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Introduction.

In “Alg\‘ebre locale. Multiplicit\’es’’ [20], Serre conjectured:

CONJECTURE. Let $X$ be a connected regular scheme and $Y,$ $Z$ closed irre-
ducible subschemes of X. Then, for each irreducible comPonent $W$ of $Y\cap Z$ ,

(S1) $co\dim(W, X)\leqq co\dim(Y, X)+co\dim(Z, X)$ ,

(S2) if $co\dim(W, X)<co\dim(Y, X)+co\dim(Z, X)$ , then

$\sum_{i}(-1)^{i}l_{0_{W,X}}(Tor_{i}^{0_{W.X}}(O_{W.Y}, O_{W.Z}))=0$ ,

(S3) if $co\dim(W, X)=co\dim(Y, X)+co\dim(Z, X)$ , then

$\sum_{i}(-1)^{i}l_{\mathcal{O}_{W,X}}(Tor_{i}^{0_{W,X(\mathcal{O}_{W.Y}}}, \mathcal{O}_{W.Z}))>0$ .

In [20] Serre proved (S1) in general and (S2), (S3) in the case where the
regular local ring $\mathcal{O}_{W.X}$ is unramified, $i$ . $e.$ , either $O_{W,X}$ contains a field or the
square of its maximal ideal does not contain $p$ , where $p>0$ is the characteristic
of the residue class field $O_{W.X}/\mathscr{M}_{W.X}$ . Furthermore Roberts [17], Gillet and
Soul\’e [9] independently solved (S2) affirmatively. (Roberts proved (S2) under
a weaker condition ([15], [16], [17]) using the intersection theory. Dutta,

Hochster and MacLaughlin [6] constructed the following important example:
Put $A=k[[x, y, z, w]]/(xy-zw)$ ( $k$ is a field), and $M=A/(x, z)$ . Then

there exists an $A$-module $N$ such that $l_{A}(N)=15,$ $pd_{A}N=3$ and $\Sigma_{i}(-1)^{i}$

$l_{A}(Tor_{i}^{A}(M, N))=-1$ .
We can explain this phenomenon in terms of localized Chern characters as in
Example 18.3.14 in [8].)

(S1) is a remarkable result which enables us to estimate the minimum of
the dimension of the intersection of two closed irreducible subschemes when
they actually intersect. It is expected that such an inequality holds even under
a weaker condition. (By the intersection theorem due to Roberts [18], we have

$\dim M+depthN\leqq depthA$

for any Noetherian local ring $A$ and any finitely generated $A$ -modules $M$ and
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$N$ such that $l_{A}(M\otimes_{A}N)<\infty$ and $pd_{A}N<\infty.$ )

Wben G. (resp. $H$ ) is the minimal $O_{W.X}$-free resolution of $O_{W,Y}$ (resp. $O_{W,Z}$),
it follows from the argument in [17] that

$\sum_{i}(-1)^{i}f_{0_{WX}},(Tor_{i}^{\mathcal{O}_{W,X}}(O_{W.Y}, O_{W.Z}))$

$=ch_{Spec(0^{W,Y)}}^{Spec(0_{W.W)(H\otimes 0_{W,X}\mathcal{O}_{W.Y})\cap[Spec(\mathcal{O}_{W.Y})]}}$

$=ch_{Spec(o_{W.W}^{W,Z})}^{Spec(\mathcal{O})}(G.\otimes_{\Theta_{WX}},O_{W.Z})\cap[Spec(O_{W,Z})]$

in the case of $co\dim(W, X)=co\dim(Y, X)+co\dim(Z, X)$ , where $ch_{*}^{*}(*)$ is the
localized Chern character and $[Spec(\mathcal{O}_{W.Y})]$ and $[Spec(O_{W,Z})]$ are cycles in the
Chow groups. So, in order to prove (S3), it seems to be crucial to calculate
$\mathbb{C}h_{s_{pec(A’ \mathfrak{m})(F.)\cap[Spec}}^{Spec(A)}(A)]$ for a Noetherian local ring $(A, m)$ and a bounded A-
free complex F. which is exact except for $\{\mathfrak{m}\}$ . Such an invariant is called the
Dutta multiplicity (see [4], [15], [16], [18], [19]), which is the main theme of
the present paper. The Dutta multiplicity is a natural generalization of the
usual multiplicity (see Definition 2.3 and Remark 2.5).

The next section is devoted to defining the Dutta multiplicity and discussing
its basic properties. In section 3 we will prove (S3) in a special case using
some results on the Dutta multiplicity and give an algebraic description to this
multiplicity in the case where the dimension of the given local ring is less than
or equal to 3. Section 4 is devoted to arguing the difference between the
Dutta multiplicity and the alternative sum of the lengths of the homology
modules of a given perfect complex. Furthermore we will prove

THEOREM 4.3. Let $(A, \mathfrak{m})$ be a Noetherian local ring of dimension $d$ and $F$ .
a Perfect $A$-comPlex of length $d$ with suPPort $\{m\}$ . SuPPose that one of the fol-
lowing conditions is satisfied:

(0) $(A, \mathfrak{m})$ is a Gorenstein ring.
(1) $d\leqq 2$ and $A$ is equi-dimensional.
(2) $(A, m)$ is normal with $d\leqq 4$ and the canonical class cl $(K_{A})$ is torsion in

the divisor class grouP Cl $(A)$ .
(3) $d\leqq 3$ and $A_{d-1}Spec(A)\otimes_{Z}Q=(0)$ .
(4) There exists a regular local ring $(S, n)$ and a finite free $S$-comPlex $G$ .

such that $A$ is a homomorphic image of $S$ and $G.\otimes_{S}A$ is isomorPhic to F..
Then $\Sigma_{i=0}^{d}(-1)^{i}l_{A}(H_{i}(F.))=\Sigma_{i=0}^{d}(-1)^{i}l_{A}(H_{i}(F^{*}[-d]))$ holds.

We also give an example satisfying $\Sigma_{i=0}^{d}(-1)^{i}l_{A}(H_{i}(F.))\neq\Sigma_{i=0}^{d}(-1)^{i}l_{A}($

$H(F^{*}[-d]))$ . The last section is devoted to proving

THEOREM 5.2. Let $(A, \mathfrak{m})$ be a normal Noetherian local ring of dimension
3, and
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$d_{3}$ $d_{2}$ $d_{1}$

F. : $0arrow F_{3}arrow F_{2}arrow F_{1}-F_{0}arrow 0$

a minimal self-dual perfect $A$-comPlex wfth support $\{\mathfrak{m}\}$ . Assume the following
three conditions.

(T1) $rank_{A}F_{0}=1$ .
(T2) $\mu_{A}(I_{1}(d_{1}))=rank_{A}F_{1}$ .
(T3) All the Koszul relations of $d_{1}$ are contained in $d_{2}(F_{2})$ .

Then, $D_{A}(F.)=l_{A}(H_{0}(F.))-l_{A}(H_{1}(F.))>0$ .

The idea for proving this is to use the structure theorem of Gorenstein
ideals of codimension 3 due to Buchsbaum and Eisenbud [2]. (When we show
the positivity of the Dutta multiplicity of the perfect complex F. of length 3,
we may assume that F. is self-dual by Remark 3.6.)

The author thanks the referee for several advice.

2. Definition and basic properties.

Throughout this paper we assume that all Noetherian local rings are homo-
morphic images of regular local rings and $p$ denotes a prime integer. For an
$A$ -module $M,$ $l_{A}(M)$ (resp. $pd_{A}(M)$ ) denotes the length (resp. the projective
dimension) of $M$.

This section will be devoted to $defin^{:}ng$ the Dutta multiplicity (see [4] in
the case of characteristic $p$ and [18] in the general case) and $argu^{:}ng$ basic
properties on the Dutta multiplicity.

Let $(A, \mathfrak{m})$ be a Noetherian local $r_{-}ng$ of dimension $d$ .

DEFINITION 2.1. A complex F. is said to be perfect when all F.’s are
finitely generated free modules such that $F_{0}\neq 0,$ $F_{i}=0$ for $i<0$ and $i\gg O$ . For
a perfect complex F., we define the support of F. by

$Usuppi(H_{i}(F.))\subseteqq Spec(A)$

and denote it by $supp(F.)$ . F. is called a perfect complex of length $n$ when it
is perfect with $n= \max\{i|F_{i}\neq 0\}$ .

REMARK 2.2. Let $(A, \mathfrak{m})$ be a Noetherian local ring of dimension $d$ and

F. : $0-F_{n}arrow\ldotsarrow F_{0}arrow 0$

a perfect complex with support $\{\mathfrak{m}\}$ . Then the new intersection theorem (Ro-

berts [18] $)$ guarantees the inequality $n\geqq d$ .
When $A$ is Cohen-Macaulay and $n$ is equal to $d,$ $H_{i}(F.)$ vanisbes for every

$i>0$ . In general, for any $m^{i}nima1$ perfect complex



372 K. KU RAKO

F. : $0arrow F_{n}arrow\ldotsarrow F_{0}arrow 0$ ,

with support $\{\mathfrak{m}\}$ such that $F_{n}\neq 0$ (minimal means that all the boundary maps
of $F.\otimes_{A}A/\mathfrak{m}$ vanish), the property so-called the dePth sensitivity holds ([3]), $i$ . $e.$ ,

for any finltely generated $A$-module $M$,

depth $M=n- \max\{i|H_{i}(F.\otimes\Lambda f)\neq 0\}$ .

DEFINITION 2.3. For a Noetherian local ring $(A, \mathfrak{m})$ of dimension $d$ and a
perfect $A$ -complex F. with support $\{\mathfrak{m}\}$ , the rational number

$ch_{Spec(A’ \mathfrak{m})}^{Spec(A)}(F.)\cap[Spec(A)]$

is called the Dutta multiPlicity of F. and denoted by $D_{A}(F.)$ . (See Roberts [18].)

(The map $ch_{Spec(A’ \mathfrak{m})(F.):}^{s_{pec(A)}}A_{*}Spec(A)_{Q}arrow A_{*}Spec(A/\mathfrak{m})_{Q}=Q$ is the localized
Chern character determined by F. (see Fulton [8]) and $A_{*}(-)_{Q}$ is the rational
Chow group. Furthermore $[Spec(A)]$ is an element of $A_{d}Spec(A)_{Q}$ defined by

$[ Spec(A)]=\dim A/\mathfrak{p}=d\sum_{\iota\in Spec(A)}l_{A}\mathfrak{p}(A_{\mathfrak{p}})\cdot[Spec(A/\mathfrak{p})]$

,

where the above sum runs over all prime ideals of coheight $d.$ )

In order to calculate the intersection multiplicities of modules, it is very
crucial to investigate the Dutta multiplicities of perfect complexes. For example,

see Roberts [15], [17].

REMARK 2.4. Let $(A, \mathfrak{m})$ be a Noetherian local ring of dimension $d$ and $F$ .
a perfect $A$-complex with support $\{\mathfrak{m}\}$ . Since localized Chern characters are
compatible with proper push-forwards (see Fulton [8]), we have

$Ch_{s_{pec(A/\mathfrak{m})(F.)\cap[Spec}}^{Spec(A)}(A/\mathfrak{p})]=ch_{Spec(A/\mathfrak{m})}^{Spec(A/\iota)}$ $(F.\otimes_{A}A/\mathfrak{p})\cap[Spec(A/\mathfrak{v})]$

for any prime ideal $\mathfrak{p}$ . So, it holds

$D_{A}(F.)=Ch_{s_{pec(A’ \mathfrak{m})(F.)\cap[Spec}}^{Spec(A)}(A)]$

$= \sum_{\dim A/\mathfrak{p}=d}l_{A_{\mathfrak{p}}}(A_{\mathfrak{p}})\cdot(ch_{s_{pec(A’ \mathfrak{m})(F.)\cap[Spec(A/\mathfrak{b})])}}^{Spec(A)}$

$= \sum_{\prime\dim A/_{t}=d}l_{A\mathfrak{p}}(A_{p})\cdot(ch\S_{pec(A’ \mathfrak{m})}^{pec(A/\mathfrak{p})} (F.\otimes_{A}A/\mathfrak{p})\cap[Spec(A/\{))])$

$= \sum_{\dim A/_{r}=d}l_{A\mathfrak{p}}(A_{\mathfrak{p}})\cdot D_{A/\mathfrak{p}}(F.\otimes_{A}A/\mathfrak{p})$ .

We note that $F.\otimes_{A}A/\mathfrak{p}$ is a perfect $A/P$-complex with support $\{m/p\}$ .
Therefore, when we calculate the Dutta multiplicity, we may assume that

the given ring $(A, \mathfrak{m})$ is an integral domain like the usual multiplicity.

The next remark implies that the notion of the Dutta multiplicity is a



Characferistic free Dutta multiplicity 373

natural generalization of the usual multiplicity.

REMARK 2.5. Let $x_{1},$
$\cdots$ , $x_{a}$ be a system of parameters of a Noetherian

local ring $(A, \mathfrak{m})$ . Denote by $K.(\underline{x}, A)$ the Koszul complex determined by
$x_{1}$ , $\cdot$ .. , $x_{d}$ . By Corollary 18.1.2 and Example 18.3.12 in [8], we have

$D_{A}(K.(\underline{.\mathfrak{r}}, A))=ch_{Spec(A’ \mathfrak{m})(K.(\underline{X}}^{Spec(A)},$ $A))\cap[Spec(A)]$

$= \sum_{i}(’-1)^{i}l_{A}(H_{i}(K.(\underline{x}, A)))$

$=e_{(\underline{x})}(A)$ ,

where $e_{(\underline{x})}(A)$ is the usual multiplicity of $A$ along the parameter ideal $(\underline{x})=$

( $x_{1}$ , $\cdot$ .. , $x_{f}()$ . So, when $\{x_{1}, \cdot , x_{a}\}$ is a minimal reduction of $\mathfrak{m}$ , the Dutta
multiplicity $D_{A}(K.(-, A))$ coincides with the usual multiplicity $e_{\mathfrak{m}}(A)$ . Further-
more if $\{x_{1}$ , $\cdot$ .. , $x_{d}\}$ is a minimal reduction both of $\mathfrak{m}$ and $m/P$ for any prime
ideal $\mathfrak{p}$ of coheight $d$ , then we obtain the following famous formula on the
usual multiplicity:

$e_{\mathfrak{m}}(A)=ch_{Spec(A’ \mathfrak{m})(K.(}^{Spec(A)}\underline{-Y},$ $A))\cap[Spec(A)]$

$= \sum_{/d\mathfrak{p}=(}l_{A_{\mathfrak{p}}}(A_{\mathfrak{p}})\cdot(ch_{s_{pec(\begin{array}{l}( )m\end{array})(K.(\underline{X}}}^{Spec}, A/\mathfrak{p}))\cap[Spec(A/\mathfrak{p})])$

$= \sum_{\dim A/\mathfrak{p}=tl}l_{A_{\mathfrak{p}}}(A_{\mathfrak{p}})\cdot e_{\mathfrak{m}/\mathfrak{p}}(A/\mathfrak{p})$
.

In order to calculate the Dutta multiplicity, we may assume that the given
local ring $(A, \mathfrak{m})$ is complete and the residue class field $A/\mathfrak{m}$ is algebraically
closed as follows.

PROPOSITION 2.6. Let $Carrow D$ be a faithfully flat extensfon of regular local
rings such that $\dim C=\dim$ D. SuPPose that $A=C/I$ is a Noetherian local ring
with the maximal ideal $\mathfrak{m}$ . Then for a perfect $A$-comPlex F. with suPPort $\{\mathfrak{m}\}$ ,
$D_{D/ID}(F.\otimes_{A}D/ID)=D_{A}(F.)\cdot l_{D/ID}(D/\mathfrak{m}D)$ .

PROOF. First note tbat $F.\otimes_{A}D/ID$ is a perfect $D/ID$-complex such that
its support is only at the maximal ideal of $D/ID$ and $l_{D/ID}(D/\mathfrak{m}D)<\infty$ .

For the simplicity of notation we put $B=D/ID$ . Though $Aarrow B$ and $A/\mathfrak{m}$

$arrow B/\mathfrak{m}B$ are not necessarily of finite type, we can define the flat pull-backs
$A_{*}Spec(B)arrow A_{*}Spec(A)$ and $A_{*}Spec(B/\mathfrak{m}B)arrow A_{*}Spec(A/\mathfrak{m})$ . (Generalize the
results of Section 1.7 in [8].) Then the diagram
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$A_{*}Spec\downarrow(A)_{Q}\underline{ch\S_{pec}^{pec}\{_{A/\mathfrak{m})}^{A)}(F)}A_{*}Spec\downarrow(A/\mathfrak{m})_{Q}$

$A_{*}Spec(B)_{Q}>A_{*}Spec(B/\mathfrak{m}B)_{Q}Ch_{Spec(B’ \mathfrak{m}B)(F.\otimes_{A}B)}^{Spec(B)}$

is commutative. (Generalize Theorem 18.1 in [8].)

So, we have $D_{B}(F.\otimes_{A}B)=D_{A}(F.)\cdot l_{B}(B/\mathfrak{m}B)$ . Q. E. D.

Therefore, when we investigate the Dutta multiplicities of perfect complexes
such that their supports are at the maximal ideal of a given Noetherian local
ring, we may assume that the given ring is a complete local domain such that
its residue class field is algebraically closed.

In the case of positive characteristic, we can express the Dutta multiplicity
by a purely algebraic method (see Dutta [4]) as follows.

REMARK 2.7. Let $(A, \mathfrak{m})$ be a $d$-dimensional complete local domain of
characteristic $p>0$ , and assume that its residue class field $A/\mathfrak{m}$ is algebraically
closed. Then for a perfect complex F. with support $\{\mathfrak{m}\}$ , it is known (see

Roberts [18] $)$ that

$D_{A}(F.)=\lim_{narrow\infty}\frac{1}{p^{(:e}}\sum_{i\geqq 0}(-1)^{i}l_{A}(H_{\iota}(F.\otimes_{A}^{e}A))$ ,

where $eA=A$ is an $A$-module via the e-th iteration of the Frobenius map. (The

invariant like the right hand side of the above equation was first discovered
by Dutta [4]. An elementary proof of the rationality of the right hand side
was given by Seibert [21].)

The next remark enables us to assume the normality of a given local ring
when we calculate the Dutta multiplicity.

REMARK 2.8. Let $(A, \mathfrak{m})$ be a complete local domain with residue class
field $A/\mathfrak{m}$ algebraically closed. Since $A$ is excellent henselian, the normalization
$Aarrow\overline{A}$ is finite and $\overline{A}$ is a complete local domain with residue class field $A/\mathfrak{m}$ .
(See [11] and [14].) Let F. be a perfect $A$-complex with support $\{\mathfrak{m}\}$ . By the
compatibility of localized Chern characters with proper push-forwards, we have

$D_{A}(F.)=Ch_{s_{pec(A’ \mathfrak{m})(F.)\cap[Spec}}^{Spec(A)}(A)]$

$=Ch^{Spec(}\overline{\frac{A}{A}})$

$=D_{\overline{A}}(F.\otimes_{A}\overline{A})$ .
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3. Perfect complexes of the minimal length.

Let $(A, m)$ be a Noetherian local ring of dimension $d$ and F. a perfect
complex with support $\{\mathfrak{m}\}$ . The new intersection theorem (Roberts [18]) im-
plies that the length of F. is at least $d$ . (Note that the Koszul complexes of
parameter ideals are perfect complexes of length $d$ with support $\{\mathfrak{m}\}.)$ Consider
the following:

CONJECTURE 3.1. Let $(A, \mathfrak{m})$ be a Noetherian local ring of dimension $d$ .
Suppose that F. is a minimal perfect $A$-comPlex of length $d$ with $suPPort$ $\{m\}$ .
Then $D_{A}(F.)>0$ .

REMARK 3.2. The previous conjecture is true when F. is the Koszul com-
plexes of parameter ideals because their Dutta multiplicities coincide with the
usual multiplicities along the parameter ideals. If $A$ is complete intersection,
then it is known that the above conjecture is true (see Corollary 18.1.2 in [8]

and Remark 2.2). Furthermore this conjecture is affirmative when $(A, \mathfrak{m})$ con-
tains a field of positive characteristic (Roberts [18]). In the case where $(A, \mathfrak{m})$

is a local ring essentially of finite type over a field of characteristic zero, we
can reduce this case to the case of positive characteristic. Therefore this con-
jecture is true when $(A, \mathfrak{m})$ is a local ring essentially of finite type over a field.

The following is an immediate corollary of some results about the positivity
of the Dutta multiplicities.

PROPOSITION 3.3. Let $(A, \mathfrak{m})$ be comPlete intersection, and $M,$ $N$ finitely
generated $A$-modules of finite projective dimension such that $l_{A}(M\otimes_{A}N)<\infty_{r}$

$\dim M+\dim N=\dim A$ and $\dim M=depthM$. SuPPose that one of the following
conditions is satisfied.

$\bullet$ $A$ is essentially of finite tyPe over a field.
$\bullet$ $p^{n}N_{-}0$ for an integer $n$ , where $p>0$ is the characteristic of the residue

class field $A/\mathfrak{m}$ .
Then $\sum_{i}(-1)^{i}l_{A}(Tor_{i}^{A}(M, N))>0$ holds. (A part of this $ProPosition$ was proved by
Dutta [5].)

PROOF. Put $s=\dim M,$ $t=\dim N$ and $d=\dim A$ . Then $r=d-s$ is equal to
the projective dimension of $M$ by the Auslander-Buchsbaum formula. Let $I=$

$ann_{A}(M)$ and $J=ann_{A}(N)$ . Furthermore let F. (resp. $G.$ ) be the minimal $A-$

free resolution of $M$ (resp. $N$). Set $\{\mathfrak{p}_{1}, \cdots , \mathfrak{p}_{\iota}\}=\{\mathfrak{p}\in supp(N)|\dim A/\mathfrak{p}=t\}$ . It
follows from the argument in the proof of the vanishing theorem of intersec-
tion multiplicities due to Roberts [17] that
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$\sum_{i}(-1)^{i}l_{A}(Tor_{i}^{A}(M, N))=\sum_{j=1}^{l}l_{A\mathfrak{p}_{j}}(N_{\mathfrak{p}_{j}})\cdot ch_{s_{pec(A’ \mathfrak{m})(F.\otimes_{A}A/J)\cap[Spec}}^{Spec(A/J)}(A/\mathfrak{p}_{j})]$

$= \sum_{j=1}^{\iota}l_{A_{\mathfrak{p}_{j}}}(N_{\mathfrak{p}_{J}})\cdot ch_{\grave{o}pec(A/\mathfrak{m}^{J})}^{Spec(A/\phi)}$ $(F.\otimes_{A}A/\mathfrak{v}_{j})\cap[Spec(A/\mathfrak{p}_{j})]$

$= \sum_{j=1}^{l}l_{A_{\mathfrak{d}_{j}}}(N_{\mathfrak{p}_{j}})\cdot D_{A/\mathfrak{p}_{j}}(F.\otimes_{A}A/\mathfrak{p}_{j})$ .

(In fact, the assumption that $A$ is complete intersection implies $\tau_{Spec(A)}([A])=$

$[Spec(A)]$ by Corollary 18.1.2 and Theorem 18.3 (5) in [8]. Therefore $\Sigma_{i}(-1)^{i}$

$l_{A}(Tor_{t}^{A}(M, N))=ch_{s_{pec(A/\mathfrak{m})(F.\otimes_{A}G.)\cap\tau_{Spec(A)}([A])=ch_{d}(F.\otimes_{A}G.)\cap[Spec}}^{Spec(A)}(A)]$ by
the Riemann-Roch formula (see Example 18.3.2 in [8]), where $\tau_{Spec(A)}$ : $K_{0}A_{Q}arrow$

$A_{*}Spec(A)_{Q}$ is the Riemann-Roch map defined in Section 18 of [8]. (Recall

that, for a scheme $X$ , a closed subscheme $Y$ of $X$ , and a bounded locally free
complex H. over $X$ which is exact except for $Y,$ $ch_{i}(H.):A_{*}X_{Q}arrow A_{*}Y_{Q}$ is the
map defined by $ch_{i}(H.)|_{A_{r}}x_{Q^{-}}-P_{r-i}\circ(ch_{Y}^{X}|_{A_{r}X_{Q}})$ , where $p_{r-i}$ : $A_{*}Y_{Q}arrow A_{r-i}Y_{Q}$ is
the projection [8].) Then $ch_{(f}(F.\otimes_{A}G.)=\Sigma_{i+j=(}{}_{t}Ch_{i}(F.\otimes_{A}A/J)\cdot ch_{j}(G.)=\Sigma_{i+j=d}$

$ch_{j}(G.\otimes_{A}A/I)\cdot ch_{i}(F.)$ holds by Example 18.1.5 in [8]. Since $\dim A/I=s=d-t$ ,
$ch_{i}(F.)\cap[Spec(A)]=0$ when $i<t$ . Similarly, $ch_{j}(G.)\cap[Spec(A)]=0$ when $j<s$ .
On the other hand, we have $ch_{i}(F.\otimes_{A}A/J)\cdot ch_{j}(G.)=ch_{j}(G.\otimes_{A}A/I)\cdot ch_{i}(F.)$ for
any $i$ and $i$ by the commutativity of the localized Cbern characters (Roberts

[17] $)$ . Therefore we get $ch_{i}((F.\otimes_{A}G.)\cap[Spec(A)]=ch_{l}(F.\otimes_{A}A/J)\cap(ch_{s}(G.)()$

$[Spec(A)])$ . By Example 18.3.2 in [8], we obtain $Tspec(A/J)([N])=ch_{Spec(A/J)(G.)}^{Spec(A)}$

$\cap\tau_{Spec(A)}([A])=ch_{Spec(A/J)(G.)}^{SpectA)}\cap[Spec(A)]$ . Therefore, $p_{l}\circ\tau_{Spec(A/J)}([N])=$

$ch,(G.)\cap[Spec(A)]$ holds, where $p_{t}$ : $A_{*}Spec(A/J)_{Q}arrow A_{t}Spec(A/J)_{Q}$ is the pro-
jection. By Theorem 18.3 (5) in [8], $p_{t}\circ\tau_{Spec(A/J)}([N])$ coincides with $\Sigma_{j\Rightarrow 1}^{l}$

$l_{A\mathfrak{p}_{j}}(N_{\mathfrak{p}_{j}})\cdot[Spec(A/\mathfrak{p}_{j})]$ . Therefore

$ch_{d}(F.\otimes_{A}G.)\cap[Spec(A)]=ch_{t}(F.\otimes_{A}A/J)\cap(p_{t}\circ\tau_{Spec(A/J)}([N]))$

$=Ch_{Spec(A/\mathfrak{m})(F.\otimes_{A}A/J)\cap(\sum_{j=1}^{\iota}l_{A\mathfrak{p}_{j}}(N_{\mathfrak{p}_{j}})\cdot[Spec(A/\mathfrak{p}_{j})])}^{Spec(A/J)}$

is satisfied.)

Then $F.\otimes_{A}A/\mathfrak{p}_{J}$ is a perfect $A/\mathfrak{p}_{j}$-complex of length $t=\dim A/p_{j}$ with sup-
port $\{m/p_{j}\}$ for each $i$ . Hence, if one of the conditions in this proposition is
satisfied, the Dutta multiplicities $D_{A/\mathfrak{p}_{j}}(F.\otimes_{A}A/\mathfrak{p}_{j})$ are positive for every $j$ (see

Remark 3.2). Therefore the intersection multiplicity $\Sigma_{i}(-1)^{t}l_{A}(Tor_{i}^{A}(M, N))$

must be positive. Q. E. D.

In the rest of this section we will give an algebraic description to the Dutta
multiplicities of perfect complexes in the case where $\dim A\leqq 3$ .

PROPOSITION 3.4. Let $(A, m)$ be a Noetherian local ring and F. a perfect
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$A$-complex with support $\{\mathfrak{m}\}$ .
1. If $\dim A\leq 1$ , then $D_{A}(F.)=\Sigma_{i}(-1)^{i}f_{A}(H_{i}(F.))$ .
2. If $\dim A=2$ and $A$ is equi-dimensional, then $D_{A}(F.)=\Sigma_{i}(-1)^{i}l_{A}(H_{i}(F.))$ .
3. If $\dim A=3$ and $A$ is normal, then

$D_{A}(F.)=\frac{1}{2}\{\sum_{i}(-1)^{i}l_{A}(H_{i}(F.))+\sum_{i}(-1)^{i}l_{A}(H_{\iota}(F^{*}[-3]))\}$

$= \frac{1}{2}\{\sum_{i}(-1)^{i}l_{\Lambda}(H_{i}(F.))+\sum_{i}(-1)^{i}l_{A}(H_{i}(F.\otimes_{A}K_{A}))\}$ ,

where $K_{A}$ is the canonical module of $A,$ $F^{*}is$ the dual complex whose component

of degree $t$ is $Hom_{A}(F_{-t}, A)$ and F.*[–3] is the shufted complex, $i$ . $e.$ , $(F.*[-3])_{i}$

$=F_{-3+i}^{*}$ . (Recall that $A$ is assumed to be a homomorphuc image of a regular local
ring. Therefore $A$ has the canonical module $K_{A}.$ )

Before proving this proposition, we should investigate $\tau_{Spec(A)}([K_{A}])$ .
For a Noetherian local ring $A$ of dimension $d$ , we set

$T_{Spec(A)([A])=\tau_{f}([A])+\tau_{d-1}([A])+}(\ldots+\tau_{0}([A])$ ,

where $\tau_{i}([A])\in A_{i}Spec(A)_{Q}$ . Note that $\tau_{d}([A])$ is equal to $[Spec(A)]$ by Theo-
rem 18.3 (5) in [8].

LEMMA 3.5. Let $A$ be a Noetherian normal local domain of dimension $d$ .
(1) $Ts_{P}ec(A)([K_{A}])\equiv\tau_{d}([A])-\tau_{a-1}([A])+\tau_{\dot{a}-2}([A])mod (\oplus_{i=0}^{d-3}A_{\ell}Spec(A)_{Q})$ .
(2) Put Cl $(A)_{Q}--C1(A)\otimes_{Z}Q$ , where Cl $(A)$ is the divisor class grouP of $A$ .

Then Cl $(A)_{Q}$ is naturally isomorphic to $A_{d-1}Spec(A)_{Q}$ .
(3) cl $(K_{A})=2\cdot\tau_{d-1}([A])$ in Cl $(A)_{Q}--A_{tl-1}Spec(A)_{Q}$ , where cl $(K_{A})$ stands for

the canonical class.

PROOF. Take a regular local ring $S$ and its prime ideal $\mathfrak{p}$ satisfying $S/p$

$\cong A$ . Put $n=ht_{S}p$ . Let G. be the minimal $S$-free resolution of $A$ . Then we
obtain $K_{A}=Ext_{S}^{n}(A, S)=H_{0}(Hom_{S}(G^{*}[-n], S))$ .

First we will prove (1). If $A$ is Cohen-Macaulay, then G.* $[$ – $n]$ is the
minimal $S$-free resolution of $K_{A}$ . Therefore

$\tau_{Spec(A)}([K_{A}])=ch_{Spec(A)}^{Spec(S)}$ (G.*[– $n]$ ) $\cap[Spec (S)]$

$=\tau_{d}([A])-\tau_{d-1}([A])+\tau_{d-2}([A])-\cdots+(-1)^{i}\tau_{d-t}([A])+\cdots$

in this case (see Example 18.1.2 in [8]). Assume that $A$ is not Cohen-Macaulay.
Then $d\geqq 3$ , because $A$ is normal. We get $\dim H_{i}(G^{*}[-n])\leqq d-3$ for $i\neq 0$ , be-
cause $A_{q}$ is Cohen-Macaulay for every prime ideal $q$ such that $ht_{A}q\leqq 2$ . By
Example 18.1.2 in [8] we obtain
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$\tau_{d}([A])-\tau_{d-1}([A])+\tau_{d-2}([A])-\cdots+(-1)^{i}\tau_{d- i}([A])+\cdots$

$=ch_{Spec(A)}^{pec(S)}$ $(G.*[-n])\cap[Spec(S)]$

$= \sum_{i}(-1)^{i}\tau_{Spec(A)}(H_{i}(G^{*}[-n]))$

$\equiv\tau_{Spec(A)}([K_{A}])$ $mod (\oplus_{i=0}^{d-3}A_{i}Spec(A)_{Q})$ .
(Recall that $\tau_{Spec(A)}([M])$ is contained in $\oplus_{i=0}^{j}A_{i}Spec(A)_{Q}$ when $\dim M\leqq j$ by
Theorem 18.3 (5) in [8].)

It is easy to check that Cl $(A)_{Q}\cong A_{d-1}Spec(A)_{Q}$ by sending a divisorial ideal
$J$ of $A$ to $[Spec(A/J)]=\tau_{d-1}([A/J])$ .

Let $J$ be a divisorial ideal isomorphic to $K_{A}$ . Then there exists an exact
sequence

$0arrow K_{A}arrow Aarrow A/Jarrow 0$ .

Therefore $\tau_{Spec(A)}([A/I])=\tau_{s_{P^{ecCA)([A])-\tau_{Spec(A)}([K_{A}])}}}$ holds. Hence, from (1),

cl $(K_{A})=\tau_{d- 1}([A/J])=2\cdot\tau_{d-1}([A])$ in Cl $(A)_{Q}--A_{d-1}Spec(A)_{Q}$ . Q. E. D.

PROOF OF PROPOSITION 3.4. If $A$ iS Artinian, We have

$\sum_{i}(-1)^{i}l_{A}(H_{i}(F.))=ch_{s_{pec(A/\mathfrak{m})(F.)\cap\tau_{Spec(A)}([A])}}^{Spec(A)}$

$=ch_{s_{pec(A’ \mathfrak{m})(p.)\cap[Spec(A)]}}^{Spec(A)}$

$=D_{A}(F.)$ .

If $\dim A\geqq 1$ , then $A_{0}Spec(A)_{Q}=(0)$ . So, we have $\tau_{Spec(A)}([A])=\tau_{1}([A])=$

$[Spec(A)]$ when $\dim A=1$ .
Assume that $\dim A=2$ and $A$ is equi-dimensional. Then we have

$\sum_{i}(-1)^{i}l_{A}(H_{i}(F.))=ch_{s_{pec(A’ \mathfrak{m})(F.)\cap\tau_{Spec(A)}([A])}}^{Spec(A)}$

$=D_{A}(F.)+ch_{1}(F.)\cap\tau_{1}([A])$

because $\tau_{0}([A])=0$ . Since $\dim A-\dim supp(F.)\geqq 2$ and $A$ is equi-dimensional,
$ch_{1}(F.)=0$ by the vanishing theorem of the first localized Chern character [16].

Next assume that $\dim A=3$ and $A$ is normal. Suppose that $A=S/I$ and $S$

is a regular local ring of dimension $n$ . Let G. be a minimal $S$-free resolution
of $A$ . Then we have

$\tau_{Spec(A)}([A])=ch_{Spec(A)}^{Spec(S)}(G.)\cap[Spec(S)]$

by definition of the Riemann-Roch map $\tau_{Spec(A)}$ . Since $A$ is normal, we have

$\tau_{Spec(A)}([K_{A}])=\tau_{3}([A])-\tau_{2}([A])+\tau_{1}([A])$

by the previous lemma and the fact that $A_{0}Spec(A)_{Q}=(0)$ . Therefore,
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$\frac{1}{2}\{\sum_{i}(-1)^{i}l_{A}(H_{i}(F.))+\sum_{i}(-1)^{i}l_{A}(H_{i}(F.\otimes_{A}K_{A}))\}$

$= \frac{1}{2}\{_{Ch_{Spec(A’ \mathfrak{m})(F.)\cap T_{Spec(A)([A])+ch_{s_{pec(A’ \mathfrak{m})(F.)\cap\tau_{Spec(A)}([K_{A}])\}}}^{Spec(A)}}}^{Spec(A)}}$

$=D_{A}(F.)+ch_{1}(F.)\cap\tau_{1}([A])$ .

Furthermore by the vanishing theorem of the first localized Chern character,
we have $ch_{1}(F.)=0$ .

Furthermore, we get

$\sum_{i}(-1)^{i}l_{A}(H_{i}(F.\otimes_{A}K_{A}))$

$=ch_{3}(F.)\cap\tau_{3}([A])-ch_{2}(F.)\cap\tau_{2}([A])+ch_{1}(F.)\cap\tau_{1}([A])$

$= \sum_{i}(-1)^{i}l_{A}(H(F^{*}[-3]))$ .

Q. E. D.

REMARK 3.6. Let $(A, \mathfrak{m})$ be a normal Noetherian local ring of dimension $d$

and F. a perfect $A$-complex of length $d$ with support $\{\mathfrak{m}\}$ . From Proposition
3.4, we have $D_{A}(F.)=l_{A}(H_{0}(F.))>0$ when $d\leqq 2$ . So, Conjecture 3.1 is true when
$d\leqq 2$ by Remark 2.4, Proposition 2.6 and Remark 2.8.

Next suppose $d=3$ . Then we have

$D_{A}(F.)=\frac{1}{2}\{\sum_{i}:(-1)^{i}l_{A}(H_{\iota}(F.))+\sum_{i}(-1)^{i}l_{A}(H_{i}(F^{*}[-3]))\}$

$= \frac{1}{2}\{\sum_{i}(-1)^{i}l_{A}(H_{i}(F.\oplus F^{*}[-3]))\}$

$= \frac{1}{2}D_{A}(F.\oplus F^{*}[-3])$ ,

because the perfect complex $F.\oplus F^{*}[-3]$ is self-dual. So, in order to prove
Conjecture 3.1 in the case of $d=3$ , we may assume that $A$ is normal and the
given complex F. is self-dual. Furthermore, in this case, $D_{A}(F.)=l_{A}(H_{0}(F.))-$

$l_{A}(H_{1}(F.))$ by the depth sensitivity (see Remark 2.2).

REMARK 3.7. Let $(A, \mathfrak{m})$ be a normal local domain of dimension 3 and $F$ .
a self-dual perfect $A$-complex of length 3 with support $\{\mathfrak{m}\}$ . Assume that $A$

has a maximal Cohen-Macaulay module $M,$ $i$ . $e.$ , finitely generated module with
depth $M=3$ . Then we obtain

$l_{A}( H_{0}(F.\otimes M))=\sum_{i}(-1)^{i}l_{A}(H_{\iota}(F.\otimes M))$

$=ch_{s_{pec(A/\mathfrak{m})(F.)\cap\tau_{Spec(A)}([M])}}^{Spec(A)}$

$=rank_{A}M\cdot D_{A}(F.)+ch_{2}(F.)\cap\tau_{2}([M])+ch_{1}(F.)\cap\backslash \tau_{1}([M])$ ,
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since $\tau_{3}([M])=rank_{A}M\cdot\tau_{3}([A])$ . By the self-dualness of F., $ch_{2}(F.)=0$ by Ex-
ample 18.1.2 in [8]. The vanishing theorem of the first localized Chern character
implies that $ch_{1}(F.)=0$ . Hence $D_{A}(F.)>0$ in this case.

The author does not know whether the existence of maximal Cohen-Macaulay

module guarantees Conjecture 3.1 in general.

4. The difference between the Dutta multiplicity
and the alternative sum.

This section is devoted to investigating the difference between the Dutta
multiplicity and the alternative sum of the lengths of homology modules.

First of all, we give an example satisfying $\Sigma_{i}(-1)^{i}l_{A}(H_{t}(F.))<0$ , where $F$ .
is a perfect complex of length $d$ with support $\{\mathfrak{m}\}$ over a Noetherian local ring
$(A, \mathfrak{m})$ of dimension $d$ .

EXAMPLE 4.1. Put $R=k[x, y, z, w]_{(x,y,z,w)}/(xy-zw)$ ( $k$ is a field) and $M=$

$R/(x, z)$ . By [6] there exists an $R$-module $N$ such that $l_{R}(N)=15,$ $pd_{A}N=3$

and
$\sum_{i}(-1)^{i}l_{A}(Tor_{i}^{A}(M, N))=-1$ .

Let $t$ be a non-negative integer and $A$ the idealization of $M^{t}$ (see [14]). Note
that $A$ is an $R$-algebra and isomorphic to $R\oplus M^{t}$ as an $R$-module. Let F. be
the minimal free $R$-resolution of $N$ and put $G.=F.\otimes_{R}A$ . It is easy to check
that $A$ is a Noetherian local ring of dimension 3 and G. is a perfect A-complex
of length 3 with support $\{\mathfrak{m}\}$ , where $\mathfrak{m}$ is the maximal ideal of $A$ . Then we
have

$\sum_{i=0}^{3}(-1)^{i}l_{A}(H_{i}(G.))$

$= \sum_{i=0}^{3}(-1)^{i}l_{R}(H_{i}(G.))$

$= \sum_{i=0}^{3}(-1)^{i}l_{R}(H_{i}(F.))+t\sum_{i\Leftarrow 0}^{3}(-1)^{i}l_{R}(H_{i}(F.\otimes_{R}M))$

$=15-t$ .

Therefore $\Sigma_{i=0}^{3}(-1)^{i}l_{A}(H_{i}(G.))<0$ for $t>15$ .
On the other hand, $D_{A}(G.)>0$ is satisfied since $A$ is essentially of finite

type over a field $k$ (see Remark 3.2).

Next we argue about the dual complex.

REMARK 4.2. Let $(A, \mathfrak{m})$ be a Noetherian local ring of dimension $d$ and $F$ .
a perfect $A$-complex of length $n$ with support $\{\mathfrak{m}\}$ . By Example 18.1.2 in [8],
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we have
$D_{A}(F.)=(-1)^{n-d}D_{A}(F^{*}[-n])$ .

In particular, $D_{A}(F.)=D_{A}(F^{*}[-d])$ when $n=d$ .
Let $(A, \mathfrak{m})$ be a Noetherian local ring of dimension $d$ and F. a perfect A-

complex of length $d$ with support $\{\mathfrak{m}\}$ . In general $\sum_{i=0}^{d}(-1)^{i}l_{A}(H_{\tau}(F.))$ does not
coincide with $\Sigma_{i=0}^{d}(-1)^{i}l_{A}(H_{i}(F^{*}[-d]))$ even if $A$ is Cohen-Macaulay normal
as in Example 4.5. The next theorem guarantee $\Sigma_{i=0}^{d}(-1)^{i}l_{A}(H_{?}(F.))=$

$\Sigma_{i=0}^{d}(-1)^{i}l_{A}(H_{i}(F^{*}[-d]))$ in $\vee Qome$ special cases.

THEOREM 4.3. Let $(A, m)$ be a Noetherian local $nng$ of dimension $d$ and $F$ .
a perfect $A$-complex of length $d$ with support $\{\mathfrak{m}\}$ . Suppose that one of the
following conditions is satisfied:

(0) $(A, \mathfrak{m})$ is a Gorenstein ring.
(1) $d\leqq 2$ and $A$ is equi-dimensional.
(2) $(A, m)$ is normal with $d\leqq 4$ and the canonical class cl $(K_{A})$ is torsion in

the divisor class group Cl $(A)$ .
(3) $d\leqq 3$ and $A_{d-1}Spec(A)\otimes_{Z}Q=(0)$ .
(4) There exists a regular local ring $(S, n)$ and a finite free $S$-complex $G$ .

such that $A$ is a homomorphic image of $S$ and $G.\otimes_{S}A$ is isomorphic to F..
Then $\Sigma_{i=0}^{d}(-1)^{i}l_{A}(H_{i}(F.))=\Sigma_{i=0}^{d}(-1)^{i}l_{A}(H_{t}(F^{*}[-d]))$ holds.

Before proving this theorems we have:

REMARK 4.4. With notation as above, put $M=H_{0}(F.)$ . When $A$ is Cohen-
Macaulay, we have

$\sum_{i=0}^{d}(-1)^{i}l_{A}(H_{i}(F.))=l_{A}(M)$

$\sum_{i\approx 0}^{f}((-1)^{i}l_{A}(H_{i}(F^{*}[-d]))=l_{A}(Ext_{A}^{d}(M, A))=l_{A}(M\otimes_{A}K_{A})$

by the local duality theorem ([10]) and the depth sensitivity (Remark 2.2).

$PROOFOFTHEOREM4.3$ . $ByRemark4.4,$ $itisobviousthat\Sigma_{i=0}^{d}(-1)^{i}l_{A}(H_{i}(F.))$

is equal to $\Sigma_{i=0}^{d}(-1)^{i}l_{A}(H_{\iota}(F^{*}[-d]))$ when $A$ is a Gorenstein ring.
Suppose $d\leqq 2$ .
It is trivial when $d=0$ .
We can prove $l_{A}(H_{0}(F.))-l_{A}(H_{1}(F.))=l_{A}(H_{0}(F^{*}[-1]))-l_{A}(H_{1}(F^{*}[-1]))$ by an

elementary method in the case of $d=1$ (for example, see Appendix A in [8]).

Next assume $d=2$ . Then

$\sum_{i=0}^{2}(-1)^{i}l_{A}(H_{i}(F.))-\sum_{i\Rightarrow 0}^{2}(-1)^{l}l_{A}(H_{i}(F^{*}[-2]))=2\cdot ch_{1}(F.)\cap\tau_{1}([A])$ .
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By the vanishing theorem of the first localized Chern characters, we get $ch_{1}(F.)$

$=0$ since $A$ is equi-dimensional.
When $A$ is normal, we obtain

cl $(K_{A})=2\cdot\tau_{d-1}([A])\in A_{d-1}Spec(A)_{Q}=C1(A)_{Q}$

by Lemma 3.5. Suppose $(A, \mathfrak{m})$ is a rormal local ring of dimension 3. Then
we obtain

$\sum_{i=0}^{3}(-1)^{i}l_{A}(H_{i}(F.)_{)}\backslash -\sum_{i=0}^{3}(-1)^{i}l_{A}(H_{t}(F^{*}[-3]))$

$=2\cdot ch_{2}(F.)\cap\tau_{2}([A])+2\cdot ch_{0}(F.)\cap\tau_{0}([A])$ .

It is obvious that $\tau_{0}([A])=0S_{-}^{}nceA_{0}Spec(A)_{Q}=(0)$ . Therefore $\Sigma_{i=0}^{d}(-1)^{i}l_{A}(H_{i}(F.))$

$=\Sigma_{i^{f}=0}^{(}(-1)^{i}l_{A}(H_{\iota}(F^{*}[-d]))$ if the canonical class $c1(K_{A})$ is torsion in $C1(A)$ .
Next suppose $(A, \mathfrak{m})$ is a normal local ring of dimension 4. Then

$\sum_{i=0}^{4}(-1)^{i}l_{A}(H_{i}(F.))-\sum_{i=0}^{4}(-1)^{i}l_{A}(H_{i}(F^{*}[-4]))$

$=2\cdot ch_{3}(F.)\cap\tau_{3}([A])+2\cdot ch_{1}(F.)\cap\tau_{1}([A])$

holds. By the assumption that $\tau_{3}([A])=0$ and the vanishing theorem of the
first localized Chern character [16], we get $\Sigma_{i=0}^{4}(-1)^{\iota}l_{A}(H_{i}(F.))=\Sigma_{i=0}^{4}(-1)^{i}$

$l_{A}(H_{i}(F^{*}[-4]))$ immediately.
In the case where $d\leqq 3$ and $A_{d-1}Spec(A)_{Q}=(0)$ , we can prove the equality

as in the same way as in the case of (1) or (2).

Lastly assume that the condition (4) is satisfied. Since $supp(G.)\cap Spec(A)$

$=\{\mathfrak{m}\},$ $\dim Spec(A)+\dim supp(G.)$ $ $\dim Spec(S)$ holds by [20]. For $j<$

$\dim Spec(A)$ , we obtain

$ch_{j}(F.)=ch_{j}(G.\otimes_{S}A)=0$

by [17] $s^{i}$-nce $J<\dim Spec(S)-\dim supp(G.)$ . Therefore

$\sum_{i=0}^{d}(-1)^{i}l_{A}(H_{i}(F.))-\sum_{i=0}^{a}(-1)^{i}l_{A}(H_{i}(F^{*}[-d]))$

$=2$ {ch, $-1(F.)\cap\tau_{d-1}([A])+ch_{d-3}(F.)\cap\tau_{a-3}([A])+$ }

$=0$

is satisfied. Q. E. D.

The following example implies that $\Sigma_{i=0}^{d}(-1)^{i}l_{A}(H_{t}(F.))$ does not always
$co:ncide$ with $\sum_{t=0}^{d}(-1)^{i}f_{A}(H_{i}(F^{*}[-d]))$ even if $(A, \mathfrak{m})$ is a Cohen-Macaulay
normal $r$ ; of dimension 3. (Such an example was discovered by Roberts.)

EXAMPLE 4.5. Let $k$ be a field and put
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$A=(k[x_{0}, x_{1}, x_{2}, y_{0}, y_{1}]/(x_{0}x_{2}-x_{1}^{2}, x_{0}y_{1}-x_{1}y_{0}, x_{1}y_{1}-x_{2}y_{0}))_{(x_{0}.x_{1},x_{2^{y_{0}.y_{1})}}}.\cdot$

Then there exists a finitely generated $A$ -module $M$ such that $pd_{A}M<\infty$ and
$\infty>l_{A}(M)\neq l_{A}(Ext_{A}^{3}(M, A))$ .

We can prove $l_{A}(M)\neq l_{A}(Ext_{A}^{3}(M, A))$ by using the example due to Dutta-
Hochster-MacLaughlin [6].

5. A special case of positivity of the Dutta multiplicity.

Let $(A, \mathfrak{m})$ be a normal Noetherian local ring of dimension 3, and F. a
perfect $A$-complex of length 3 with support $\{\mathfrak{m}\}$ . We have already known in
Remark 3.6 that we may assume that the given perfect complex is self-dual
when we show $D_{A}(F.)>0$ . This section is devoted to proving Theorem 5.2
which implies the positivity of the Dutta multiplicity in a special case. (Recall

that to prove the positivity of the Dutta multiplicities when the dimension of
the given ring is 3, we may assume that the given local ring is normal by

Remark 2.8.)

Before $stat^{i}ng$ the theorem, we have to define some notation.

DEFINITION 5.1. For a Noetherian ring $R$ and an $R$-linear map $\psi:Farrow G$

between finitely generated free $R$-modules $F$ and $G$ , we denote by $I_{t}(\psi)$ the
ideal of $R$ generated by all $t$ by $t$ minors of $\psi$ . (This ideal does not depend on
the choices of free bases of $F$ and $G.$ ) We put rank $(\psi)=max\{t|I_{t}(\psi)\neq 0\}$ and
$I(\psi)=I_{rank(\psi)}(\psi)$ .

For an $R$-linear map $d:Farrow R$ such tbat $F$ is a finitely generated free R-
module, $d(a)b-d(b)a\in F$ is called the Koszul relation of the map $d$ determined
by $a$ and $b$ in F. (Obviously the Koszul relations are contained in $Ker(d).$ )

When $(R, n)$ is a Noetherian local ring, for a finitely generated R-module
$M,$ $\mu_{R}(M)$ is defined to be $\dim_{R/}.M/nM$, $i$ . $e.$ , the cardinary of any minimal
generat‘ng set of $M$ as an R-module.

THEOREM 5.2. Let $(A, m)$ be a normal Noetherian local ring of dimension
3, and

$d_{3}$ $d_{2}$ $d_{1}$

F. : $0arrow F_{3}arrow F_{2}arrow F_{1}arrow F_{0}arrow 0$

a minimal self-dual perfect $A$-complex with support $\{\mathfrak{m}\}$ . Assume the following
conditions.

(T1) $rank_{A}F_{0}=1$ .
(T2) $\mu_{A}(I_{1}(d_{1}))=rank_{A}F_{1}$ .
(T3) All the Koszul relations of $d_{1}$ are contained in $d_{2}(F_{2})$ .

Then, $D_{A}(F.)=l_{A}(H_{0}(F.))-l_{A}(H_{1}(F.))>0$ .
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REMARK 5.3. With the same notation as in Theorem 5.2, the condition
(T2) is automatically satisfied if $A$ contains a field. In fact, consider the fol-
lowing complex:

$d_{3}$ $d_{2}$

F.’ : $0arrow F_{3}arrow F_{2}arrow F_{1}arrow 0$ .

If (T2) is not satisfied, we may assume $d_{1}(e)=0$ such that $\{e\}$ is a part of a
free basis of $F_{1}$ . By the minimality of F., $e$ is not contained in $d_{2}(F_{2})$ . On
the other hand, $0arrow F_{3}arrow F_{2}arrow F_{0}$ is exact by the depth sensitivity (Lemma 2.2)

and $\mathfrak{m}^{n}e\subset d_{2}(F_{2})$ for $n\gg O$ . But the improved new intersection theorem (for

example, see [7] $)$ implies that such a complex have the length at least $3=\dim A$ .
Contradiction.

The author does not know the example of a minimal self-dual A-perfect
complex of length 3 with support $\{\mathfrak{m}\}$ such that the condition (T2) or (T3) is
not satisfied with coefficient ring $A$ normal of dimension 3.

The most essential point of our proof of Theorem 5.2 is the next lemma.
It is a slight generalization of the structure theorem of Gorenstein ideals of
codimension 3 due to Buchsbaum and Eisenbud [2]. The proof of the lemma
is the same as in [2].

LEMMA 5.4. Let $(A, m)$ be a Noetherian local ring and

$d_{3}$ $d_{2}$ $d_{1}$

F. : $0arrow F_{3}arrow F_{2}arrow F_{1}arrow F_{0}arrow 0$

a minimal self-dual perfect A-complex such that
(L1) $rank_{A}F_{0}=1$ ,
(L2) $H_{i}(F.)=0$ for $i=2,3$ ,
(L3) $\mu_{A}(I_{1}(d_{1}))=rank_{A}F_{1}$ ,

(L4) all the Koszul relations are contained in $d_{2}(F_{2})$ .
Then by a suitable choice of free bases of $F_{1}$ and $F_{2}$ , the mafrix of $d_{2}$ can be
alternative.

PROOF. Denote by (G., $d_{G}$) the tensor complex $F.\otimes_{\Lambda}F.$ .
At first we construct a chain map $m$ : $G.arrow F$ . satisfying the following three

conditions.
(C1) $m|_{F.\otimes F_{0}}$ and $m|_{F_{0}\otimes F}$ . are isomorphisms.
(C2) For any $i$ and $j,$ $m(a\otimes b)=(-1)^{ij}m(b\otimes a)$ holds, where $a\in F_{\iota}$ and $b\in F_{j}$ .
(C3) $m(c\otimes c)=0$ for any $c\in F_{1}$ .

By choosing a generator of $F_{0}$ , identify $F_{0}$ and $A$ . Then we have $F.\otimes F_{0}=F$ .
and $F_{0}\otimes F.=F.$ . We define $m|_{F.\otimes F_{0}}$ and $m|_{F_{0}\otimes F}$ . by these identifications. (Then

it is clear that (C1) and (C2) is satisfied when either $i$ or $j$ is equal to $0.$ ) Let
$\{e_{1}, \cdots e_{t}\}$ be a free basis of $F_{1}$ (set $t=rank_{A}F_{1}$ ) and put $d_{1}(e_{l})=c_{l}\in A$ for $1=$
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1, $\cdots$ , $t$ . Consider the following diagram.

$F_{1}\otimes F_{1}arrow\mu\Lambda^{2}F_{1}arrow F_{1}\otimes F_{1}$

$\Delta$

$\downarrow d_{1}\otimes 1$

$F_{2}F_{1}\underline{d_{2}}$

where $\mu$ (resp. $\Delta$) is the multiplication (resp. diagonalization), $i$ . $e.,$ $\mu(a\otimes b)=$

$aAb$ (resp. $\Delta(a\Lambda b)=a\otimes b-b\otimes a$ ) for $a,$ $b\in F_{1}$ . For integers $i$ and $J$ such that
$1\leqq i<j\leqq t$ , we have $((d_{1}\otimes 1)\circ\Delta)(e_{i}\Lambda e_{j})=c_{i}e_{j}-c_{j}e_{i}\in d_{2}(F_{2})$ by the assumption (L4).

So there exists an $A$-linear map $\psi:\wedge^{2}F_{1}arrow F_{2}$ which makes the above diagram
commutative, $i$ . $e.$ , $d_{2}\circ\psi=(d_{1}\otimes 1)0\Delta$ . Put $m|_{F_{1}\otimes F_{1}}=\psi\circ\mu$ . Then $mod_{G}|_{F_{1}\otimes F_{1}}=$

$d_{2^{\circ}}m|_{F_{1}\otimes F_{1}}$ because
$mod_{G}(e_{i}\otimes e_{j})=m(c_{i}\otimes e_{j}-e_{t}\otimes c_{j})$

$=c_{i}e_{j}-c_{j}e_{i}$

$=((d_{1}\otimes 1)\circ\Delta\circ\mu)(e_{i}\otimes e_{j})$

$=(d_{2}\circ m)(e_{i}\otimes e_{j})$ .

Furthermore $m(c\otimes c)=0$ for any $c\in F_{1}$ since $m|_{F_{1}\otimes F_{1}}$ is factored by $\mu:F_{1}\otimes F_{1}$

$arrow\wedge^{2}F_{1}$ . Therefore (C2) and (C3) are satisfied when $i=_{J}=1$ .
For $a\in F_{2}$ and $b\in F_{1}$ , we have

$(m\circ d_{G})(a\otimes b)=m(d_{2}(a)\otimes b+a\otimes d_{1}(b))$

$=m(d_{2}(a)\otimes b)+d_{1}(b)a$

$(m\circ d_{G})(b\otimes a)=m(d_{1}(b)\otimes a-b\otimes d_{2}(a))$

$=d_{1}(b)a-m(b\otimes d_{2}(a))$

$=m(d_{2}(a)\otimes b)+d_{1}(b)a$ .

Since $H_{2}(F.)=0$ , we can construct $m|_{F_{2}\otimes F_{1}}$ and $m|_{F_{1}\otimes F_{2}}$ such that $d_{3^{\circ}}m=m\circ d_{G}$

and $m(a\otimes b)=m(b\otimes a)$ for any $a\in F_{2}$ and any $b\in F_{1}$ .
Put $m|_{G_{i}}=0$ for $i=4,5,6$ . Since $d_{3}$ is injective, $m$ is a chain maP satisfy-

ing (C1), (C2) and (C3).
$m|_{G_{3}}$ : $G_{3}arrow F_{3}$ consists of the following four maps,

$m|_{F_{3}\otimes F_{0}}$ : $F_{3}\otimes F_{0}arrow F_{3}$

$m|_{F_{2}\otimes F_{1}}$ : $F_{2}\otimes F_{1}arrow F_{3}$

$m|_{F_{1}\otimes F_{2}}$ : $F_{1}\otimes F_{2}arrow F_{3}$

$m|_{F_{0}\otimes F_{3}}$ : $F_{0}\otimes F_{3}arrow F_{3}$ .
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For $A$-modules $L,$ $M$ and $N$, it holds that $Hom_{A}(L\otimes_{A}M, N)=Hom_{A}(L,Hom_{A}(M, N))$ .
Hence we obtain the following maps,

$s_{3}$ : $F_{3}arrow Hom_{A}(F_{0}, F_{3})$

$s_{2}$ : $F_{2}arrow Hom_{A}(F_{1}, F_{3})$

$s_{1}$ : $F_{1}arrow Hom_{A}(F_{2}, F_{3})$

$s_{0}$ : $F_{0}arrow Hom_{A}(F_{3}, F_{3})$ ,

from $m|_{F_{3}\otimes F_{0}},$ $m|_{F_{2}\otimes F_{1}},$ $m|_{F_{1}\otimes F_{2}}$ and $m|_{F_{0}\otimes F_{3}}$ respectively. We will show that
the following diagram is commutative:

$F_{3}\downarrow s_{3}\underline{d_{3}}F_{2}\downarrow s_{2}$

$Hom_{A}(F_{0}, F_{3})arrow Hom_{A}(F_{1}d_{1}^{*}F_{3})$ .

We have only to show that $((s_{2}\circ d_{3})(a))(b)=((d_{1}^{*}\circ s_{3})(a))(b)$ in $F_{3}$ for any $a\in F_{3}$

and any $b\in F_{1}$ . Obviously $((d_{1}^{*}\circ s_{3})(a))(b)=(s_{3}(a))(d_{1}(b))=m(a\otimes d_{1}(b))$ by definition
of $s_{3}$ . Furthermore $((s_{2^{\circ}}d_{3})(a))(b)=(s_{2}(d_{3}(a)))(b)=m(d_{3}(a)\otimes b)$ . Since $0=$

$m\circ d_{G}(a\otimes b)=m(d_{3}(a)\otimes b)-m(a\otimes d_{1}(b))$ , we have got $s_{2}\circ d_{3}=d_{1}^{*}\circ s_{3}$ .
Since $m|_{F_{3}\otimes F_{0}}$ is an isomorphism, so is $S_{3}$ . Next we will show that $S_{2}$ is

also an isomorphism. Consider the following commutative diagram:

$Hom_{A}(F_{3}, A)\uparrow s_{3}^{*}$

$d_{3}^{*}$

$Hom_{A}(F_{2}\uparrow s_{2}^{*}’ A)$

$Hom_{A}(Hom_{A}(F_{0}, F_{3}),$ $A)Hom_{A}(Hom_{A}(F_{1}, F_{3}),$
$A)\underline{(d_{1}^{*})^{*}}$ .

We have only to show that $s_{2}^{*}$ is an isomorphism. From the assumption of the
self-dualness of F. and (L3), both of the following two exact sequences

$d_{3}^{*}$

$0-H_{0}(F.)arrow Hom_{A}(F_{3}, A)arrow Hom_{A}(F_{2}, A)$

$0-H_{0}(F.)-Hom_{A}(Hom_{A}(F_{0}, F_{3}),$ $A)Hom_{A}(Hom_{A}(F_{1}, F_{3}),$
$A)\underline{(d_{1}^{*})^{*}}$

are initial parts of the minimal free resolution of $H_{0}(F.)$ . So, $s_{2}^{*}$ must be an
isomorphism.

Fixing a generator of $F_{3}$ , identify $Hom_{A}(F_{1}, F_{3})$ and $F_{1}^{*}$ . Since $s_{2}$ : $F_{2}arrow F_{1}^{*}$

is an isomorphism, we can choose a free basis $\{e_{1}$ , $\cdot$ . , $e_{t}\}$ (resp. $\{g_{1}$ , , $g_{t}\}$ )

of $F_{1}$ (resp. $F_{2}$) such that $s_{2}(g_{i})=e_{i}^{*}$ for $i=1,$ $\cdots$ , $t$ , where $\{e_{1}^{*}, \cdots , e_{t}^{*}\}$ is the
dual basis of $F_{1}^{*}$ . Note that $e_{j}^{*}(d_{2}(g_{i}))=(s_{2}(g_{j}))(d_{2}(g_{i}))=m(g_{j}\otimes d_{2}(g_{i}))$ for any $i$
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and $j$ . So, for integers $i$ and $j$ such that $i\neq j$ , we have

$(d_{3}\circ e_{j}^{*})(d_{2}(g_{i}))=(d_{3}\circ m)(g_{j}\otimes d_{2}(g_{i}))$

$=m(d_{2}(g_{j})\otimes d_{2}(g_{i}))$

$=-m(d_{2}(g_{i})\otimes d_{2}(g_{j}))$

$=-(d_{3}\circ e_{i}^{*})(d_{2}(g_{J}))$ .
Since $d_{3}$ is injective, $e_{j}^{*}(d_{2}(g_{\ell}))=-e_{i}^{*}(d_{2}(g_{J}))$ . Furthermore, for $i=1,$ $\cdots$ , $t$ ,

$(d_{3}\circ e_{\ell}^{*})(d_{2}(g_{i}))=m(d_{2}(g_{i})\otimes d_{2}(g_{i}))=0$ .
So, $e_{i}^{*}(d_{2}(g_{i}))=0$ . Therefore the matrix of $d_{2}$ under the free bases is alter-
native. Q. E. D.

Before proving Theorem 5.2, we have to recall the properties of Pfaffian
ideals.

DEFINITION 5.5. For a $2l$ by $2l$ alternative matrix $M=(m_{ij})$ , we denote by
$pf_{2l}(M)$ the square root of $\det(A)$ and it is called the 21-order Pfaffian of $M$.
(It is well-known that we have

$pf_{2t}(M)= \frac{1}{2^{\iota}\cdot 1!}\sum_{\sigma\in \mathfrak{S}_{2l}}$ (sgn $\sigma$) $m_{\sigma(1)\sigma(2)}\cdots m_{\sigma(2l-1)\sigma(2l)}$ ,

where the above sum runs over all permutations in the 21-th symmetric group
$\mathfrak{S}_{2l}$ . Note that the right hand side of the above equation is defined over an
arbitrary commutative ring.)

For an $n$ by $n$ alternative matrix $N$ and a sequence of integers $1\leqq i_{1}<\cdots$

$<i_{2l}\leqq n$ , denote by $pf_{2l}(i_{1}, \cdots , i_{2l})$ the $2l$-order pfaffian of the alternative sub-
matrix of $N$ consists of the $i_{1^{-}}th$ row, $\cdot$ .. , the $i_{2l}$ -th row and the $i_{1}$-th column,

the $i_{2l}$ -th column of $N$. Denote by $Pf_{2l}(N)$ the ideal

$(pf_{2l}(i_{1}, \cdots , i_{2\iota})|1\leqq i_{1}<\ldots<i_{2t}\leqq n)$

and call it the Pfaffian ideal of order $2l$ . (It is well-known that

$I_{2\iota}(N)\subset Pf_{2l}(N)\subset\sqrt{}\overline{I_{2l}(N})$

for any integer $l$ and for any alternative matrix $N$ over any commutative rlng.)

REMARK 5.6. Let $C=(c_{ij})$ be a 21+1 by $2l+1$ alternative matrix. Then
for each $i=1,$ $\cdots$ , $2l+1$ , we have

$\sum_{j=1}^{2l+1}(-1)^{j+1}pf_{2l}(1, \cdots \hat{j}, \cdots 2l+1)\cdot c_{fi}=0$ ,

where $pf_{2l}($1, $\cdot$ .. , $J^{\wedge}$ , $\cdot$ .. , 21+1 $)$ stands for $pf_{2l}(1, \cdot.. , j-1, j+1, - , 21+1)$ . They
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are relations on pfaffians of degree 1. (See [13] for the details.)

REMARK 5.7. Let $Z$ be the ring of integers and $X=(x_{ij})$ the generic 21+1
by $2l+1$ alternative matrix. For the simplicity of notation, we denote by
$pf_{2l}(\underline{k})$ the 21-order pfaffian $pf_{2l}(1,$ $\cdots$

$\hat{k}$ , $\cdot$ .. , 21+1 $)$ . Put $R=Z[x_{ij}]_{1\leqq i<j\leqq 2l+1}$ .
Denote by $M$ the 1 by 21+1 matrix

$(pf_{2l}(\underline{1}) -pf_{2l}(\underline{2}) ... (-1)^{k+1}pf_{2l}(\underline{k}) ... pf_{2l}(\underline{2l+1}))$

and put $N={}^{t}M$. Consider the following sequence of $R$-linear maps:

$N$ $X$ $M$

L. : $0arrow Rarrow R^{2l+1}arrow R^{2f+1}arrow Rarrow 0$ .
$||$ $||$ $||$ $||$

$L_{3}$ $L_{2}$ $L_{1}$ $L_{0}$

By Remark 5.6, $MX=0$ and $XN=0$ . So, L. is a complex. It is known that $L$ .
is the minimal free resolution of $R/Pf_{2\iota}(X)([2])$ . It is easy to check that
$I_{2l+1}(X)=0$ and $I_{1}(M)=I_{1}(N)=\sqrt{}\overline{I_{2l}(X})=Pf_{2l}(X)$ since $Pf_{2l}(X)$ is a prime ideal
(see [12]). So, the complex L. has the depth sensitivity ([3]) with respect to
$2l+1$ by $2l+1$ alternative matrices, $i$ . $e.$ , for any Noetherian ring $A$ and any
21+1 by $2l+1$ alternative matrix $(a_{tj})$ over $A$ ,

$3- \max\{i|H_{i}(L.\otimes_{R}A)\neq 0\}=grade(Pf_{2l}((a_{ij})))$

holds, where $A$ is regarded to be an $R$-algebra by the ring homomorphism
$\psi:Rarrow A$ defined by $\psi(x_{ij})=a_{ij}$ for $1\leqq i<_{J}\leqq 2l+1$ .

We now start to prove Theorem 5.2.

PROOF OF THEOREM 5.2. Put $t=rank_{A}(F_{1})$ . Then it is easy to see that
rank $(d_{3})=rank(d_{1})=1,$ $rank(d_{2})=t-1$ and $\sqrt{}\overline{I(d_{1})}=\sqrt{}\overline{I(d_{2})}=\sqrt{}\overline{I(d_{3})}=\mathfrak{m}$ because
$A$ is an integral domain. Since $A$ is normal, $H_{i}(F.)=0$ for $i=2,3$ . So, by a
suitable choice of free bases of $F_{1}$ and $F_{2}$ , we may assume that the matrix
$s$tanding for $d_{2}$ is alternative by Lemma 5.4. Therefore rank $(d_{2})$ must be even.
Set $t=2l+1$ .

Let $(a_{if})$ be the 21+1 by $2l+1$ alternative matrix corresponding to $d_{2}$ . Then
$\sqrt{}\overline{I(d_{2})}=\sqrt{}\overline{Pf_{2l}((a_{ij}))}=\mathfrak{m}$ . So, grade $(Pf_{2l}((a_{ij})))\geqq 2$ . Therefore $H_{i}(L.\otimes_{R}A)=C$

for $i=2,3$ (see Remark 5.7). On the other hand $0arrow F_{3}arrow F_{2}arrow F_{1}$ is exact. Hence
by a suitable choice of a generator of $F_{3}$ , we may assume that the $2l+1$ by 1
matrix standing for $d_{3}$ is ${}^{t}(pf_{2l}(\underline{1}) -pf_{2l}(\underline{2}) . pf_{2l}2l\cup+1)$ . Next consider
F.*. By the same argument as above, we may assume that the 1 by $2l+1$

matrix corresponding to $d_{1}$ is $(pf_{2\iota}(\underline{1}) -pf_{2\iota}(\underline{2}) pf_{2l}(\underline{2l+1}))$ by a suitable
choice of a generator of $F_{0}$ . Therefore we obtain $F.\cong L.\otimes_{R}A$ .
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Let $Y=(y_{ij})$ be the $2l+1$ by $2l+1$ generic alternative matrix over $A$ . Put

$B=A[y_{tj}|1\leqq i<j\leqq 2l+1J_{(\mathfrak{m}.ty_{ij^{1}}1\leqq i\triangleleft\leqq 2l+1\})}$ .
Since $\dim B=3+l(2l+1)$ and $I=Pf_{2l}((y_{ij}))\cdot B$ is a prime ideal of height 3, we
have $\dim B/I=l(2l+1)$ . (Note that $A$ is universally catenary because it is a
homomorphic image of a regular local ring.)

We give the $R$-algebra structure to $B$ (resp. $B$ -algebra structure to $A$ ) via
$\phi:Rarrow B$ defined by $\phi(X)=Y$ (resp. $\xi:Barrow A$ defined by $\xi(Y)=(a_{ij})$). Put $H.=$

$L.\otimes_{R}B$ . Note that $F.=L.\otimes_{R}A=H.\otimes_{B}A$ . By the depth sensitivity ([3]), H. is
the minimal free resolution of $B/I$ .

Let K. be the Koszul complex over $B$ defined by { $y_{ij}-a_{ij}|1\leqq i<_{J}$ $2l+l}.
It is obvious that K. is the minimal $B$ -free resolution of $A$ .

Consider the following double complex $H.\otimes_{B}K$. :

$H_{3}\otimes K_{l(2}H_{2}\otimes K_{l(2}\downarrow|_{+1)^{arrow}}^{+1)^{-arrow}}$ .

$\cdots$

:. $arrow H_{2}\otimes K_{0}arrow H_{3}\bigotimes_{\downarrow}K_{0}$

$\downarrow$ : : $\downarrow$

$H_{1}\otimes K_{l(2l+1)}arrow$ ... $arrow H_{1}\otimes K_{0}$

$\downarrow$ : : $\downarrow$

$H_{0}\otimes K_{l(2l+1)}arrow$ ... $arrow H_{0}\otimes K_{0}$ .
Then we have

$\sum_{1=0}^{\theta}(-1)^{i}l_{A}(H_{i}(F.))=\sum_{i}(-1)^{i}l_{B/I}(K.\otimes_{B}B/I)$

by the argument on the spectral sequences. Since $\dim B/I=l(2l+1)$ and
$B/(I+(y_{ij}-a_{ij}|1\leqq i<j\leqq 2l+1))=A/Pf_{2l}((a_{ij})),$ $\{\overline{y_{ij}-a_{ij}}|1\leqq i<j\leqq 2l+1\}$ is a sys-
tem of parameter of $B/I$ . ( $\overline{y_{ij}-a_{ij}}$ means the image of $y_{i\mapsto}a_{ij}$ in $B/I.$ )

Therefore we obtain

$l_{A}( H_{0}(F.))-l_{A}(H_{1}(F.))=\sum_{i}(-1)^{i}l_{B/I}(K.\otimes_{B}B/I)=e_{\overline{(yij^{-a_{ij^{11\leqq i<j\leqq 2l+1)}}}}}(B/I)>0$ .

We have completed the proof of Theorem 5.2. Q. E. D.
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