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In this paper we define a polynomial with integer coefficients for knots
with certain integral representations of the knot group. This polynomial is
determined up to power by the conjugacy class of the representation and is
related to Dehn surgery on knots as follows: if $(1/m)$-surgery on such a knot
yields a homotopy 3-sphere, then the absolute value of that polynomial at $m$

must be equal to 1. The degree of the polynomial is related to the class num-
ber of the algebraic number field of the representation. We thus have a rough
estimate on the number of Dehn surgeries of a given knot yielding simply-
connected manifolds from the class number of the algebraic number field. As
an example, we will calculate this polynomial for some knots and show that
Property $P$ actually follows from the polynomial for those knots, $i.e$ . the poly-
nomials do not take the value $\pm 1$ at non-zero integers for those knots.

The knots for which we will define the polynomial form a large class, and
we will call them integral knots. In fact, if a nontrivial knot has no essential
closed surfaces in the complement, then that knot is an integral knot. The
definition of integral knots we shall use in this paper is the following.

DEFINITION. Let $J$ be a smooth knot in the 3-sphere $S^{3}$ . We say $J$ is an
integral knot if there is an algebraic number field $k,$ $i.e.$ , a finite extension
of the rationals $Q$ in $C$ , and a representation

$\rho:\pi_{1}(S^{3}-J)arrow PSL_{2}(O_{k})$ ,

where $O_{k}$ is the ring of algebraic integers in $k$ , such that:
(1) $\rho$ is a parabolic representation in the sence that if $\gamma\in\pi_{1}(S^{3}-J)$ is a

peripheral element, then $\rho(\gamma)=\pm$ ($unipotent$ matrix), and
(2) $\rho$ is irreducible over the complex numbers, $i.e.,$

$\rho$ is not conjugate in
$PSL_{2}(C)$ to a group of upper-triangular matrices.

We will call $(J, \rho)$ a $k$-integral knot to specify the algebraic number field $k$ .

Integral knots form a large class. In fact we have the following fact whlch
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is an immediate consequence of Thurston’s uniformization theorem and Bass-
Serre arboreal theory.

PROPOSITION. If a nontrivial knot $J$ in $S^{3}$ has no incomPressible non-
boundary-parallel closed surface in it $s$ complement, then $J$ is an integral knot.

We briefly outline the argument of the proof for completeness.
First note that $S^{3}-J$ is atoroidal. Hence if $S^{3}-J$ is not a Seifert fiber

space, then, by Thurston, $J$ is a hyperbolic knot, $i.e.$ , there is a faithful re-
presentation $\rho_{0}$ of the knot group into $SL_{2}(F)$ , with $F\subset C$ a finitely generated
extension of $Q$ , such that $\rho_{0}$ maps peripheral elements to unipotent matrices.
Since $J$ is knotted, the knot group contains a rank two free group, and since
$\rho_{0}$ is faithful, ${\rm Im}\rho_{0}$ cannot be conjugated in $SL_{2}(C)$ into a group of uppertri-
angular matrices, which is a solvable subgroup. Since the complement of $J$

contains no closed incompressible non-boundary-parallel surfaces, the knot group
$\pi_{1}(S^{3}-J)$ cannot be decomposed as a nontrivial free product with amalgamation
$\Gamma_{0^{*}\Lambda}\Gamma_{1}$ in such a way that every peripheral subgroup is conjugate to a sub-
group of $\Gamma_{0}$ or $\Gamma_{1}$ (by Stallings, Epstein, and Waldhausen, cf. [4] p. 32). Then,
by Bass-Serre arboreal theory, for every valuation $v$ of $F$, the action of $\pi_{1}(S^{3}-J)$

on the tree of $SL_{2}(F)$ relative to $v$ has a fixed point, which implies $trace({\rm Im}\rho_{0})$

$\subset A=\bigcap_{v}A_{v}$ . Using Burnside lemma, one can conclude ${\rm Im}(\rho_{0})$ is conjugated
into $SL_{2}(\mathcal{O}_{k})$ , where $k$ is a finite extension of the algebraic number field $k_{0}$

containing all algebraic integers appearing in the matrices in ${\rm Im}\rho_{0}$ . (This is
Bass’ $SL_{2}$-subgroup theorem [1], [4].)

If $S^{3}-J$ is a Seifert fiber space, then $J$ is a torus knot. In this case, it is
easy to find a representation satisfying both conditions (1) and (2) of Definition.
Note that our definition doesn’t assume the faithfullness of the representation.
(See Example 1.)

Let $(J, \rho)$ be an integral knot. We shall readily define a polynomial
$N_{(J,\rho)}(x)$ with integer coefficients $\in Z[x]$ which satisfies the following pro-
perties:

THEOREM. (1) The constant term of $N_{(J,\rho)}(x)$ is 1, and $N_{(J.\rho)}(-x)=$

$N_{(_{}7.\rho)}(x)$ , where $(\overline{J}, \rho)$ is the mirror image of $J$ with the same rePresentation $\rho$

in $S^{3}$ .
(2) If $(1/m)$-Dehn surgery on $J$ yields a simply-connected 3-manifold, then

$|N(m)|$ , the absolute value of this polynomial at $m$ , is equal to 1.
(3) If $(J, \rho)$ is a $k$-integral knot, then the degree of the polynomial $\deg N(x)$

is less than or equal to $C_{k}[k, Q]$ , where $C_{k}$ is the class number of the algebraic
number field $k$ , and $[k, Q]=the$ extension degree of $k$ .

More precisely, the polynomial $N_{CJ.\rho)}(x)$ is determined up to power by the
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equivalence class of the $PSL_{2}(C)$-representation $\rho$ . Here we say two polynomials
$N_{i}(x)\in Z[x],$ $i=1,2$ , are equal up to power when there is a polynomial $N0(x)$

$\in Z[x]$ such that $N_{i}(x)=(N_{0}(x))^{n_{i}}$ for some non-negative integers $n_{i}$ .
Statements (1) and (2) of the Theorem are valid independently of specific

choice of the polynomial $N_{(J.\rho)}(x)$ , whereas Statement (3) should be understood
to be valid under the assumption that we do not add any redundant power to
the polynomial $N_{(J.\rho)}(x)$ .

Recall that an $n/m$-Dehn surgery on a knot $J$ in the 3-sphere $S^{3}$ is, by de-
finition, performed by removing a tubular neighborhood $V$ of $J$ and plugging
it back in such a way that an $n/m$-curve on the boundary of $S^{3}-V$ (with re-
spect to a fixed orientation of $S^{3}$ ) bounds a 2-disc in $V$ . Hence $n/m$-Dehn surgery
on a knot yields a homology 3-sphere if and only if $n=1$ , and the Property $P$

Conjecture is the conjecture that $m$ must be equal to $0$ if the original knot is
nontrivial and the resulting homology 3-sphere is simply-connected.

Recall also that $C_{k}$ the class number of $k$ is, by definition, the order of
the ideal class group of $k$ , which is always finite. Although it is known that
the number of Dehn surgeries which yield simply-connected manifolds is finite
for a fixed nontrivial knot, the Theorem explains this fact for integral knots
from the finiteness of the class number of the algebraic number field.

The definition of the polynomial $N_{(J.\rho)}(x)$ for an integral knot $(J, \rho)$ is
natural and elementary except that we need to use the principal ideal theorem
of classical class field theory. All we need to use here is the following: for
any algebraic number field $k$ and any ideal $\mathfrak{a}$ , there exists a field extension
$K/k$ such that the extension $\mathfrak{U}$ of $\mathfrak{a}$ is principal in $K,$ $i.e.$ , there exists an ele-
ment $d\in K$ and every element of $\mathfrak{U}$ is a multiple of $d$ by an algebraic integer
of $K$ . The field $K$ is an intermediate field of the Hilbert absolute class field $L$

over $k$ , where every ideal of $k$ becomes principal. The Galois group Gal $(L/k)$

is isomorphic to the ideal class group of $k$ . Hence, in particular, the extension
degree $[K, k]$ is less than or equal to the class number of $k$ .

Definition of the polynomial.

Let $(J, \rho)$ be a $k$-integral knot. Let $\mu$ and $\lambda\in\pi_{1}(S^{3}-J)$ be represented re-
spectively by a meridian and a preferred longitude of $J,$ $i.e.$ , they are com-
muting peripheral elements such that $\mu$ is null-homotopic in a regular neigh-
borhood of $J$ in $S^{3}$ , generating the homology group $H_{1}(S^{3}-J)\cong Z$ , and $\lambda$ is
null-homologous in $S^{3}-J$ . We fix the orientations of $\mu$ and $\lambda$ in such a way
that the orientation $(\mu, \lambda)$ of the boundary torus $\partial(S^{3}-nbd^{O}(J))$ is compatible
with the given orientation of $S^{3}-J$ .

By Definition of integral knots, $\rho(\mu)\in PSL_{2}(O_{k})$ has trace $\pm 2$ , and is repre-
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sented by a unipotent matrix $A$ of the form

$A=(\begin{array}{ll}1-\alpha \beta\gamma 1+\alpha\end{array})$ , with a, $\beta,$ $\gamma\in O_{k}$ such that $\alpha^{2}+\beta\gamma=0$ .

Let $\mathfrak{a}$ be the ideal of $k$ generated by $\alpha$ and $\beta,$ $\mathfrak{a}=(\alpha, \beta)$ , and $K$ be the finite
extension of $k$ in which $\mathfrak{a}$ becomes a principal ideal $\mathfrak{A}=(\backslash d)$ for some $d\in K$ as
described above. If $\alpha=\alpha_{0}d$ and $\beta=\beta_{0}d$ , then from our choice of $d,$ $\alpha_{0}$ and $\beta_{0}$

are coprime elements of $\mathcal{O}_{K}$ . Hence there exists a matrix $P\in SL_{2}(\mathcal{O}_{K})$ of the
form

$P=(\begin{array}{ll}\beta_{0} \epsilon\alpha_{0} \delta\end{array})$ ,

and then $A$ is uppertriangulated by $P$ :

$P^{-1}AP=(\begin{array}{ll}1 \zeta 0 1\end{array})$ , with $\zeta\neq 0,$ $\in O_{K}$ .

Since a peripheral element $\nu=n\mu+m\lambda$ commutes with $\mu,$ $\rho(\nu)$ is simul-
taneously uppertriangulated by the matrix $P$. Hence we can define a character
g5 of the peripheral subgroup into $O_{K}$ , by the relation

$P^{-1}\rho(\nu)P=\pm(\begin{array}{ll}1 \emptyset(\nu)0 1\end{array})\in PSL_{2}(O_{K})$ .

We define the polynomial $N_{(J,\rho.K)}(m)\in Z[m]$ by taking the norm $N_{K/Q}$ of
the element $\phi(\mu+m\lambda)$ :

$N_{(J.\rho.K)}(m)= \pm N_{K/Q}(\phi(\mu+m\lambda))=\pm\prod_{\sigma}\phi(\mu+m\lambda)^{\sigma}$

where $\sigma$ runs through all isomorphisms of $K$ into $C$ , and the sign $\pm$ is fixed
by imposing the condition:

$N_{CJ.\rho.K)}(0)=1$ .

This condition is possible by the proof of Statement (2) of Theorem. In fact
if $\Pi_{\sigma}\phi(\mu+0\lambda)^{\sigma}$ were not +1, then we would get a nontrivial representation of
the fundamental group of $S^{3}$ .

Note that for any matrix $\tilde{P}\in SL_{2}(O_{K})$ which uppertriangulates $\rho(\nu)$ , the
upperright entry of $\tilde{P}^{-1}\rho(\nu)\tilde{P}$ is $u^{2}\emptyset(\nu)$ for some unit $u$ of $0_{K}$ . This shows
that the definition of the polynomial $N_{(J.\rho.K)}(m)$ is independent of the choice
of the uppertriangulation, since $N_{K/Q}(u^{2}\phi(\mu+m\lambda))=(N_{K/Q}(u))^{2}N_{K/Q}(\phi(\mu+m\lambda))=$

$N_{K/Q}(\phi(\mu+m\lambda))$ .
Also note that if we orient $\mu$ and $\lambda$ both oppositely (hence still compatible

with the orientation of $S^{3}-J$), we get the character $-\phi(n\mu+m\lambda)$ instead of
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$\phi(n\mu+m\lambda)$ . This ambiguity in sign is eliminated by the sign fixing condition
$N_{(J,\rho,K)}(0)=1$ . Hence the polynomial $N_{(J.\rho.K)}(x)$ is unambiguously defined for
unoriented $J$ .

Suppose we have two $k_{i}$-integral knots $(J, \rho_{i}),$ $i=1,2$ , with the same knot
$J$ , and equivalent $PSL_{2}(C)$-representations $\rho_{t}$ , i.e., there is an intertwiner
$U\in PSL_{2}(C)$ such that $\rho_{2}=U^{-1}\rho_{1}U$ . Choosing some field extensions $K_{i}/k_{i}$ , we
can define the polynomials $N_{(J.\rho_{i},K_{i})}(x)$ as above. Next Lemma shows that
these polynomials are equal up to power. Here recall we say two polynomials
are equal up to power when they are some powers of a same polynomial
$\in Z[x]$ .

Hence, finally, we denote by $N_{(J.\rho)}(x)$ this (power-)equivalence class of the
polynomials $N_{(J.\rho.K)}(x)$ , which is determined solely by the equivalence class of
the $PSL_{2}(C)$-representation $\rho$ . We also write $N_{(J.\rho)}(x)$ , by abuse of notation,
to denote individual polynomial $N_{(J.\rho,K)}(x)$ when the ambiguity in the power
is inessential.

LEMMA. Let $(J, \rho_{i})$ be $k_{\ell}$-integral knots, $i=1,2$ . SuPPose that $\rho_{t}$ are two
equivalent $PSL_{2}(C)$-rePresentations of the knot grouP, each of whose images sits
in $PSL_{2}(O_{K_{i}})$ for a finite extension $K_{i}/k_{i},$ $i=1,2$ , respectively, and that the peri-
pheral subgroup $\rho_{t}(\langle\mu, \lambda\rangle)$ is uppertriangulable in $PSL_{2}(O_{K_{i}})$ . Then the two poly-
nomials $N_{(J.\rho K_{i})(x)\in Z}\iota\cdot[x],$ $i=1,2$ , are equal uP to Power.

PROOF. We may assume, after conjugation, that each peripheral subgroup
$\rho_{i}(\langle\mu, \lambda\rangle)$ is already uppertriangulated in $PSL_{2}(O_{K_{i}}),$ $i=1,2$ . Then if $U\in$

$PSL_{2}(C)$ is an intertwiner from $\rho_{1}$ to $\rho_{2},$
$U$ must be an uppertriangular matrix,

since conjugation by $U$ preserves unipotent uppertriangular subgroups $\rho_{i}(\langle\mu, \lambda\rangle)$ .
Then if $\phi_{i}$ : $\langle\mu, \lambda\ranglearrow O_{K_{i}}$ are the characters defined by $\rho_{i}$ , we see $\phi_{2}(\mu+m\lambda)=$

$u^{2}\phi_{1}(\mu+m\lambda)$ , where $u\in C$ is an eigenvalue of $U$ .
NOW fix any finite normal extension $L$ of $Q$ in $C$ which containes both $K_{i}$ .

Note that $u^{2}\in L$ . For each $i$ , we can define the polynomial $N_{(J.\rho_{i}.K)}(x)\in Z[x]$

by taking the norm $N_{L/Q}(\phi_{i}(\mu+x\lambda))$ , since $N_{(J.\rho_{i}.L)}(x)$ is independent of the
uppertriangulation in $PSL_{2}(O_{L})$ . Thus, as $\phi_{i}(\mu+x\lambda)$ is in $K_{i}$ , we have
$N_{L/Q}(\phi_{i}(\mu+x\lambda))=N_{K_{l}/Q}(N_{L/K_{i}}(\phi_{t}(\mu+x\lambda)))=N_{K_{i}/Q}(\phi_{i}(\mu+x\lambda))^{[L:K_{t}]}$ . Hence
$(N_{(J.\rho_{2}.K_{2})(\chi))^{[L:K_{2}]}}=\pm N_{L/Q}(\phi_{2}(\mu+x\lambda))=\pm N_{L/Q}(u^{2}\phi_{1}(\mu+x\lambda))=\pm N_{L/Q}(u^{2})(N_{(J.\rho_{1}}$ .
$K_{1})(X))^{[L:K_{1}]}$ . Combining this with $N_{(J.\rho_{2}.K_{2})}(0)=N_{(J.\rho_{1}.K_{1})}(0)=1$ , we get the
conclusion of Lemma.

Proof of Theorem.

(1) $N_{(J,p)}(0)=N_{(J,\rho,K)}(0)=1$ is the sign fixing condition itself which logically
depends on the proof of (2) below. The mirror image $\overline{J}$ of $J$ is obtained by
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reversing the orientation of $S^{3}$ . Then this amounts to choosing the orientation
$\pm(\mu, -\lambda)$ instead of $(\mu, \lambda)$ . Then the character becomes $\pm\phi(n\mu-m\lambda)$ and from
this we have $N_{(J.\rho)}(x)=N_{(J.\rho)}(-x)$ .

(2) Suppose the absolute value of the polynomial $N_{(J.\rho)}(m)$ is not equal to
1 for an integer $m\in Z$ . Since the norm $N_{N/Q}(\phi(\mu+m\lambda))$ is the product of the
Archimedean valuations of $K/Q$ up to $\pm 1$ , there is, due to the product formula,
a discrete valuation $v$ of $K/Q$ such that $v(\phi(\mu+m\lambda))$ is strictly positive. We
can now construct a nontrivial representation of the fundamental group of the
Dehn surgered manifold by an argument parallel to that of Thurston in pp. 25-
27 of [M-B] as follows. Let $l$ be the smallest non-negative value of the valua-
tion $v$ of the elements which appear in the lower left entry of the matrix re-
presentation $P^{-1}\rho P:\pi_{1}(S^{3}-J)arrow PSL_{2}(O_{K})$ . Note that the existence of $l$ is assured
by the hypothesis of irreducibility over the complex numbers of the representa-
tion $\rho$ in the definition of the integral knots. Let $Q\in PSL_{2}(K)$ be the diagonal
matrix

$Q=\pm(\begin{array}{ll}1/c 00 1\end{array})$ ,

where $c$ is an element of $\mathcal{O}_{K}$ whose valuation $v(c)$ is equal to $l$ . From the
choice of $l$ , the representation $\tilde{\rho}=Q^{-1}P^{-1}\rho PQ$ maps the whole knot group
$\pi_{1}(S^{3}-J)$ into $PSL_{2}(O_{v})$ , and the peripheral element $\mu+m\lambda$ is represented by the
uppertriangular unipotent matrix whose upper right entry is $c\phi(\mu+m\lambda)$ . Note
that the valuation $v$ of that element is strictly positive. Hence if we set the
residue field $\Lambda=O_{v}/\mathfrak{m}_{v}$ , then $\tilde{\rho}$ induces the representation

$\overline{\rho}:\pi_{1}(J(1/m))arrow PSL_{2}(\Lambda)$

where $J(1/m)$ denotes the manifold obtained from $S^{3}$ by the $(1/m)$ Dehn surgery
along the knot $J$ and $\pi_{1}(J(1/m))=\pi_{1}(S^{3}-J)/\langle\mu+m\lambda\rangle$ . If the minimum value $l$

of the valuation is attained by the lower left entry of $P^{-1}\rho(\gamma)P$ for an element
$\gamma\in\pi_{1}(S^{3}-J)$ , then the lower left entry of the matrix $\tilde{\rho}(\gamma)$ will have valuation
$=0,$ $i.e$ . a unit of $O_{v}$ , hence $p(\gamma)\in PSL_{2}(A)$ is non-trivial. Hence the representa-
tion $\overline{\rho}$ provides a nontrivial representation of the fundamental group of the
Dehn surgered manifold $J(1/m)$ , which proves (2) of Theorem.

(3) AS we can choose $K$ as an intermediate field of the absolute class field
$L/k,$ $[K:k]\leqq[L : k]=C_{k}$ . Since the degree of $N_{(J,\rho,K)}(x)$ is equal to the ex-
tension degree of $K/Q$ , we have $\deg 1V_{(J.\rho.K)}(x)=[K:Q]=[K:k][k : Q]\leqq$

$C_{k}[k:Q]$ . This completes the proof of Theorem.
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Some examples.

TO demonstrate that the polynomial $N_{CJ.\rho)}(x)$ actually verifies Property $P$

for some knots, we will here calculate the polynomial $N_{(J.\rho)}(x)$ for torus knots
(Example 1) and the figure-eight knot (Example 2).

EXAMPLE 1 (torus knots). Let $J$ be a torus knot of type $(p, q)$ , where $p$

and $q$ are relatively Prime integers greater than 1. We first find a rePresenta-
tion $\rho$ and show that $(J, \rho)$ is a $k_{2pq}$-integral knot with $k_{2pq}=Q(e^{i\pi/pq})$ , the
$2pq$-th cyclotomic field. Then we calculate the polynomial $N_{(J.\rho)}(x)=N_{(J.\rho.K)}$

for $K=k_{2pq}$ and show that $N_{(J,\rho)}(x)=(l-pqx)^{\varphi(2pq)}$ , where $\varphi(2pq)=\#$ {1Sm $<$

$2pq;(m, 2pq)=1\}$ , the Euler function. Obviously $1V_{(J.\rho)}(m)\neq\pm 1$ for non-zero
integers $m$ .

Calculation. The knot group has a presentation

$\langle c, d;c^{p}=d^{q}\rangle$

whose two generators are rePresented by the cores of two solid tori forming
$S^{3}$ glued together along the boundary torus containing $J$ . If we take integers
$r,$ $s$ such that $pr+qs=1$ , then $\mu=d^{r}c^{s}$ is a meridian and the preferred longitude
commuting with $\mu$ is $\lambda=c^{p}\mu^{-pq}$ . Let $\xi$ and $\zeta$ be primitive $2p$ -th and $2q$-th roots
of unity respectively. We define a representation $\rho$ of the knot group in
$PSL_{2}(O_{k_{2pq}})$ by setting

$\rho(c)=\pm(\begin{array}{ll}\xi 10 \overline{\xi}\end{array})$ , $\rho(d)=\pm(\begin{array}{ll}\zeta 0t \zeta\end{array})-$

where $t=2-\xi\overline{\zeta}-\overline{\xi}\zeta$ . Since $\rho(c)^{p}=\pm 1$ , and $\rho(d)^{q}=\pm 1$ , the representation is well
defined. We fined

$\rho(\mu)=\pm(\begin{array}{ll}\xi\zeta \zeta\xi t t+\xi\zeta\end{array})-$

and $trace\rho(\mu)=\pm(t+\xi\overline{\zeta}+\overline{\xi}\zeta)=\pm 2$ , which shows this representation is parabolic.
TO check this representation is irreducible over the complex numbers, it suffices
to see that $\rho(c)$ and $\rho(d)$ have no common fixed points when regarded as M\"obius

transformations. The fixed point sets of $\rho(c)$ and $\rho(d)$ are respectively
$\{1/(\overline{\xi}-\xi), \infty\}$ and $\{0, (\overline{\zeta}-\zeta)/t\}$ , which are disjoint as $\xi\zeta\neq 1$ . Hence we see that
$(J, \rho)$ is a $k_{2pq}$-integral knot.

TO find the polynomial $N_{CJ.\rho)}(x)$ , we need to upper-triangulate $\rho(\mu)$ . As
the ideal $\mathfrak{a}=(1-\xi\overline{\zeta},\overline{\zeta})=(1)$ is principal, we may take $K=k_{2pq}$ and

$P=\pm(\begin{array}{ll}\zeta -11-\xi\overline{\zeta} \xi\end{array})-\in PSL_{2}(O_{k})$ $k=k_{2p\mathfrak{g}}$ ,



74 K. KUGA

and have

$P^{-1}\rho(\mu)P=\pm(\begin{array}{ll}1 \zeta 0 1\end{array})$ , $P^{-1}\rho(\lambda)P=\pm(\begin{array}{ll}1 -pq\zeta 0 1\end{array})$ .

Hence we have

$N_{(J.\rho)}(x)= \prod_{/\sigma\in Ga1(kQ)}(1-pqx)\zeta^{\sigma}=(1-pqx)^{\varphi(2pq)}\prod_{(f.2pq)=1}\zeta^{j}=(1-pqx)^{\varphi(2pq)}$
,

as claimed.

EXAMPLE 2 (figure-eight knot). Let $J$ be the figure-eight knot. If $\rho$ is an
irreducible representation (necessarily the representation of the hyperbolic struc-
ture on the complement), then $N_{(J.\rho)}(x)=1+12x^{2}$ .

Calculation. This knot is a hyperbolic 2-bridge knot and its knot group
has a presentation

$\langle\mu, v;\mu^{-1}\nu\mu\nu^{-1}\mu\nu=\nu\mu^{-1}\nu\mu\rangle$

with two generators $\mu$ and $\nu$ depicted in Figure below.

Figure (figure-eight knot).

The preferred longitude $\lambda$ that commutes with the meridian $\mu$ is

$\lambda=\nu\mu^{-1}\nu^{-1}\mu^{2}\nu^{-1}\mu^{-1}\nu$ .

We may assume, after conjugation if necessary, tbat the generators $\mu$ and $\nu$

are represented by the matrices of the form

$(\begin{array}{ll}1 11 0\end{array})$ , and $(\begin{array}{ll}1 0-z 1\end{array})$ ,

respectively. Plugging these matrices into the relator, we find a single equa-
tion for $z$ :

$z^{2}+z+1=0$ .
Hence $z=\omega$ a primitive cubic root of unity, and the figure-eight knot is a
$Q(\sqrt{-3})$-integral knot. Since the integer ring $Z[\omega]$ is a principal ideal domain,
the absolute class field is $Q(\sqrt{-3})$ itself. The longitude $\lambda$ is represented by the
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matrix

$(\begin{array}{ll}1 -4\omega-20 1\end{array})i$

Hence the upper-right entry of the matrix representing the element $\mu\lambda^{m}$ equals
$1+m(-4\omega-2)$ . Since the Galois group is generated by the complex conjugation,
we find $N_{(J.\rho)}(x)=(1+x(-4\omega-2))(1+x(-4\overline{\omega}-2))=1+12x^{2}$ , as claimed.

Questions related to the Property $P$ Conjecture.

AS noted in Proposition, non-torus integral knots contain an important sub-
class of the class of hyperbolic knots. Namely, a non-torus knot is a hyperbolic
knot if and only if it has no essential torus in its complement, and a non-torus
knot is an integral knot if it has no essential closed surface in its complement.
By examining essential tori in knot complements, C. Gordon [3] has shown
that The Property $P$ Conjecture for arbitrary knots follows from the conjecture
for hyperbolic knots, Hence it is natural to ask whether the conjecture can
be reduced to the conjecture for integral knots, by examining incompressible
surfaces in knot comprements. Therefore The Property $P$ Conjecture may be
divided into the following two questions:

QUESTION 1. Is The Property $P$ Conjecture for arbitrary knots true if it is
true for knots without essential closed surfaces in the comPlement

OUESTION 2. $Are_{\wedge}^{-}there$ hyPerbolic integral knots] for which $N_{(J.hyperbolic)}(x)$

$=\pm 1$ has non-trivial integer solutions.$P$

This program is similar to the one in Culler-Gordon-Luecke-Shalen [2]. In
this respect, the polynomial $N_{(J.\rho)}(x)$ may be regarded as an algebraic num-
ber field version of the argument for atoroidal case in [2], where the function
field of an algebraic curve of $SL_{2}(C)$-representations is used.
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