}}(\boldsymbol{x}', \boldsymbol{\xi}') \Lambda_{\delta x_{j} x_{k}}(\boldsymbol{x}', \boldsymbol{\xi}') \in \bigcap_{\rho > 0} S_{1, 0}^{-1+\rho}(\boldsymbol{R}^{n} \times \boldsymbol{R}^{n}), \qquad 2 \leq j, \ k \leq n,
\Lambda_{\delta x_{k}}(\boldsymbol{x}', \boldsymbol{\xi}') \Lambda_{\delta \hat{\boldsymbol{\varepsilon}}_{k} \hat{\boldsymbol{\varepsilon}}_{k}}(\boldsymbol{x}', \boldsymbol{\xi}') \in \bigcap_{\rho > 0} S_{1, 0}^{-2+\rho}(\boldsymbol{R}^{n} \times \boldsymbol{R}^{n}), \qquad 2 \leq j, \ k \leq n.$$

Therefore, applying Lemma 2.3 to the terms $\alpha_{\xi_j} \Lambda_{\delta \xi_k} \Lambda_{\delta x_j x_k}$ and $\alpha_{x_j} \Lambda_{\delta x_k} \Lambda_{\delta \xi_j \xi_k}$, we have for every $\varepsilon > 0$

$$\begin{split} &\alpha_{\xi_j}(x,\,\xi') \varLambda_{\delta\xi_k}(x',\,\xi') \varLambda_{\delta x_j x_k}(x',\,\xi') \geqq - \varepsilon \alpha(x,\,\xi') \mod S^0_{1,\,0}(\boldsymbol{R}^n \times \boldsymbol{R}^n)\,, \\ &\alpha_{x,i}(x,\,\xi') \varLambda_{\delta x_k}(x',\,\xi') \varLambda_{\delta\xi,i\xi_k}(x',\,\xi') \geqq - \varepsilon \alpha(x,\,\xi') \mod S^0_{1,\,0}(\boldsymbol{R}^n \times \boldsymbol{R}^n)\,. \end{split}$$

On the other hand, by virtue of conditions (B) and (A.1), we can estimate the terms $b^j \Lambda_{\delta x_j}$ and $\alpha_{\xi_j x_k} \Lambda_{\delta x_j} \Lambda_{\delta \xi_k}$ in formula (2.4) as follows:

$$b^{j}(x) \Lambda_{\delta x_{j}}(x', \xi') \geq -\varepsilon \alpha(x, \xi') \mod S^{0}_{1, 0}(\mathbf{R}^{n} \times \mathbf{R}^{n}).$$

$$\alpha_{\xi_{j}x_{b}}(x, \xi') \Lambda_{\delta x_{j}}(x', \xi') \Lambda_{\delta \xi_{b}}(x', \xi') \geq -\varepsilon \alpha(x, \xi') \mod S^{0}_{1, 0}(\mathbf{R}^{n} \times \mathbf{R}^{n}).$$

Summing up, we obtain from formula (2.4) that in a conic neighborhood of (x^0, ξ^0)

$$\operatorname{Re} \widetilde{P}_{A_{\delta}}(x, \, \xi) \geq \xi_{1}^{2} + \frac{1}{2} \alpha(x, \, \xi') - C\left(\sum_{j, \, k=2}^{n} |a^{jk}(x)|\right) (\log\langle \xi' \rangle)^{2}$$

$$\operatorname{mod} S_{1, \, 0}^{0}(\boldsymbol{R}^{n} \times \boldsymbol{R}^{n}),$$

where C>0 is a constant independent of δ . But we remark that

$$|a^{jk}(x)| \le \sqrt{a^{jj}(x)a^{kk}(x)} \le \frac{1}{2}(a^{jj}(x) + a^{kk}(x)).$$

Hence we have in a conic neighborhood of (x^0, ξ^0)

(2.9)
$$\operatorname{Re} \widetilde{P}_{\Lambda_{\delta}}(x, \, \xi) \geq \xi_{1}^{2} + \frac{1}{2} \alpha(x, \, \xi') - 2C \left(\sum_{j=2}^{n} a^{jj}(x) \right) (\log \langle \xi' \rangle)^{2}$$
$$= \frac{1}{2} \xi_{1}^{2} + \left[\frac{1}{2} \xi_{1}^{2} + \frac{1}{2} \alpha(x, \, \xi') - 2C \lambda(x) (\log \langle \xi' \rangle)^{2} \right]$$
$$\operatorname{mod} S_{1,0}^{0}(\mathbf{R}^{n} \times \mathbf{R}^{n}),$$

where

$$\lambda(x) = \sum_{j=2}^{n} a^{jj}(x).$$

4) The next lemma allows us to replace the symbol $(1/2)\xi_1^2$ in the bracket in formula (2.9) by a symbol of a pseudodifferential operator on \mathbb{R}^{n-1} :

LEMMA 2.4. Let F(x) be a non-negative C^{∞} function on \mathbb{R}^n and l a positive integer. If $a(x_1, x', D')$ is a properly supported, pseudodifferential operator on \mathbb{R}^{n-1} with symbol

$$a(x_1, x', \xi') = F(x_1, x')(\log\langle \xi' \rangle)^l$$

where the variable x_1 is considered as a parameter, we define a formally self-adjoint operator $\mathcal{A}(x_1, x', D')$ by the formula

$$\mathcal{A}(x_1, x', D') = \frac{1}{2} [a(x_1, x', D') + a(x_1, x', D')^*].$$

Then we have for all $u \in C_0^{\infty}(\mathbb{R}^n)$

$$(D_x^2, u, u) \ge ((\mathcal{A}_x, (x, D') - \mathcal{A}(x, D')^2)u, u).$$

Here $\mathcal{A}_{x_1}(x, D') = \partial \mathcal{A}(x, D')/\partial x_1$.

PROOF. Since $A^* = A$, it follows that

$$\begin{split} (D^2_{x_1}u,\ u) &= ((D_{x_1} + \sqrt{-1}\mathcal{A}(x,\ D'))(D_{x_1} - \sqrt{-1}\mathcal{A}(x,\ D'))u,\ u) \\ &+ ((\mathcal{A}_{x_1}(x,\ D') - \mathcal{A}(x,\ D')^2)u,\ u) \\ &= \|(D_{x_1} - \sqrt{-1}\mathcal{A}(x,\ D'))u\|^2 + ((\mathcal{A}_{x_1}(x,\ D') - \mathcal{A}(x,\ D')^2)u,\ u) \\ &\geqq ((\mathcal{A}_{x_1}(x,\ D') - \mathcal{A}(x,\ D')^2)u,\ u) \,. \end{split}$$

This proves the lemma.

Lemma 2.4 tells us that the differential operator $D_{x_1}^2$ can be estimated from below by the pseudodifferential operator $\mathcal{A}_{x_1}(x, D') - \mathcal{A}(x, D')^2$ on \mathbf{R}^{n-1} in the sense of the inner product of $L^2(\mathbf{R}^n)$. In terms of symbols, one may estimate the symbol ξ_1^2 as follows:

$$\begin{split} \xi_1^2 & \geq F_{x_1}(x_1, \ x') \, (\log \langle \xi' \rangle)^l - F(x_1, \ x')^2 (\log \langle \xi' \rangle)^{2l} \\ & \mod S_{1, \, 0}^0(\pmb{R}^{n-1} \times \pmb{R}^{n-1}) \, . \end{split}$$

This trick is due to Wakabayashi.

5) Now, applying Lemma 2.4 with

$$a(x_1, x', \xi') = 2(2C+1) \left(\int_0^{x_1} \lambda(t, x') dt \right) (\log \langle \xi' \rangle)^2$$

we find that the symbol $(1/2)\xi_1^2$ may be replaced by the following:

$$(2C+1)\lambda(x_1, x')(\log\langle\xi'\rangle)^2-2(2C+1)^2\tilde{\lambda}(x_1, x')^2(\log\langle\xi'\rangle)^4$$

where

$$\tilde{\lambda}(x_1, x') = \int_0^{x_1} \lambda(t, x') dt.$$

In view of formula (2.9), this proves that in a conic neighborhood of (x^0, ξ^0)

$$\begin{split} \operatorname{Re} \, \widetilde{P}_{A_{\delta}}(x,\,\boldsymbol{\xi}) & \geq \frac{1}{2}\,\boldsymbol{\xi}_{1}^{2} + \left[\frac{1}{2}\,\boldsymbol{\xi}_{1}^{2} + \frac{1}{2}\,\boldsymbol{\alpha}(x_{1},\,x',\,\boldsymbol{\xi}') - 2C\boldsymbol{\lambda}(x_{1},\,x')(\log\langle\boldsymbol{\xi}'\rangle)^{2}\right] \\ & \geq \frac{1}{2}\,\boldsymbol{\xi}_{1}^{2} + \boldsymbol{\pi}(x_{1},\,x',\,\boldsymbol{\xi}') \mod S_{1,\,\mathbf{0}}^{0}(\boldsymbol{R}^{n-1} \times \boldsymbol{R}^{n-1})\,, \end{split}$$

where $\pi(x_1, x', \xi')$ is a symbol in the class $S_{1,0}^2(\mathbb{R}^{n-1} \times \mathbb{R}^{n-1})$ given by the following formula:

$$\pi(x_1, x', \xi') = \frac{1}{2} \alpha(x_1, x', \xi') + \lambda(x_1, x') (\log \langle \xi' \rangle)^2$$
$$-2(2C+1)^2 \tilde{\lambda}(x_1, x')^2 (\log \langle \xi' \rangle)^4.$$

Thus we are reduced to the *positivity* of the symbol $\pi(x_1, x', \xi')$.

(a) First, if we have

$$\lambda(x_1, x')(\log\langle\xi'\rangle)^2 - 2(2C+1)^2\tilde{\lambda}(x_1, x')^2(\log\langle\xi'\rangle)^4 \ge 0$$
,

then it follows that

$$\pi(x_1, x', \xi') \geq 0$$
.

(b) Next we assume that

$$\lambda(x, x')(\log\langle \xi' \rangle)^2 - 2(2C+1)^2 \tilde{\lambda}(x_1, x')^2 (\log\langle \xi' \rangle)^4 \leq 0$$

that is,

(2.10)
$$\log\langle \xi' \rangle \ge \frac{\sqrt{\lambda(x_1, x')}}{\sqrt{2} (2C+1) |\hat{\lambda}(x_1, x')|}.$$

Then we shall show that condition (0.1) implies that in a conic neighborhood of (x^0, ξ^0)

(2.11)
$$\frac{1}{2}\alpha(x_1, x', \xi') \ge 2(2C+1)^2 \tilde{\lambda}(x_1, x')^2 (\log\langle\xi'\rangle)^4,$$

which proves that

$$\pi(x_1, x', \xi') \geq 0$$
.

By condition (A.2), it follows that

$$\alpha(x_1, x', \xi') \ge \mu(x_1, x') |\xi'|^2$$
 on $T^*(\mathbf{R}^{n-1})$.

Thus it suffices to show that

(2.12)
$$\mu(x_1, x') |\xi'|^2 \ge 4(2C+1)^2 \tilde{\lambda}(x_1, x')^2 (\log \langle \xi' \rangle)^4.$$

If we take the logarithm of the both sides, we obtain that

$$\log \mu(x_1, x') + 2\log |\xi'| \ge \log [4(2C+1)^2] + 2\log |\tilde{\lambda}(x_1, x')| + 4\log(\log \langle \xi' \rangle).$$

This condition is satisfied if we have for $|\xi'|$ sufficiently large

$$(2.12') \qquad \log \mu(x_1, x') + \log \langle \xi' \rangle \ge 2\log |\tilde{\lambda}(x_1, x')|.$$

Therefore, combining inequalities (2.10) and (2.12'), we obtain that condition (2.11) is satisfied if we have for $|x_1|$ sufficiently small

$$\log \mu(x_1, x') + \frac{\sqrt{\lambda(x_1, x')}}{\sqrt{2(2C+1)|\tilde{\lambda}(x_1, x')|}} \ge 0,$$

since $\log |\tilde{\lambda}(x_1, x')| < 0$ for $|x_1|$ sufficiently small.

Summing up, we have proved that if the condition

(0.1)
$$\lim_{x_1 \to 0} \frac{\tilde{\lambda}(x_1, x') \log \mu(x_1, x')}{\sqrt{\lambda(x_1, x')}} = 0$$

is satisfied, then we have

$$\operatorname{Re} \, \widetilde{P}_{A_{\delta}}(x, \, \xi) \geq \frac{1}{2} \, \xi_{1}^{2} + \pi(x_{1}, \, x', \, \xi') \mod S_{1, \, 0}^{0}(\boldsymbol{R}^{n-1} \times \boldsymbol{R}^{n-1}) \,,$$

and further the symbol $\pi(x_1, x', \xi')$ is non-negative and forms a bounded subset of the class $S_{1,0}^2(\mathbb{R}^{n-1}\times\mathbb{R}^{n-1})$ for $|x_1|\leq \varepsilon_0$ if $\varepsilon_0>0$ is sufficiently small.

6) Therefore, applying Corollary 2.2 to the operator $\pi(x_1, x', D')$, we obtain that if $\varepsilon_0 > 0$ is sufficiently small, then we have for all $v \in C_0^{\infty}(U_{\varepsilon_0})$ and all $0 < \delta \le 1$

$$\operatorname{Re}(\widetilde{P}_{A_{\delta}}(x, D)v, v) \ge \frac{1}{2} \|D_{x_1}v\|^2 - \widetilde{C}\|v\|^2,$$

with a constant $\tilde{C}>0$ independent of δ . Hence, in view of formula (2.3), this proves inequality (2.1).

The proof of Theorem 1 is now complete.

3. Proof of Theorem 2.

The proof of Theorem 2 is essentially the same as that of Theorem 1.

1) Let $x^0 = (x_1^0, x_2^0, \dots, x_n^0)$ be a point of a closed subset S of the hypersurface $\{x = (x_1, x') \in \mathbb{R}^n ; x_1 = 0\}$, where $x' = (x_2, \dots, x_n)$. Without loss of generality, one may assume that

$$x^0 = (0, 0)$$
.

If $0 \le \delta \le 1$, $a \ge 0$, $N \ge 0$ and $s \in \mathbb{R}$, we let

$$\Lambda_{\delta}(x', \xi) = \Lambda_{\delta}(x', \xi; a, N, s)$$

$$= (-s + a |x'|^2) \log \lambda(\xi) + N \log(1 + \delta \lambda(\xi)),$$

and

$$Q_{\Lambda\delta}(x, D) = e^{-\Lambda\delta}(x', D)Q(x, D)e^{\Lambda\delta}(x', D)$$
,

where $e^{\pm A_{\delta}}(x', D)$ are properly supported pseudodifferential operators with symbols $e^{\pm A_{\delta}(x', \xi)}$, respectively:

$$\begin{split} e^{\varLambda_{\delta}(x',\,\xi)} &= \lambda(\xi)^{(-s+a_{\parallel}x'\parallel^2)} (1+\delta\lambda(\xi))^N \,, \\ e^{-\varLambda_{\delta}(x',\,\xi)} &= \lambda(\xi)^{(s-a_{\parallel}x'\parallel^2)} (1+\delta\lambda(\xi))^{-N} \,. \end{split}$$

By virtue of Corollary 1.2, it suffices to show that there exists an open neighborhood $U_{\varepsilon_0} = \{x = (x_1, x') \in \mathbb{R}^n \; ; \; |x_1| < \varepsilon_0, \; |x'| < 1\}$ of $x^0 = (0, 0)$ such that we have for all $v \in C_0^{\infty}(U_{\varepsilon_0})$ and all $0 < \delta \le 1$

$$|(Q_{A_{s}}(x, D)v, v)| \ge C_{1} ||D_{x}, v||^{2} - C_{2} ||v||^{2},$$

with constants $C_1>0$ and $C_2>0$ independent of δ .

2) Since the operator Q(x, D) is *micro-elliptic* outside a conic neighborhood of a point $(x^0, \xi^0) = (x^0, 0, \xi_2^0, \dots, \xi_n^0)$ in the bundle $T^*(\mathbf{R}^n) \setminus 0$ of non-zero cotangent vectors, one may assume that

$$4 \le |\xi| \le 2|\xi'|, \quad \xi = (\xi_1, \xi'),$$

and that

$$\left\{ \begin{array}{l} \lambda(\xi) = (1+|\xi'|^2)^{1/2} = \langle \xi' \rangle, \\ \Lambda_{\delta}(x',\,\xi) = \Lambda_{\delta}(x',\,\xi') = (-s+a\,|\,x'\,|^2) \log \langle \xi' \rangle + N \log (1+\delta \langle \xi' \rangle). \end{array} \right.$$

Then, arguing as in the proof of Theorem 1 (cf. formula (2.4)), one can find an elliptic symbol $s_{\delta}(x', \xi) = s_{\delta}(x', \xi; a, N, s)$ in the class $S_{1,0}^{0}(\mathbf{R}^{n} \times \mathbf{R}^{n})$ such that we have for $|\xi|$ sufficiently large (uniformly in $\delta > 0$)

$$\begin{split} s_{\delta}(x',\,\xi)Q_{\varLambda_{\delta}}(x,\,\xi) &\equiv \xi_{1}^{2} + \alpha(x,\,\xi'') + b^{n}(x)\varLambda_{\delta x_{n}} - \frac{1}{2} \int_{j,\,k=2}^{n-1} \alpha_{\xi_{j}\xi_{k}} \varLambda_{\delta x_{j}} \varLambda_{\delta x_{k}} \\ &+ \sum_{\substack{2 \leq j \leq n-1 \\ 2 \leq k \leq n}} \alpha_{\xi_{j}x_{k}} \varLambda_{\delta x_{j}} \varLambda_{\delta \xi_{k}} + \frac{1}{2} \int_{j,\,k=2}^{n-1} \alpha_{\xi_{j}\xi_{k}} \varLambda_{\delta x_{j}x_{k}} \\ &+ \sum_{\substack{2 \leq j \leq n-1 \\ 2 \leq k \leq n}} \alpha_{\xi_{j}} \varLambda_{\delta \xi_{k}} \varLambda_{\delta x_{j}x_{k}} + \sum_{j,\,k=2}^{n} \alpha_{x_{j}} \varLambda_{\delta x_{k}} \varLambda_{\delta \xi_{j}\xi_{k}} \\ &+ \sqrt{-1} \Big[-b^{n}(x)\xi_{n} + \sum_{j=2}^{n-1} \alpha_{\xi_{j}} \varLambda_{\delta x_{j}} - \sum_{j=2}^{n} \alpha_{x_{j}} \varLambda_{\delta \xi_{j}} \Big] \\ &\mod S_{1,\,0}^{0}(\boldsymbol{R}^{n} \times \boldsymbol{R}^{n}) \,, \end{split}$$

where

$$\alpha(x, \xi'') = \sum_{i,j=2}^{n-1} a^{ij}(x)\xi_i\xi_j, \quad \xi'' = (\xi_2, \dots, \xi_{n-1}).$$

We let

(3.2)
$$\tilde{Q}_{A_{\delta}}(x, D) = s_{\delta}(x', D) Q_{A_{\delta}}(x, D),$$

where $s_{\delta}(x', D)$ is a properly supported, *elliptic* pseudodifferential operator with

symbol $s_{\delta}(x', \xi)$ such that we have for $|\xi|$ sufficiently large (uniformly in $\delta > 0$)

$$\frac{1}{2} \leq |s_{\delta}(x', \xi)| \leq 2.$$

Now we remark that

$$\begin{aligned} |(\tilde{Q}_{A_{\delta}}(x, D)v, v)| &= [(\operatorname{Re}(\tilde{Q}_{A_{\delta}}(x, D)v, v))^{2} + (\operatorname{Im}(\tilde{Q}_{A_{\delta}}(x, D)v, v))^{2}]^{1/2} \\ &\geq \frac{\sqrt{2}}{2} (\operatorname{Re}(\tilde{Q}_{A_{\delta}}(x, D)v, v) + |\operatorname{Im}(\tilde{Q}_{A_{\delta}}(x, D)v, v)|). \end{aligned}$$

First we estimate the term $|\operatorname{Im}(\tilde{Q}_{A_{\delta}}(x,D)v,v)|$. To do so, arguing as in the proof of Lemma 2.3, we have for every $\varepsilon>0$

$$\begin{split} |\alpha_{\xi_j}(x,\,\xi'') \varLambda_{\delta x_j}(x',\,\xi')| & \leq \varepsilon \alpha(x,\,\xi'') + \frac{1}{\varepsilon} \, a^2 x_j^2 a^{jj}(x) (\log \langle \xi' \rangle)^2 \\ & \mod S^0_{1,\,0}(\boldsymbol{R}^n \times \boldsymbol{R}^n) \,, \\ |\alpha_{x,i}(x,\,\xi'') \varLambda_{\delta \xi_i}(x',\,\xi')| & \leq \varepsilon \alpha(x,\,\xi'') \mod S^0_{1,\,0}(\boldsymbol{R}^n \times \boldsymbol{R}^n) \,. \end{split}$$

Here we recall that for all $\xi = (\xi_1, \xi')$ in a conic neighborhood of $\xi^0 = (0, \xi^{0'})$

$$|\xi'| \leq |\xi| \leq 2|\xi'|$$
.

Furthermore, condition (B') implies that the function b^n does not change sign. Hence, for every $\varepsilon > 0$, one can find a constant $C_{\varepsilon} > 0$ such that

$$\begin{split} |\operatorname{Im}(\tilde{Q}_{A_{\tilde{\delta}}}(x,\,D)v,\,v)| & \geqq \operatorname{Re}(|b_n(x)| \langle D_{x_n} \rangle v,\,v) - \varepsilon \operatorname{Re}(\alpha(x,\,D'')v,\,v) \\ & - C_\varepsilon \sum_{j=2}^{n-1} \operatorname{Re}(a^{jj}(x) (\log \langle D' \rangle)^2 v,\,v) \,, \end{split}$$

where $\langle D_{x_n} \rangle$ and $\log \langle D' \rangle$ are pseudodifferential operators with symbols $\langle \xi_n \rangle = (1 + \xi_n^2)^{1/2}$ and $\log ((1 + |\xi'|^2)^{1/2})$, respectively.

Next we estimate the term $\operatorname{Re}(\tilde{Q}_{\Lambda_{\delta}}(x, D)v, v)$. Similarly, applying Lemma 2.3 to the terms $\alpha_{\xi_{i}}\Lambda_{\delta\xi_{k}}\Lambda_{\delta x_{i}x_{k}}$ and $\alpha_{x_{i}}\Lambda_{\delta\xi_{k}}\Lambda_{\delta\xi_{i}\xi_{k}}$, we have for every $\varepsilon > 0$

$$\begin{split} &\alpha_{\xi_j}(x,\,\xi'') \varLambda_{\delta\xi_k}(x',\,\xi') \varLambda_{\delta x_j x_k}(x',\,\xi') \geqq - \varepsilon \alpha(x,\,\xi'') \mod S^0_{1,\,0}(\pmb{R}^n \times \pmb{R}^n)\,, \\ &\alpha_{x_j}(x,\,\xi'') \varLambda_{\delta x_k}(x',\,\xi') \varLambda_{\delta\xi_j\xi_k}(x',\,\xi') \geqq - \varepsilon \alpha(x,\,\xi'') \mod S^0_{1,\,0}(\pmb{R}^n \times \pmb{R}^n)\,. \end{split}$$

Moreover, by virtue of condition (A.1'), we can estimate the terms $\alpha_{\xi_{j}x_{k}}\Lambda_{\delta x_{j}}\Lambda_{\delta \xi_{k}}$ as follows:

$$\alpha_{\xi_j x_k}(x,\,\xi'') \varLambda_{\delta x_j}(x',\,\xi') \varLambda_{\delta \xi_k}(x',\,\xi') \geqq -\varepsilon \alpha(x,\,\xi'') \mod S^0_{1,\,0}(\pmb{R}^n \times \pmb{R}^n) \,.$$

We also have

$$b^n(x) \Lambda_{\delta x_n}(x', \xi') \ge -2a |x_n| |b^n(x)| \log \langle \xi' \rangle \mod S_{1,0}^0(\mathbf{R}^n \times \mathbf{R}^n).$$

Hence, arguing as in the proof of formula (2.9), we obtain that for some constants $C_1>0$ and $C_2>0$ independent of δ

$$\begin{split} \operatorname{Re}(\tilde{Q}_{A\delta}(x,\,D)v,\,v) & \geq (D_{x_1}^2v,\,v) + \frac{3}{4}\operatorname{Re}(\alpha(x,\,D'')v,\,v) \\ & - C_1\operatorname{Re}(|b_n(x)|\log\langle D'\rangle v,\,v) \\ & - C_2\sum_{j=2}^{n-1}\operatorname{Re}(a^{jj}(x)(\log\langle D'\rangle)^2v,\,v) \,. \end{split}$$

Therefore, we can find a second-order pseudodifferential operator $\tilde{R}_{A\delta}(x, D)$ with symbol $\tilde{R}_{A\delta}(x, \xi)$ such that

$$|(\widetilde{Q}_{A_{\delta}}(x, D)v, v)| \ge \frac{\sqrt{2}}{2} \operatorname{Re}(\widetilde{R}_{A_{\delta}}(x, D)v, v),$$

and that in a conic neighborhood of (x^0, ξ^0)

(3.4)
$$\widetilde{R}_{A_{\delta}}(x, \xi) \geq \xi_{1}^{2} + \frac{1}{2} \alpha(x, \xi'') + |b^{n}(x)| \langle \xi_{n} \rangle$$

$$-A|b^{n}(x)| \log \langle \xi' \rangle - B\lambda(x) (\log \langle \xi' \rangle)^{2}$$

$$\mod S_{1,0}^{0}(\mathbf{R}^{n} \times \mathbf{R}^{n}).$$

Here A>0 and B>0 are constants independent of δ , and

$$\lambda(x) = \sum_{j=2}^{n-1} a^{jj}(x).$$

Thus we are reduced to the study of the symbol $\widetilde{R}_{\Lambda_{\delta}}(x, \xi)$.

3-i) Assume that

$$\xi^0 = (0, \xi_2^0, \dots, \xi_{n-1}^0, \xi_n^0)$$
 with $\xi_n^0 \neq 0$.

Then we remark that, for all ξ in a conic neighborhood of ξ^0 , there exists a constant $c_1>0$ such that

$$c_1|\xi'| \leq |\xi_n| \leq |\xi'|, \quad \xi' = (\xi_2, \dots, \xi_{n-1}, \xi_n).$$

Hence, by formula (3.4), we have for $|\xi_n|$ sufficiently large (uniformly in $\delta > 0$)

$$\begin{split} \tilde{R}_{A\delta}(x,\,\xi) &\geq \xi_1^2 + \frac{1}{2}\alpha(x,\,\xi'') + |b^n(x)| \langle \xi_n \rangle \\ &- A \, |b^n(x)| \log \langle \xi_n \rangle - B \lambda(x) (\log \langle \xi_n \rangle)^2 \\ &\geq \frac{1}{2} \, \xi_1^2 + \left[\frac{1}{2} \, \xi_1^2 + \frac{1}{2} \, |b^n(x_1,\,x')| \, |\xi_n| - B \lambda(x_1,\,x') (\log \langle \xi_n \rangle)^2 \right] \\ &\mod S_{1,\,0}^0(\boldsymbol{R}^{n-1} \times \boldsymbol{R}^{n-1}) \,. \end{split}$$

Therefore, arguing as in step 5) of the proof of Theorem 1, we find that if the condition

(0.2a)
$$\lim_{x_1 \to 0} \frac{\tilde{\lambda}(x_1, x') \log |b^n(x_1, x')|}{\sqrt{\lambda(x_1, x')}} = 0$$

is satisfied, then we have in a conic neighborhood of (x^0, ξ^0)

$$\widetilde{R}_{A_{\delta}}(x, \xi) \ge \frac{1}{2} \xi_1^2 + \rho_1(x_1, x', \xi') \mod S_{1, 0}^0(\mathbf{R}^{n-1} \times \mathbf{R}^{n-1}),$$

and the symbol $\rho_1(x_1, x', \xi')$ is non-negative and forms a bounded subset of the class $S^2_{1,0}(\mathbf{R}^{n-1}\times\mathbf{R}^{n-1})$ for $|x_1|\leq \varepsilon_0$ if $\varepsilon_0>0$ is sufficiently small.

3-ii) Assume that

$$\xi^0 = (0, \, \xi^{0}'', \, \xi^0_n)$$
 with $\xi^{0}'' = (\xi^0_2, \, \cdots, \, \xi^0_{n-1}) \neq 0$.

Then we remark that, for all ξ in a conic neighborhood of ξ^0 , there exists a constant $c_2>0$ such that

$$c_2|\xi'| \leq |\xi''| \leq |\xi'|, \quad \xi' = (\xi'', \xi_n).$$

Hence, by formula (3.4), we have in a conic neighborhood of (x^0, ξ^0)

$$(3.5) \qquad \widetilde{R}_{A_{\delta}}(x,\,\xi) \geq \xi_{1}^{2} + \frac{1}{2}\alpha(x,\,\xi'') + |b^{n}(x)| \langle \xi_{n} \rangle - A |b^{n}(x)| \log \langle \xi'' \rangle$$

$$-B\lambda(x)(\log \langle \xi'' \rangle)^{2}$$

$$\geq \frac{1}{2}\xi_{1}^{2} + \left[\frac{1}{2}\xi_{1}^{2} + \frac{1}{2}\alpha(x,\,\xi'') - A |b^{n}(x)| \log \langle \xi'' \rangle - B\lambda(x)(\log \langle \xi'' \rangle)^{2}\right]$$

$$\mod S_{1,0}^{0}(\mathbf{R}^{n} \times \mathbf{R}^{n}).$$

Now, applying Lemma 2.4 with

$$a(x_1, x', \xi'') = 2(A+1) \left(\int_0^{x_1} |b^n(t, x')| dt \right) \log \langle \xi'' \rangle,$$

we find that the symbol $(1/2)\xi_1^2$ in the bracket in formula (3.5) may be replaced by the following:

$$(A+1) b^n(x_1, x') \log(\xi'') - 2(A+1)^2 \tilde{b}^n(x_1, x')^2 (\log(\xi''))^2$$

where

$$\tilde{b}^n(x_1, x') = \int_0^{x_1} |b^n(t, x')| dt.$$

This proves that in a conic neighborhood of (x^0, ξ^0)

$$\begin{split} \tilde{R}_{A_{\delta}}(x,\,\xi) & \geq \frac{1}{2}\,\xi_{1}^{2} + \left[\frac{1}{2}\,\xi_{1}^{2} + \frac{1}{2}\,\alpha(x_{1},\,x',\,\xi'') - A\,|\,b^{n}(x_{1},\,x')\,|\,\log\langle\xi''\rangle\right] \\ & - B\,\lambda(x_{1},\,x')(\log\langle\xi''\rangle)^{2} \bigg] \\ & \geq \frac{1}{2}\,\xi_{1}^{2} + \rho_{2}(x_{1},\,x',\,\xi'') \mod S_{1,\,0}^{0}(\boldsymbol{R}^{n-1}\times\boldsymbol{R}^{n-1})\,, \end{split}$$

where $\rho_2(x_1, x', \xi'')$ is a symbol in the class $S_{1,0}^2(\mathbb{R}^{n-1} \times \mathbb{R}^{n-1})$ given by the follow-

ing formula:

$$\rho_{2}(x_{1}, x', \xi'') = \frac{1}{2}\alpha(x_{1}, x', \xi'') + |b^{n}(x_{1}, x')|\log\langle\xi''\rangle$$
$$-C(\tilde{b}^{n}(x_{1}, x')^{2} + \lambda(x_{1}, x'))(\log\langle\xi''\rangle)^{2},$$

with

$$C = \max(2(A+1)^2, B)$$
.

Thus we are reduced to the *positivity* of the symbol $\rho_2(x_1, x', \xi'')$.

(a) First, if we have

$$|b^n(x_1, x')|\log\langle \xi''\rangle - C(\tilde{b}^n(x_1, x')^2 + \lambda(x_1, x'))(\log\langle \xi''\rangle)^2 \ge 0$$

then it follows that

$$\rho_2(x_1, x', \xi'') \ge 0$$
.

(b) Next we assume that

$$|b^n(x_1, x')|\log\langle \xi''\rangle - C(\tilde{b}^n(x_1, x')^2 + \lambda(x_1, x'))(\log\langle \xi''\rangle)^2 \leq 0$$

that is,

(3.6)
$$\log \langle \xi'' \rangle \ge \frac{|b^n(x_1, x')|}{C(\bar{b}^n(x_1, x')^2 + \lambda(x_1, x'))}.$$

Then we shall show that conditions (0.2b) and (0.2c) imply that in a conic neighborhood of (x^0, ξ^0)

(3.7)
$$\frac{1}{2}\alpha(x_1, x', \xi'') \ge C(\tilde{b}^n(x_1, x')^2 + \lambda(x_1, x'))(\log(\xi'')^2,$$

which proves that

(3.8)
$$\rho_2(x_1, x', \xi'') \geq 0.$$

By condition (A.2'), it follows that

$$\alpha(x_1, x', \xi'') \ge \mu(x_1, x') |\xi''|^2$$
 on $T^*(\mathbf{R}^{n-1})$.

Thus it suffices to show that

(3.9)
$$\mu(x_1, x') |\xi''|^2 \ge 2C(\tilde{b}^n(x_1, x')^2 + \lambda(x_1, x'))(\log(\xi'')^2).$$

If we take the logarithm of the both sides, we obtain that

$$\log \mu(x_1, x') + 2 \log |\xi''| \ge \log 2C + \log(\delta^n(x_1, x')^2 + \lambda(x_1, x')) + 2 \log(\log(\xi'')).$$

This condition is satisfied if we have for $|\xi''|$ sufficiently large

(3.9')
$$\log \mu(x_1, x') + \log \langle \xi'' \rangle \ge \log (\tilde{b}^n(x_1, x')^2 + \lambda(x_1, x')).$$

Thus, combining inequalities (3.6) and (3.9'), we obtain that condition (3.7) is satisfied if we have for $|x_1|$ sufficiently small

$$\log \mu(x_1, x') + \frac{|b^n(x_1, x')|}{C(\tilde{b}^n(x_1, x')^2 + \lambda(x_1, x'))} \ge 0,$$

since $\log(\tilde{b}^n(x_1, x')^2 + \lambda(x_1, x')) < 0$ for $|x_1|$ sufficiently small.

Therefore, we find that the conditions

$$\lim_{x_1 \to 0} \frac{\tilde{b}^n(x_1, x')^2 \log \mu(x_1, x')}{b^n(x_1, x')} = 0,$$

(0.2c)
$$\lim_{x_1 \to 0} \frac{\lambda(x_1, x') \log \mu(x_1, x')}{b^n(x_1, x')} = 0$$

imply the desired condition (3.7) and hence condition (3.8).

Summing up, we have proved that if conditions (0.2a), (0.2b) and (0.2c) are satisfied, then we have

$$\widetilde{R}_{A_{\delta}}(x, \xi) \ge \frac{1}{2} \xi_{1}^{2} + \rho(x_{1}, x', \xi') \mod S_{1, 0}^{0}(\mathbf{R}^{n-1} \times \mathbf{R}^{n-1}),$$

and further the symbol $\rho(x_1, x', \xi')$ is non-negative and forms a bounded subset of the class $S_{1,0}^2(\mathbb{R}^{n-1}\times\mathbb{R}^{n-1})$ for $|x_1| \le \varepsilon_0$ if $\varepsilon_0 > 0$ is sufficiently small.

4) Therefore, applying Corollary 2.2 to the operator $\rho(x_1, x', D')$, we obtain that if $\varepsilon_0 > 0$ is sufficiently small, then we have for all $v \in C_0^{\infty}(U_{\varepsilon_0})$ and all $0 < \delta \le 1$

$$\operatorname{Re}(\widetilde{R}_{A_{\delta}}(x, D)v, v) \ge \frac{1}{2} \|D_{x_{1}}v\|^{2} - \widetilde{C}\|v\|^{2},$$

with a constant $\tilde{C}>0$ independent of δ . In view of inequality (3.3') and formula (3.2), this proves inequality (3.1).

The proof of Theorem 2 is now complete.

References

- [A] K. Amano, The global hypoellipticity of degenerate elliptic-parabolic operators, J. Math. Soc. Japan, 40 (1988), 181-204.
- [F] V.S. Fedii, On a criterion for hypoellipticity, Math. USSR-Sb., 14 (1971), 15-45.
- [FP] C. Fefferman and D. H. Phong, On positivity of pseudo-differential operators, Proc. Nat. Acad. Sci. USA, 75 (1978), 4673-4674.
- [Hr1] L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171.
- [Hr2] L. Hörmander, The analysis of linear partial differential operators III, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1985.
- [Ho1] T. Hoshiro, Hypoellipticity for infinitely degenerate elliptic and parabolic operators, J. Math. Kyoto Univ., 28 (1988), 615-632.
- [Ho2] T. Hoshiro, Hypoellipticity for infinitely degenerate elliptic and parabolic operators II, J. Math. Kyoto Univ., 29 (1989), 497-513.

- [KW] K. Kajitani and S. Wakabayashi, Propagation of singularities for several classes of pseudodifferential operators, Bull. Sci. Math., 115 (1991), 397-449.
- [KS] S. Kusuoka and D. W. Stroock, Applications of the Malliavin calculus, Part II, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 32 (1985), 1-76.
- [Mo] Y. Morimoto, A criterion for hypoellipticity of second order differential operators, Osaka J. Math., 24 (1987), 651-675.
- [Ma] T. Morioka, Hypoellipticity for some infinitely degenerate elliptic operators of second order, J. Math. Kyoto Univ., 32 (1992), 373-386.
- [OR] O. A. Oleinik and E. V. Radkevič, Second order equations with non-negative characteristic form, Amer. Math. Soc., Providence, Rhode Island and Plenum Press, New York, 1973.
- [WS] S. Wakabayashi and M. Suzuki, Microhypoellipticity for a class of pseudodifferential operators with double characteristics, Funkcial. Ekvac., to appear.

Kazuaki TAIRA

Institute of Mathematics University of Tsukuba Tsukuba, Ibaraki 305 Japan