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§0. Introduction.

There are in general many different complex manifolds having the same
underlying topological or differentiable structure. However there are a few
exceptional cases where we can expect that homeomorphy to a given compact
complex manifold implies analytic isomorphism to it, for instance, compact
Hermitian symmetric spaces. Among compact Hermitian symmetric spaces, the
complex projective space PZ and a smooth hyperquadric Q¢ in PZ*' seem to
be nice exceptions which we can handle with algebraic methods.

The following conjecture is the problem we study in the present article.

CONJECTURE MP,. Any Moishezon complex manifold homeomorphic to PE
is isomorphic to Pg.

There are some related conjectures, or rather, more accessible forms of
Conjecture MP, which are interesting themselves.

CONJECTURE LM,. Let X be a Moishezon manifold of dimension n, and L
a line bundle on X. Assume that Pic X=ZL, c,(X)=dc,(L) (d 2 n+1) and
h(X, Ox(L)=n+1. Then X is isomorphic to PZ.

CONJECTURE LMP,. Let X be a Moishezon manifold homeomorphic to PZ,
and L a line bundle on X with L*=1. Assume h°X, Ox(L))=n+1. Then X
s isomorphic to Pg.

CONJECTURE DP,. Any complex (global) deformation of PP is isomorphic
to PZ.

In the above conjectures a Moishezon (complex) manifold of dimension 7 is
by definition a compact complex manifold with » algebraically independent
meromorphic functions. This is equivalent to saying that it is bimeromorphic
to an algebraic variety.

Conjecture MP, (resp. Conjecture LM,) has been settled by Hirzebruch-
Kodaira [3], and Yau [21] (resp. by Fujita [1], Kobayashi and Ochiai [6]),
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when the manifold under consideration is projective or Kihlerian. See Siu [17]
[18] and Tsuji [20] for Conjecture DP,. I heard from Mabuchi in the summer
of 1990 that Siu seemed to have completed a correction of [17], while I com-
pleted the present article in 1991 January. I was unable to look at the article
of Siu until very recently it appeared as [18]. I cannot spend enough time for
understanding [18] before submitting this article, but I hear from Mabuchi that
[18] is correct.

Meanwhile Kollar [8] and the author [10] solved Conjecture MP, without
extra assumptions, each supplementing the other. Peternell [15][16] also asserts
(MPy). See also [8, 5.3.6].

(0.1) THEOREM [8][10]. Any Moishezon threefold homeomorphic to P is
isomorphic to P§.

The purpose of the present paper is to give some partial solutions to the
above conjectures, in particular, a complete solution to (LM,) and (LMP,), which
implies (DP,).

For the proof of (LM,) or (LMP,), we study dualizing sheaves of reduced
curves and surfaces in the present article, although the idea of the proof is
essentialy the same as our previous papers [10][11]. Our new ingredient here
is a subadjunction formula (2.A) for curves and surfaces.

(0.2) THEOREM. Let X be a Moishezon manifold of dimension n with b,=
1, L a line bundle on X. Assume that ¢,(X)=dc,(L) (d=n+1), and h*(X, Ox(L))
=n. If a complete intersection of general (n—1)-members of the complete linear
system | L| is nonempty outside the base locus Bs|L|, then X is isomorphic to Pg.

The following theorems are proved by applying (0.2) or the idea of the
proof of (0.2).

(0.3) THEOREM. Let X be a Moishezon fourfold, and L a line bundle on
X. Assume that Pic X=ZL, c,(X)=dc\(L) (d=5) and h(X, Ox(L))=z4. Then
X is isomorphic to P¢.

(0.4) THEOREM. Let X be a Moishezon fourfold homeomorphic to P¢, and
L a line bundle on X with L*=1. Assume h%X, Ox(L))=3. Then X is iso-
morphic to P§.

(0.5) COROLLARY. Any complex (global) deformation of P¢ is isomorphic
to P¢.

See also [17][18][20]. Now we shall explain an outline of our proof of
(0.2). By Bertini’s theorem, we choose a general (n—1)-dimensional subspace .\
V of H(X, Ox(L)) such that [ :=Nsey(zeroes of s), the scheme-theoretic com-
plete intersection associated to V, is pure one dimensional and nonsingular
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outside Bs|L|. Then we show in section one that [, is a union of nonsingular
rational curves C with LC=1 and N, x=0.(1)®"-V, of nonsingular elliptic
curves E with LE=0 and Ngz,x=0%"-» and of the base locus Bs|L|, each of
the curves being a connected component of {,. This is proved by using the
subadjunction formula (1.8) or (2.A) for curves, which generalizes an argument
in [10]. The existence of a rational curve among the irreducible components
of [ outside Bs|L| follows from the fact that X is Moishezon.

In section 2 we prove an inequality which is a key to the proofs in section
one.

Then in section 3, by using the results proved in section one, we show
that dim|L|=n and that X is rationally mapped onto P% by the rational map
o111 associated with |L|. Therefore X is finite over PZ outside proper sub-
varieties By and Bpn.

If a line on P% is not contained in Bpn, its inverse image by g, is a
complete intersection of (n—1) members of |L| and it is generically reduced
and pure one-dimensional outside Bxy. Then we can show as before that the
inverse image [ is a union of a nonsingular rational curve C and Bs|L| and
that C is a connected component of /.

Now LC=1 implies that p,z, is birational. Moreover those lines which
are not contained in Bpr sweep out PZ%, so that inverse images of the lines
sweep out X. This implies that Bs|L| is empty. We also see that p;, is
unramified, so that X is isomorphic to PZ. See also (1.6).

In section 3, applying (0.2) and the subadjunction formula (2.A) for surfaces,
we also prove (0.3) and (3.3), the latter of which strengthens our earlier con-
sequence on P¢ [10].

In section 4 (resp. section 5), we apply the results in section one to study
(LMP,) (resp. to prove (0.4)). In the proof of (0.3) (resp. (0.4)) the complete
intersection of two members of |L| is proved to be isomorphic to P2, from
which (0.3) (resp. (0.4)) follows immediately. This also implies (LM,), (LMP,)
and (DP,).

The main consequences of the present article were announced in [13],
where the proof of (0.4) is sketched.

ACKNOWLEDGEMENT. The author would like to express his hearty gratitude
to T. Fujita and F. Hidaka for their advices during the preparation of the article.

§1. A complete intersection /y.

(1.1) Let X be a nonsingular complete algebraic variety of dimension n
defined over C (or a compact complex manifold of dimension n). We assume
that there exists a line bundle L on X such that
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(1.1.1) ¢(X)=dcy(L) for some d=n+l
(1.1.2) dimHX, L) = n.

Let B=Bs|L| be the base locus of |L|. Let V be a linear subspace of
HX, L) of dimension n—1, [, a scheme-theoretic complete intersection
Nservo Ds associated with V, where D is the divisor defined by s=0. More
precisely, the ideal sheaf of Oy defining [ is given by [,=Xserlp;=2:ersOx.
Let Cy be the sum of all the irreducible components of | which are not totally
contained in B. We express it as [,=Cy+ B for simplicity.

We call an irreducible component C of [ (or of Cy) of dimension one a

E reduced curve component if [ is reduced generically along C. We assume that

(1.1.3) ly has a reduced curve component C for some V.

In the present section, we always assume (1.1.1)-(1.1.3). For the use in
§3, we also define

(1.2) DEFINITION. We say that D (s€V) intersect outside Bs|L| if Cy is
nonempty. We say that D (s<V) intersect rationally outside Bs|L| if Cy is
nonempty and moreover if at least one of the irreducible components of Cy is
a (possibly singular) rational curve.

(1.3) Let (=ly, and let C a reduced curve component of [, I, the ideal
sheaf of Oy defining C with vIc;=I,. We have nontrivial O¢-homomorphisms
¢% and ¢, which are isomorphisms on a Zariski open dense subset of C,

$&: 1/ INQ0c —> Ic/13

| l

Pc: (I /IDQR0c —> [Ic/1]
where [F]1=F/{Oc¢-torsions in F} for an O¢-module F.

(1.4) LEMMA. Let C be an irreducible reduced curve component of |:=ly.
Then

(I/1D®0¢ = Og(—L)*-»
—(n—1LC = ex([Le/18])
where ¢([1c/13]):=c\([Ic/131R0¢s/0s-torsions) for the normalization C of C.
PrROOF. We have a commutative diagram of natural homomorphisms;

Ox(—=L)yP*P —>  I/I]

Lo

Oc(—=L)*" 0 —> (I,/I)RO0c .
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where all the arrows are surjective. Moreover (n—1) generators of I, are
regular parameters on C\B. Hence B is injective on C\B, and it is surjective
anywhere on C. Since O¢(—L) is Oc-torsion free, § is an isomorphism. It
follows that the composite homomorphism ¢¢-B is injective. Hence we have
—(n—1)LC=Zc([Ic/12)). g.e.d.

(1.5) LEMMA. The following sequence is exact everywhere on C;
0—> [Ic/13] —> 21QR0¢c —> ¢ — 0.
where Q4:=0R%/I:2%+0x{d¢; p=Ic}.
PrROOF. We have a natural exact sequence
Io/ T —> Q3@00 —> Q4 —> 0.

If C is nonsingular at p, then % is injective at p. Since 2} is locally free, the
sheaf 21®O0¢ is locally O¢-free, in particular, it is Oc-torsion free. q.e.d.

In order to illustrate how our arguments in sections 1 and 3 proceed, we
first prove the following easy Proposition.

(1.6) PROPOSITION. Assume Ky=—dL(d=zn+1), h°"X, L)Y=n+1. Let C
be a reduced curve component of Cy with LC=1 which is not contained in B:=
Bs|L|. Assume that ly is connected and that C is nonsingular everywhere. Then
ly=Cy=C=P', L"=LC=1, Ng/x=0c(1)®"Y d=n+1 and B consists of al
most a single point. Moreover if B is empty, then X=P™.

PROOF. Let [=[,. Since C is nonsingular, we have [I¢/1%]=I;/I% By

(1.5) we have
ci(Ie/18) = KxC—c,(2¢8) = —dLC—c,(28).
From (1.4) we infer,
—(n—1DLC £ ¢,(Ic/13) = —dLC—c,(R%)
25d—n+1<(d—n+1)LC L —c,(R8) L 2.

This implies that C=P?, ¢,(2¢)=—2, d=n-+1 and LC=1. The homomor-
phism ¢c=¢¢ is an isomorphism, I¢/I§=0c(—L)*"* P =0c(—1)*"->, Since @¢
is surjective, we have I,+1%=1I, along C. By applying Nakayama’s lemma to
the Ox-module Ic/I, we see that I,=I; along C. Consequently C is a con-
nected component of /. By the assumption that [ is connected, we see [=C,=
C, Neix=(¢/1%)"=0c(1)?*», L*=LC=1. Since C is not contained in B, B
is empty or a single point in view of LC=1. If B is empty, we have a mor-
phism f of X into P¥ associated with the linear system |L| where N=
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h(X, L)—1. Since L*=1, f(X) is a linear subspace of P¥ with dim f(X)=n,
whence N=n and f is surjective and birational. Let wp be a meromorphic »
form on P™ with poles (n+1)H, H a hyperplane of P*. Then by using local
coordinates zp on P™ and z on X we write symbolically

ffowp = f¥*dzp/f¥*H"*' = f*dzp/D"*
f*dzp = det(Jacobian of f)-dz

for a member D=f*He<|L|. Since f*wp is a meromorphic n form on X, the
divisor (f*wp) is equal to Ky=—(n+1)D, whence we have (f*dzp)=0. Hence
the birational morphism f is unramified so that X is isomorphic to P™.

g.e.d.

This is a prototype of our subsequent argument. However in general [, may
be disconnected, and some component C of Cy may be singular at the intersec-
tion CNB.

(1.7) Now we come back to the situation in (1.1). Under the same notation
as in (1.1), let [={y, and let C be a reduced curve component of [.

Let v: C—C be the normalization of C. Then we obtain exact sequences,

(1.7.1) 0 —> Tor?e(R¢, 08) —> [Ic/181Q®0s —> 24Q0s —> QR0 —> 0
(1.7.2) 0 —> [[1c/12]1®0s] —> 2;R0s —> 2tQ@0¢ —> 0

because Tor{¢(24®0¢, Oz)=0. We recall an injective Oc-homomorphism ¢¢
in (1.3),

(1.7.3) po: U/ID®0c (= Oc(—L)*" ) — [Ic/1E].
Let Q% be Coker¢e. By tensoring (1.7.3) with Og, we obtain an exact sequence
(1.7.4) - —> Tor?¢(Q¢, Og) —> Op(—y*L)*~b

—> [c/1E]1®0¢ —> QéR®0s —> 0.

Since supp Q¢ is contained in SingC, Tor¢c(Q¢, O¢) is also an Og-torsion sheaf.
Hence we have an exact sequence

(1.7.5) 0 —> O(—v*L)*" — [Io/13]1Q0s —> QE®0s —> 0.
Composed with a natural homomorphism

Lo/ I81®0& —> [[1e/T81®0z] := [Io/1£1®0s/Oc-torsions,
we infer an exact sequence

(1.7.6) 0 —> Oa(—v*L)*" Y —> [[Ic/11Q0:] —> Qc —> 0
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with Q¢ cokernel.
Finally we consider a natural homomorphism

2206 > 01
Letting Q¢=Cokery and Q¢=Kery, we have an exact sequence
(1.7.7) 00— QZ——>Q&~®O&-———->Q5—>Q’C——>O.

For a torsion sheaf F we define the length ((F) of F to be thé rank of F
as a C-module.

(1.8) LEMMA. Let C be a reduced curve component of (. Assume ¢, (X)=
de(L). Then we have,

(d=n+1)LC+c,(2)+UQ)+UQH—UQe) = 0.
PrROOF. From the above exact sequences we infer,
ULHHQH—UQEL) =XRER0) by (1.7.7)
= X(R:Q0s)—U[[Ic/11®0¢]) by (1.7.2)
= URtR0&)—(n—1HUO0(—v*L))—(Qc)
=X0a)+KxC+(n—1)LC—UQc)
=X0g—(d—n+1)LC—1(Q¢) by (1.1.1).
g.e.d.
Moreover we see

(1.9) THEOREM. ((Q%)=((Q¢). Equality holds if and only if C is non-
singular.

This is proved in §2. See (2.5).
As a corollary to (1.8) and (1.9), we infer

(1.10) LeEmMMA. Assume c¢(X)=dc,(L). Let C be a reduced curve component
of I=ly. If d=n+1, LC=1, then d=n+1, LC=1, C=C=P*, Ng/x=0q(1)2-0
and C is a connected component of ly,. Moreover if C is not contained in B=
Bs|L|, then CN\B consists of at most one point.

PROOF. Note that cl(Qé);—Z, (d—n+1)LC Z2LC=2, [(Qs)=0. By (1.9),
HQH=1(Qs). Hence all the above inequalities are equalities by (1.8). There-
fore C= P!, LC=1, d=n+1, (Q¢)=0, (Q#)=I(QL). Moreover C is nonsingular
by (1.9). Therefore the sequence (1.7.6) is the same as those in (1.3) and
(1.7.3) where ¢o=¢@% is an isomorphism. It follows that N¢,x =(Ic/I3)" =
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Oc(1)®»-b I, +1%=1, along C. Consequently I,= I, along C by Nakayama’s
lemma. This implies that C is a connected component of [. In view of LC=
1, CN\B consists of at most a single point if CCCy. q.e.d.

(1.11) LEMMA. Assume c¢,(X)=dc,(L), d arbitrary. Let C be a reduced
curve component of Cy. If LC=0 and if Cy is nonsingular outside B, then C
is a smooth elliptic curve with Ng;x=0%™ Y and C is a connected component of
ly disjoint from B.

PROOF. Let [=[,. Any member D of |L| contains BNC. Hence if BNC
+ @, then D contains C because LC=0. Hence C is contained in B, which
contradicts CcCCy. Therefore BNC=¢g. By the assumption, any singular
point of C is contained in B. Therefore C is nonsingular, (Q2)=[(Q;)=0 and
C passes through no singular points of [..q. This implies that C is a connected
component of [ and I,=I, along C. Hence [(Q¢)=0 and ¢, is an isomorphism.
In view of (1.8) we have ¢,(2})=c,(£28)=0. Consequently C is a smooth elliptic
curve disjoint from B. Meanwhile there is a member D of |L| which does
not contain C. Since LC=0, D does not intersect C, which shows LRO;=0¢.
It follows that Ng,xy=O0§"-b, q.e.d.

§2. The inequality (Q)=[(Q;) — Proof of (1.9).

(2.1) Let C be an irreducible curve, v: C—C the normalization, F a torsion
Og-module, p (resp. ¢) a point of C (resp. 6). Then we define e(F, q), (F, p)
and [(F) as follows,

e(F, q) = I(Fy) = dim¢ Fy,
I(F, p)= 2 UF, I(F)= pgél(F, p).

gabove p

It is clear that if C is locally irreducible at p, then we have e(F, ¢)=I(F, p)
for the unique point ¢ of C lying above p.

Let Sing C be the set of all singular points of C. Then consider the exact
sequence

2.1.1) O——>Q5——>Qé®05—>gé——>Qé—>0

Hence we have

Q)= 2 CI(Q’c, b l(Q8)=p SE CZ(QZ, p).

pEeSing €Sing

Now we consider the germ of C at p=Sing C locally. Let C=C,U---UC,
be locally irreducible components of C at p. Then we have an exact sequence

(2.1.2) 00— Qﬁ’—)Qék(X)Oéz—*Qél—-)QﬁHO
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where Q1:=Q¢,, and Qf:=Q¢, for an irreducible component C; at p. The
local curve C; is irreducible at p, and the normalization C, of C; has a unique
point ¢; above p. Then we have at p

4] @195}5@195 052@3051_%@1051'“.

crax’

IR

¢

Hence

Q¢ = @1951/691951@061
= @J(Qél/géx@@al)
= @.0;

whence [(Q¢, p)=221(Q2.
Next we consider (Q%, p). We have a commutative diagram

0— Q¢ ——> QR0 —> 2}

jl SV ”
0 — @:Q) — P182¢,805, —> @“Qé‘x

with j surjective. Hence Ker& is mapped onto PKer&;. This shows
1(Q¢, p)=I(Ker§) =z X [(Keré&) = Z Q).
ied 2ed
Thus we obtain

(2.2) LEMMA. Let C(A€A) be all the locally irreducible components of C
at p. Then

Qe p)= EAI(QD
Qe p) = 2 UQY).
ied
Next we prove

(2.3) LEMMA. Assume that C is locally irreducible at p. Then ((Qf, p)=
Q¢, p). Equality holds if and only if C is nonsingular at p. If C is singular
at p, then I(Q¢, P)ZUQ¢, p)+2.

PRrROOF. Let x,, --, x, be a local coordinate system of X at p. Then we
may assume that the normalization v: C—C (CX) is locally given by

X = tm
x;=fi) =1t"ig,®), g0)#0, (2=j=<s)

;=0 (s+1=/=n)

where m<m,<m,<---<m,, none of m; and m;—m, is an integral multiple of
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m, s is the embedding dimension of (C, p). By the choice of m,, there is a
positive integer ¢ such that m<gm<m.<(g+1)m.
In terms of the parameter t, (by taking completions) we have

Q! = C[[]]dt
Image(24 ,806. ) = CL[t1]t™'di+ - +C[[t]]v*d xs
= C[[t]]t" dt+ - +CL[{1I(mst™s~ g +1"egg)dt
= C[[t]]t™'dt

because m;>m (7=2). Consequently
@23.1) Qb D=URE /2%.&0s )=m—1.

Next consider [(QZ, p). First we see that J:=IcN\C[[x,, ---, x:]] is con-
tained in mj}, m, being the maximal ideal of Oy ,. In fact, if there is an
element Fe JN\(m,\m}2), then F is part of a local coordinate system. Replacing
one of the local parameters x,, ---, x5, say x;, by F then C is contained in
Xs=Xg41= -+ =x,=0 locally. This is absurd because we choose s minimal, s
being equal to the embedding dimension of (C, p).

When m=1, C is nonsingular at p» and Qé@O@gQé, UQE, p)=UQs, p)=0.

So we may assume m=2. Let ¢;=dx,Q1e2}R0;, ¢;=dx,QR1=2:R05
for 1<7<s. Then the element ¢;=(f}(t)/mt™ ')é,—e; is contained in Qf. In
fact, &(o)=(fjt)/mt™ w*dx,—v*dx;=0. Now we choose the minimal integer
Nz=0 such that tY¢,=0. We note that

(2.3.2) Q% p)=ZN.
Recall that

2805 = 3 CLIIe;/CLITH 3 »*@p/0x)e; ¢ < Lo}

Hence t¥g,=0 means that there exist some F;e C[[t]] and ¢;=lc (1<)
such that
8 l
233) S fUO/mne—e) = 3 ( 2 Pt Opiax)e;.

=1

The coefficient of ¢, in the right hand side is equal to 33}, Fy(H)v*(0¢;/0x,).
Take any element p=lc (CTm,). We want to estimate a lower bound of
degy*(@¢/0x,). For this purpose, we may assume p=IcNC[[xy, -, x,]] (Cm}).
Expand ¢ as

= = ailu-isx}.l xgs .
Tyertig2?

Since p=I¢ is equivalent to y*¢=0, we have as.,=0 because x} is the

unique monomial in x;’s with degy*x3=2m. We put a,,.,=0.
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(2.3.4) CLAIM. @jo..=0(1=<7=29), @j10..=0(1=Zj<0).

PROOF OF (2.3.4). First we prove aj..=0(1<7<2¢9). Assume the contrary.
We choose the minimal j, such that a;y,..#0. Since v*¢=0, there is at least
another monomial term 7 in ¢ with degree <j,m. We choose 7 to be the
monomial in ¢ with minimum degree. We note that degy*(x;x;)=2m,>2gm=
jom for any 7, j=2. Therefore y=xix; for some /=1, j=2. Since degr=
degy*(xix;)=im+m; and m; is not divisible by m, we see that there is another
term d=x%x, in ¢ whose degree km-+m, is equal to im+m;. However this is
impossible because m;—m,(j#![) is not divisible by m. Hence a;,.,=0 (1<7<2¢).
Similarly we can prove aj,..=0(1=7<¢). q.e.d.

In view of (2.3.4), the expansion of ¢ is
o= 32 a;xi+ X bixixe+ D eixixi+ D dgxing+ D egxix;+
jztg+1 izg+1 jz2 iz1,723 722
so that
0p/0x; = (29+1)@2q41 33 +(@+Dbgri x40+ €205+ diaxs -
Hence we have,
degy*(0¢p/0x,) = min(2gm, gm~+m,, 2m,, ms) = min(2gm, my,)
deg v*(0¢p;/dx,) = min(2gm, ms) ~ for any 7 in (2.3.3)
deg t¥-m*1 f1({) = min(2gm, ms) by (2.3.3).
It follows from (2.3.1) and (2.3.2) that
N—m+1+my,—1 = N—m—+m, = min(2gm, ms),
(Q4, p)—UQs, p) = N—m+1 = 2gm—m,+1 =2 (g—1)m+2 = 2

or
UQE, p)—UQ¢, p) = N—m+1=my—m,+1=2.
In either case [(Q4, p)=(QL, p)+2 as desired, which completes a proof of
(2.3). q.e.d.

(2.4) LeEMMA. Let (Ci, p) be a germ of a locally irreducible component of
C A€d), C=\UesCs. Let Ans (vesp. As) be the subset of A consisting of all
A A with (C;, p) nonsingular (resp. singular). Assume #(A)=2. Then

Q% p) = 1§Al<oﬁ’>+#(/1ns>

1(QF, p) = U(Q¢, p)+2#(As)+#(Ans)
ProOOF. By (2.1.1) and (2.1.2), we see
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Q¢ p) = ?l(Qﬁ'H—;l(Ker(Qé@Oé; —> 24,Q0¢,)),

where 2{®Q0s,=2tQ0c¢,;, 2¢,Q05,=80¢, for (C;, p) nonsingular. Hence it
suffices to prove [(Ker(24R0¢,—24,))=1 for A= Ans. Let Ic (resp. Ic,) be the
defining ideal of C (resp. C;) in Oyx. Then by definition,

2.4.1) 2400, = Q4/16,25+0x{d¢; ¢ € I}
(2.4.2) Qb = Q4/ 10, Qk+0x{de; ¢ € Ic,}.

We assume [(Ker(2{®0¢,—£24,))=0 for some A< A, to derive a contradic-
tion. By (2.4.1) and (2.4.2) we assume that

(2.4.3) {do; o € Ic,} C 1o, 2%+0x{d¢; ¢ € I}

Let x,, -+, x, be a system of local coordinates of X at p such that Ic,=
(X1, =+, Xn-1). Since I¢cCl¢, and Ic#I¢,, we have

IC':(xly Xy ¢19 T ¢l)

for some ¢;=lc,\mi=1Ic,m,, and m<n—1. Since % is freely generated by
dx; (1=<i<n), we have by (2.4.3)

deEIclde+mdej (m+l§]§n—l),

which is a contradiction. Hence ((Ker(24Q0c¢,—2¢4,))=1 for 2 Ans. This

proves the first inequality of (2.4). The second inequality follows readily from
the first inequality and (2.3). qg.e.d.

The following theorem and corollary are clear from (2.2)-(2.4).

(2.5) THEOREM. U(Q4H=I(Q¢) for any irreducible curve C. Equality holds
if and only if C is nonsingular. If C is singular, then [(Q{)=1(QF)+2.

(2.6) COROLLARY. (2.6.1) If (C, p) is irreducible, then e(Qf4, q)=e(Qs, q)
for the unique point q above p. Equality holdsif and only if (C, p) is nonsing-
ular. If (C, p) is singular, then e(Q¥, q)=e(Qs, ¢)+2.

(2.6.2) Under the same notation and assumption in (2.4), let q be a pointmof
the normalization C; of C, above p. Then

e(Q%, q) = e(Q¢, O+1, e(Q6, =0  for A€ Aps,
e(Q4, ) Z QN = e(QF, 9)+2  for A€ A,.

Appendix. Subadjunction formula.

(2.A) THEOREM (SUBADJUNCTION FORMULA). Let X be a smooth algebraic
variety of dimension n, D; a reduced irreducible divisor of X (1<i<m). Assume

-—d
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that the scheme-theoretic complete intersection t=D,N\---N\D, has an irreducible
component Z=~Z eq 0f dimension n—m along which t is reduced generically. Let
v: Y—Z be the normalization of Z. Then there exists an effective Weil divisor
4 of Y such that

(2.A.1) Ky = v¥(Ky+Dy+-+Dyp)—4

(2.A.2) supp(vyd) is the union of all the Weil divisors of Z whose supports
are contained in either Sing Z or one of the irreducible components
of t© other than Z.

We note that the canonical sheaf K is the unique torsion free sheaf on
the normal variety ¥ given by Ky=14(2%singy), Where i: Y\Sing(Y)—-Y is the
inclusion.

The condition (2.A.2) implies that supp 4=¢ if and only if Z is smooth in
codimension one and moreover Z intersect the irreducible components of z other
than Z along some subvarieties of at most (n—m—2) dimension.

PROOF OF (2.A). The proof is almost the same as those of (1.8) and (1.9).
Let U=Y\SingY, V=uy(U) and V'=V\SingV, U'=v"'(V’). Let Ip, (resp. I) be
the ideal sheaf of Oy defining D;(resp. Z) and let [.=Ip,+---+Ip,,. So we
note +/Ip,=Ip, and v T=1I. Now we consider the exact sequences

(2.A.3) I/ —s 2iQ0; — 25— 0
(2.A9) v/ I)Q@0y —> v¥(R1)Q0y —> v¥(2H)R0y —> 0.

Since U’=V’ and V’ is nonsingular, the first homomorphism in (2.A.4) is
injective over U’. Hence denoting by [F] the quotient of F by Oy-torsions in
F, we infer an exact sequence,

2.A5) 0— D*I/IHQ0y] — v (RDQ0y —> v¥(25)R0y —> 0.

Since 7 is reduced generically along Z, we have a natural injective homo-
morphism 7

I/ THR0y & & Ou(—v*Dy) —> I/ 1)R0s]

where we can prove that p is an isomorphism in the same manner as in (1.4).
Let Quy be the cokernel of . Then we have an exact sequence

2.A.6) 0—> é Oy(—v*D;) —> [W*I/I1HR0y] —> Qy —> 0.

On the other hand we have an exact sequence

2
(2.A.7) 0— Qf — v*2iR0y —> 2} —> Q, —> 0
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where Qf (resp. Qp) is KerA (resp. Cokeri). Now take an arbitrary prime
Weil divisor B of Y contained in one of the supports of Qy, Q¢ and QY. We
define e¢(F, B) to be the length of a torsion sheaf F at a generic point of B as
a k(B)-module. Then e(Qy, B), ¢(Qy, B) and e(Q#, B) are essentially the same

as the invariants e(Q¢, q), ¢(Q4, q) and e(Q%, g) defined in (1.8) and (2.1). By
(2.6) we have

(2.A.8) e(Qy, B) =z e(Qy, B).
Moreover by (2.A.7), (2.A.5) and (2.A.6), we have
Ky =detQ} = det(v*95®0u>—§(e(%, B)—e(Qu, B))B

IR

det(v* Q3@ 0y)—det[y*(1/1)Q0r]—3(e(Q4, B)—e(Qu, BB

IR

VK -+ i v*Di—Se(Qu, B)B—3(e(Q4, B)—e(@Qb, B)B.

Let 4:=X5(e(Qu, B)+e(Qff, B)—e(Qp, B))B. Then we have (2.A.1). Moreo-
ver if Z is singular along a prime Weil divisor C, then in view of (2.6) e(Q{,
B)=e(Qy, B)+1 for any prime Weil divisor B of Y lying over C. (Note that
B may not be birational to C.) If Z intersects one of the irreducible com-
ponents of ¢ other than Z along a prime Weil divisor C, then by the definition
¢(Qy, B)=1 for any prime Weil divisor B lying over C. Thus we have (2.A.2).

qg.e.d.

It is easy to see that (2.A) has a counterpart in the complex analytic category.

§3. Proofs of (0.2) and (0.3).

(3.1) THEOREM. Let X be a complete nonsingular algebraic variety (or a
combpact complex manifold) of dimension n. Assume that ¢,(X)=dc,(L)(d=n+1)

and h°(X, LY=n. If general (n—1)-members of |L| intersect rationally outside
Bs|L|, then X=P™.

PROOF. Our proof of (3.1) consists of two steps. First we prove (3.1) in
(3.1.1)-(3.1.7) under the assumption A% X, L)=n+1. Next we disprove the pos-
sibilityof A°(X, L)=n in (3.1.8)-(3.1.10).

First we prove

(3.1.1) CrLAIM. Let N=h"X, L)—1=n and f: X—P7¥ be the rational map
associated with |L|. Let X:=f(X\B). Then d=n-+1, N=n and X=P".

PROOF. We use the same notation [,=Cy+B as in (1.1). Let 4=HX,
L), V a general (n—1)-dimensional subspace of 4.
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First we prove dimX=n. By the assumption, dimX=n—1. Assume
dimX=n—1. By (1.10) and (1.11), d=n-+1 and if V is general enough, Cy is
a disjoint union of nonsingular rational curves C;(1<i<rdegX) with LC;=1
and f(C;\B) a point, where r is the number of irreducible components of a
general fiber of f. Let C=C,. If Bs|L|¢ is empty, then LC=1 implies dim X
=n, a contradiction. Hence by (1.10), Bs|L|c={p} for some point p of C.
Since p is isolated in B by (1.10), p is contained in any C;. However C is a
connected component of [, by (1.10), whence r=deg X=1. Therefore N=n—1
and X=P"-! which contradicts N=n. It follows that dimX=n. Therefore
for V general enough, Cy, is a disjoint union of smooth rational curves C; with
LC;=1. Since LC,=deg(f\c,) deg X-+degBs|L|c¢,, we have deg(fic,)=1, deg X
=1 and Bs|L|c,=@. Therefore we have N=n and X =P". g.e.d.

(3.1.2) Let u:=H%X, L) and G=Grass(n—1, %). Then we define
P={([V], x) e GXX; s(x)=0 for any s V}.

Then by the assumption there exists an irreducible component P, of P such
that pre(P))=G, prx(P,) is not contained in B. Let =&, (resp. p,) be the natural
projection from P, onto G (resp. into X). For general WeG, Cy has an ir-
reducible component C (=P'). We may assume by (1.10) that po(z35'[W]) con-
tains C as a connected component.

Let C’ be an irreducible component of #3*([W]) mapped onto C, z a general
point of C’, x=p,(z). Since C’ is smooth at z, so is P, at z. Now we recall
canonical isomorphisms;

T(Po)) = Twi:GBT 2(C) = (I /W) BT (C),
T2(X) = (Noyx): BT (C) = (Lo)g BT 2(C).

Let p be a point of C, H(—p):={s€I; s(p)=0}, G(—p):=Grass(n—1,
I(—p)). Since Bs|L|c=@ by (1.10), G(—p) is a smooth proper subvariety of
G by the natural morphism induced from the inclusion % (—p)C#. We also
see,

TA(G(—p)XX) = TuriG(—p)DT (X)) = (H(—p)/ WP PPT(X).

It follows that G(—p)X X and P, intersect transversally at z. Therefore
the intersection P,N\(G(—p)X X) is smooth at z. Let S, be the unique irredu-
cible component of P,N\(G(—p)X X) passing through z. Then we see

T(So) = Tow:iG(—p)DT +(C) = (H(—p)/W)**-PPT (C).

Since % (—p)/W is mapped onto L, for p=C general, TS, is mapped
onto T.(X) in the natural manner. Hence po(S,)=X.
(3.1.3) We choose a general W,=G and take an irreducible component
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Co(=P") of Cy, which is a connected component of p.(x3'[W,]) as in (3.1.2).
We choose and fix a general point p of C, and we define

Y ={([V], x) € G(—p)XX; s(x)=0  for any s V}.

Let Y=U%,Y, be the decomposition of Y into irreducible components,
Y, (0<i<e) all the components such that prgcp,nY)=G(—p), prx(Y;) is not
contained in B. By (3.1.2), we have e¢=0. Let p;(resp. ¢;) be the natural
projection from Y; onto G(—p) (resp. into X). We may assume S,CY, under
the notation of (3.1.2). For general WeG(—p), let Cp=3%,C} be the de-
composition of Cy into irreducible components where C¥ is a rational curve
(0<7<a) and C¥ is by (1.10) the unique component containing the point p.
We may assume that g(p5![W]) contains C§y as a connected component.

(3.1.4) CLAmM. Any general fibre po*([V]) is irreducible.

PRrROOF. Consider the Stein factorization of p,
bo
Yo — G(—p)

f\ / 7

G(—p)

We note that p,: Y —G(—p) has a section g, defined by g ([VI)=(V], p).
Hence we have a morphism &-0,: G(—p)—>5(——p) such that 9-&-0,=idgcp).
As 7 is finite, we have dim G(—p)=dim G(—p). Since G(—p) is complete, we
have 5(— P)=§&-0,(G(—p)), and 5 is an isomorphism. Therefore any general
fibre of p, is irreducible. q.e.d.

Next we prove
3.1.5) Cramm. ¢ Y )=X  for 0<i<Ze.

PROOF. Let C’ be an irreducible component of p7'([W1]), C”=¢q(C’). Since
prx(Y;) is not contained in B by assumption, C” is an irreducible component
of Cw for W general so that C” is P' by (1.10) and Bs|L|¢s=@ by the proof
of (3.1.1). Hence by (3.1.1) the natural homomorphism of 4 into H°(C”, L¢»)
induces an isomorphism J4/W=H°C”, L¢/). Any point g=C” determines a
unique n-dimensional subspace 4 (—gq) of 4 containing W. Conversely any n-
dimensional linear subspace V of 4 containing W determines a unique point
q’ of C” with #(—q’)=V. This correspondence is bijective.

The curve C’ is mapped isomorphically onto C” by ¢, because W is general.
Let z be a general point of C’, x=¢;(z). Now we have canonical isomorphisms;

TAY ) = TowaG(—=p)DT(C") = (H(—p)/W)*"-PDT(C),
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To(X) = (Newx)oDT o(C") = (Len)3" DT (C).

First we consider the case i=0, C”=C%. Since S,CY,and p,(S,)=X under
the notation in (3.1.2), we have py (Y )=2X.

Next we consider the case C”=C}, i>0. As we observed above, the
natural homomorphism % (—p)— H°(C”, L¢s) has a one-dimensional image.
Hence 4(—p) has a unique base point p’ on C”, so that the image of H(—p)/
W generates the line bundle L., everywhere except at p’. So by choosing
zeC’ with x=¢q,(z)+p’, we see that

(dg)s: TAY ) —> T (X)
is surjective. This shows that ¢} ;)=X. q.e.d.

(3.1.6) CLAIM.
(3.1.6.1) f is birational.
(3.1.6.2) Cy is irreducible for general V<G(—Dp).

PRrOOF. (3.1.6.1) follows from (3.1.1), (3.1.6.2) and (1.10) easily. So we
prove (3.1.6.2). By (3.1.4) it suffices to prove ¢=0 under the notation in (3.1.3).
Let Cy=3%,C} be the decomposition of Cy into irreducibe components for
VeG(—p) general, where Cy is the unique irreducible component of C, passing
through p. Assume ¢>0. Then a>0. Take and fix j (1=<7<e¢). By (3.1.5)
¢;Y )=X. This implies that for any general V= G(—p), there exists V' G(— p)
such that C¢NCi##@. Let C’'=C%, C”’=C{.. We may assume that C’'"\C”=
{p’, -}, p’#p for a sufficiently general V’/ with CpNC{ #+=@. Let |m,L| be
the linear subsystem of | L| consisting of members of | L| passing through the
point p. If De|m,L| contains ly:, then it contains p and p’, whence C’'CD
because LC’=1. This shows that Cy. contains C’=Cy. Since C} is the unique
irreducible component of C,: containing p, we have C’'=C=C%. But C’
intersects C”=C4., which contradicts (1.10). Hence ¢=0 and Cy is irreducible
for general VeG(—p) by (3.1.4). q.e.d.

By (3.1.6) we have a birational morphism f: X\B—P". Let X be the
normalization of the closure in X X P” of the graph of f, /: X—»P" and h:
X—X the natural morphisms. Let B=h"!(B) and B* be the minimal subvariety
of X containing B such that f is unramified on X\B*. Let B*=h(B*), R=
f(B), and R*=f(B*). We note that B*=h"'(B*)=f-'(R*), R\B=X\B, X\B*=
X\B*=P"\R*,

8.1.7) CLAIM. B*=B=@ and X=P",

PROOF. Assume the contrary. Hence R*+ @. Then we can choose a line /
which is not contained in R* and meets R*. Hence we can choose (not neces-



684 I. NAKAMURA

sarily general) WeGrass (n—1, 4) such that [y is pure one dimensional and
irreducible nonsingular outside B* and the closure of f(/p\B*) is [. Let ¢ be
a point of /NR*, C the unique irreducible component of [ with F(C\B¥*)=I.
Let C be the proper transform of C by h~'. Then éuf“(q) is a connected
subset of X intersecting B*, whence C\Uh( 7)) is a connected subset of ly
intersecting B*. By (1.10) C= P! and it is a connected component of /. Hence
h(f-'(g)cC. Since f~'(g) is connected, this implies that A(f-'(¢)) is a unique
point of CN\B*. Let p:=h(f-(¢g)). If p=B*\B, then ¢=f(p) and 7-'(g) is a
single point because X\B=X\B. However by the definition of B*, dim /~!(g)
>0, a contradiction. Therefore p=B. Then p=h(F-'(9))=CNB by (1.10).
Since LC=1, this implies that f(C\B) is a point, which contradicts f(C\B*)
=(. Therefore R*=@. Hence B=B=0, B*=B*=@. It follows that f is defined
and unramified everywhere on X. Consequently the birational morphism f is
an isomorphism. This completes the proof of (3.1) under the assumption
h(X, LY=n+1. q.e.d.

In what follows, we assume that h°(X, L)=n. We derive a contradiction
in (3.1.10). Let f: X—P""' be the rational map associated with |L|, Y the
closure of f(X\B). By the assumption dimY =#n—1, whence Y =P"-!. Let X
be the normalization of the closure in XXY of the graph of f, f: X—Y and
h: X—X the natural morphisms. Let B=h-'(B).

(3.1.8) CLAM. d=n-+1 and fA‘l(y)EP1 for any general ysY.

PROOF. Let VeGrass(n—1, &) be general. Then by (1.10) and (1.11), d=
n+1 and Cy is a disjoint union of smooth rational curves C; (0<i<r) with
LC;=1. Since f(C:\B) is a point yeY, we have deg Bs| L|¢,=1, whence there
is a point p,<=C; such that Bs|L|¢,={p;}. By (1.10), p; is an isolated point
of B. Therefore p,=C; for any 7 if V is general. Since C, is a connected
component of [y, this implies that Cy is irreducible.

Let y=Y be general. Then V,=Grass(n—1, &) is uniquely determined by
the conAdition that f(ly \B)=y. Therefore Cy, is irreducible for y general.
Since X\B=X\B, f-'(y) is irreducible outside B. Since dim B<dimY =n—1,
no irreducible components of 7-'(y) are contained in B for y general. Hence
7-'(y) is irreducible for y general. This proves (3.1.8). q.e.d.

(3.1.9) CLAM. Let R:={y&Y; f-'(y) is not smooth}. Let I* be a general
line of Y not contained in R. Then f“(l"‘)zF1 and h(f“(l*))zPZ.

PrOOF. Let Z be a unique irreducible component of f“(l*) with Zy::
Zﬂf“(y)zP‘ for general y=(*. Let Z:h(f)red. The line [* corresponds to
an (n—2)-dimensional subspace U of & with f(ly\B)CI/*, where [y=NeyDs.
See §1. The surface Z is an irreducible component of [y req.
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Let v: T—Z be the normalization, ¢: S—T the minimal resolution of 7.
Let g=v-6. Then there exist by (2.A) or [5, Corollary (18)] an effective Weil
divisor 4 on T, effective Cartier divisors £ and G on S with no common
components such that the canonical sheaves K; and Ks are given by

Kr =v*Kx+n—2)L)—4, Ks = g*(Kx+(n—2)L)—E—G

with ox(E)=4, ¢+«(G)=0. Moreover by (2.A) there exists a finite subset Y, of
S such that g is an isomorphism over S\X where X :=¢"'(4)\Ue~*(Sing T)UZ,.
Clearly X contains supp(E-+G). Note that if E=0, then Z has no singularities
along curves and no curve intersection with the irreducible components of [
other than Z. This follows from (2.A) and (2.6).

Since Z¢Bs|L|, g*L is effective. Since S is projective, we have P,(S)=
0, whence S=P? or S has a pencil of rational curves F=P!' with (F?)s=0.
(Note that if X is non-K&hlerian, then S can be in class VI. See (3.4) below.)
Let H=g*Deg*|L| for a general member D=|L|. By Bertini’s theorem,
Sing Z is contained in Bs|L|, whence g(supp(E+4G))CBs|L|. This implies
that Ereq+GreaC Hreq. Assume that S has a pencil of rational curves F=P?!
with (F*)s=0. Then we have,

—2=KsF+F=KsF=—QBH+E+GF

because d=n+1. It follows that HF =0, (E+G)F=2. However this contradicts
Ercat+GreaC Hreq. Therefore S=T=P? and G=0. Since E;eqC Hreq and Ks=
—3H—E, we see that Os(H)=O0p:(1), E=0 and that Y is finite. Since E=0,
Z has by (2.A) at worst isolated singularities.

Next we prove that Z is a connected component of ;. Let H:=g*(D)=
g*|L| and let VeGrass (n—1, 4) be a subspace of 4 corresponding to DN\I[y.
Then since S\2=Z\g(2), C:=g(H)=DNZ is a reduced curve component of
ly. We have

1= (H"s = (g"(L)H)s = (Lg«(H))x = (LC)x .

It follows from (1.10) that C= P* and CN\B={p,} and that C is a connected
component of [,. Hence ZNB=ZNDNB=CNB={p,}. Since g(2)CB, we
see g(2)={po}. Assume that Z intersects another irreducible component Z’ of
ly. Then dim Z’=2, dim ([;N\Z’=1 and ZNZ'Cg(2)={p,}. Therefore p, [y
NZ'Cly. This contradicts that C is a connected component of [,. Thus Z is
a connected component of /y.

Therefore [ is a proper complete intersection along Z such that ({y)rea=Z
along Z. Hence [y is Gorenstein and reduced generically along Z so that it is
reduced along Z. Hence [y=~Z along Z. Since the Gorenstein surface Z has
at worst isolated singularities, it is normal, whence S=Z. In particular, Z is
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smooth everywhere.

Meanwhile since p, is isolated in B, there exists a closed subset A of B
such that D;N\---N\D,=p,+ A, and p,&&A, where D,=|L| is chosen general.
In fact, this is true scheme-theoretically at p, by (1.10). This implies that »
equations defining D; form a local coordinate system at p,. Let Q, (X) be
the blowing-up of X with p, center, £:=Q, (p,) the exceptional divisor. Then
we have a rational map /i from Qp,(X) to ¥ induced from f, which is a mor-
phism near &. It follows that X’EQI,O(X) near &. Therefore Z is smooth
everywhere. In what follows we view & as a divisor of X by the above iso-
morphism. Then &€=h-Y(p,). Clearly f.=h,.: &Y is an isomorphism. Since
o is isolated in B, & is disjoint from the irreducible components of B other
than &.

Next we prove that Z=F,. We note Z\{p,}=Z\ZN¢€ and f(Z)=I*. Since
e=Y, we have ZNe=f(ZNe)=I*=P*. Hence Z=F,.

Finally we prove Z:f"(l*). In view of (3.1.8), f~!(/*) is connected. Hence
it suffices to prove that 7 is a connected component of f “1([*). Assume the
contrary. Note that Z is a unique irreducible component of 7-'(/*) outside B.
Let B’ be an irreducible component of B other than & such that ZN\B’'+@.
Then W(ZNB)CZNB={p,}, whence ZNB'(#@)c&. It follows that B’NE+ B .
However & is disjoint from B’, a contradiction. q.e.d.

(3.1.10) CLamM. X=P" and X=P(0y1)HO0y).

PrROOF. First we prove R=¢. Assume the contrary. Then we can choose
a line [* of Y not contained in R but intersecting R. We can apply the same
argument as in (3.1.9) to a general line [* with (*N\R#@. Hence f-'([*)=F,
by (3.1.9), whence f-'(y)= P! for any y<(*. This contradicts (*"\R+ @. Hence
R=¢@.

Therefore f-'(y)=P' for any y<Y. Hence XzP(OY(a)@OY) for some
a=0. By (3.1.9), X Xyl*= f-1(1*)=F, so that a=1. Hence X=P". q.e.d.

In (3.1.8)-(3.1.10) we assume h°(X, L)=n, which contradicts (3.1.10). This
completes the proof of (3.1). q.e.d.

(3.2) THEOREM. Let X be a complete nonsingular algebraic variety (or a
Moishezon manifold) of dimension n with b,=1, and L a line bundle on X.
Assume that c,(X)=dc,(L) (d=n+1) and h°(X, L)=n. If general (n—1)-members
of |L| intersect outside Bs|L|, then X=P".

PrROOF. Let B=Bs|L|. Let lw=NsewDs for general W< Grass(n—1,
HYX, L)), and Cy=Ip—B. See §1. Let f: X\B—P¥ be the rational map
associated with |L| where N+1=h%X, L), and Y the closure of f(X\B). Then
by the assumption, dimY =n—1. Assume dimY=n—1. Then the union of
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Cw=Iw— B,contains an open dense subset of X when [W] ranges over a Zariski
open dense subset of Grass(n—1, H°(X, L)). If LCyp=0, then CyNB=Q by
(1.11). Hence mLCw =0, Bs|mL|NCw= @ for any m>0. Consequently the
rational map f, associated with |mL| contracts Cy to a point, and dim f,(X\
Bs|mL|)<n. However since b,=1, the Moishezon assumption on X implies
that dim f,(X\Bs|mL|)=n for suitable m. This is a contradiction. Hence
there is an irreducible component C¥ of Cy such that LC} >0, whence Ch=
P! by (1.10). Thus general (n—1)-members of |L| intersect rationally. Con-
sequently X=P" by (3.1). g.e.d.

REMARK. The above proof of (3.2) shows that the assumption b,=1 can
be replaced by the condition x(X, L)=n.

(3.3) THEOREM. Let X be a complete nonsingular algebraic 3-fold (or a
Moishezon 3-fold), L a line bundle on X. Assume that ¢,(X)=dc,(L)(d=4) and
h (X, L)=2. Then X=P>.

PROOF. Let M (resp. F) be a moving part (resp. a fixed part) of |L|. By
Bertini’s theorem, we choose a general member D=Z,+---+Z, of | M| where
Z, is reduced irreducible and smooth outside Bs|M|. Let Z=Z, and let y:
Y —Z be the normalization, f: S—Y the minimal resolution of Y. Let g=u-f.
Then there exist by (2.A) or [5, Corollary (18)] an effective Weil divisor 4 on
Y, effective Cartier divisors £ and G on S with no common components such
that the canonical sheaves Ky and K are given by

Ky =v¥Kx+L)—4, Ks=g*Kx+L)—E—G

with f4«(E)=4, f+«(G)=0. By (2.A) there exists a finite subset Y, of S such
that g is an isomorphism over S\Y where X :=f"'(4)\Uf ' (SingY)UY,. Note
that X contains supp(E+G).

Then by the same argument as in (3.1.9), we see that d=4, S=Y = P?,
Os(g*L)=0ps(l), E=G=0 and that X is finite. Since E=0, Z has by (2.A) at
worst isolated singularities. Since Z is Gorenstein, Z is normal, whence S=
Y=Z=P? Moreover Z is a connected component of D+ F. In fact, since
dim X=3, FNZ and Z,N\Z (i=2) are either a curve or empty. E=0 shows
that FNZ=Z;NZ=@ (:=2). Assume r=2. Since Z; and Z are algebraically
equivalent and HY(Z, 0,)=0, we have Op(1)=0,(Z2)=04(Z;)=0, by Z.NZ=Q,
which is a contradiction. Hence r=1 and D is irreducible.

Since Oz(M)=0,(Z)=0p:(1), we have h°(X, L)=h"(X, M)=h"(Z, 05(Z))+1
=4 by hY(X, Ox)=0. We also have (M®*)y=(M%),=1 and Bs|M|=Bs|M|;=
Bs|Oz(M)|=@ so that we have a surjective birational morphism f: X— P2,
We also have —4M—4F=Ky=f*(Kps)+Jac,=—4M +Jac,; for the exceptional
divisor Jac, of f. It follows that F=Jac,=0 and X=P?>. g.e.d.
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(3.4) ExamPLE. For any pair (d, p) with d=3 and p=1, there exist in-
finitely many non-Kdhlerian 3-folds X (Hopf 3-folds) with ¢,(X)=dc,(L), h°(X, L)
=p+1. We define

X=0C\0,0,0/{g"; n< Z}

where g is a transformation of C° defined by g: (x, v, 2)—(a®? 2x+y%?"%, ay,
az) for a=C*, |a|<1. Let S be a divisor {y=0} of X. Then we see that S
is a primary Hopf surface with all plurigenera P,(S)=0. We also see that
Ky=—dpS, h°’(X, pS)=p+1.

(3.5) THEOREM. Let X be a Moishezon 4-fold, and L a line bundle on X.
Assume that Pic X=ZL, c.(X)=dc,(L)(d=5) and h°(X, L)=4. Then X=P*.

PRrOOF. Let h: X—P¥ be a rational map associated with |L|, and W the
closure of A(X\Bs|L|), where N=h%X, L)—1. Let e=degW. Then exN+1
—dimW. If dimW=1, then e=1, N=1 by Pic X=ZL, which contradicts N=3.
Therefore dimW=2. Hence by choosing general D and D’e|L|, we have a
reduced component Z of t:=DN\D’ outside Bs|L|. Then by the proof of (3.1.7)
or (3.3), Z=P? L,=0p:(1) and ZNBs|L| is at most a line in P2.

If ZNBs|L| is finite, then t\D” has a reduced curve-component ZN\D” =
P! outside Bs|L| for D”<|L| general. In this case, X=P* by (3.2). Hence
we may assume that C:=ZNBs|L|=P'. We assume dimW=2. Then e>
N—1=2. By choosing general D and D’<|L|, we have er irreducible com-
ponents Z,, -+, Z., outside Bs|L|, where » is the number of irreducible com-
ponents of a general fiber A~'(w) (weW). By the proof of (3.1.7) or (3.3), we
see that Z,=P* and that Z;NZ; is finite for /#s. (In fact, we see moreover
that Z; is a connected component of r:=DN\D’ because 7 is Gorenstein.)
However Z; contains C for any 7, whence e=1, r=1 and N=2, which con-
tradicts N=3. Hence dimW=3. Therefore DN\D’N\D” has a reduced curve
component ZND”=P"' outside Bs|L|. Hence by (3.2), X=P* Therefore it is
impossible that ZN\Bs|L|=P*'. This completes the proof of (3.5). q.e.d.

§4. Complex manifolds homeomorphic to PZ2.

(4.1) PROPOSITION. Let X be a compact complex manifold homeomorphic to
P, If XX, Ox)=1, then there is a holomorphic line bundle L on X whose
Chern class ¢, (L) generates H*X, Z)=Z. If h'(X, Ox)=0, X(X, Ox)=1 and
h(X, LY=n and if general (n—1)-members | L| intersect rationally outside Bs|L|,
then X=P".

PROOF. Let 0 be a generator of H*X, Z) (=Z) with 6"=1. Since the
second Stiefel-Whitney class wy(=c¢,(X) mod2) is a topological invariant, we
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have ¢,(X)=(n-+1+42s)0 for an integer s. Then by [3, p. 208], we have

n-+s
XX, Ox) = (

) =m+s)(n+s—1) - (n+1)/n!.
s

By X(X, Ox)=1, we see s=0 or that »n is even and s<—n—1. Hence in par-
ticular ¢,(X)#0 and H*(X, O%) +{l}.
Now we consider an exact sequence

0 —> H'(X, 0x) —> H'(X, 0% —> H¥X, Z) —> H¥X, Ox).

Since ¢,(X)#0 and H?*(X, Oy) is torsion free, ¢, is surjective. Hence there
exists a line bundle L on X with ¢,(L)=d. Assume s<—n—1, and A°X, L)
=n. By hY(X, Ox)=0, we have Ky=—(n+1+4+2s)L, —(n+1+2s)=n+1. Con-
sequently h%X, Q%)=h°(X, L)=n, which contradicts h°(X, 23)<b,<1. Hence
s=0, and (4.1) follows from (3.1). q.e.d.

(4.2) THEOREM. Let X be a Moishezon manifold homeomorphic to P™, and
L a line bundle on X with L™=1. Assume that h®(X, L)=n. If general (n—1)-
members of |L| intersect outside Bs|L|, then X=P™,

PROOF. Since X is Moishezon, the Hodge spectral sequence E2?=H?(X, 2%)
with abutment H?*%( X, C) degenerates at E, terms [19, p. 99]. Hence we have
HYX, O0x)=0(¢g>0), (X, Ox)=1, Pic X:=H'X, O%)=H¥X, Z)=H P, Z)=Z.
Therefore Kxy=—(n+1)L by the proof of (4.1). Hence X=P™ by (3.2).

g.e.d.

(4.3) THEOREM [10]. Let X be a compact complex 3-fold homeomorphic to
P®, and L a line bundle on X with L*=1. Assume that h*(X, Ox)=0 and
h(X, L)=2. Then X=P?®.

PRrOOF. This is a corollary to (3.1) or (3.3). The proof is almost the same
as [11, (9.1)]. It is easy to see that A%(X, Ox)=0, X(X, Ox)=1. By the proof
of (4.1), ¢,(X)=dc,(L) for some d=4. By using h'(X, Ox)=0 and h°(X, L)=2,
we see that h*(X, pL)=h'(X, —(p+4)L)=0 for p>0. Then we see that h°(X,
L)=4, and that X is Moishezon by Riemann-Roch theorem. By (3.1) or (3.3),
X=Pe. g.e.d.

REMARK. A somewhat stronger theorem has been obtained in [11, (9.1)],
which however follows from (4.3) easily.

§5. Moishezon fourfolds homeomorphic to P¢.

The purpose of this section is to prove:

(5.1) THEOREM. Let X be a Moishezon 4-fold homeomorphic to P*, and L
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a line bundle on X with L*=1. Assume that h°(X, L)=3. Then X =P*
Our proof of (5.1) is completed in (5.4).

(5.2) LEMMA. Under the assumptions in (5.1), let D and D’ be distinct
members of |L|,t the scheme-theoretic complete intersection DN\D'. Then we
have

(6.2.1) PicX=ZL, Ky =—-5L,

(5.2.2) H*(X, —qL)=0 (p=0,¢>0,0r p>0,05¢=4
(5.2.3) H*(D, —qLp)=0 (p=0,¢>00r p>0,0=¢=<3)
(5.2.4) H(X, Ox) = H'(D, Op) = H(z, O;) = C,

(5.2.5) |Llp=1[Lp| and [L|.=[L|.

PrROOF. The proof of (5.2.1) is similar to [10]. The vanishing (5.2.2) of
H?(X, —qL) for p+2 is proved in the same way as in [10]. Since X is ho-
meomorphic to P*, we have

UX, —gL) = P, Opd—) = 7 1L (g—)

for any ¢ in view of (5.2.1). This proves the vanishing of H*(X, —¢L) for
0=<¢<5. The remaining assertions are easy to prove. q.e.d.

(5.3) LEMMA. Let D and D’ be general members of |L|, and let t=DN\D’.
Let Z=Z eq be a reduced component of t, that is, an irreducible component of
T along which t is reduced generically. If Z¢Bs|L|, then t=Z=P? and L.=
Op:(1).

PRrROOF. Let g: S—Z be the minimal resolution of the normalization of Z.
Then there exist by (2.A) or [5, Corollary (18)] effective Cartier divisors E
and G on S with no common components such that the canonical sheaf Ky is
given by

Ks = g*(Kx+2L)—E—-G

with f«(G)=0, etc. as in the proof of (3.3). There exists a finite subset X, of
S such that g sy is an isomorphism where 3 :=f"(4)Uf*(SingY)U,. Then
2 contains supp (E+G).

We have ¢,(S)=3c¢,(g*L)+c,(E+G). Since h°(X, L)Y=3 and Z¢Bs|L|, g*L
is effective. Since S is projective, we have P,(S)=0, whence S=P? or S is
ruled. Let Heg*|L|. Then by the same argument as in (3.3), we see that
S=Y =P? E=G=0, Os(H)=0p:(1) and that X is finite. By E=0 and (2.A),
Z has at worst isolated singularities. There exists D” = |L| such that
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g¥(ZND")=H by the choice of H. Let [(=DND’"\D” be a scheme-theoretic
complete intersection. Since g*D”=H=P* and g is an isomorphism on S\Z,
we have H\X=C\g(2), so that C:=g(H)req is a reduced curve component of [,
that is, [ is reduced generically along C. C is isomorphic to ZND” on (Z\g(2))
ND”. Namely I;=+Tc=I, along CN\(Z\g(Z)). We have

1 =(H*s = (g¥(L)H)s = (Lg«(H))x = (LC)x .

Therefore we can apply (1.10) to X, C and [ to infer that C=P' is a
connected component of [ and that C=/ along C. If Singr.eq is nonempty,
then Singr.eq CBs|L|. Hence ZNSingrreaCZND"(=g(H)req). Consequently
ZNSing7.e4_C. As C is a connected component of [, this shows that Z is a
connected component of 7. In fact, if not, there is an irreducible component
Z'(+Z) of r meeting Z. Then we choose a point pZNZ’. We note that
ZNZ’ is finite by E=0. Hence since p=ZNSingr.eaCC, Z’ND” contains an
irreducible component (a curve or a surface) of [ meeting C. This contradicts
that C is a connected component of /.

However h%(z, O.)=1 by (5.2). Hence Z=rt.q. As 7 is Gorenstein and
reduced generically along Z, t is reduced everywhere and r=Z. Since a prime
Cartier divisor C of Z is smooth, sois Z along C. As SingZCZNSingrrea"
C, it follows that Z is smooth everywhere. Thus we see P?=S=Y =Z=x=r.

q.e.d.

(5.4) COMPLETION OF THE PROOF OF (5.1). Now it is easy to prove (5.1).
By (5.2.5), Bs|L|.=Bs| L.]|=Bs|0p(1)|=@. We have also h°(X, L)=h(z, L)+
2=5 and L*=(H?%*s=1. Consequently X =P* by an easy argument. q.e.d.
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