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1. Introduction.

In this paper we study smooth maps $f:M^{n}arrow N^{p}$ of $n$ -manifolds into P-
manifolds $(n\geqq P)$ having only fold singular points and find some obstructions to
the existence of such maps. In [15], Thom showed that, for generic maps
$f:M^{n}arrow R^{2}(n\geqq 2)$ , the number of cusp singular points has the same parity as
the euler number of $M^{n}$ (see also [7]); in particular, there are no smooth maps
$f:M^{n}arrow R^{2}$ having only fold singular points if the euler number of $M^{n}$ is odd.
Thom also showed that if $n-p+1$ is odd and the $(n-p+2)$-th Stiefel-Whitney
class of $M^{n}$ is non-zero, then there are no smooth maps $f:M^{n}arrow R^{p}$ having
only fold singular points. Our main results of this paper are some generaliza-
tions of Thom’s results.

In \S 3, we shall show the following.

THEOREM 1. Let $M^{n}$ be a closed manifold with odd euler number and $N^{p}$ an
even-dimensional manifold with $w_{p-1}(N^{p})=0$ and $w_{p}(N^{p})=0(n\geqq P\geqq 2)$ , where
$w_{i}(N^{p})\in H^{i}(N^{p} ; Z/2Z)$ denotes the i-th Stiefel-Whitney class of $N^{p}$ . Then there
exist no smooth maps $f:M^{n}arrow N^{p}$ having only fold singular points.

THEOREM 2. Let $N^{p}$ be a stably parallelizable manifold. Suppose that $n-$

$p+1(\geqq 1)$ is odd and that $w_{i}(M^{n})\neq 0$ for some $i\geqq n-p+2$ . Then there exist no
smooth maPs $f$ : $M^{n}arrow N^{p}$ having only fold singular Points.

Theorems 1 and 2 are consequences of a more general result (Proposition

3.2), which we shall prove by directly constructing a certain bundle map $\varphi$ :
$TM^{n}\oplus\epsilon^{1}arrow TN^{p}$ , where $\epsilon^{1}$ is the trivial line bundle over $M^{n}$ . Unfortunately,
Theorems 1 and 2 do not hold if $n-p+1$ is even. In fact, we shall give an
explicit example of a smooth map $f:M^{4}arrow R^{3}$ with only fold singular Points
such that $M^{4}$ has odd euler number (Example 3.7). However, if we restrict
ourselves to simple maps, we have the following.

THEOREM 3. Let $M^{n}$ be a closed orientable manifold with odd euler number
and $N^{p}$ an orientable manifold with $w_{p-1}(N^{p})=0$ and $w_{p}(N^{p})=0(n\geqq P\geqq 2)$ . Then
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there exist no simple smooth maps $f$ : $M^{n}arrow N^{p}$ having only fold singular points.

Recall that a smooth map $f:M^{n}arrow N^{p}$ having only fold singular points is
simple if every component of the fiber $f^{-1}(q)$ contains at most one singular
point $(^{\forall}q\in N^{p})$ (see also \S 3). Simple maps have the property that their Stein
factorizations ([8]) are easy to handle.

In \S 2, we shall show the following, which sbows us that there do exist
some obstructions even if $n-p+1$ is even and the maps are non-simple.

THEOREM 4. Let $M^{4}$ be a smooth closed 4-manifold such that $H_{*}(M^{4} ; Z)\cong$

$H_{*}(CP^{2} ; Z)$ . Then there exist no smooth maps $f:M^{4}arrow R^{3}$ having only fold
singular points.

We shall prove Theorem 4, using a result of Sakuma [12], which is peculiar
to 4-dimensions.

Here we note that in this paper we are concerned with necessary conditions
for the existence of a smooth map with only fold singular points and that we
do not touch on sufficient conditions. For this problem, see [6, 2, 3], in which
it is shown that if the euler number of $M^{n}$ is even, then it admits a smooth
map into $R^{2}$ with only fold singular points. See also the literatures cited in
the remark in [4, \S 1].

Throughout the paper, all manifolds, fiber bundles and maps are differen-
tiable of class $C^{\infty}$ unless otherwise indicated. All manifolds are paracompact
and Hausdorff.

The author wishes to express his sincere gratitude to Kazuhiro Sakuma for
many helpful discussions.

2. Normal bundles of fold components.

Let $f:M^{n}arrow N^{p}$ be a smooth map, where $M^{n}$ and $N^{p}$ are n- and p-di-
mensional manifolds without boundary respectively $(n\geqq P)$ . We denote by $S(f)$

the set of the singular points of $f$ and call it the singular set of $f$. A point
$q\in S(f)$ is called a fold singular point (or a fold point) if there exist local coor-
dinates $(x_{1}$ , $\cdot$ . , $\mathfrak{r}_{n})$ centered at $q$ and $(y_{1}, , y_{p})$ centered at $f(q)$ such that $f$

has the form:
$y_{i}\circ f=x_{i}$ $(i\leqq p-1)$

$y_{p}\circ f=-x_{p^{-}}^{2}$ $-x_{p+\lambda-1}^{2}+x_{p+\lambda}^{2}+\cdots+x_{n}^{2}$

for some $\lambda$ $(0\leqq\lambda: n-p+1)$ , which is called the index of $q$ . (Note that the index
is well-defined if we consider tbat $\lambda$ and $(n-p+1)-\lambda$ represent the same index.)
If, in addition, $\lambda=0$ or $n-p+1$ , we call $q$ a definite fold Point; otherwise, we
call $q$ an indefinite fold point. We set $S_{d}(f)=$ { $definite$ fold points of $f$ } and
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$S_{i}(f)=$ { $indefinite$ fold points of $f$ }. We say that a component $S$ of $S(f)$ is a
fold component if all the points in $S$ are fold singular points. Note that a fold
component also has its own index if we consider that $\lambda$ and $(n-p+1)-\lambda$ re-
present the same index. Note also that a fold component $S$ is a $(p-1)$-di-
mensional submanifold of $M^{n}$ and that $f|S:Sarrow N^{p}$ is always an immersion.
Furthermore, note that if $f$ is stable, $f|S_{d}(f)\cup S_{i}(f)$ is an immersion with
normal crossings.

Let $S$ be a fold component of a smooth map $f:M^{n}arrow N^{p}$ . We define the
normal bundle $\nu(f_{S})$ of the immersion $f_{S}=f|S:Sarrow N^{p}$ so that the following
sequence of vector bundles over $S$ is exact:

$i$

$0arrow TSarrow f\xi TN^{p}arrow\nu(f_{S})arrow 0$ ,

where $i:TSarrow f\S TN^{p}$ is the canonical inclusion. Note that $\nu(f_{S})$ is a line

bundle over $S$ . When $\nu(f_{S})$ is trivial, a specific trivialization $\nu(f_{S})arrow S\cong\cross R$ is
called an orientation of $\nu(f_{S})$ and if an orientation is given we say that $\nu(f_{S})$

is oriented. Note that if $\nu(f_{S})$ is trivial it has exactly two orientations. Fur-
thermore, $\nu(f_{S})$ is trivial if and only if $w_{1}(\nu(f_{S}))(\in H^{1}(S;Z/2Z))$ vanishes.
When $\nu(f_{S})$ is oriented, the index $\lambda$ of $S$ is a well-defined integer.

Our purpose of this section is to study the structure of the normal bundle
$\nu(S)$ of a fold component $S$ in $M^{n}$ and to prove Theorem 4 as an application.

In this paper, we adopt the convention that the index of a quadratic func-
tion is the number of its negative eigenvalues.

LEMMA 2.1. Let $S$ be a fold component of a smooth map $f$ : $M^{n}arrow N^{p}$ .
Then we have a smooth map $d^{2}f$ : $\nu(S)arrow\nu(f_{S})$ such that $\pi_{2}\circ d^{2}f=\pi_{1}$ and that
$d^{2}f|\nu_{q}(S):\nu_{q}(S)arrow\nu_{q}(f_{S})$ is a quadratic function of index $\lambda$ for $\forall_{q\in S}$ where $\pi_{1}$ :
$v(S)-S$ and $\pi_{2}$ : $\nu(f_{S})arrow S$ are the bundle $pro_{J}ections,$ $\nu_{q}(S)=\pi_{1}^{-1}(q),$ $\nu_{q}(f_{S})=$

$\pi_{2}^{-1}(q)(\cong R)$ and $\lambda$ is the index of $S$ with respect to $f$.

PROOF. For $\forall_{q\in S}$ we have a well-defined quadratic map $d^{2}f_{q}$ : $Ker(df_{q})arrow$

$Coker(df_{q})([1])$ . We see easily that $Ker(df_{q})$ and $Coker(df_{q})$ are canonically
identified with $\nu_{q}(S)$ and $\nu_{q}(f_{S})$ respectively. Hence, we have a smooth well-
defined fiber-wise quadratic map $d^{2}f$ : $\nu(S)arrow\nu(f_{S})$ . Furthermore we see easily
that the index of the quadratic function $d^{2}f_{q}$ agrees with the index of $q$ with
respect to $f$, using the definition of a fold singular point. $\square$

LEMMA 2.2. Let $S$ be a fold component of a smooth map $f$ : $M^{n}arrow N^{p}$ . If
$\nu(f_{S})$ is non-trivial, then we have $2\lambda=n-p+1$ , where $\lambda$ is the index of $S$ .

PROOF. Take a point $q\in S$ . Since $\nu(f_{S})$ is non-trivial, we see that $d^{2}f_{q}\circ\varphi$

$=a\cdot d^{2}f_{q}$ for some linear isomorphism $\varphi:\nu_{q}(S)arrow\nu_{q}(S)$ and for some $a<0$ . Hence,



554 O. SAEKI

$d^{2}f_{q}$ and $-d^{2}f_{q}$ have the same index with respect to a fixed isomorphism

$\nu_{q}(f_{S})arrow R\cong$ . Thus we have $\lambda=n-p+1-\lambda$ . $\square$

One of the main results of this section is the following observation.

PROPOSITION 2.3. Let $f$ : $M^{n}arrow N^{p}(n>p)$ be a smooth map and $S$ a fold
component of $f$ of index $\lambda(0<\lambda<n-p+1)$ . Then the structure group of the
normal bundle $\nu(S)$ of $S$ in $M^{n}$ can be reduced to

$G=\{O(\lambda)\cross O(n-p+1-\lambda)\{O(\lambda)\cross O(\lambda)\}\rangle\triangleleft Z/2Z$

$(2\lambda\neq n-p+1)$

$(2\lambda=n-p+1)$

$(G\subset O(n-p+1))$ , where we identify $0(\lambda)$ with

$\{(\begin{array}{ll}P 00 I_{n- p+1-\lambda}\end{array})\in O(n-p+1);P\in O(\lambda)\}$

and $O(n-p+1-\lambda)$ with

$\{(\begin{array}{ll}I_{\lambda} 00 Q\end{array})\in O(n-p+1);Q\in O(n-p+1-\lambda)\}$ ,

and $\{0(\lambda)\cross 0(\lambda)\}\rangle\triangleleft Z/2Z$ is the subgroup of $O(2\lambda)$ generated by $0(\lambda)\cross 0(\lambda)$ and

$(\begin{array}{ll}0 I_{\lambda}I_{\lambda} 0\end{array})\in O(2\lambda)$

( $I_{k}\in O(k)$ is the identity matnx).

PROOF. First, we consider the case $2\lambda\neq n-p+1$ . Then by Lemma 2.2,
$\nu(f_{S})$ is trivial. We fix an orientation of $\nu(f_{S})$ . Then by Lemma 2.1 we see
that there exists a smooth map $\nu(S)arrow R$ such that on each fiber $\nu_{q}(S)(q\in S)$ it
is a quadratic function of index $\lambda$ . Thus, we see that the structure group of
$v(S)$ is reduced to

$0(\lambda, n-P+1-\lambda)=\{\varphi\in GL(n-p+1);Q_{\lambda}\circ\varphi=Q_{\lambda}\}$ ,

where $Q_{\lambda}$ : $R^{n-p+1}arrow R$ is the quadratic function of index $\lambda$ defined by $Q_{\lambda}(x_{1},$ $\cdots$ ,
$x_{n-p+1})=-x_{1}^{2}-\cdots-x_{\lambda}^{2}+x_{\lambda+1}^{2}+\cdots+x_{n-p+1}^{2}$ . It is known that the maximal com-
pact subgroup of $O(\lambda, n-p+1-\lambda)$ is $O(\lambda)\cross O(n-P+1-\lambda)=G$ . Thus the struc-
ture group of $\nu(S)$ reduces to $G$ .

When $2\lambda=n-p+1$ , by a similar argument, we see that the structure group
of $\nu(S)$ is reduced to

$G’=$ { $\varphi\in GL(n-p+1);Q_{\lambda}\circ\varphi=aQ_{\lambda}$ for some $a\in R-\{0\}$ }.

It is easlly seen that $G’\cong(O(\lambda, \lambda)\rangle\triangleleft Z/2Z)\cross R_{+}$ , where $R_{+}=\{a\in R;a>0\}$ .
Furthermore, we can show that the maximal compact subgroup of $G’$ is $G=$
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$\{0(\lambda)\cross 0(\lambda)\}\rangle\triangleleft Z/2Z$ . Thus the structure group of $\nu(S)$ reduces to G. $\square$

REMARK 2.4. Existence of a reduction of the structure group of a k-plane
bundle $\nu$ to $0(\lambda)\cross 0(k-\lambda)$ is equivalent to the existence of a $\lambda$-plane field on
$\nu([14])$ .

Next we confine ourselves to the case where $n-p+1=2$ . For $r\geqq 2$ , set $C_{r}=$

$\{\exp((2\pi\sqrt{-1}/r)k)\in C;k\in Z\}\subset U(1)=SO(2)$ , which is a cyclic group of order $r$ .

LEMMA 2.5. Let $\xi:Earrow X$ be a $2$ -Plane bundle whose structure group is
reduced to $C_{r}\subset SO(2)$ . If $H^{2}(X;Z)$ has no $r$-torsion, then $\xi$ is trivial as a
vector bundle.

PROOF. Let $BC_{r}$ and $BSO(2)$ be the classifying spaces of $C_{r}$ -bundles and
$SO(2)$-bundles respectively. We have a canonical map $c:BC_{r}arrow BSO(2)$ . Let
$\alpha_{\xi}$ : $Xarrow BSO(2)$ be the classifying map of $\xi$ . Then by the hypothesis, $\alpha_{\xi}$

factors through $c;i.e.,$ $\alpha_{\xi}\simeq\iota\circ\beta_{\xi}$ for some $\beta_{\xi}$ : $Xarrow BC_{r}$ ( $=denotes$ a homotopy).

Let $e\in H^{2}(BSO(2);Z)\cong Z$ be the generator. Then the euler class $e(\xi)$ of $\xi$ is
equal to $\beta_{\xi}^{*}\circ\iota^{*}(e)$ . On the other hand, it is known that $H^{2}(BC_{r} ; Z)\cong C_{r}$ .
Hence $re(\xi)=\beta_{\xi}^{*}(rc^{*}(e))=0$ . Since $H^{2}(X;Z)$ has no $r$-torsion, we have $e(\xi)=0$ ,
which implies that $\xi$ is a trivial 2-plane bundle. $\square$

PROPOSITION 2.6. Let $f$ : $M^{n}arrow N^{n-1}$ be a smooth maP with $M^{n}$ orientable
and $S$ a fold component of $f$ of index 1.

(1) If $S$ is orientable and $H^{2}(S;Z)$ has no 4-torsion, then the normal bundle
$p(S)$ of $S$ in $M^{n}$ is trivial.

(2) If $S$ is non-orientable, let $\omega:Sarrow S$ be the orientation double cover and
suppose $H^{2}(g_{;}Z)$ has no 4-torsion. Then the induced bundle $\omega^{*}\nu(S)$ over $S$ is
trivial.

PROOF. First we consider (1). Since $S$ and $M^{n}$ are orientable, we see
that the normal bundle $\nu(S)$ of $S$ in $M^{n}$ is also orientable; $i.e.$ , its structure
group is reduced to $SO(2)$ . Hence, by Proposition 2.3, the structure group of
$\nu(S)$ is reduced to $SO(2)\cap\{(O(1)\cross O(1))\rangle\triangleleft Z/2Z\}=C_{4}$ . Then, by Lemma 2.5,
$\nu(S)$ is trivial. We can prove (2) in a similar way. $\square$

In particular, for $f$ : $M^{4}arrow N^{3}$ , we have the following.

COROLLARY 2.7. Let $f$ : $M^{4}arrow N^{3}$ be a smooth maP with $M^{4}$ oriented and $S$

a comPact fold comPonent of $f$ of index 1. Then the self intersection number
$S\cdot S$ of $S$ in $M^{4}$ vanis$hes$ .

PROOF. If $S$ is orientable, the result is obvious by Proposition 2.6, since
$H^{2}(S;Z)\cong Z$ . When $S$ is non-orientable, let $\omega:\tilde{S}arrow S$ be the orientation double
cover. Then we have $S\cdot S=(1/2)\tilde{S}\cdot\tilde{S}$ , where $\tilde{S}\cdot\tilde{S}$ is the self intersection number
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of the zero section of $\omega^{*}v(S)arrow\tilde{S}$ in $\omega^{*}v(S)$ which is oriented by the pull back
of that of $\nu(S)$ . By Proposition 2.6, we have $S\cdot S=0$ , since $H^{2}(\tilde{S};Z)\cong Z$ . $\square$

NOW we prove Theorem 4 in the introduction. Let $M^{4}$ be a closed 4-
manifold with $H_{*}(M^{4} ; Z)\cong H_{*}(CP^{2} ; Z)$ and suppose $f$ : $M^{4}arrow R^{3}$ is a smooth
map with only fold singular points. We have $S(f)=S_{d}(f)\cup S_{i}(f)$ , where $S_{d}(f)$

is the set of the definite fold points (index $0$ or 2) and $S_{t}(f)$ is the set of the
indefinite fold points (index 1). Note that $S_{d}(f)$ and $S_{i}(f)$ are (possibly dis-
connected) closed 2-manifolds smoothly embedded in $M^{4}$ . Note also that $M^{4}$ is
orientable, since $H_{4}(M^{4} ; Z)\cong Z$ . We orient $M^{4}$ arbitrarily. Then by Corollary
2.7, we have $S_{i}(f)\cdot S_{i}(f)=0$ . Furthermore, since $H_{1}(M^{4} ; Z)\cong H_{1}(CP^{2} ; Z)=0$ ,
we have $\sigma(M^{4})\equiv-S(f)\cdot S(f)(mod 4)$ by Sakuma [12], where $\sigma(M^{4})$ denotes the
signature of $M^{4}$ . Since $S(f)\cdot S(f)=S(f(f)\cdot S_{d}(f)+S_{i}(f)\cdot S_{i}(f)$ , we have $S_{d}(f)$ .
$S_{d}(f)\equiv-\sigma(M^{4})(mod 4)$ . Furthermore, since $H_{2}(M^{4} ; Z)\cong H_{2}(CP^{2} ; Z)\cong Z$ , the
intersection form of $M^{4}$ is represented by the matrix $(\epsilon)$ , where $\epsilon=\pm 1(=\sigma(M^{4}))$ .

LEMMA 2.8. $S_{d}(f)$ is an orientable 2-manifold.
PROOF. Let $S$ be a component of $S_{d}(f)$ . Then by Lemma 2.2, the normal

bundle $v(f_{S})$ of the immersion $f_{S}=f|S:Sarrow R^{3}$ is trlvial. Since $R^{3}$ is orien-
table, so is S. $\square$

Thus the homology class $[S_{d}(f)]$ represented by $S_{d}(f)$ is an element of
$H_{2}(M^{4} ; Z)$ . Let $[S_{d}(f)]=l\xi$ , where $\xi\in H_{2}(M^{4} ; Z)(\cong Z)$ is a generator and $l\in$

$Z$ . Then we have $S_{i}((f)\cdot S(f(f)=l^{2}\xi\cdot\xi=\epsilon l^{2}$ . Hence we have $\epsilon l^{2}\equiv-\epsilon(mod 4)$ ,

which implies $l^{2}\equiv-1(mod 4)$ . However this equation has no integer solutions,

which is a contradiction. This completes the proof of Theorem 4.
AS a consequence of Theorem 4, we deduce an interesting result concerning

stable maps $f:M^{4}arrow R^{3}$ . Let $f:M^{4}arrow R^{3}$ be a stable map. Then it is known
that for $\forall_{q\in S(f)}$ there exist local coordinates $(x_{1}, x_{2}, x_{3}, x_{4})$ centered at $q$ and
$(y_{1}, y_{2}, y_{3})$ centered at $f(q)$ such that $f$ has the form:

$y_{i}\circ f=x_{i}$ $(i=1,2)$

$y_{3} \circ f=x_{3}^{k+1}+\sum_{i=1}^{k-1}x_{i}x_{3}^{k- i}\pm x_{4}^{2}$

for some $k(k=1,2,3)([15,10])$ . Such a point $q$ is called a singular point of
$A_{k}$ -type. Moreover, the singular point $q$ is called a fold singular point if $k=1$ ,
a cusp singular point if $k=2$ , and a swallow tail if $k=3$ . Let $A_{k}(f)$ be the set
of the singular points of $f$ of $A_{k}$ -type. Then it is easily checked that $A_{k}(f)$

are submanifolds of $M^{4}$ of dimension $3-k$ . We also note that since the dimen-
sion pair $(4, 3)$ is nice in the sense of Mather [9], the set of the stable maps
are dense in the space $C^{\infty}(M^{4}, N^{3})$ of the smooth proper maps $M^{4}arrow N^{3}$ .
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COROLLARY 2.9. Let $M^{4}$ be a smooth closed 4-manifold such that $H_{*}(M^{4} ; Z)$

$\cong H_{*}(CP^{2} ; Z)$ . Then every $s$ table map $f:M^{4}arrow R^{3}$ has cusp singular Points.
PROOF OF COROLLARY 2.9. It is well-known that $\overline{A_{k}(f)}=\bigcup_{i\geqq k}A_{i}(f)$ . Now

suppose that $f$ has no cusp points; $i.e.,$ $A_{2}(f)=\emptyset$ . Then we have $\emptyset=\overline{A_{2}(f)}=$

$A_{2}(f)\cup A_{3}(f)$ . Thus $f$ has no swallow tails, either. Hence, $f$ has only fold
points as its singularities. This contradicts Theorem 4. $\square$

REMARK 2.10. Using Corollary 2.9, we see easily that a stable map $f$ :
$M^{4}arrow N^{3}$ always has definite fold points, indefinite fold points and cusp singular
points if $M^{4}$ is as in Corollary 2.9 and $N^{3}$ is an open orientable 3-manifold.
Note that every open orientable 3-manifold can be immersed into $R^{3}([16])$ .

COROLLARY 2.11. Let $M^{4}$ be a 4-manifold as in Theorem 4. Then there
exist no smooth maps $f:M^{4}arrow R^{p}(2\leqq p\leqq 4)$ with only fold singular Points.

PROOF. For $p=3$ , this is a consequence of Theorem 4. For $p=4$ , this is
proved using a result of \‘Elia\v{s}berg [2] (see also [11]) and the fact that $M^{4}$ is
not stably parallelizable. For $p=2$ , the result follows from $[15, 7]$ , since the
euler number of $M^{4}$ is odd. $\square$

REMARK 2.12. A smooth map $f$ : $M^{n}arrow R^{1}$ with only fold singular points is
a Morse function; thus, such maps as in Corollary 2.11 always exist for $p=1$ .

REMARK 2.13. Every closed orientable 3-manifold admits smooth maps into
$R^{p}(1\leqq p\leqq 3)$ with only fold singular points([2, 6]).

3. MaPs having only fold singular points.

In this section, we consider smooth maps $f:M^{n}arrow N^{p}(n\geqq p)$ all of whose
singularities are fold singular points. This type of maps has been investigated
in some detail by Fukuda [4], who studied the relationships between the euler
numbers of $M^{n}$ and $S(f)$ and between their Stiefel-Whitney classes, in the case
where $N^{p}=R^{p}$ . Here, we study from a point of view different from Fukuda’s.

LEMMA 3.1. Let $f:M^{n}arrow N^{p}(n\geqq p)$ be a smooth map having only fold
singular points. If the normal bundle of the immersion $f|S(f):S(f)arrow N^{p}$ is
trivial, the $(n+1)$-plane bundle $TM^{n}\oplus\epsilon^{1}$ is isomorphic to $f^{*}TN^{p}\oplus\eta$ for some
$(n-p+1)$-plane bundle $\eta$ over $M^{n}$ , where $\epsilon^{1}$ is the trivial line bundle over $M^{n}$ .

PROOF. We construct a fiber-wise surjective linear map $\varphi:TM^{n}\oplus\epsilon^{1}arrow TN^{p}$

such that the diagram
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$TM^{n}\oplus\epsilon^{1}\underline{\varphi}TN^{p}$

$\pi_{M^{n}}\downarrow\underline{f}N^{p}\downarrow\pi’$

commutes, where $\pi$ and $\pi’$ are the bundle projections. By the hypothesis, the
normal bundle of the immersion $f|S(f)$ is trivial. We orient it arbitrarily.
For $q\in S(f)$ , there exist an open neighborhood $U_{q}$ in $M^{n}$ of $q$ and a smooth
map $\psi_{q}$ : $U_{q}arrow TN^{p}$ such that $\pi’\circ\psi_{q}=f|U_{q}$ and that $\psi_{q}(x)\in T_{f(x)}N^{p}$ is a non-zero
vector normal to $df_{x}(T_{x}(S(f)))$ consistent with the orientation chosen above
$(^{\forall}x\in S(f)\cap U_{q})$ . Using $\psi_{q}(q\in S(f))$ and the partition of unity, we can construct
a smooth map $\tilde{\psi}$ : $M^{n}arrow TN^{p}$ such that $\pi’\circ\tilde{\psi}=f$ and $\tilde{\psi}(x)\not\in df_{x}(T_{x}(S(f)))$ for
$\forall_{x}\in S(f)$ . Then define $\varphi:TM^{n}\oplus\epsilon^{1}arrow TN^{p}$ by $\varphi(v, (x, a))=df_{x}(v)+a\tilde{\psi}(x)$ , where
$v\in T_{x}M^{n},$ $x\in M^{n}$ and $a\in R$. Then $\varphi$ is the desired fiber-wise surjective linear
map. Then $\varphi$ induces a fiber-wise surjective linear map $\overline{\varphi}:TM^{n}\oplus\epsilon^{1}arrow f^{*}TN^{p}$

such that $\pi’’\circ\overline{\varphi}=\pi$ , where $\pi’’$ : $f^{*}TN^{p}arrow M^{n}$ is the bundle projection. Define
the $(n-p+1)$-plane bundle $\eta$ over $M^{n}$ by $\eta=Ker\overline{\varphi}$ . Then it is easy to see
that $TM^{n}\oplus\epsilon^{1}\cong f^{*}TN^{p}\oplus\eta$ . $\square$

PROPOSITION 3.2. Let $f:M^{n}arrow N^{p}(n\geqq P)$ be as in Lemma 3.1. If $w_{i}(N^{p})$

$=0(^{\forall}i\geqq k)$ for some $k(k<p)$ , then we have $w_{j}’(M^{n})=0(^{\forall_{J}}\geqq(n-p+1)+k)$ .

PROOF. By Lemma 3.1, we have

$w_{j}(M^{n})=w_{j}(TM^{n} \oplus\epsilon^{1})=\sum_{l=0}^{n+1}f^{*}w_{l}(N^{p})\cup w_{j-l}(\eta)$ ,

where $\eta$ is an $(n-p+1)$-plane bundle as in Lemma 3.1. When $1\geqq k$ , we have
$f^{*}w_{l}(N^{p})=0$ by our hypothesis. When $l<k$ and $j\geqq(n-p+1)+k$ , we have
$j-l>n-p+1$ ; hence, $w_{j-l}(\eta)=0$ . We have, therefore, $w_{f}(M^{n})=0$ for $\forall$])

$(n-p+1)+k$ . $\square$

REMARK 3.3. By [15], we have $[S(f)]^{*}=w_{n-p+1}(\eta)$ in Proposition 3.2,
where $[S(f)]^{*}$ is the Poincar\’e dual of the homology class $[S(f)]\in H_{p-1}(M^{n}$ ;
$Z/2Z)$ represented by $S(f)$ . In particular, if $N^{p}$ is stably parallelizable, we have
$w_{n-p+1}(M^{n})=[S(f)]^{*}$ .

NOW we prove Theorem 2 in the introduction. Suppose $f:M^{n}arrow\Lambda^{\gamma p}$ is a
smooth map with only fold singular points. Since $n-p+1$ is odd, the normal
bundle of the immersion $f|S(f)$ is trivial by Lemma 2.2. Hence, by Proposition
3.2, we have $w_{J}(M^{n})=0(^{\forall}j\geqq n-p+2)$ . This is a contradiction. This completes
the proof of Theorem 2.

Here we note that, for $N^{p}=R^{p}$ Theorem 2 can also be deduced using Theo-
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rem 2(b) in [4] and Lemma 2.2.

COROLLARY 3.4. Let $f:M^{n}arrow N^{p}(n\geqq p\geqq 2)$ be a smooth map having only
fold singular points. If $w_{p-1}(N^{p})=0,$ $w_{p}(N^{p})=0$ and $M^{n}$ is a closed manifold
with odd euler number, then the normal bundle of the immersion $f|S(f)$ is non-
trivial. In particular, if $N^{p}$ is orientable, $S(f)$ is non-orientable.

PROOF. If the normal bundle of the immersion $f|S(f)$ is trivial, then by
Proposition 3.2 we have $w_{n}(M^{n})=0$ . Hence we have

$\chi(M^{n})\equiv\langle w_{n}(M^{n}), [M^{n}]\rangle\equiv 0$ (mod2),

where $\chi(M^{n})$ denotes the euler number of $M^{n}$ . This contradicts our hypothesis.
$\square$

REMARK 3.5. If $N^{p}=R^{p}$ , Corollary 3.4 is a result of Sakuma [12], who
showed it using results of [4].

REMARK 3.6. In the situation of Corollary 3.4, $n$ must be even, since $M^{n}$

is a closed manifold of odd euler number, and $P$ must be odd, since $n-p+1$

is odd (cf. Lemma 2.2).

NOW we prove Theorem 1 in the introduction. Since $M^{n}$ is a closed manifold
with odd euler number, $n=\dim M^{n}$ must be even. Thus, $n-p+1$ is odd. Sup-
pose $f$ : $M^{n}arrow N^{p}$ is a smooth map with only fold singular points. Then by
Lemma 2.2, the normal bundle of the immersion $f|S(f)$ is trivial. This con-
tradicts Corollary 3.4. This completes the proof of Theorem 1.

Here we note that, for $N^{p}=R^{p}$ , Theorem 1 can also be deduced using
Theorem 2 (a) of [4] and Lemma 2.2.

A smooth map as in Corollary 3.4 does exist. We give an example as
follows.

EXAMPLE 3.7. Let $h$ : $RP^{2}arrow R$ be the Morse function defined by

$h([x:y:z])= \frac{x^{2}-y^{2}}{x^{2}+y^{2}+z^{2}}$ ,

where $[x:y:z]$ denotes the homogeneous coordinate of $RP^{2}$ . The function $h$

has exactly 3 critical points $[0:1:0],$ $[0:0:1]$ and $[1: 0:0]$ with indices $0,1$

and 2 respectively. Let $\gamma:RP^{2}arrow RP^{2}$ be the involution defined by $\gamma([x:y:z])$

$=[y:x:z]$ . Note that $h\circ\gamma=-h$ and that $\gamma([0:0:1])=[0:0:1]$ and $\gamma([0$ :
1: $0$ ])$=[1:0:0]$ . Then define another involution $\alpha:S^{2}\cross RP^{2}arrow S^{2}\cross RP^{2}$ by
$\alpha(u, v)=(-u, \gamma(v))$ , where $-u\in S^{2}$ is the antipodal point of $u\in S^{2}$ . Since $\alpha$ is
fixed point free, the quotient space $M^{4}=S^{2}\cross RP^{2}/a$ is a closed (non-orientable)
4-manifold (in fact, $M^{4}$ is an $RP^{2}$-bundle over $RP^{2}$ ). Furthermore, let $\beta$ :
$S^{2}\cross Rarrow S^{2}\cross R$ be the involution defined by $\beta(u, a)=(-u, -a)$ . Then the quo-
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tient space $\nu(RP^{2})=S^{2}\cross R/\beta$ is a line bundle over $RP^{2}$ , which is orientable as
an open 3-manifold. Since the diagram

$S^{2}\cross RP^{2}\underline{id\cross h}S^{2}\cross R$

$a\downarrow$ $\downarrow\beta$

$S^{2}\cross RP^{2}\underline{id\cross h}S^{2}\cross R$

commutes, we have a smooth map $g:M^{4}arrow\nu(RP^{2})$ induced by $idxh$ . Fur-
thermore, since $\nu(RP^{2})$ is an open orientable 3-manifold, there exists an im-
mersion $\eta$ : $v(RP^{2})arrow R^{3}([16])$ . Then define the smooth map $f:M^{4}arrow R^{3}$ by
$f=\eta\circ g$ . Then it is easily seen that all the singularities of $f$ are fold points
and that $\chi(M^{4})=(1/2)\chi(S^{2}\cross RP^{2})=1$ . In fact, $S(f)$ consists of two components
$S_{d}(f)$ and $S_{i}(f)$ , where $S_{d}(f)\cong S^{2}$ is the set of the definite fold points and
$S_{i}(f)\cong RP^{2}$ is the set of the indefinite fold points.

Example 3.7 shows that Theorems 1 and 2 do not hold if $n-p+1$ is even
in general.

DEFINITION 3.8 [8]. Let $f:M^{n}arrow N^{p}(n\geqq P)$ be a smooth map with only
fold singular points. A point $q\in S(f)$ is said to be simple if the component of
$f^{-1}(f(q))$ containing $q$ intersects $S(f)$ only at $q$ . Furthermore, $f$ is said to be
simple if all its singularities are simple.

For example, the map of Example 3.7 is simple. Note that if $f$ is stable,
$f|S(f)$ is an immersion with normal crossings. Hence, the non-simple points
are contained in a locally finite union of codimension 1 submanifolds of $S(f)$ .
In particular, if $f|S(f)$ is an embedding, $f$ is simple. We also note that a
smooth map $f$ : $M^{n}arrow N^{p}(n\geqq p)$ all of whose singularities are definite fold points
is simple. Such a map is called a special generic map (see, for example, [11]).

An important property of simple maps is that their Stein factorizations
([8]) are quite simple (see the proof of the following proposition), which enables
us to study their global topology.

The following proposition shows that it is difficult to construct an example
as in Example 3.7 with $M^{4}$ orientable.

PROPOSITION 3.9. Let $f$ : $M^{n}arrow N^{p}(n\geqq p)$ be a proper smooth maP with only
fold singular Points. If $f$ is simPle, $N^{p}$ is orientable, and $S(f)$ is non-orientable,
then $M^{n}$ is non-orientable.

PROOF. Suppose $M^{n}$ is orientable and let $S\subset S(f)$ be a non-orientable com-
ponent of $S(f)$ . Let $q_{f}$ : $M^{n}arrow W_{f}$ be the Stein factorization of $f([8]):i.e.$ ,
for $q,$ $q’\in M^{n}$ we define $q\sim q’$ if $f(q)=f(q’)$ and $q$ and $q’$ belong to the same
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connected component of $f^{-1}(f(q))=f^{-1}(f(q’))$ , and let $q_{f}$ : $M^{n}arrow W_{f}=M^{n}/\sim$ be
the quotient map. Note that $W_{f}-q_{f}(S(f))$ admits a natural structure of a
$P$ -manifold. Furthemore, since $f$ is simple, $q_{f}|S(f)$ is an embedding and the
regular neighborhood $N(\Sigma)$ of $\Sigma=q_{f}(S)$ in $W_{f}$ is homeomorphic to an I-bundle
over $\Sigma$ or a $Y$ -bundle over $\Sigma$ , where $I=[-1,1]$ and $Y=\{r\exp((2\pi\sqrt{-1}/3)k)\in$

$C;0\leqq r\leqq 1,$ $k=0,1,2\}$ (see [8]). (Note that [8] treats only the case $p=2$ ;
however, the same argument works for general $p.$ ) Let $\pi’$ : $N(\Sigma)arrow\Sigma$ be the
bundle projection. Set $X=q_{f}^{-1}(N(\Sigma))$ , which is an orientable $n$ -manifold with
boundary. Then $\pi:Xarrow\Sigma$ defined by $\pi=\pi’\circ q_{f}|X$ is a fiber bundle over $\Sigma$

with fiber $T$ , where $T$ is the transverse manifold at $q\in S(\dim T=n-p+1);i.e.$ ,
$T$ is the component of $f^{-1}(J)$ containing $q$ , where $J$ is a sufficiently small arc
embedded in $N^{p}$ which passes through $f(q)$ and is transverse to $df_{q}(T_{q}(S(f)))$

(see [8, p. 9]). Note that $\partial T$ consists of two components $\partial_{+}T$ and $\partial_{-}T$ and that
there exists a Morse function $g:Tarrow R$ with $g(T)=[-1,1],$ $g^{-1}(-1)=\partial_{-}T,$ $g^{-1}(1)$

$=\partial_{+}T$ such that it has exactly one critical point. Take a smoothly embedded
simple closed curve $C$ in $\Sigma$ which is orientation reversing and set $V=\pi^{-1}(C)$ .
Then $\pi|V$ : $Varrow C$ is a $T$ -bundle over $C(\cong S^{1})$ . Since $X$ is orientable, $T$ is
orientable. Furthermore, the normal bundle of $C$ in $\Sigma$ is non-orientable, which
implies that the normal bundle of $V$ in $X$ is non-orientable. Hence, $V$ is non-
orientable. Let $\gamma:Tarrow T$ be the geometric monodromy of the bundle $\pi|V;i.e.$ ,
$\gamma$ is a diffeomorphism such that $V\cong T\cross[0,1]/(x, 1)\sim(\gamma(x), 0)$ . Since $V$ is non-
orientable, $\gamma$ is orientation reversing. In particular we have $\sigma(T)=0$ . Fur-
thermore since the normal bundle of the immersion $f|S$ restricted to $q_{f}^{-1}(C)$ is
non-trivial, we see that $\gamma(\partial_{+}T)=\partial_{-}T$ and $\gamma(\partial_{-}T)=\partial_{+}T$ . Set $Z=T \bigcup_{\varphi}\partial_{-}T\cross[-1,1]$ ,

where the diffeomorphism $\varphi:\partial_{-}T\cross\{\pm 1\}arrow\partial T$ is defined by $\varphi|\partial_{-}T\cross\{-1\}=id$ :
$\partial_{-}T\cross\{-1\}arrow\partial_{-}T$ and $\varphi|\partial_{-}T\cross\{1\}=\gamma|\partial_{-}T:\partial_{-}T\cross\{1\}arrow\partial_{+}T$ . Then $Z$ is a closed
orientable $(n-p+1)$-manifold. We have $\chi(Z)=x(T)+\chi(\partial_{-}T)-\{\chi(\partial_{-}T)+\chi(\partial_{+}T)\}$ .
By the existence of the Morse function $g:Tarrow R$ with exactly one critical point,
we have $\chi(T)=x(\partial_{-}T)\pm 1$ . Hence we have $\chi(Z)=\pm 1$ . Furthermore, by the
Novikov additivity, we have $\sigma(Z)=\sigma(T)+\sigma(\partial_{-}T\cross[-1,1])=0$ . (Note that
$\dim T=n-p+1$ is even by Lemma 2.2.) However, there exist no closed orien-
table manifolds $Z$ with $\chi(Z)$ odd and $\sigma(Z)$ even by the Poincar\’e duality, which
is a contradiction. This completes the proof. $\square$

NOW we prove Theorem 3 in the introduction. Suppose $f$ : $M^{n}arrow N^{p}$ is a
simple map. Then by Proposition3.9, $S(f)$ is orientable. Thus the normal
bundle of the immersion $f|S(f)$ is trivial. This contradicts Corollary 3.4. This
completes the proof of Theorem 3.

Example 3.7 shows that Theorem 3 does not hold for non-orientable mani-
folds $M^{n}$ in general.

In Proposition3.9, the hypothesis that $f$ be simple is essential as the fol-
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lowing example shows.

$u>0$

Levels of $\tilde{h}_{u}$

Figure 1.

EXAMPLE 3.10. We construct a smooth map $f$ : $M^{4}arrow R^{3}$ with $M^{4}$ closed
and orientable and $S(f)$ non-orientable such that $f$ has only fold points as its
singularities. Let $T_{2}$ be the torus with 2 open disks removed. Let $g:I\cross T_{2}arrow$

$I\cross J$ be the map as in Proposition 1 of [8, p. 33] $(I=J=[-1,1]);i.e.,$ $g(u, x)$

$=(u, h_{u}(x))$ and $h_{u}$ : $T_{2}arrow J$ is a certain Morse function with exactly 2 critical
points for $u\neq 0$ . Set $T=T_{2}\cup D_{+}^{2}\cup D_{-}^{2}$ , where $D_{f}^{2}$ are the unit 2-disks in $R^{2}$ and
$D_{+}^{2}$ (resp. $D_{-}^{2}$) is attached to $h_{u}^{-1}(1)$ (resp. $h_{u}^{-1}(-1)$). $T$ is diffeomorphic to the
torus. Define $g:l \cross T\frac{>}{}I\cross J(J=[-2,2])$ by

$\tilde{g}|l\cross T_{2}=g$

$\tilde{g}(u, x)=(u, 2-||x||^{2})$ $(x\in D_{+}^{2})$

$\tilde{g}(u, x)=(u, ||x||^{2}-2)$ $(x\in D_{-}^{2})$ .

Then $g(u, x)=(u, h.(x))$ , where $\tilde{h}_{u}$ : $Tarrow\tilde{J}$ is a Morse function for $u=0$ (see

Figure 1). Define the orientation reversing diffeomorphism $\eta:Tarrow T$ by $\eta(l, m)$

$=(-m+1/2, -l+1/2)$ , where we identify $T$ with $R^{2}/Z^{2}$ . Then we have $\gamma\circ\tilde{g}$

$=\tilde{g}\circ\delta$ , where $\gamma:l\cross\tilde{J}arrow lx\tilde{J}$ is defined by $\gamma(u, t)=(-u, -t)$ and $\delta:I\cross Tarrow I\cross T$

is defined by $\delta(u, x)=(-u, \eta(x))$ , since we have $\tilde{h}_{-u}(\eta(x))=-\tilde{h}_{u}(x)$ . Let $M’=$

$D_{1}^{2} \cross T\bigcup_{\varphi_{1}}S^{1}\cross l\cross T\bigcup_{\varphi_{2}}D_{2}^{2}\cross T$ , and $X’=D_{1}^{2} X\tilde{J}\bigcup_{\psi_{1}}S^{1}xl\cross\tilde{J}\bigcup_{\psi_{2}}D_{2}^{2}\cross J$, where $D_{1}^{2}$

and $D_{2}^{2}$ are 2-disks and $\varphi_{1}$ : $\partial D_{1}^{2}\cross Tarrow S^{1}\cross\{-1\}\cross T,$
$\varphi_{2}$ : $\partial D_{2}^{2}\cross Tarrow S^{1}\cross\{1\}xT$ ,

$\psi_{1}$ : $\partial D_{1}^{2}\cross\tilde{J}arrow S^{1}\cross\{-1\}\cross I$ and $\psi_{2}$ : $\partial D_{2}^{2}\cross\tilde{J}arrow S^{1}\cross\{1\}x\tilde{J}$ are the identities $(M’\cong$
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$S^{2}\cross T,$ $X’\cong S^{2}\cross\tilde{J})$ . Furthermore define $H:M’arrow X’$ by

$H(z, x)=(z,\tilde{h}_{-1}(x))\in D_{1}^{2}\cross\tilde{J}$ $((z, x)\in D_{1}^{2}\cross T)$

$H(\theta, u, x)=(\theta, u,\tilde{h}_{u}(x))\in S^{1}\cross I\cross J$ $((\theta, u, x)\in S^{1}\cross I\cross T)$

$H(z, x)=(z,\tilde{h}_{1}(x))\in D_{2}^{2}\cross\tilde{I}$ $((z, x)\in D_{2}^{2}\cross T)$ .

Note that $H’$ : $M’arrow X’H\subset_{arrow}R^{3}$ is a smooth map with only fold singular points
and that $S_{d}(H’)\cong S^{2}\perp S^{2}$ and $S_{\ell}(H’)\cong S^{2}\perp S^{2}$ . Define the smooth involutions $\alpha$ :
$M’arrow M’$ and $\beta$ : $X’arrow X’$ by

$a(z, x)=(-z, \eta(x))\in D_{2}^{2}\cross T$ $((z, x)\in D_{1}^{2}\cross T)$

$a(\theta, u, x)=(-\theta, \delta(u, x))\in S^{1}\cross I\cross T$ $((\theta, u, x)\in S^{1}\cross l\cross T)$

$a(z, x)=(-z, \eta(x))\in D_{1}^{2}\cross T$ $((z, x)\in D_{2}^{2}\cross T)$

and by

$\beta(z, t)=(-z, -t)\in D_{2}^{2}\cross J$ $((z, t)\in D_{1}^{2}\cross\tilde{J})$

$\beta(\theta, u, t)=(-\theta, \gamma(u, t))\in S^{1}\cross I\cross\tilde{I}$ $((\theta, u, t)\in S^{1}\cross I\cross\tilde{J})$

$\beta(z, t)=(-z, -t)\in D_{1}^{2}\cross\tilde{J}$ $((z, t)\in D_{2}^{2}\cross\tilde{J})$ .

Note that $a$ exchanges the two components of $S_{d}(H’)$ and that $a$ maps each
component of $S_{i}(H’)$ to itself orientation reversingly. Then we see that $a$ and
$\beta$ are orientation preserving involutions without fixed points and that $H\circ a=$

$\beta\circ H$. Thus we have a well-defined smooth map $\overline{H}:Marrow X$ which is induced
by $H$, where $M=M’/a$ and $X=X’/\beta$ . Note that $M$ is a closed orientable 4-
manifold (in fact, it is diffeomorphic to a $T^{2}$-bundle over $RP^{2}$ ). Since $X$ is an
orientable 3-manifold with boundary, there exists an immersion $\zeta:Xarrow R^{3}([16])$ .
Set $f=\zeta\circ\overline{H}:Marrow R^{3}$ . Then we see that $f$ has only fold singular points. Fur-
thermore, we see that $S_{d}(f)\cong S^{2}$ and $S_{i}(f)\cong RP^{2}\perp RP^{2}$ . Of course, $f$ is not
simple. We also note that $\chi(M)=0$ . We do not know if there exists an example
of Corollary 3.4 with $M^{n}$ orientable.

EXAMPLE 3.11. We give an example which shows that Proposition 3.9 does
not hold if $N^{p}$ is non-orientable. Let $h:S^{2}arrow R$ be the standard height function
defined by $h(x, y, z)=z$ and $\beta$ : $S^{2}arrow S^{2}$ the involution defined by $\beta(x, y, z)=$

$(-x, y, z)((x, y, z)\in S^{2}\subset R^{3})$ . Note that $h\circ\beta=h$ . Define another involution
$a:S^{2} \cross S^{2}\frac{>}{}S^{2}\cross S^{2}$ by $\alpha(u, v)=(-u, \beta(v))((u, v)\in S^{2}xS^{2})$ . Then $a$ is orientation
preserving and has no fixed points. Furthermore define the involution $\gamma:S^{2}\cross$

$Rarrow S^{2}\cross R$ by $\gamma(u, t)=(-u, t)((u, t)\in S^{2}\cross R)$ . Then $\gamma$ is orientation reversing
and has no fixed points. Since the diagram



564 $0$ . SAEKI

$S^{2}\cross S^{g}S^{g}\cross R\alpha\downarrow\downarrow\gamma\underline{id\cross h}$

$id\cross h$

$S^{\iota}\cross S^{2}-S^{2}\cross R$

commutes, we have a well-defined smooth map $f$ : $M^{4}arrow N^{3}$ induced by $id\cross h$ ,
where $M^{4}=S^{2}\cross S^{2}/a$ and $N^{3}=S^{2}xR/\gamma$ . It is easily seen that $f$ is a simple
map; in fact, it is a special generic map. Furthermore, we see that $S(f)\cong$

$RP^{2}\perp RP^{2}$ , that $M^{4}$ is orientable and that $N^{3}(\cong RP^{2}xR)$ is non-orientable.
Thus Proposition3.9 does not hold if $N^{p}$ is non-orientable.

In [11], we showed that a closed orientable manifold which admits a special
generic map ( $i.e$ . a smooth map with only definite fold points as its singularities)

into an open manifold is zero in the smooth oriented cobordism ring. Note that
a special generic map is always simple. For maps with indefinite folds, we
have the following, which shows us that there are additional obstructions to
the existence of a simple map $f$ : $M^{n}arrow N^{n-1}$ for any $N^{n-1}$ .

PROPOSITION 3.12. Let $f:M^{n}arrow N^{n-1}$ be a smooth map with only fold singular
points, where $M^{n}$ is a closed orientable manifold. If $f$ is simple, then $M^{n}$ is
zero in the smoo th oriented cobordism ring; in particular, its signature vanishes
and its euler number is even.

PROOF. Let $q_{f}$ : $M^{n}arrow W_{f}$ be the Stein factorization of $f$ (see the proof of
Proposition 3.9). Set $\Sigma=q_{f}(S(f))$ and let $N(\Sigma)$ be the regular neighborhood of
$\Sigma$ in $W_{f}$ . Furthermore put $R=W_{f}-IntN(\Sigma)$ . Then $q_{f}|q_{f}^{-1}(R):q_{f}^{-1}(R)arrow R$ is
an $S^{1}$ -bundle over the smooth manifold $R$ . Let $N_{d}$ (resp. $N_{i}$ ) be the regular
neighborhood of $q_{f}(S_{d}(f))$ (resp. $q_{f}(S_{i}(f))$ ) in $W_{f}$ . Then we have $N(\Sigma)=N_{d}\cup N_{i}$ .
It is easily seen that $q_{f}^{-1}(N_{a})$ is diffeomorphic to a $D^{2}$-bundle over $S_{d}(f)$ . Fur-
thermore, since $M^{n}$ is orientable and $f$ is simple, $q_{f}^{-1}(N_{i})$ is diffeomorphic to an
$S_{3}^{2}$-bundle over $S_{t}(f)$ (cf. [8]), where sg is the 2-sphere with 3 open 2-disks
removed. Now let $Z^{n+1}$ be the $D^{2}$-bundle over $R$ associated with the $S^{1}$ -bundle
$q_{f}^{-1}(R)arrow R$ . Since $M^{n}$ is orientable, so is $Z^{n+1}$ . Note that $\partial Z^{n+1}$ is diffeomorphic
to $q_{f}^{-1}(R)\cup q_{f}^{-1}(N_{d})\cup A$ , where $A$ is a $(D^{2}\lrcorner LD^{2}\perp D^{2})$-bundle over $S_{i}(f)$ associated
with the $(S^{1}\perp S^{1}\perp S^{1})$-bundle $\partial(q_{f}^{-1}(N_{i}))$ . Set $X’=A \bigcup_{\partial A}q_{f}^{-1}(N_{i})$ , which is an $S^{2}-$

bundle over $S_{i}(f)$ . Note that $X’$ is an orientable $n$ -manifold. Since the natural
inclusion

$0(3)=$ Diff $S^{2}$

is a weak homotopy equivalence ([13]), we see that there exists a $D^{3}$ -bundle
$X^{n+1}$ over $S_{i}(f)$ such that $\partial X^{n+1}\cong X’$ . Set $\Lambda f^{n+1}=Z^{n+1}\bigcup_{A}X^{n+1}\sim$ . Then $\tilde{M}^{n+1}$ is
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a smooth compact orientable $(n+1)$-manifold with $\partial\tilde{M}^{n+1}\cong M^{n}$ . Tbis completes
the proof. $\square$

REMARK 3.13. We do not know if in Proposition 3.12 the hypothesis that
$f$ be simple is essential or not. We also note that Proposition 3.12 does not
hold for $f$ : $M^{n}arrow N^{p}$ with $p<n-1$ in general. For example, there exists a
simple map $M^{4}arrow R^{2}$ with $\sigma(M^{4})\neq 0$ (see [5]).

Finally we note that there does exist a gap between simple maps and non-
simple maps. For example, we will show, in a forthcoming paper, that if $f$ :
$M^{3}arrow N^{2}$ is a simple map then the closed 3-manifold $M^{3}$ is a so-called graph
manifold. By Levine [6], every closed 3-manifold admits a smooth map into $R^{2}$

with only fold singular points. Thus, non-graph manifolds, which are known
to exist, are examples of 3-manifolds which admit smooth maps into $R^{2}$ with
only fold singular points but not simple ones.
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