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   1. Introduction. 

   Let L be a d-dimensional Levy type operator : 

(1.1) L f (x) = 1 ai .(x)ax ax f (x)+ bi(x)ax f (x) 
                          2 i, j_i 

d 
               + Rd f (x+y) -f (x)- yiaxif (x) v(x, dy), 

where a1=&/ax, a(x)=(ai2(x)) is a nonnegative definite symmetric d x d matrix, 

b(x)=(bi(x)) is a d-vector, and v(x, d y) is a Levy measure on Rd for each x 

Rd: v(x, {0} )=0 and 
xd I y 12/(1+ I y 12)v(x, d y)<~, xERa. Denote by {XL(t)} 

a cadlag process on Rd governed by L. Here a cadlag process means a Markov 

process whose sample paths are right continuous and have left hand limits. In 
this paper we will consider a homogenization problem associated with {X L(t)} . 
Namely, under the condition of periodicity of a(x), b(x) and v(x, d y) in x and 

some additional condition, we will study to what process the scaled process 

{sXL(t/cp(s))} converges as , 0 with some suitable scaling function cp. 
   Hone, Inuzuka and Tanaka [3] has already investigated the same problem 

in the case where d=1, a(x)-0 and Levy measure is absolutely continuous 

with respect to the Lebesgue measure. More precisely, let 

(1.2) Af(x) = b(x)f'(x)+ {f(x+y)-f(x)-yf'(x)} c(x, y)n(y)dy, 

where `b(x) and c(x, y) are periodic in x with period 1 and c is strictly positive, 

and n(y)=7_I yi-1-ao (y<0), =1"+y-' 'o (y>0), for some a0E(1, 2) and non-

negative numbers r_, Y+ with r_+7'+>0. If there exist the limits c± _ 

r limr~±~(1/r) d y c(x, y)p(dx), p being the invariant probability measure of the 
               o T 

cadlag process {A(t)} on T -R/Z induced by {XA(t)}, then the scaled cadlag 

process {aXA(t/a'o)} converges to a stable process {XA*(t)} in law as s J, 0. The 

generator A* of the process {XA*(t)} is given by 

(1.3) A*f (x) _ {f (x+y)-f (x)-yf'(x)} c*(y)n(y)dy ,
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where c*(y)=c_1(-~,o)(y)+c+1(o, 

   Their result is still applicable to the case where there exist the limits 

c±(x)=limy-±~ c(x, y) I y I a0 for some o0>0. However, in this case, c* in (1.3) 

vanishes. This fact means that the scaling x- Ex is too fast as compared with 

the scaling t~--*t/E"o. In fact, as will be seen in Section 4 later, in this case the 

scalings must be x- ~x and tHt/~"°+so and A* is given as (1.3) with c± and the 

exponent ao in n(y) replaced by c±= c±(x)p(dx) and ao+oo respectively. 

T 

   An observation as above shows that homogenization of cadlag processes is 
much different from that of diffusion processes (see [2], [12] for the latter). In 
homogenization of cadlag processes large jumps have an effect on the limit 

process. Hence we have to do suitable scalings according to a given Levy 
measure. Moreover these scalings suggest that the generator of the limit 

process is determined by a part of the given Levy measure which is corres-
ponding to the largest jump. These will be verified in Section 3. 

   In Section 2 we will summarize some properties of a cadlag process governed 
by L. The construction of such process was already investigated by many 
authors. It was mainly discussed as the martingale problem under the assump-
tion that the diffusion matrix is positive definite ([4], [14]), vanishes ([5], [6]), 
or is nonnegative definite ([9], [10], [11]). In each case various conditions are 
imposed for the Levy measure v. In this paper we will construct cadlag pro-
cesses following an analytic perturbation method. Thus we will be concerned 
with the case where L is written as L1+L2i L1 is a well known operator, for 
example, a generator of a diffusion process, or of a stable process, and L2 is 
a perturbation of L1. Then we can get easily regularities of solutions of equa-
tions associated with L. In order to study homogenization of cadlag processes, 
we will also use that sample paths of cadlag processes are represented as a 
solution of a stochastic differential equation of jump type. Therefore we will 
start with a class of Levy measure as in (A.1)-(3) below, which contains the 
following measure as a typical example. 

(1.4) v(x, dy) = I y I -d-"od y 

               +{l(o<,ode)(p)e-1-"cx)+l~p>e}(p)p-1-"(x)(log p)~cx)} 

where 1<ao<2, p= l y l w=y/ I y I ESd-1, c is a finite measure on Sd-1, a(x), 

/3(x), p(x) are periodic continuous functions with period 1,1<a(x)<2, /3(x)R, 
and p(x)S1. 

   In Section 3 we will study homogenization of {XL(t)} under the assump-
tions (A.1)-(A.4) below. The essential assumption is that there exists the limit 

Levy measure v*(•)=limy 4 Tdv(x, • /~)p(d x)/~"K(1/e) for some a(1, 2) and
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slowly varying function K, where is the invariant probability measure of the 
cadlag process on T d governed by L. The scaled cadlag process {sXL(t/s"K(1/s))} 
is identical in law with the cadlag process {XLE(t)} governed by LE of the form 

(3.2) with vE given by (3.1). The above essential assumption leads us to the 
conclusion that {XLE(t)} converges, as s 0, to the cadlag process {XL*(t)} 

governed by L* of the form (3.6). We will show this main result (Theorem 
3.1) by the same method as in [3]. 
   Section 4 is devoted to some examples. We can derive from the examples 

there that, in the case Levy measure is given by (1.4), if a-=minxa(x)<ao, 
then the process {sXL(t/sa- logs +)} converges to the process {XL*(t)} as s j. 0, 
where j+=maxx/3(x), and L* is given by 

      L*f(x) = {f(x+y)-f (x)-yaf (x)} p--«-dpa*(dw), 
                        y=pwERd 

with a*(0)=p({x ~T d : a(x)=a, J3(x)=/3+})a(0)-E-p({x ~T d : a(x) = a-, Q(x) = 

p+}np-1(0)), 0~ B(sd-1)

   2. Preliminaries. 

   Let C(E) be the set of all real valued continuous functions on E and Cb(E) 

the subset of C(E) consisting of those bounded functions. Let C(E) be the 
set of all real valued n times continuously differentiable functions on E and 
C(E) the subspace of C'1(E) consisting of those functions with bounded deri-
vatives up to order n. B(E) stands for the set of all real valued bounded 
Borel mesurable functions on E. C0(E) is the space of real valued continuous 
functions on E vanishing at infinity, and C(E) is the subspace of C(E) con-
sisting of those functions with derivatives belonging to C0(E) up to order n. 
For a real valued function f we use the following notations : ax f (x, y)= 

(ax~f(x, y)), vxf(x, y) = (ax1ax;f(x, y)), axayf(x, y) = (axtiay,f(x, y)), etc. We 
also use the notation Ilf II =supXEE I f (x) I for a real or vector valued function f 
on E. For real numbers c1 and c2, c1Ac2 and c1\/c2 stand for min{c1i c2} and 
max{c1, c2}, respectively. 
   For a, b and v appeared in a Levy type operator L defined by (1.1), we 

now assume the following : 

(A.1) 
   (1) Case A : The matrix a vanishes, or 

       Case B : a is positive definite, and each component a11 belongs to 

     Cg(Rd). 

  (2) For every i, b1~ Cb(Rd) in Case A, or b1E C(Rd) in Case B. 
   (3) v(x, d y) is represented as
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    v(x, r) = rc(x, y)n(y)dy+ o Ulr(pp(x, u))g(x, p, u)dpm(du), 

   ( i ) c>_0, ECb(R2d), and infxc(x, 0)>0. There exist positive numbers 
      M, ro, h 0 such that I c(~ , y)-c(. , 0) II <_ M 1 y To for I y I s h U in Case A. 

      c( y)E C(Rd) for fixed y with IlaxcII <oo in Case B. 

   (ii) n(y)=n(pw)=no(w)p-a-ao, p- I y I , w=y/ I y I ESd-', for some a0E(1, 2) 
    and no>_0, 0 and either n0E Cg(S1) in Case A, or n0E Cb(Sd-1) in 

      Case B. 

   (iii) (U, AB(U), m) is a finite measure space. 
   (iv) p : R d X U->S d -1 is Borel measurable, and p(• , u) E Cb(R d) for fixed u 

      in Case A, or p(., u) E C(Rd) bfor fixed u and II ax p I < °° in Case B. 

   (v) g : Rd x(0, oo) X U-*[0, cc) is Borel measurable, g(•, u) E C(Rd x 
      (0, cc)) for each u, and either there exists a JSE(1, ao) such that 

                  o(pp~p)Ilg(•, p, •)Ildp < cc 

      in Case A, or g(., p, u) E C(R) for fixed p, u and there exists a j3 E 

      (1, 2) such that 

             o(p~~p)(Ig(•, p, •)II+ Qxg(•, p, •)II)dp<oo 
      in Case B. 

(A.2) a1,(x), bi(x), i, j=1, 2, , d, c(x, y), p(x, u), g(x, p, u) are periodic in 
      x with period 1 for fixed y, p, u. 

Then we have the following theorem. 

   THEOREM 2.1. Assume (A.1) and (A.2). (i) There exists a cadlag process 

{XL(t)} on Rd governed by L. (ii) The cadlag process {XL(t)} on the d-dimensional 
torus Td induced by {XL(t)} has a unique invariant probability measure p on Td. 

(iii) Let {T9 be the semigroup associated with {X L(t)} . Let f be a function o f 

Cb(R2d) such that f (x, y) is periodic in x with period 1 for each y; Tdf (x, y)p(dx) 
=0, yE Rd; f (x, .) Cg(Rd) for fixed x with Iloyf II+Ilayf II+ Qyf 1 < ~. 

Moreover, in Case B, assume that f E Cb(R2d); axi f (x, • )E C(Rd) for each x 

and i ; and Iiaxay f II < oo. Then the integral u(x, y)- T t f (•, y)(x)dt converges 

0 absolutely. u belongs to Cb(R2d), axiu(x, y) is uniformly continuous on Rd in x 

for fixed y, ayiu E Cb(R2d) i=1, 2 • • • , d, and 

             u +IlaxuII+IloyuII+IIV V uII+ Qyu 

              < c(I f 11+1(0yf I+Iloyf II), 

for some positive constant c independent of f. Particularly, uECb(R2d) in Case
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B. Moreover it holds, in both Cases A and B, that -Lu(x, y)= f (x, y), x, y E Rd, 
where L is applied to the variable x. 

   REMARK 2.2. If U=S' and p(x, u)=u, then, by virtue of [6], we get 
the assertion ( i ) in Case A. In [14] Stroock pointed out the existence of a 
strong Feller continuous cadlag process governed by L in Case B. Therefore 
the assertions (i) and (ii) corresponding to that case follow from his results. 

   Now we sketch the proof in the same way as in [3]. We assume (A.1) and 

(A.2) throughout this section. Following a routine method, we set 

               Rd{f(x+y)-f(x)-y'of(x)}n(y)dy, in Case A,       L
1f (x) = 1 

               2 ~j=~axz(aij(x)axjf(x)), in Case B, 

and L2=Lo-L1, where Lo is given by (1.1) with bi(x)/c(x, 0) and v(x, d y)/ 
c(x, 0) in place of b(x) and v(x, d y), respectively, in Case A, or Lo=L in 
Case B. Let p'l(t, x, y) be the transition function of the a0-stable process in 
Case A, or of the diffusion process in Case B, governed by L1. Let {T'} and 

{ Gf 1 } be the associated semigroup and resolvent, that is, for f E B(R d ), 

                T i if (x) = 
RdpLl(t' x, y)f (y)dy , 

                   G f 1 f(x) = . e-52tT1t.                             Lf (x)d
0 

First we note the following properties from [5] in Case A, and from [7] in 

Case B. Put ao=ao in Case A, or==2 in Case B. We denote by ci (i=1, 2, ...) 

positive constants independent of A, f, y, t etc. throughout this section. Let 
us fix a sufficiently large Ao. Then it holds that 

(2.1) G': C0(Rd) __ Co(Rd), 

(2.2) Gf 1: B(Rd) --3 C(Rd), 

(2.3) IIQG~If fl c1A-`a°-1)'a°Ilf II, 

(2.4) 0(Ga 1f(' +y)-Ga if (' ))li C C2~-(ap-1-r)/aollf II I y I r 

for 2>_A0, f EB(Rd), yER", where an r(0, ao-1) is fixed arbitrarily. Fur-
thermore, in Case B we have 

(2.5) Gf 1: C(Rd) ---* Cb(Rd), 

(2.6) IIa2Galf II < c32-"2(IIf Ii+IIVf II), 

(2.7) IIa2(G~lf('+y)-Gflf(') c4"-`1-r)'2(IIfJI+IIafll)lyir, 

for A>_A0, f ECb(Rd), yERd, where an r(0,1) is fixed arbitrarily.
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   By using these facts we show the following. 

   LEMMA 2.3. Fix an rE(0V(a0-1-y0), a0-1) in Case A, or an rE(ao-1, 1) 
in Case B. Then 

(2.8) L2Gf 1 : C0(Rd) --* C0(Rd), 

(2.9) L2Gz 1 : B(Rd) --- . Co(Rd), 

(2.10) II L2Gf 1f II _<- c&(2-(ao-i-r)/aovA-cao-T)!ao)IJf Il 

for A>_A0 and f EB(Rd). Moreover in Case B, 

(2.11) L2Gt 1: C(Rd)__ Cb(Rd), 

(2.12) IIVL2Gf if II <_ cs( -(1-r»Zv~-(2-~)~2)(Ilf l1+l of l1), 

for A>20 and f ECb(R'). 

   PROOF. Let d>_A0 and put Hf (x, y) = G~ 1 f (x+ y)-Gf if(x)_y • VG~ 1 f (x), 
and 

     L2Gaif(x) = b(x) 
c0) .VGL1 f(x)+ Hf(x, c y) (x, y) _1 n(y)dy                    (x, Rd c(x, 0) 

               + Hf (x, pP(x, u)) g x' p' u) dpn(d u)                      o v c(x, 0} 

              J1f(x)+J2f (x)+J3f(x), in Case A, 

      L2Ga 1f (x) = (b(x)-1 tiJ ax ~ai;(x) ax G '1 f (x) 
                         i=1 2 j=1 z t 

               + Rd Hf (x, y)c(x, y)n(y)d y 

               + o UHf (x, pP(x, u))g(x, p, u)d pn(du) 

              J1f (x)+J2f (x)+J3f (x), in Case B. 

By means of (A.1) and (2.1)-(2.4), we see that H: B(Rd)- C(R2d), f E C0(Rd)H 
Hf (•, y)E C0(Rd), f EB(Rd) *Hf (•, y)E Cb(R"), and 

(2.13) IIHf (., y)II C C~~-(ao-1-r)la011f II(i y I r+1 n l y I ), 

for f EB(Rd), yERd, where an rE(0, a0-1) is fixed arbitrarily. Also J1: 

C0(Rd)--*C0(Rd), J1: B(Rd)-*Cb(Rd), and 

               IIJ1f II cs~-ca°-1"a°II f II, f E B(Rd). 

In view of (A.1), IIc(•, y)/c(•, 0)-ill ~c9( I y 1roA1), yERd, in Case A, and ilcll ~c10 

in Case B. Taking an r as in the lemma and using the dominated convergence 

theorem, we find that J2: C0(Rd) _ C0(Rd), J2: B(Rd)--~Co(Rd), and
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                          Rd( yIr+1+r0A l y I)n(y)d y, in Case A,     
IIJ2f II < cii2-(ap-1-r)/a011f II X 

                         Rd(I y I r+1 A I y I)n(y)d y, in Case B, 

          = c122-(ao-i-r)la0 If , f B(Rd). 

Putting r=S-1 in (2.13), we have, by the same reason as above, that J3: 
C0(Rd)--C0(Rd), J3: B(Rd)--*Cb(Rd), and 

           IIJ3f II c13„"(ao-a)/aollf II o(p~Ap)Ilg(•, p, •)Iidp 

                  = c142-(a0- >laollfI1, f B(Rd). 

Thus we obtain (2.8)-(2.10). 
   We are concentrated on Case B in the rest of the proof. Fix an f E C(Rd) 

arbitrarily. By virtue of (A.1) and (2.3)-(2.7), 

(2.14) 1IV IIf(•, y)II -<_ c152_(1-r)/2(fI +IV!I)(IyIr+1AIyI), 

for y E R d with a fixed r E (0, 1), and 

           Jif E Co(Rd), IIVJ1f II -<_ c162-"2(If I+Ilaf II). 

(A.1) and the dominated convergence theorem imply that 

          J2f E Cb(Rd), I QJ2f 110172-(1-r)/2(Iif II+ IV! ID, 

where an r is arbitrarily fixed within (a0--1,1). Noting that IIV Hf (•, y)II <_ 
c18A-1/2(IIf II + IIVJ II)(I y I Al), y EE R d, and setting r= j3 --1 in (2.13) and (2.14), we 

get similarly that 

          Jif E Cb(Rd), IIVJ3f I c192-(2 ')l2(f I+IIVf II). 

Thus (2.11) and (2.12) follow. • 

N 

   We now denote by L 1 the generator of the strongly continuous semigroup 
                                                                          N Ar N 

{Tt 1} with C0(Rd) as the domain. Define the operator L0 by L0=L1+L2 with 
the domain D(L0)=D(L1)(~Co(Rd)). Then L0: D(L1)-*C0(Rd) because of (2.8). 

          i2 We see that 0 is the smallest closed extension of the operator L0 restricted 
            N N 

to C(Rd) and L 0 has the strong negative property, that is, f D(L 0) and f (x0) 
=maxif(x) imply L 0f(x0)<0. Therefore there exists a unique strongly con-

tinuous Markovian semigroup {T[o} on C0(Rd) with the generator L0. Let 

{XL0(t)} be a cadlag process on Rd associated with {TL0} and PL0(t, x, •) the 
transition probability. T[°} and the resolvent {G°} 0} are naturally extended 
to the operators on B(Rd) in the following way.
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                 T c °f(x) -- 
Rdf (y)PL°(t, x, dy), 

                G~ ° f(x) _ e-~tTL°f (x)dt, 

0 for f E B(Rd). Then, in view of (2.9) and (2.10), 

                                1(1 _ L2 GL1)-1 f ,                  Gf ° f = Gf, 

for f EB(Rd) and sufficiently large 2. Combining this with Gf11=1/A, (2.2)-
(2.7) and (2.9)-(2.12), we have the following. 

   LEMMA 2.4. Let rE(0, ao-1). Then it holds that 

(2.15) G-°1 =1/2, 

(2.16) Goo: B(Rd)__a C6(Rd), 

(2.17) II VGf of II C2o2(a°-1)R oIIf 
(2.18) Ila(GL°f (• +y)-Gf of (. ))II C212-(a°-1-r)lao f I y i r , 

for sufficiently large 2, f E B(R d ), and y E R d. Especially, in Case B, 

(2.19) G°: Cb(Rd) -- > Cb(Rd), 

(2.20) II 02Gf°f II <_ c222-1'2(I f I +Ilaf II), 

(2.21) IIa2(Gf°f(•+y)-Gf°f(.))II < C232-(1-r)/2(If1I+IIaf )Iylr, 

for sufficiently large 2, f EC/Rd) and yERd. 

   We next show that the semigroup {T t o} has the strong Feller property. 
Since L=L° in Case B, the associated cadlag process {XL°(t)} is nothing but 
the one governed by L. Hence this property is already obtained in Case B as 
noted in Remark 2.2. We thus only consider Case A in the following lemma, 
whose proof is also available for Case B. 

   LEMMA 2.5. 

                   To: B(Rd)--~ C(Rd), t>0. 

   PROOF. We use an idea in [15]. Let us repeat above argument for the 
space time semigroup {D['} and resolvent {Ga 1}, where 

              fl'f(s, x) = Rdf(s+t, y)p(t, x, y)dy, 

                 G~ I f(s, x) = °°e-AtT 1f(s, x)dt,. 

0 for fEB(R') d+and (s, x)ERXRd. Then there exists a unique strongly con-
tinuous Markovian semigroup {Tl°} on C0(R1) with the generator to which
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is the smallest closed extention of a+Lo restricted to Co(Rd+l), where 
(a+Lo) f (s, x)=a3 f (s, x)+Lo f (s, x), Lo being applied to the variable x. {TLo} 
and the resolvent Of o} are extended to the operators on B(Rd+1), and it holds 
that 

(2.22) Ca o f (s, •) = CL1(1- L2Cf1)-1f (s, •) E Cb(Rd) 

for sufficiently large A, feB(R1) d+and sER. 
   Now let us fix sufficiently large A, f EB(Rd) and t>0. Put 

                   ft, A(s, x) = 1[o, tj(s)e28Ti os f(x) 

We then have T i o f (• )=Cf of t, 2(0, •), where {C~ o} is the space time resolvent 
induced by {To}. Since {Of o} =- {C o}, the assertion of the lemma follows 
from (2.22). • 

   We denote by {Lo(t)} the cadlag process on T d induced by { X Lo(t)} . Let 
{Lo} and {Lo} be the associated semigroup and resolvent, respectively. We 
should notice that Lemmas 2.4 and 2.5 are also valid for functions on Td, 
{(~o} and {Lo}. 

   LEMMA 2.6. There exists a unique invariant probability measure ~o on T d 
such that 

(2.23) Lof (• )- Tdfidpo < c24e-c25t lifill, t >0, E B(T d) . 

   PROOF. First note that {Lo} satisfies the strong Feller property in the 
strict sense ([8]). In the same way as in [3], we can show that the transition 
probability 93Lo of {Lo(t)} satisfies 3Lo(t, ~, 3)>0 for t>0, ET', and nonempty 
open sets ACT d. In view of (2.15), {Lo(t)} is conservative. Hence Theorem 
1.1 in [17] leads us to the conclusion of the lemma. • 

   LEMMA 2.7. Let f be an element o f Cb(T d X Rd) such that f (~, • )E C(Rd) 

for fixed with Il~~f II+Ilayf I+Iloyf II<~, and Tdf (~, y)po(d~)=0, y E Rd. 
Moreover in Case B assume that f E Cb(T d X Rd), .)C(Rd) for each 

and i, and Ilo~Qy f II<co. Then (i) the integral Sf (~, y)=Lof y)(~)dt is 

0 absolutely convergent; (ii) ~f e Ct;(TdxRd), ayz~f E Cb(TdxRd), i =1, 2, ... , d, 
and 

          Il~f Ii +IIV~~f I1+ 1o ~f 11+IIV~V Qf II+Iioy~f II 
              c26( !f II + IV~f II +IIV~f 11); 

(iii) Sf ECb(TdXRd) in Case B; (iv) -3o~f (•, y)=f (•, y), yERd, where o 
means the operator Lo acting on functions on T'.
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N 

    PROOF. Let L be the generator of {i °} restricted to C(T d). Let us 
 arbitrarily fix an f satisfying all of the conditions of the lemma. By means 
 of (2.23), 

              il~f 11 <_ supI °f(', y)(~)I dt~c271lf 11, 
                                           0 ~, y 

 which implies the assertion (i ). 
    With the aid of the resolvent equation, 

 (2.24) Qf(~, y) = J o(f(•, y)+A~f(•, y))(~), 2>0, ~~Td, yGRd. 
'F

rom now on we fix a sufficiently large A and set A f (, y)= f (x, y)+L~ f (x, y). 
 Obviously, 

                    IIA! l e2811f II 

 This with (2.24) and (2.16) leads us to the fact f(•, y) C6(T d ), whence 

N 

 Af(•, y)EC(Td). By using (2.24) again, we see that f(•, y) D(0) and 
    N N 

        y)= f (•, y). Since L=o on C1(Td) in Case A, or on C2(Td) in Case 
 B, the assertion (iv) follows from the assertions (ii) and (iii). 
    Since Td6 f (l, y)po(d )=0 for every y and i, 

               f(, y) _ ~(vyif)(~, y) _" ~~°(11(ayif )(', y))(~) 

 Similarly, 

                    y) - y) - ~~°(11(vyivyjf )(', y))()• 

 Combining (2.24) and above two formulas with Lemma 2.4, we see that f 
 belongs to Cb(T d X Rd), ayi~ f Cb(T d X Rd), i=1, 2, , d, and          

1V f II = suplla~~°(Af(•, y))II C291 1f II 

0 

             = suplla(3 °(Af (•, y))(' +3)- . °(Af (•, y))(' ))1I 

V 

             C c30 f 13V, 

         Ilay~f 1+ lay~f II+ 1a~oy~f 11 <_ c27(layf II+IV,f I)+c29 7yf I            

IV~vy(~f(•+~, ')_,f(., .))II c301IQyf 1I~Ir 

           IIVV (~f(•, +z)-,f(., •))l1+IIay(~f('+3, •)-- f(•, •))~ 

             C29(I3I+IzI)( oyf II +IIV f I), 

          1lVVQf(•, •+z)--~f(., .))II c271iV3fIIIzl 

 for 3ET d and zERd, where r is fixed arbitrarily within (0, a0-1). Thus 
 assertion (ii) follows. 

     For the assertion (iii) it is enough to notice the following. By virtue of
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Lemma 2.4,         

II V Qf II c31(IIf II-FIIV~f II), 

          o2(~f(•+3, •)--~f(•, •))II < c32( f II +IIV~f II) ICI r 

          Ila~(~f(•, ±z) -f(., •))II -<_ c31(Ila~fII+IIO~a~f II)IzI 

for 3 T d and z E R d, where r is fixed arbitrarily within (0, 1). • 

   We are now in the position to give. 

   PROOF OF THEOREM 2.1. Since Lo=L in Case B, the assertions of the 

theorem corresponding to that case have been already verified in above argu-
ment. We only consider Case A. The cadlag process {XL(t)} governed by L 
is given as the time changed process {XLo(cp(t))}, where co(t) is the inverse 

function of t-* ~c(XLo(s), 0)'d s. Then p(d~)- (c(, ~0)-1po(d~) -1c(x, O)-1p0(d~) 
                  0 Td 

is the unique invariant probability measure of {(t)}. Set f(x, y)= f (x, y)/ 

c(x, 0) for f EB(R2d) such that f (x, y)p(dx)=0, yERd. Obviously 

           TLf(•, y)(x)dt = 0Tt0f(•, y)(x)dt, x, y Rd, 

0 which is absolutely convergent. If f satisfies the conditions in the part (iii) of 
the theorem, then the function on T d x R' induced by f satisfies the conditions 
of Lemma 2.7, and hence we get the assertion (iii) of the theorem. • 

    3. Main theorem. 

    For each s>0 and Levy measure v, we set 

(3.1) vE (x' F) = x Rd, F                     saK(1/E) 

where a>0 and K is a slowly varying function, that is, K is a positive con-
tinuous function on [0, co) such that limK(cp)/K(p)=1, c>0. We define the 
following operator. 

                             1 2-a d             LEf(
x) . E .~ aij x ax.ax.f(x) 

                                                1-a d 

 (3.2) -E- ~ ~ bi x axif (x)                     K(1/8) i=1 6 

d 

                  +Rdf (x+))-f (x)- yiaxif (x) vE x , dy • 
                                                                         a=1 ~ 

 Under the assumptions (A.1) and (A.2), there exist cadlag processes {XL(t)}
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and {XLE(t)} on Rd governed by L and LE, respectively. Note that the scaled 

process {~XL(t/~"K(1/E))} is equivalent to {X'-(t)} in the sense of law. 
   Let 4a be the invariant probability measure of the cadlag process {XL(t)} on 
Td induced by {XL(t)} as stated in Theorem 2.1. We impose the following 
assumptions. 

(A.3) Tdbtdi = 0, 1= 1, 2, ..., d. 

(A.4) There exist real numbers aE(1, 2), o>0, a slowly varying function 
       K and a finite measure n* on Sd-1 such that 

(3.3) sup c(x, pw)p`1""o-f xup g(x, p, u) < p-1`"K(p), p>_ po, 

(3.4) lim 1 r n(p' ) d - n*(.) 

, 

                          r-•oo r po p-1-"K(p) P 

       where Qo is the area element of Sd-1 and n is given as 

     n(p, 9) = Tdp(dx) ®c(x, pw)p-1-"°no(w)io(dw) 

             -f- 
U1e(P(x, u))g(x, p, u)m(du) , p > 0, 0 E ~(Sd-1) 

Setting 

(3.5) y*(f) = pwErp-1-"d pn*(dw), r 

and we define 

(3.6) L*.f (x) = Rd {f (x-F-.Y)-f (x)--.Y •D.f (x)} y*~d.v) 

Let Px and P x be the probability measures on W - D([0, oo) +R d) induced by 

the cadlag processes {X'-(t)} and {XL'(t)} on Rd governed by LE and L* start-
ing at x, respectively. 

    THEOREM 3.1. Assume (A.1)-(A.4). Then Px converges to Px as . 0. 

   In order to prove Theorem 3.1, we will first note that the path functions 

of the cadlag process {XLE(t)} starting at x are given as a solution of a 

stochastic differential equation of jump type. By using it, we will then show 

the tightness of {P}0<1 and the characterization of the limit process in 

Lemmas 3.6 and 3.7, respectively. 

   We assume (A.1)-(A.4) throughout this section. We may also assume that 

Po>1 and K(p)=K(po) for 0<__p<po without loss of generality. 
   First of all, we recall some properties of slowly varying functions from [13]. 

(3.7) lim p-~K(p) = limp/K(p) = 0, c > 0. 
                                        p-+oo p-+oo
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For c>0, put 

          K1, gy(p) = p-C sup rCK(r), K2, C(p) = pC sup r-CK(r), 
                                Osrs_p psr<~ 

          K3,C(p) = pCoinfpr-CK(r), K4,C(p) = p-C pinf ~rCK(r). 
Then it holds that 

(3.8) lira Ki, C(p)/K(p) =1, i =1, 2, 3, 4. 

For £>O, put 

(3.9) v~(F) = f TdvE(x, F)p(dx), F 

   LEMMA 3.2. vE converges to v* vaguely on Rd\ {0} as e . 0. 

   PROOF. Fix 0<r<R<oo and 9(S') with v*(a0)=0, arbitrarily. It 

is enough to show 

               lim v~((r, R] X 0) = v*((r, R] X 0) . 
                              ~yo 

Note that 

         v~((r, R] X 0) = 1 aK(1
./)dv(x, (r/e, R/e] X 0) (d x)                             ee T 

                       e1+aK(1/e) r p p 
Put 

                             p n(u, D)                      A(
p~ ~) = po u-1-aK(u) du. 

Then 

         -E ~ R -1-a d     v ((r, R]XO) = K(1/
e rp K(p/e) dpA(p/~, 0)dp ) 

               < e RCKlC(R/e) R -1-a d A( le, 9)d p 
                              rp d p p p 

                 = K1,~(R/e) RCeA(R/e, 0)R-1-a-C_sA(r/e, 0)r-1-« 
               K(1/e) 

R 

                            +(1+a+c)e A(p/e, 0)p-2-a-Cdp 

r for every c>0. (3.4) tells us that lim~~o(p/e)-1A(p/e, 0)=n*(0) for each p>0. 

Since { A(p / e, 9): 0<e1, < r <_ p R } is bounded, we find, by (3.8), that 

         lEm v~((r, R] X 9) <_ a+c n*(9)(r-a-C_R-a-C), c > 0, 
and hence, letting c 10,
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               lim vE((r, R] X D) < v*((r, R] X D) . 
                              €40 

By using K4, we get, in the same way as above, 

               lim v~((r, R] x 0) >__ v*((r, R] X 0) . • 
                           E~0 

   We next rewrite the Levy measure v. Fix w0 ESd-1 and u0EU with 

m({uo})=0, arbitrarily. For v=(w, u)EV =Sd-1XU, we set 

            mo(dv) = 8(wo)(dw)m(du)+no(w)ti0(dw)ocu0,(du), 

                             w, if w*wo, u=u0, 

                       p(x, u), otherwise, 

                              c(x, pw)p-1-«o, if w*wo, u=uo, 
              g0(x, p, v) _ 

                          g(x, p, u), otherwise. 
Then 

     v(x, r) = o Vlr(ppo(x, v))g0(x, p, v)d pmo(dv), rE 2(Rd\ {0}) . 

We also note the following representation due to Tsuchiya [16]. 

(3.10) v(x, F) = o vl r(~(x, p, v))p-1-«K(p)d pmo(dv), I' 

Here ri is given as follows. We set G0(x, p, v)= g0(x, r, v)dr(E [0, oo)). For 

A each x and v, let H0(x, v) be the right continuous inverse function of p H 
G0(x, p, v), that is, H0(x, p, v) = sup {r>0: G0(x, r, v) > p}, where sup 0 =0. 

Put ~1(x, p, v)=H0(x, k(p), v)po(x, v), with k(p)= r-1-«K(r)dr. 

P 

   We observe the following estimate. 

   LEMMA 3.3. There is a positive constant C1 such that 

(3.11) I ~(x, p, v)I = H0(x, k(p), v) C1y(p), x E Rd, p>0, vEV, 

where J3O=aoV/3, and y(p)=p° (0<p~l), =p (p>l). 

   PROOF. If p>_po, then (3.3) implies that Go(x, p, v)<_k(p), and hence 

(3.12) H0(x, k(p), v) _< p, x E Rd, v E V. 

In the case where p<_po, by means of (A.1), 

                      (Ilcll/ao)p-«0+k(po), if w~wo, u=uo,         G
0(x, p, (w, u)) _~ Po                       p r g(

, r, •)l) dr+k(po), otherwise, 

0 

                          c1p-I10, 

where c1 is a positive constant independent of p. From this, if k(p)> c1 p o po,
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then 
             H0(x, k(p), v) <_ cl/9ok(p)-1/~0, x Rd, v V. 

Since limpyopak(p)E(0, oo), we find that 

(3.13) H0(x, k(p), v) -<_ c2pa1~o, x E Rd, V V, p <_ po, 

with some positive c2 independent of p. (3.12) and (3.13) complete the proof. • 

   For each e>0 we define the function n1 by 

(3.14) na(p) = p-1-aK(p/~)/K(1/~), p>0. 

   LEMMA 3.4. For every EE(0,1], 

1 (3.15) 0(ey(p/e))rn1(p)d p < C24(e), Y>aV ~o, 

(3.16) 1(~y(p/ ))rnE(p)dp C2(), 0 < Y<anQo, 

where C2 is a positive constant depending only on a, jo, r and K(po), and 

                      +(~1 = er-a K1, (r-a)/2(1/E) 
              r K(1/~) K(1/~) 

                           -(~) K2, (a-r)/2(1/E)                    K
1() K(1/E) 

   PROOF. Set c=(Y-a)/2. Then 

1 

         o5(ey(p/))rp1aK(p/)dp                       ~--~

= Ec1-a/,~o)rK(po),~par/~0-1-a d p+ 1pr-1-aK(p/E)dp 
                                            0 E 

1 

                < K(p0)+s~ sup ucK(u) pr-1-«-~dp 
                                           15u~1/e 0 

Thus we get (3,15). (3.16) is also obtained in the same way. 

   It follows (3.7) and (3.8) that 

(3.17) sups (E) < <°, Y > aV R0, 
                            0<051 

(3.18) sup '(E) < oo, 0 <_ Y < aAp0. 
                          0<Es1 

Now the path functions of the cadlag process {X' (t)} starting at x are given 
as a solution of a stochastic differential equation of jump type. Namely, for 
each e>0 and xERd, we have a cadlag process X1=(XE(t))t50 defined on a
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probability space (Q, F, P) with a reference family (T)z0 such that there are 

   (i) a d-dimensional (F)-Brownian motion (B(t))t~0 with B(0)=0 a. S., 
   (ii) an (Et)-stationary Poisson point process pE on [0, oo) X V with charac-

teristic measure ne(p)d pm0(dv), 

   (iii) a d-dimensional cadlag process XE=(XE(t))t~0 adapted to ( t)t0, and 

   (iv) with probability one, X E(t) = (X (t), ... , XJ(t)), B(t)= (B1(t), ... , Ba(t)) 
and the Poisson random measure NE induced by p E satisfy 

                                £1-a/2 a t XE(S)             Xl(t) = xi+ 
K(1/E) OUi; dB(s) 

                       + E1-a tbz X E(S) (3.19) K(1/E) o ~ d s 

                        t+ 
i XE(s--) , P , v ME(dsd dv),                            0 o Y~ E E p 

where i=(i) is the square root of a, i=(), and M'(dsdpdv)=N'(dsdpdv) 
-dsne(p)d pm0(dv) . 

   Note that the above statement (i) and the second term of the right hand 

side of (3.19) are ignored in Case A. Also note that (Q, T, P), (E), (B(t))t?0 

may depend on E. 

   In view of Theorem 2.1, the function cpi(• )- T Lbi(• )dt belongs to C(Rd) 

0 with uniformly continuous derivatives in Case A, or belongs to Cb(Ra) in Case 

B, and satisfies --Lcpi=bi, i=1, 2, ••• , d. We set 

(3.20) Yl(t) = X z(t)+E~pi(X E(t)/E), i=1, 2, ... , d. 

Then, with the aid of Ito's formula, 

                                     E1-a/2 a t XE(s)         Yl(t) _ x1+ECo1(x/E)+ )dB1)                                                      (E

E1-a/z a to XS (s) X E             + (s) 

                                              ~ k(s)                                    x jWi Q                                       E jk dB 

(3.21) t+ 1 
              + o o V~i(s p, v)ME(dsd pdv) 

                         t+ 

               + 0 1 v~z(s--, p, v)ME(dsd pdv) 

              xi+ECpi(x/E)+Fii(t)+F2i(t)+lii(t)+hi(t), i=1, 2, •.. , d, 

where 

                                                             E E 

(3.22) ~ti(s, p, v) = E~i(s, , v)+E i (S) +(s, , v))_( i X (S) ,
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(3.23) X1(s) P                     rl(s, p, v) _ ~i , E , v . 

(3.21) is sometimes simply written as 

           Y1(t) = x+E~(x/~)H'Fi(t)+FI(t)+l i(t)+I2(t) 

We note the following 

   LEMMA 3.5. There exists a positive constant C3 such that 

(3.24) E(I 1 i(r+o)-ii(r) 12) C33(), 

(3.25) E(I JI(z+o)-12(r) I) <-_ C35j(~), 

for 0<1, o>0, and (Tft)-stopping time r. 

   PROOF. By virtue of (3.11) and (3.22), 

         E( I 1 i(r+o)-1 ~(r) 12) 

                                    

- 
z+S 1 

               = E 
z o V (~E('s, p, v)I2d s nE(p)d pmo(dv) 

                                 z+S 1 

                  c1E 
z o v Er~E(s, p, v) i 2d s nl(p)d pmo(dv) 

1 

                c28 
O~2 y(p/8)2n E(p)d p , 

where c1 and c2 are positive constants independent of E, 5, r. Combining this 
with (3.15), we get (3.24). In the same way, we also get (3.25). • 

   Now we will show the tightness of {Px} Following a criteria due to 

Aldous [1; Theorem 1], it suffices to show the following. 

   LEMMA 3.6. Let T >O. Then 

(3.26) lim sup P( sup I X E(t) I >R) = 0, 
                                      R-.oo 0<s ~1 O s_ t ~T 

(3.27) limPC I XE(z-1-5v)-XE(r) I > h) = 0, 
                              110 

for every h>0, (EF1)-stopping time r not greater than T, and nonnegative numbers 
5E with limE y 0SE=0. 

   PROOF. Let R be sufficiently large so that R>_2 I x I +4 coI . By using (3.20), 

(3.21) and Lemma 3.5, 

      P(sup I XE(t)I >R) 
                    o~ts_T 

          ($/R)2E( I F(T) 2+ I Fl(T) 12+ I 1l(T)2)+(8/R)E( I J2(T) I ) 

          < (c1/R2)T {s2-a/K(1/z)+,c2(~)} +(c1/R)Tici (s), 

with a positive constant c1 independent of E, R, T. (3.26) follows from (3.7),
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(3.17) and (3.18). 
   Fix h, z, Ve arbitrarily as in the lemma. Choose a sufficiently smalll Eo>0 

such that 4Eoilc <h. By means of (3.20) and (3.21),           

I XE(r+a8)-XE(z) I -<_ I Ye(r+OE)_YE(r) +2 Roll              

I F~(z+be)-Fl(z) I + 11 ~(r+bE)-Iti(z) I +h/2, 
                          i=1, 2 2=1, 2 

                                            0<e<Eo. 
Therefore, in view of Lemma 3.5, 

    P(I X6(z+51)-XE(z) I >h) 

          J (8/h)2E(I Fz(T+oe)-Fti(r) 12) 
                       i=1, 2 

         +(8/h)2E(i Ii(z+oe)--Ii(r) 12)+(8/h)E(I I Z(r+oE)-I Z(r) I ) 

          (c2/h2)o1 {E2-a/K(1/E)+/2 (E)1 +(c2/h)o1tc1(E), 

for some positive c2 independent of E, h, r, VE. (3.27) follows from (3.7), (3.17) 
and (3.18). • 

   The following lemma tells us the characterization of the limit process. 

   LEMMA 3.7. Let f be a real valued infinitely continuously differentiable 

function with compact support. Then it holds that 

c 

     E[f (X E(t)) I ~sJ-f (X E(s))-E L*f (X E(u))du Is --~ 0 as E 0, 

8 uniformly in s and t (s <t) o f each compact set o f [0, ca). 

    PROOF. In the following, 0<_s<t and o(1) means a random variable whose 

expectation converges to 0, as E 0, uniformly in s and t of each compact set 

of [0, cc). We put 

                 F(x, y) = f (x+y)-f (x)-y .af (x) 

By means of (3.20), 

(3.28) E[f (X e(t)) I EF8]-f (Xe(s)) = E[f (YE(t)) I ¶s]_f (YE(s))+o(1). 

Applying Ito's formula to f (Ye(t)) and noting (3.7), we see that the right hand 

side of (3.28) is equal to 

(3.29) E 8 o vF(Y1(u), ~E(u, p, v))du ne(p)d pmo(dv) I F8 +o(1) • 

At this point we divide our argument into three steps. 

   Step 1. (3.29) is equal to 

(3.30) E S o YF(X E(u), E~E(u, p, v))du n1(p)dpmo(dv)I



                     Homogenization of cadlag processes 299 

In fact, 

     IF(y, E)-F(z, )I <_ ~~{ly-zl(II~IIZ)+I-~ICIn(II+I~I))}, 

for y, z, , E Rd, where c 1 only depends on d and I I Q' f , k=1, 2, 3. Hence, 

by virtue of (3.20), (3.22) and Lemma 3.3, the expectation of the difference 

between (3.29) and (3.30) except o(1)-terms is dominated by 

      c2E E(I ~E(u, p, v) I A I ~E(u, p, v)!2)                   3 ~ V 

               IXE E              ~c 
s rI p c 

         X {1 A(I ~E(u, p, v) I +E I ~E(u, p, v) I )} du nE(p)d pmo(dv) ~s 

          c3E 
3 o v~ { I E ~E(u, p, v)) I n I ~E(u, p, v)!2 

         +(1n I rIE(u, p, v)I )(1/\ I sr1E(u, p, v)I )} du ns(p)d pmo(dv)Is 

1 

         c41t-sl o[{y(p/)Y+ s(s s~r(sy(pl~))2_r}nE(p)dp 
              +~ 1(sy(p/€)+1)nE(p)dp 

          c5It-s I {~ 2(E)-i-sr 2 r(E)-I-~ ~(E)+~ o(s)} 

        < c5 I t-s I Er Sup {~2 C~)+2 r(~)+i C~)+o(~)} 
                            o<E$1 

        = 0(1), 

where 0<r<2--aV ~o, and ci (i=2, ••• , 5) are positive constants independent of 
e, t and s. 
   Step 2. (3.30) is equal to 

                  t E(u 
(3.31) E $ ~dF(X E(u), z)duv X)                               E , dz I rs +o(1) 

t 

                 = E 
s RdF(XE(u), z)duv'E(dz)I a +oCl), 

where vE and vE are defined by (3.1) and (3.9), respectively. The left hand side 
of (3.31) follows directly from (3.1) and (3.10). In order to get the right hand 
side, we put 

               gE(x, y) = ~dF'Cy, z) {vE(x, dz)-vE(dz)}. 

It is enough to show 

(3.32) E tgE X E(u~ , X E(u) du I F3 = o(1). 
                                  3 E
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Note that gEC Cb(R2d), gS(,, y) is periodic with period 1 for each y, 

 TdgE(x, y) i(dx)=0, y~Rd, g8(x, y) is infinitely continuously differentiable in 
y for fixed x. Moreover, 

(3.33) IIQygEll < acs sup d l z l 2A I z l y(x, dz(z/E))                    E K(1/E) x R 

                  c7 
o(Ey(pl ~))2~(~y(pi~))nE(p)dp 

                   c8 sup {K2 (s)+~1(~)} < CO , 
                                   o<ES' 

for k=0, 1, 2, •, and positive constants ci (i=6, 7, 8) independent of e. In 

particular, in Case B, gE~ Cb(R2d), axtigE(x, y) is infinitely continuously differen-
tiable in y for each x and i, and I QxQygEll<~, k=0, 1, 2. Hence gE satisfies 
all of the conditions in (iii) of Theorem 2.1. Therefore the integral cbe(x, y)= 

 T~ ge(•, y)(x)dt converges absolutely, and either ~b E~ Cb(R2d) with uniformly 

0 continuous derivatives in Case A, or ~bEe Cb(R2d) in Case B. Also, 

(3.34) II cbsII+IIV cb5II+I1V V cb5ll+ a Ell 

                 <_ c9(IgEIf-FIIV~g5II+IIV~g5l1) 

with positive constants c9 and c1D independent of ~. We now apply Ito's for-
mula to X 5(t)/, X 5(t)). Then 

      8aK(1/~) E E X E(t) , X E(t) IS - E XE(s) , X5(s) 

       _ t ~ X E(u) acbE X E(u) E          _E 
o2~ai' ~ axx E ~X(u) 

                                             E E 

                 +b X (u) 'Qx E (u) , X E(u) du EES 

              ~ 1 XE(u) XE(u) 
           +~E s 2 ~a~' g ax~ay~E X3(u) 

                  +ax .a ~/~E X E(u) , X E(u) +~a a E X E(u) , X3(u) 

                 +b X E(u) •v ~E X E(u) , X E(u) du 11FS 
                                          E y. ~ 

                     t E 

        +E Rd( E u) +z, X E(u)+&z -cbE X3(u) , X E(u)                     s 6 ~ 

                     _z,O x E X E(u)) X E(u)
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E 

                             X E(u) duv (u) , dz Is . 

Since -Lcb (•, y)(x)=ge(x, y), and ati5, bi are bounded, by means of (3.34) we 
find that 

       E t[gE(XE(u) XE(u) dull 
                      S E 

  = E t E X E(u) [ Rd +z, X(u)+z)-(X(u) +z, X E(u) 
          -sz•0 ( E X 6(u) , X E(u) duv Xs(u) dz I3 +o(1)                                  y' ~ 8 

By using (3.34) again, 

      Rd{~E(x/~+z, x+Ez)-c~E(x/~+z, x)-Ez•Dyc~E(x/~, x)}v(x/E, dz) 

           c11E{ Qy~E +IQxQyEl+6IQy~ } 
Rdlzl2~ z v(x/E, dz) 

                 c12~ , 

with positive c11 and c12 independent of x and s. Thus (3.32) follows. 

   Step 3. Now the assertion of the lemma is obtained as follows. By the 

same argument as for (3.33), for any o >0, there exist O<1<2<°° p psuch that 

         lim sup I F(x, z) I (vE(dz)+v*(dz)) < o . 
                 E10 xERd (Izizp1)U(Izl?P2) 

Since F(x, z) is uniformly continuous and has a compact support on Rd X 

{pl<_ z <_ p2}, in view of Lemma 3.2, 

             lira sup F(x, z)(vE(dz)-v""a(dz)) = 0. 
                     s1O xERd P1zIzIsp2 

Thus we arrive at the conclusion of the lemma. • 

   4. Examples. 

   Throughout this section we assume that a(x)-0 and b(x)=0. Set 

                    2)0(x, dy) = c(x, y)n(y')dy, 

where c(x, y) and n(y) fulfill the conditions (A.1)-(3)-( i ), (ii) and c(x, y) is 

periodic in x with period 1 for each y. 

   1. We will start with the simplest case such that 

                       v(x, d y) = 2)0(x, d y) . 

Note that there is the unique invariant probability measure p of the cadlag
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process on T d governed by L given as (1.1) with v=vo. Suppose that c(x, y) 
has the following asymptotic representation 

(4.1) c(x, y) = co(x, y) I y I-a°KO(I y I ), x E Rd, I1 y ? p0, 

for a sufficiently large p0. Here c0 is a nonnegative bounded continuous func-

tion on Rod, o0>0, and K0 is a slowly varying function, where K0 is bounded 
if o0=0. The scaled cadlag process {sXL(t/E"o+a0K0(1/E))} is equivalent to the 

cadlag process {XLE(t)} governed by the following V. 

       LEf (x) = {f (x+y)-f (x)-y af (x)} c(x/E, y/E) n(y)dy. 
                  Rd ESOKo(1/E) 

If there exists the limit function 

r (4.2) c(w) = lim r pod p TdCO(x, pw)p(dx), w Sd-', 

then {XL~(t)} converges to the stable process governed by L* as E 0, where 
no(dw)=co(w)n0(w)Q0(dw), and 

(4.3) L*f (x) _ {f (x+y)-f (x)--y .V f (x)} p-1-"0-aOd pn o(dw) . 
                         y_pWERd 

The case where d=1, b0=0 and KO=constant is reduced to [3]. 

   2. We next consider the following case. 

                   y(x, dy) = v0(x, dy)+i 1(x, dy), 

where v, is given as 

                    = 
11r(pw)gi(x, p, w)d p~i(dw),                                  0 Sd-

Q1 is a finite measure on Sd-1, and g1 satisfies the condition (A.1)-(3)-(v) cor-
responding to Case A, and is periodic in x with period 1. Let i be the invariant 
measure of the cadlag process on T d governed by L given by (1.1) with v=v0 

+vl. Suppose the following asymptotic behavior 

     g1(x, p, w) = c1(x, p, w)p-1-"1cx'Ki(p)hu1cx', xERd, w~Sd-1, p>pl, 

for a sufficiently large Pi, where c1 is nonnegative, bounded on R d X (0, cc) X 
Sd-1, continuous in (x, p), periodic in x with period 1; a1 is continuous, periodic 
with period 1, and 1<aj = minxa1(x)<maxxa1(x)<2; K1 is a slowly varying 
function; and j1 is continuous and periodic with period 1. We assume (4.1). 

Put j31=maxxQ1(x), a=(a0+o0)Aai, and K(p)=K0(p) if a0+o0<a1, =K1(p)8i 
otherwise. The scaled cadlag process {EXL(t/E"K(1/E))} is identical with the 
cadlag process {XL~(t)} governed by the following
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      L£f(x) = {f(x+y)-f(x)-y•af(x)} 
                         y=pWERd 

             X c(,rl ~, y/) (y)d y+ g1(xl z, pl i, w) d (dw) . 
                  £a a0K(1/~) n E1+aK(1/~) po'1 

We will observe to what process { X LE(t)} converges as E . 0. 

(Case 1) a0+o0 < ai, or a0+50 == ar and lim Ko(p)/K1(p)~i > 1. 

In this case we assume (4.2). Then the limit process is the stable process 

governed by L* given by (4.3). 

(Case 2) a0+50 = ar and Iim K0(p)/K1(p)~i =1. 

In this case we assume, besides (4.2), that there exists the limit 

T (4.4) ci(w) = lim- dp c1(x, p, w)p(dx),                           r-.°° r P1 (XETd; a1(x)=a1J                                                is1(x)=,3i 1 

for w~Sd-1. Then the limit process is governed by the following L*. 

(4.5) L*f (x) = { f(x+y)-f (x)-y .V f (x)} 
                              y=pwERd 

                            X p-i-«dp {n o(dw)+ni (dw)} , 
where 

                    n i (dw) = c*(w)Q1(dw). 

(Case 3) a0+&> ai, or a0+50 = al and lim K0(p)/K1(p)~r < 1. 
                                                                                                    p-.oo 

In this case we only assume (4.4). Then the limit process is the stable process 

governed by L* given by (4.5) with no -0. 

   3. Finally we consider the case that 

                  v(x, dy) = w0(x, dy)+v2(x, dy), 
where 

                  ,.2(x, dy) = g2(x, p)dpo(p(x))(dw), 

p is an S''-valued continuous periodic function, and g2 satisfies the condition 
(A.1)-(3)-(v) corresponding to Case A, is periodic in x with period 1. Note 
that the assumption (A.1)-(3)-(iii), (iv) hold with U={1}, m(du)=o(1)(du), p(x,, u) 
=p(x). We denote by p the invariant measure of the cadlag process on Td 

governed by L defined by (1.1) with v=v0+v2. Suppose 

          g2(x, p) = c2(x, p)p-i-a2(x)K2(p)P2(x), x Rd, p >_ p2, 

for a sufficiently large p2, where c2 is nonnegative, bounded, continuous on Rd 

x(0, cc), periodic in x with period 1; a2 is continuous, periodic with period 1,
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and 1<a2 sminxa2(x)<maxxa2(x)<2; K2 is a slowly varying function; and 92 
is continuous and periodic with period 1. We also assume (4.1). Set j2 = 
maxxiS2(x), a=(ao+bo)Aa2, and K(p)=Ko(p) if ao+oo<a2, =K2(p)P2 otherwise. 
The scaled cadlag process {~XL(t/~aK(1/~))} is equivalent to the cadlag process 

{XL~(t)} governed by 

      L2f(x) _ { f (x+y)-jCx)-yDfCx)} 
                          9=pWERd 

               X c(xlE, y/E) n(y)dy+ g2Cx/E, ply) d ~~fpcx~e)1CdClI) 

Dividing into three cases as above, we observe the limit process of {XL~(t)}. 

(Case 1) ao+5o < aZ, or ao+5o = a2 and lim Ko(p)/K2(p)~2 > 1.                          p ~o 

Assume (4.2). Then the limit process is governed by L* of the form (4.3). 

(Case 2) ao+oo = a2 and lim K0(p)/K2(p)~2 =1. 

In this case we assume, besides (4.2), that there exists the limit measure 

r (4.6) n2(0) ; lim- dp c2(x, p),u(dx),                         r-. Y P2 (XETd: a2(x)=a2, /92(x)=J21np-1(0) 

for 0~ B(Sd^1). Then the limit process is governed by the following L*. 

(4.7) L*f (x) _ {f(x+y)-.f(x)-y.Vf(x)} 
                                 J=p~,ERd 

                            X p-1-ad p {n o(dw)+n2 (dw)} . 

(Case 3) ao+oo>az, or ao+oo=a2 and lim Ko(p)/K2(p)'z <1. 

In this case we only assume (4.6). Then the limit process is the stable process 

governed by L* given by (4.7) with n o =0. 

    4. Let v=~2=1y0i+~ =lvli+LJ2=1v22, where voi, vlti and v2i are Levy measures 

of the type of vo, vl and v2 mentioned above, respectively, i=1, 2, .... Then it 

is easy to see that Theorem 3.1 holds for this v. Especially, in the case where 

v is given as (1.4), we get the assertion mentioned in the last paragraph of 
Section 1. 
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