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1. Introduction.

Let L be a d-dimensional Lévy type operator :

D L@ =5 5 auede S0+ Fb00eS(0)

i 1

+ 90— e fOhtx, d),

where 0,,=0/0x;, a(x)=(a.,(x)) is a nonnegative definite symmetric d Xd matrix,
b(x)=(bi(x)) is a d-vector, and v(x, dv) is a Lévy measure on R? for each x=

R*: u(x, {0})=0 and Sm|ylz/(1+|ylz)v(x, dy)<oo, xR? Denote by {X*(#)}

a cadlag process on R? governed by L. Here a cadlag process means a Markov
process whose sample paths are right continuous and have left hand limits. In
this paper we will consider a homogenization problem associated with {XZ(¢)}.
Namely, under the condition of periodicity of a(x), b(x) and u(x, dy) in x and
some additional condition, we will study to what process the scaled process
{eX™(t/¢(e))} converges as ¢ | 0 with some suitable scaling function ¢.

Horie, Inuzuka and Tanaka [3] has already investigated the same problem
in the case where d=1, a(x)=0 and Lévy measure is absolutely continuous
with respect to the Lebesgue measure. More precisely, let
12 AfG) =B | (==l etx, yn(ids,
where 'b(x) and c(x, y) are periodic in x with period 1 and c is strictly positive,
and n(y)=r_ly| "% (y<0), =7,y71"% (y>0), for some a,=(l,2) and non-
negative numbers 7., 7, with 7_47,>0. If there exist the limits c¢.=

limrdw(l/r)g(:dygrc(x, y)u(dx), ¢ being the invariant probability measure of the
cadlag process {¥4(t)} on T=R/Z induced by {X4()}, then the scaled cadlag
process {eX4(t/e%)} converges to a stable process {X4'(¢)} inlaw as ¢ | 0. The
generator A* of the process {X4%(t)} is given by

1.3) arfx) = [ ()= F0—3f s Om)ds,
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where ¢*(y)=c¢-1cw,0X(¥)FC+1co,(¥)-

Their result is still applicable to the case where there exist the limits
¢o(x)=lim,...c(x, y)|y|% for some &,>0. However, in this case, ¢* in (1.3)
vanishes. This fact means that the scaling x+—ex is too fast as compared with
the scaling f—t/e*0. In fact, as will be seen in Section 4 later, in this case the
scalings must be x—ex and t—t/e%*% and A* is given as (1.3) with ¢. and the
exponent a, in n(y) replaced by Eizgrfi(x)y(dx) and «,+0, respectively.

An observation as above shows that homogenization of cadlag processes is
much different from that of diffusion processes (see [2], [12] for the latter). In
homogenization of cadlag processes large jumps have an effect on the limit
process. Hence we have to do suitable scalings according to a given Lévy
measure. Moreover these scalings suggest that the generator of the limit
process is determined by a part of the given Lévy measure which is corres-
ponding to the largest jump. These will be verified in Section 3.

In Section 2 we will summarize some properties of a cadlag process governed
by L. The construction of such process was already investigated by many
authors. It was mainly discussed as the martingale problem under the assump-
tion that the diffusion matrix is positive definite ([4], [14]), vanishes ([5], [6]),
or is nonnegative definite ([9], [10], [11]). In each case various conditions are
imposed for the Lévy measure y. In this paper we will construct cadlag pro-
cesses following an analytic perturbation method. Thus we will be concerned
with the case where L is written as L,+L,, L, is a well known operator, for
example, a generator of a diffusion process, or of a stable process, and L, is
a perturbation of L,. Then we can get easily regularities of solutions of equa-
tions associated with L. In order to study homogenization of cadlag processes,
we will also use that sample paths of cadlag processes are represented as a
solution of a stochastic differential equation of jump type. Therefore we will
start with a class of Lévy measure as in (A.1)-(3) below, which contains the
following measure as a typical example.

(1.4) ox, dy)=|y| ¢ *dy
+ {Liocpose(p)e D +1 5a(p)p ™ "% (log )P}
Xdp{o(dw)+0pn(dw)},
where 1<a,<2, p=|y|, o=y/]|y|=S??, ¢ is a finite measure on S**, a(x),
B(x), p(x) are periodic continuous functions with period 1, 1<a(x)<2, B(x)ER,
and p(x)=S%.

In Section 3 we will study homogenization of {XZ(¢)} under the assump-
tions (A.1)-(A.4) below. The essential assumption is that there exists the limit

Lévy measure u*(-):limuogwy(x, -/e)u(dx)/e*K(1/e) for some a<(l,2) and
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slowly varying function K, where g is the invariant probability measure of the
cadlag process on T¢ governed by L. The scaled cadlag process {e XZ(t/e*K(1/¢))}
is identical in law with the cadlag process {XZ%(¢)} governed by L° of the form
(3.2) with »* given by (3.1). The above essential assumption leads us to the
conclusion that {X%‘(t)} converges, as ¢!0, to the cadlag process {XZ'(t)}
governed by L* of the form (3.6). We will show this main result (Theorem
3.1) by the same method as in [3].

Section 4 is devoted to some examples. We can derive from the examples
there that, in the case Lévy measure is given by (1.4), if a-=min.a(x)<a,,
then the process {eXZ(¢/e* |loge|?*)} converges to the process {XZ'(t)} ase |0,
where B*=max,f(x), and L* is given by

Lrfy={ G =f 0=y Tf0}om " dpa*(da),

with ¢*(@)=p({x&T*: a(x)=a", B(x)=BNe(O@)+p({xT?*: a(x)=a", fx)=
BT YNpY(6)), O B(S*).

2. Preliminaries.

Let C(E) be the set of all real valued continuous functions on E and C,(E)
the subset of C(E) consisting of those bounded functions. Let C™E) be the
set of all real valued n times continuously differentiable functions on E and
C}ME) the subspace of C™(E) consisting of those functions with bounded deri-
vatives up to order n. B(F) stands for the set of all real valued bounded
Borel mesurable functions on E. C,(E) is the space of real valued continuous
functions on E vanishing at infinity, and C%(FE) is the subspace of C"(E) con-
sisting of those functions with derivatives belonging to Co(E) up to order n.
For a real valued function f we use the following notations: V.f(x, y)=
(02,0 (x, 9)), Vif(x, ¥)=(0:,0:,f(x, ), VoV, f(x, ¥)=(0:,0,,/(x, ¥)), etc. We
also use the notation | f|=sup.,ez|f(x)| for a real or vector valued function f
on E. For real numbers ¢, and ¢,, ¢;Ac; and ¢,V ¢, stand for min{c;, ¢.} and
max {c,, ¢;}, respectively.

For a, b and v appeared in a Lévy type operator L defined by (1.1), we
now assume the following:

(A1)
(1) Case A: The matrix a vanishes, or
Case B: a is positive definite, and each component a;; belongs to
C¥R%).
(2) For every 7, b;=C,(R?) in Case A, or b;=C}(R?) in Case B.
(3) u(x, dy) is represented as
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e, )= cx, 9ndy+ (7 1rtopte, wietx, o, widom(du),
I'e a(R*\{0}).

(i) ¢=0, =Cy(R?%), and inf,c(x,0)>0. There exist positive numbers
M, 70, ho such that |c(-, y)—c(-, 0)|EM|y|™ for |y|<h, in Case A.
c(+, »)C}(R?) for fixed y with ||[V.c[ <o in Case B.

(ii) n()=nlpw)=nw)p "%, p=|y|, 0=y/1y|€S**, for some a,=(1, 2)
and 7,=0, =0 and either n,&CZ(S%!) in Case A, or n,=C,(S%') in
Case B.

(iii) (U, 8U), m) is a finite measure space.

(iv) p: R*xXU—S%! is Borel measurable, and p(-, u)s C,(R?*) for fixed u
in Case A, or p(-, u)eCyR?) for fixed u and |V,p||<oo in Case B.

(v) g: R*x(0, o)xU—[0, ) is Borel measurable, g(-, -, u)es C(R*X
(0, ©)) for each u, and either there exists a S<(1, a,) such that

[0 nodlet, o, dldo < o0
in Case A, or g(-, p, )= Ci(R*?) for fixed p, u and there exists a <
(1, 2) such that
[P npXigts 0, I+ ITagC, p, o<
in Case B.

(Az) ai](x)» bz(x): i: ].:17 2; Tty d; C(JC, y)) P(x, u), g(x, 0, u) are periodic in
x with period 1 for fixed y, p, u.

Then we have the following theorem.

THEOREM 2.1. Assume (A.l) and (A.2). (i) There exists a cadlag process
{XL(@)} on R? governed by L. (ii) The cadlag process {¥%(t)} on the d-dimensional
torus T* induced by {X*(t)} has a unique invariant probability measure p on T*°.
(iii) Let {TF} be the semigroup associated with {XL(t)}. Let f be a function of

Co(R??) such that f(x, y) is periodic in x with period 1 for each y; Srdf(x, y)u(dx)

=0, ye R*; f(x, )= CYR?) for fixed x with |V f|+IV5fl+IVLfl < ool
Moreover, in Case B, assume that feCy(R**); 0.,f(x, )€ C}(R*?) for each x

and i; and |V, V,f||<oo. Then the integral u(x, y)ES:TH(-, y)x)dt converges

absolutely. wu belongs to Ci(R*?), 0.,u(x, y) is uniformly continuous on R* in x
for fixed y,0,,ucsCyR*?),i=1,2, -, d, and

Nl 1V ull+ 1V, ul + 1V ul+ V5]
= cF IV FIHIVELD,

for some positive constant ¢ independent of f. Particularly, us C¥R**) in Case
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B. Moreover it holds, in both Cases A and B, that —Lu(x, y)=f(x, ¥), x, yER?,
where L is applied to the variable x.

REMARK 2.2. If U=S%" and p(x, u)=wu, then, by virtue of [6], we get
the assertion (i) in Case A. In [14] Stroock pointed out the existence of a
strong Feller continuous cadlag process governed by L in Case B. Therefore
the assertions (i) and (ii) corresponding to that case follow from his results.

Now we sketch the proof in the same way as in [3]. We assume (A.l) and
(A.2) throughout this section. Following a routine method, we set

[ F 49— )=y Tfhn()dy, i Case A,

%2?,;=1azi(aij(x)azjf(x)), in Case B,

Lif(x)=

and L,=L,—L,, where L, is given by (1.1) with b;(x)/c(x, 0) and »(x, dy)/
¢(x, 0) in place of bi(x) and u(x, dy), respectively, in Case A, or L,=L in
Case B. Let pli(t, x, y) be the transition function of the a,-stable process in
Case A, or of the diffusion process in Case B, governed by L,. Let {T%} and
{G§1} be the associated semigroup and resolvent, that is, for f< B(R%),

Thf(x) = o1 % Gy,

Ghf(x) = S:'e-“T,Ll Flx)dt.

First we note the following properties from [5] in Case A, and from [7] in
Case B. Put a,=a, in Case A, or=2 in Case B. We denote by ¢; (=1, 2, ---)
positive constants independent of 4, f, y,t etc. throughout this section. Let
us fix a sufficiently large 4, Then it holds that

@.1) Gir: C(R®) —> CY(R?),

(2.2) Gi1: B(R*) —> Ci(R?),

2.3) NGl = exd=<eomDi%o| f]],

2.4) IV(GEf(-+3) =G f( D £ cad om0 f[{p]7,

for A=2, f€B(R%), yeR®%, where an r=(0, a,—1) is fixed arbitrarily. Fur-
thermore, in Case B we have

(2.5) Gii: C}(R%) —> CYR%),
(2.6) V2GR f Il < e (S IV D,
@.7) [VA(GEf(-4+9) =GR f(O < el =P fIHIVDIYITS

for A=, fECYR®), yeR?, where an r<(0, 1) is fixed arbitrarily.
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By using these facts we show the following.

LEMMA 2.3. Fix an r€(0V(ai—1—70), @—1) in Case A, or an r<(a,—1, 1)
in Case B. Then

2.8) L,Gj1: C(R?%) —> C(R?),

2.9) L,G%1: B(R?)—> Cy(R?),

(2.10) I LGRS 1| < co(Am o010y 2= C2o=Boreo)) £ ],
for A=A, and f=B(R*%). Moreover in Case B,

(2.11) L,Gi: C(R*)—> CYR?),

(2.12) INL:Giif || < co(A 702 228 2)(|| £ |+ |9 £ ),

for 2=2, and f< C}(R?).

PROOF. Let A=A, and put Hf(x, y)= G f(x+y)—Gi1f(x)—y-VGiif(x),
and

b(x) Ly e(x, 9)
oty CRIo+ ] Hf G, ) —1)n(3)dy

chflf(x) = o(x, 0)

- g(x, p, u)
+, 5,11, ppte, i 7R dpn(du)
= 1f(x)+Jof(x)+Jf(x), in Case A,

LG = 3 (br)— 30e,00())0:,GH11(x)
+SRdHf(x, )e(x, y)n(y)dy

+SZ°S,,Hf<x, op(x, u)g(x, p, u)dpn(du)

= [if(x)+]of(x)+]sf(x), in Case B.

By means of (A.1l) and (2.1)-(2.4), we see that H: B(R?)—»C(R*?), f€ C(R%*)—
Hf (-, »)€Cy(R?), fEB(R*)—Hf(-, y)& C,(R?), and

(2.13) IHf (-, I S cidm@omt=mlao) fliI(Ly [T ALy ],

for feB(R%), yeR?%, where an r<(0, a,—1) is fixed arbitrarily. Also J,;:
Co(R*)—Cy(R?%), J,: B(R*)—C,R*%), and
[ f] < ced=@oDi%o||f]l, & B(R?).

In view of (A.1), c(-, ¥)/c(+, 0)=1[Zeo(|¥|70AL), yER?, in Case A, and [[c|=Zc1o
in Case B. Taking an 7 as in the lemma and using the dominated convergence
theorem, we find that J,: Co(R*)—Cy(R?), J»: B(R*)—Cy(R?), and
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{17 ALy Da)y,  in Case A,
1o | < eudrcoors=roreo] £ ¢

[ o171 Ay Dn()dy,  in Case B,
= AT 0TI f|l, f € B(RY).
Putting »=f8—1 in (2.13), we have, by the same reason as above, that J,:

Co(R%)—Co(R?), J5: B(R*)—Cy(R?), and

131 S ew-ceoBreo £ ("0 AodleC-, o, ldp
= cud P f], e BRY).

Thus we obtain (2.8)-(2.10).
We are concentrated on Case B in the rest of the proof. Fix an f& C}(R?)
arbitrarily. By virtue of (A.1) and (2.3)-(2.7),

(2.14) IV2Hf (-, 2 < casA D FIHIVFIDAY ITH ALY D,
for ye R* with a fixed »<(0, 1), and

Jif € CY(R?), INJf = e 2N FIHINELD.
(A.1) and the dominated convergence theorem imply that
Jo.f € C{(RY), INJF IS 2211V,

where an 7 is arbitrarily fixed within (a,—1, 1). Noting that |V, Hf(:, y)|I<
A VI FII IV Iy AL, yeR?, and setting »=8—1 in (2.13) and (2.14), we
get similarly that

Jsf € CYRY), 19 f | < ciod =B FI+HINFID.
Thus (2.11) and (2.12) follow. m

We now denote by L, the generator of the strongly continuous semigroup
{TH1} with C4(R¢%) as the domain. Define the operator L, by I~,O=ZI+L2 with
the domain D(Z)=D(L,(DC¥R®). Then L,: D(L,)—CoR%) because of (2.8).
We see that L, is the smallest closed extension of the operator L, restricted
to CX(R?) and L, has the strong negative property, that is, f eD(L,) and f(xo)
=max,f(x) imply f,,f(xo)go. Therefore there exists a unique strongly con-
tinuous Markovian semigroup {7} on C,(R%) with the generator Lo Let
{XLo#)} be a cadlag process on R¢ associated with {T#o} and Pie(¢, x, ) the
transition probability. {TF} and the resolvent {G%o} are naturally extended
to the operators on B(R¢?) in the following way.
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Thf) = FIPRG, 5, dy),

Gof(n) = | e Thf()dt,
for feB(R%). Then, in view of (2.9) and (2.10),
Ghof = GH(I—L,GI)'f,

for f=B(R%) and sufficiently large A. Combining this with Gi11=1/21, (2.2)-
(2.7) and (2.9)-(2.12), we have the following.

LEMMA 2.4. Let r<(0, ap—1). Then it holds that

(2.15) Gl =1/2,

(2.16) Gfo: B(RY) —> C{(RY),

2.17) [VGZofIl < caod=@omDI%| ],

(2.18) IV(GES (- +3)= G f (Ol < card oI flI[p]7,

for sufficiently large 2, f=B(R%), and y=R®. Especially, in Case B,

(2.19) Gio: CR*) —> CY(RY),
(2.20) V2GR f Il = coad 2N FIHINVLID,
(2.21) [V(GEof (- +3) =GR f (Il < o™ D FIHIVADIVIT,

for sufficiently large A, f€C{R?) and y= R*°.

We next show that the semigroup {T'f°} has the strong Feller property.
Since L=L, in Case B, the associated cadlag process {XZo(¢)} is nothing but
the one governed by L. Hence this property is already obtained in Case B as
noted in Remark 2.2. We thus only consider Case A in the following lemma,
whose proof is also available for Case B.

LEMMA 2.5.,
' TEo: B(RY) —> C(R%),  t>0.

PROOF. We use an idea in [15]. Let us repeat above argument for the
space time semigroup {Tf!} and resolvent {G}1}, where

Thfts, )= s+t e, x, 3,
Cinfls, x) = [ e Tifls,

for fe B(R*") and (s, x)RXR¢. Then there exists a unique strongly con-
tinuous Markovian semigroup {T'f¢} on C(R¢*!) with the generator L, which
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is the smallest closed extention of 0+ L, restricted to C3R%*'), where
(0+Lo)f(s, x)=0s7(s, x)+Lof(s, x), L, being applied to the variable x. {T%o}
and the resolvent {G1¢} are extended to the operators on B(R®*'), and it holds
that

(2.22) Glof(s, ) = G%I(I—Lzéfl)"f(s, e CXRY),

for sufficiently large 2, f=B(R%*') and s=R.
Now let us fix sufficiently large 4, fB(R?%) and ¢>0. Put

Fos, 1) = 1t o)  Thef (2).

We then have T f(-)=G%f, 10, -), where {G)o} is the space time resolvent
induced by {T#o}. Since {GLo}={Glo}, the assertion of the lemma follows
from (2.22). m

We denote by {¥I°()} the cadlag process on T'¢ induced by {XZo(t)}. Let
{0} and {B%o} be the associated semigroup and resolvent, respectively. We
should notice that Lemmas 2.4 and 2.5 are also valid for functions on 7'¢,
{®%0} and {Zfo}.

LEMMA 2.6. There exists a unique invariant probability measure po on T*
such that

2.23) ‘

1507(.)_Sﬂfdyo

ProOF. First note that {¥fo} satisfies the strong Feller property in the
strict sense ([8]). In the same way as in [3], we can show that the transition
probability PLe of {XLo(t)} satisfies PLo, x, B)>0 for t>0, r=T¢, and nonempty
open sets BCTe. In view of (2.15), {¥%o(t)} is conservative. Hence Theorem
1.1 in [17] leads us to the conclusion of the lemma. W

S ce i,  t>0,fe B(TY.

LEMMA 2.7. Let f be an element of Co(T¢XR?) such that f(x, -)=Ci(R?)
for fixed ¢ with |V fl+IV5fI+IVyf<oo, and Srdf(x, Meldr)=0, y<= R
Moreover in Case B assume that fe CYT*XR?), 0,,f(x, -)=CYR?) for each y
and i, and |V N, f|<co. Then (i) the integral Rf(z, y)sgji,%f(-, y)(x)dt is

absolutely convergent; (ii) &f € CYT*XR?), 9, 8f € C{T*XR?%),i=1,2, -, d,
and
IRANFIVER NIV, R NIV R |+ VRS

= ol F IV AIHIVEAD;

(ili) KfeCyT*xXR?%) in Case B; (iv) —LQRf(, y)=f(+, ¥), yYER?, where L,
means the operator L, acting on functions on T<°.
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ProOF. Let ¢, be the generator of {Tfo} restricted to C(T?). Let us
arbitrarily fix an f satisfying all of the conditions of the lemma. By means
of (2.23),

1871 < { suplTeef (-, y)Xw)ldeewl £,

which implies the assertion (i).
With the aid of the resolvent equation,

2.24)  Rf(x, 3)=Gp(f(+, ARSI, (),  4>0,reT?, y=R?.

} From now on we fix a sufficiently large A and set Af(x, y)=/(z, y)+ARf(x, »).
Obviously,
||/1f“ = Czs“f“ .

This with (2.24) and (2.16) leads us to the fact Rf(-, y)=C¥T?), whence
Af(-, y)=C(T?. By using (2.24) again, we see that ®f(-, y)=D(¥,) and
—8.Rf(-, )=f(-, ). Since =8, on CXT?) in Case A, or on CXT%) in Case
B, the assertion (iv) follows from the assertions (ii) and (iii).

Since Smawf(g, Mto(dr)=0 for every y and 7,

0, Rf(x, ¥) = R0y, Xz, y) = (A0, )+, »)z).
Similarly,
04,0y Rf(x, ¥) = R(0,,0,,/ Nz, ¥) = BF(A0,,0,,/ )X+, ).
Combining (2.24) and above two formulas with Lemma 2.4, we see that &f
belongs to CyT¢XR?), 0,,R8fCyT*xXR?),i=1,2, -, d, and
IV, &S = SgDIIV(%f"(Af(', I el I
IV{(RF (43, )=RFC, Nl
= Sgpllv(@f“(Af(-, I +)—=8F(Af (-, yNCI
< coll FIHBIT,
IV RFIHIVERANHIV VR < eonIVy FIHIVESD+conl T, S
IV RF(C-+3, )—=&F(C, DI = el Vo FI1IT,
V.V (RIC, - +2)=8F(C, NIHIVIRSC+3, )—KFC, Dl
= cao(131+12DAVLAIFIVELD,
VYRS, - +2)=RF ¢, DI < el VSl 2] .
for 3T?% and z=R?, where r is fixed arbitrarily within (0, a,—1). Thus

assertion (ii) follows.
For the assertion (iii) it is enough to notice the following. By virtue of
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Lemma 2.4,

IVERf I < cas(IF I+ IVS 1D,

IVHRSF(-+3, )=RFC, DI = eI FIHINLDIBIT

IVARF(-, -+2)=RFC, NI = calIV, FI+IVV D2,
for 3&T? and z= R¢, where r is fixed arbitrarily within (0, 1). =

We are now in the position to give.

PROOF OF THEOREM 2.1. Since L,=L in Case B, the assertions of the
theorem corresponding to that case have been already verified in above argu-
ment. We only consider Case A. The cadlag process {XZ(t)} governed by L
is given as the time changed process {XZo(¢(t))}, where ¢(¢) is the inverse
function of | ¢(X*(s), 0)*ds. Then ptdn)=({ e(x, 0'(dr)) e, 0)*pn(dy)
is the unique invariant probability measure of {XZ(t)}. Set F(x, y)=f(x, y)/

¢(x, 0) for f=B(R%) such that Srdf(x’ y)y(dx):O, yeRe. Obviously

["resc, e =TT, pwar,  x v Re,

which is absolutely convergent. If f satisfies the conditions in the part (iii) of
the theorem, then the function on 7¢XR¢ induced by f satisfies the conditions
of Lemma 2.7, and hence we get the assertion (iii) of the theorem. m

3. Main theorem.
For each ¢>0 and Lévy measure y, we set

v(x, I'/¢)

(31) UE(X,F)ZW,

x € R, I’ € 8(R9),

where a>0 and K is a slowly varying function, that is, K is a positive con-
tinuous function on [0, co) such that lim,..K(cp)/K(0)=1, ¢>0. We define the
following operator.

(3.2) pot

-+

(S

Flet )= )= 3 3da f0) (£, d).
i=1 £

R4

Under the assumptions (A.1) and (A.2), there exist cadlag processes {XZ%(t)}
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and {XZ%(¢)} on R¢ governed by L and L¢, respectively. Note that the scaled
process {eXZ(t/e*K(1/¢))} is equivalent to {XZ°({)} in the sense of law.

Let ¢ be the invariant probability measure of the cadlag process {¥X(¢)} on
T¢ induced by {XZ(t)} as stated in Theorem 2.1. We impose the following
assumptions.

(A.S) STdbid# = 0, 7 = 1, 2’ TN d.

(A.4) There exist real numbers a<(1, 2), p,>0, a slowly varying function
K and a finite measure n* on S?! such that

3.3) sup ¢(x, pw)p™'"*0+sup g(x, p, u) = 7" K(p),  pZpo,
. __l_ r ﬁ(P’ ') — (.
(3.4) }»I_I.rcl,, T‘S.oo 0 *K(p) do = n*(-),

where ¢, is the area element of S¢-! and 7 is given as

ilp, 6) =, uax)([ etx, pwrp-“on(@o(dw)

+{,Lotp(x, wigtx, p, wimdw)),  p>0,6 = HS*.
Setting

3.5) v¥(I") =S p-t"*dpon*(dw), I € B(RY),

pwel’
and we define

(3.6) Lrfx) = [ AFGe49)=F(0)=y- T (0hH(d).

Let P: and P% be the probability measures on W=D([0, o)—R¢?) induced by
the cadlag processes {XZ(t)} and {X*'(¥)} on R? governed by L¢and L* start-
ing at x, respectively.

THEOREM 3.1. Assume (A.1)-(A.4). Then P% converges to P¥ as ¢ 0.

In order to prove Theorem 3.1, we will first note that the path functions
of the cadlag process {XZI(t)} starting at x are given as a solution of a
stochastic differential equation of jump type. By using it, we will then show
the tightness of {Pf}o<cs: and the characterization of the limit process in
Lemmas 3.6 and 3.7, respectively.

We assume (A.1)-(A.4) throughout this section. We may also assume that
00>1 and K(p)=K(p,) for 0<p=<p, without loss of generality.

First of all, we recall some properties of slowly varying functions from [13].

3.7) lim p~=°K(p) = lim p~°/K(p) = 0, ¢c>0.
p—vbo p-oso
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For ¢>0, put
K (o) = 7 Sup, r*K(r),  Kid{p)= p“pgggwr”K(r),
Kidp)= ¢t inf r K@), Kidp)=p™ inf r°K(r).
Then it holds that
(3.8) lim K (0)/K(0) =1, i=1,2,3,4.
For ¢>0, put
(3.9) o0y = px, Dptd),  T'e a(RY).

LEMMA 3.2. D¢ converges to v* vaguely on R\{0} as ¢ 0.

PrOOF. Fix 0<r<R< and O 8(S?"') with »*¥00)=0, arbitrarily. It
is enough to show

lirol p((r, R]X0) = v*(r, R]X0O).

Note that
P, RIXO) = agrizas ) (r/2, R/E1XO)ptd)
1 R_
P GYD) Sr"("/e’ O)dp.
Put
(e A(u, 0)
A(p, @) = Sﬁomdu .
Then ‘
(7, RIXO) =g 07 Klp/ o) A/, ©)dp

<& RK (R/ )SR mimae 4 Ao/e, 0)d
="Kje) T hmate), e dp P TeP

_ Ki,(R/€) ,. -l-a-c_ -1-a-c¢
= ki R {eA(R/e, O)R cA(r/e, O

+(1+a+c)eSfA(p/e, ) t-~dp},

for every ¢>0. (3.4) tells us that lim.,.(p/e)*A(p/e, O)=n*(O) for each p>0.
Since {A(p/e, ©): 0<e<1, r<p=R} is bounded, we find, by (3.8), that

lZn}i‘((r, RIx6) < ?ﬁzn*(@)(r’“‘“—R'“"), c>0,

and hence, letting ¢ |0,
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@ﬁ(n RIXO) < vX(r, R]X6).
By using K, . we get, in the same way as above,
U%ﬁs((r, RIXO)=v¥(r, R]1X0). m

We next rewrite the Lévy measure v. Fix w,=S¢*' and u,=U with
m({u,})=0, arbitrarily. For v=(w, u)eV=S5¢"*'XU, we set

my(dv) = 8wy (dw)m(du)+now)oo(dw)d v (du),

, if w#w, u=u,,
P, ) ={ _
p(x, u), otherwise,
c(x, pw)p~1"%, if w#w, u=1u,,
go(x, 0, v):{ pw)o ‘ o 0
g(x, p, u), otherwise.

Then
vx, I') = Sjgylr(ppo(x, )gx, o, v)domo(dv), '€ B(RN{0}).

We also note the following representation due to Tsuchiya [16].

(3.10)  ox, )= Sjgylp(n(x, 0, Vo~ K(p)domddv), T € BRN{0}).

Here 7 is given as follows. We set G(x, p, v)=§wgo(x, r, v)dr(€[0, «)). For
0

each x and v, let Hy(x, -, v) be the right continuous inverse function of p—
Go(x, p, v), that is, Hy(x, p, v)=sup{r>0: Go(x, r, v) > p}, where sup @ =0.

Put 9(x, p, v)=Hyx, k(p), v)po(x, v), With k(p):Swr“‘“K(r)dr.
We observe the following estimate. ’

LEMMA 3.3. There is a positive constant C, such that
(3.11) I9(x, o, v)| = Ho(x, k(p), v) < Cy3(p), x € R%, p>0, veV,
where Bo=a,V B, and y(p)=p*'?0 0Lp<1), =p (p>1).
PROOF. If p=p,, then (3.3) implies that G(x, bp, v)=<k(p), and hence
(3.12) Hyx, k(p), v)<p, xR veEV.
In the case where p=<p,, by means of (A.1),
(lel/ao)o™*+k(p0), if w#w, u=u,
Gox, 0, (w, w)) < { (e .
0 ﬂSO rflg(-, r, )|dr+k(p,),  otherwise,

= C;p"s" ’

where ¢, is a positive constant independent of p. From this, if k(p)=¢,p05°,
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then
Hy(x, k(p), v) < ct/Pok(p)P, xcRLveEV.

Since lim,,,0%k(p)€(0, ), we find that

(3.13) Hy(x, k(p), v) < ¢;0%!Po, xR, veV, p <,

with some positive ¢, independent of p. (3.12) and (3.13) complete the proof. m
For each ¢>0 we define the function n® by

(3.14) n'(p) = p~"*K(p/e)/K(1/e),  p>0.

LEMMA 3.4. For every ¢<(0, 1],

(3.15) [(extoremtordo < Cutte),  T>avps,

(3.16) [esorerntordo < Cuzte),  0=r<anps,
where C, is a positive constant depending only on a, Bo, T and K(p,), and

gl Kl,(r—a)/z(l/s)

5O =gt T K
N K, ca-pia(1/€)
SO= TR

PRrROOF. Set ¢=(y—a)/2. Then

1
So(ey(p/e))rp““’K(p/s)dp
s 1
= 5(1'“Iﬂo)rK(po)Sopar/ﬁo‘l-a dp_l_S Pr—l'”K(p/a)dp

1

é ET—aK(p0)+sclsSuuS?/SuCK(u)SOpT—l—a—cd‘o

< e K(po)+ Ky, (1/6)/(—a—c).
Thus we get (3.15). (3.16) is also obtained in the same way. B

It follows (3.7) and (3.8) that
(3.17) sup £3(e) < oo, ¥ >aVp,
0<es1

(3.18) oilslgx;(e) < oo, 0=7r<aApB,.

Now the path functions of the cadlag process {X%“(t)} starting at x are given
as a solution of a stochastic differential equation of jump type. Namely, for
each ¢>0 and xR¢, we have a cadlag process X¢=(X%(t));., defined on a
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probability space (2, &, P) with a reference family (%,);o such that there are

(i) a d-dimensional (&,)-Brownian motion (B(1));s, with B(0)=0 a.s.,

(ii) an (g,)-stationary Poisson point process p¢on [0, o)XV with charac-

teristic measure n°(p)d pmo(dv),

(iii) a d-dimensional cadlag process X°=(X*(t));s, adapted to (F.);s, and

(iv) with probability one, X°()=(X:@), ---, X)), Blt)=(B,({), -,

and the Poisson random measure N°® induced by p° satisfy

Xi0) = xit s 3 frou(E22) aB s

(3.19) Kill/:)S ( E(s)
e )

2:1,2,"‘,d,

Ba())

where o=(0;) is the square root of a, p=(%:), and M%(dsdpdv)=N*(dsdpdv)

—dsn®(p)d pmo(dv).

Note that the above statement (i) and the second term of the right hand
side of (3.19) are ignored in Case A. Also note that (2, &, P), (F¢)izo, (B{®))ezo

may depend on e.

In view of Theorem 2.1, the function goi(-)ES:oT;Lbi(')dt belongs to Cj(R?)

with uniformly continuous derivatives in Case A, or belongs to Ci¥R?) in Case

B, and satisfies —L¢;=b;, i=1,2, ---, d. We set
(3.20) Yit) = Xit)+epu X)), i=1,2, -, d.

Then, with the aid of Itd’s formula,

Yi@t) = xitepi(x/e)+ \/K(;//s)él glu (X (s))dB,( )

+ e 2 e EE)on(E ) anio

3.21) t+
S

+ Szgyéi(s—, e, v)M(dsdpdv)

0

+

0

SHSTSV@(S_’ 0, VM (dsd pdv)

= xite@i(x/e)+ Fu@)+ Fs@)+ 15:()+ 15:(), i=1,2, -

where

(3.22)  Di(s, p, v) = exi(s, p, U)+5{¢i(@+7]5(5: 0 U)>—§0i(

5

X*(s)

)b

,d.
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(3.23) 7i(s, o) = 7 =%, &

X 2,

(3.21) is sometimes simply written as
Ye@) = xt+ep(x/e)+ Fil)+ Fit)+ i)+ I5(t) .
We note the following
LEMMA 3.5. There exists a positive constant C, such that
(3.24) E(|Ii(z+0)—1i(7)|?) < Cidri(e),
(3.25) E(1I5(z+0)—1x7)|) < Cyori(e),
for 0<e<1, >0, and (F.)-stopping time t.
PRrROOF. By virtue of (3.11) and (3.22),
E(Ii(z+06)—1i(7)|?)
= E[[ (], 105, o, v)1dsno)dpmatan)|

T 0

< clE[S:+6SlSV|enE(s, 0, v)|ids ns(p)dpmo(dv)]

0
= e e 3(p/ern (),

where ¢, and ¢, are positive constants independent of ¢, d, 7. Combining this
with (3.15), we get (3.24). In the same way, we also get (3.25). m

Now we will show the tightness of {P:},<.s;. Following a criteria due to
Aldous [1; Theorem 1], it suffices to show the following.

LEMMA 3.6. Let T>0. Then

(3.26) lim sup P(sup | X(t)|>R)=0,
R—o0 0551 ostsT
(3.27) liglP([Xe(r+5€)—Xe(T)l >h)=0,

for every h>0, (F.)-stopping time t not greater than T, and nonnegative numbers
0° with lim,,,0°=0.

PrROOF. Let R be sufficiently large so that R=2|x|+4|l¢|. By using (3.20),
(3.21) and Lemma 3.5,

P(ogg& [ X@®)|>R)
= @/RPE(FIT) P+ FUT) 2+ 1 1T H+@/R)E(IXT)HI)
= (6/ROT {e**/K(1/e)+k3(e)} +(ci/R)Tk1(e),

with a positive constant ¢, independent of ¢, R, T. (3.26) follows from (3.7),
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(3.17) and (3.18).
Fix h, r, 6° arbitrarily as in the lemma. Choose a sufficiently smalll &,>0
such that 4eollp|<h. By means of (3.20) and (3.21),

| Xz +09—X ()| S 1Y (@+9=Y ()| +2¢lgl
< B IF(e+3)—Fi@l+ 2 |+ I +h/2,

0<e=Ze.
Therefore, in view of Lemma 3.5,

P X(z+89—X )| > h)
< 3 B/hrE(Fie+3)—Fi)])

+(8/h)E(|I§(z40°)—15(7) |5+ @/ E(| I5(r+0°)—I5(7)])
< (co/ %o {e? 2/ K(1/e)+ k3 (e)} +(ca/ h)0%kT (),

for some positive ¢, independent of ¢, h, 7, 0°. (3.27) follows from (3.7), (3.17)
and (3.18). =

The following lemma tells us the characterization of the limit process.

LEMMA 3.7. Let f be a real valued infimitely continuously differentiable
function with compact support. Then it holds that

B O F0—FXsN—E[ | LA X updul 2] — 0 as e Lo,
uniformly in s and t (s<t) of each compact set of [0, ).

ProOF. In the following, 0<s<?¢ and o(1) means a random variable whose
expectation converges to 0, as ¢ | 0, uniformly in s and ¢ of each compact set
of [0, ). We put

F(x, )= f(x+3)—f(x)—y-Vf(x).
By means of (3.20),

(3.28) ELA(X NI FI—F(X(s) = ELFY )| F:]—f Y (s)+0(1).

Applying It6’s formula to f(Y %)) and noting (3.7), we see that the right hand
side of (3.28) is equal to

(3.29) E[SZS?SVF(Y‘(u), D(u, p, v)du n(0)d omo(dv)| SF,]—i—o(l).

At this point we divide our argument into three steps.
Step 1. (3.29) is equal to

(3.30) E[S:S:SVF(XE(u), en'(u, p, v))dunE(p)dpmg(dv)lSF,]-{-o(l).
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In fact,

|F(y, §)—F(z, DI < e:{ly—2|(IEINIEIN+1E-CIAAUEN+ICIN},

for v, z, &, {=eR?, where ¢, only depends on d and ||V*f|, k=1, 2, 3. Hence,
by virtue of (3.20), (3.22) and Lemma 3.3, the expectation of the difference
between (3.29) and (3.30) except o(1)-terms is dominated by

czE[S:SjSV{s(ltps(u, 0, VINIDu, p, v)|?

X(u)
5

X‘(u))l

€

o2 4y, )

XA, p, v)l+el7u, p, )} dun<(p)domdv)| 7.

< caE[SzS:SVs{lsvs(u, 0, W Alen(u, o, v)|?
+AA 7w, 0, V)AA a7, p, V) dun(o)dom(dv) ||
= alt=s|[ te(exto/e)+ e xo /0 T n (o)

e eao/+ Dnt()dp |
< oslt—s|{ert(e)+eri (&) +ext(e)+exs(e)}
= cslt—SIeToigg {rZ(e)+ri-(e)+rT(e)+AT(e)}
=o(1),
where 0<7<2—aV B, and c; (=2, ---, 5) are positive constants independent of

e, t and s.
Step 2. (3.30) is equal to

(3.31) E[S:SRdF(X‘(u), z)duu‘(M, dz)[sr,]+o(1)

[

= B[ ] FX ), 2dun ()|, +o0),

where »°* and $¢ are defined by (3.1) and (3.9), respectively. The left hand side
of (3.31) follows directly from (3.1) and (3.10). In order to get the right hand
side, we put

gz, ) = |, FO, Dz, da)—5(d2)

It is enough to show

(3.32) E[S'g(—)%) Xw)dul 2] = o(0).
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Note that g¢=Cy(R*?), g*%(-, y) is periodic with period 1 for each y,
Srdgs(x, y)u(dx)=0, y=R®, g%(x, y) is infinitely continuously differentiable in

y for fixed x. Moreover,
(3.33) I8l < a7y SoP) 2P A Izt die/e)

< eof (exto/P Aex o/ p)do
= o SUp {rde)+rr(e)} < oo,

for £=0,1, 2, ---, and positive constants c; (=6, 7, 8) independent of e. In
particular, in Case B, g*=Cj(R*%), 9,,8°(x, y) is infinitely continuously differen-
tiable in y for each x and 7, and [|V,V%g¢[|<oo, k=0, 1,2---. Hence g° satisfies
all of the conditions in (iii) of Theorem 2.1. Therefore the integral ¢*(x, y)=

S Fge(-, y)x)dt converges absolutely, and either ¢*=Cj(R*?) with uniformly

continuous derivatives in Case A, or ¢*=Cj(R*?) in Case B. Also,

(3.34) Il 1V @I+ 1929, g1 +-173¢°]
= oo(lgel+1Vygel+1V38°1) = cro,

with positive constants ¢, and ¢,, independent of ¢. We now apply It&’s for-
mula to ¢(X*(#)/e, X°(¢)). Then

eraofely (B2, xuin] w220, xo)
= o[z e e (57 X1w)
) 2 (K9 o)t
+e[[ {7 Bau(F et (57 xw)
10 o (X, xow)) e, 0,,9°(X, X))}
() 9,59 i)l auis]

+E[S:SM{¢ (X ) +z, X(u)+e Z) ¢* <X;(u) , Xe(u))
X:(u)

—2- Vo (S, X))
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-—ez-Vngf(Xe(u) s X%u))}duv(Xe(u) R dz)lfr’s].

3 3

Since —L¢*(-, y)Xx)=g%(x, ), and ai;, b; are bounded, by means of (3.34) we
find that

£[J(X22. o]

= E[[ ] fo (2 2, xwrter)—g(F2 2, Xow)

€

——ez-Vngﬁ(Xs(u) s X%u))}duu(&, dz)lff,,]—l—o(l).

[ 3

By using (3.34) again,
‘Skd{gb‘(x/s—l-z, x+tez)—¢i(x/e+z, x)—ez-V P (x/e, x)}u(x/e, dz)‘

=< clle{llvysbsli+IIVIVy¢EII+SIIVi¢II}SRdIZIZ/\ |zu(x/e, dz)

< €126,

with positive ¢;; and ¢,, independent of x and . Thus (3.32) follows.
Step 3. Now the assertion of the lemma is obtained as follows. By the
same argument as for (3.33), for any §>0, there exist 0<p,<p,<co such that

lim su S
el0 yerdJlizispeUlIZIZPg)

|F(x, 2)|(P(dz)+v*(dz)) < 0.

Since F(x, z) is uniformly continuous and has a compact support on R%X
{p:= |21 =p.}, in view of Lemma 3.2,

lim sup F(x, 2)7%(dz)—9*(dz))| = 0.

€10 zerd

Smsmspz

Thus we arrive at the conclusion of the lemma. m

4. Examples.
Throughout this section we assume that a(x)=0 and b(x)=0. Set
vo(x, dy) = c(x, y)n(y)dy,

where ¢(x, y) and n(y) fulfill the conditions (A.1)-(3)-(i), (ii) and c¢(x, y) is
periodic in x with period 1 for each y.

1. We will start with the simplest case such that
v(x, dy) =vx, dy).

Note that there is the unique invariant probability measure g of the cadlag
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process on T'* governed by L given as (1.1) with y=y,. Suppose that c(x, ¥)
has the following asymptotic representation

(4.1) c(x, 3) = co(x, MIYI"0K(I3]), x & R% |y = po,

for a sufficiently large p,. Here ¢, is a nonnegative bounded continuous func-
tion on R?*¢, §,=0, and K, is a slowly varying function, where K, is bounded
if ,=0. The scaled cadlag process {eXZ(t/e*0*% K (1/¢))} is equivalent to the
cadlag process {XZ%(¢)} governed by the following L°.

Lifx) = [ A G )= F0) =591} G 2 .
If there exists the limit function

_ 1r 3
4.2) cf(w)zllm—gpodpgrdco(x, po)u(dx), we S,

T V

then {XZ%%(t)} converges to the stable process governed by L* as ¢]0, where
ni(dw)=c(@)nw)o(dw), and

(4.3) L*f(x)=S wen ST =F()=y-Vf ()~ d prf(dw).

y=p
The case where d=1, 0,=0 and K,=constant is reduced to [3].
2. We next consider the following case.

wx, dy) = vo(x, dy)+wlx, dy),
where vy, is given as
ue, D)=, 1re0)as, o, 0)dpaide),
o, is a finite measure on S¢-!, and g, satisfies the condition (A.1)-(3)-(v) cor-
responding to Case A, and is periodic in x with period 1. Let g be the invariant

measure of the cadlag process on T'¢ governed by L given by (1.1) with v=y,
+v;. Suppose the following asymptotic behavior

2i(x, p, @) = ci(x, p, WP NP K (p)1®,  xeRY, 0S5, p=py,

for a sufficiently large p;, where ¢, is nonnegative, bounded on R?X(0, o)X
S¢-1, continuous in (x, p), periodic in x with period 1; a, is continuous, periodic
with period 1, and 1<ai =min.a,(x)<max.a,;(x)<2; K, is a slowly varying
function; and B, is continuous and periodic with period 1. We assume (4.1).
Put Bf=max.fi(x), a=(av+d)Aar, and K(p)=Kip) if avtdi<ar, =Ki(p)*1
otherwise. The scaled cadlag process {eXZ(t/e*K(1/¢))} is identical with the
cadlag process {XZ°(t)} governed by the following
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Lfo={ A= f0)—3-9f)

gi(x/e, p/e, )
B RS dpal(dw)}.

We will observe to what process {X°(¢)} converges as ¢ | 0.

x{ c(x/e, y/€) n(y)dy+

e* 0 K(1/¢)

(Case 1) ao+0,< ai, or a,+d0,=a; and l_imK(,(p)/Kl(p)ﬁir >1.
-0

In this case we assume (4.2). Then the limit process is the stable process
governed by L* given by (4.3).

(Case 2) ay+0,=a; and lim Ko(p)/Kl(p)ﬁf =1.
p—oo
In this case we assume, besides (4.2), that there exists the limit

(4.4) Hew) = lim~(" 4

Toco ¥ Spl pS(rer; ajcz=al, f1()=51

a(x, o, 0)u(dx),

for w=S?'. Then the limit process is governed by the following L*.

(4.5) Lefy={ = f0—y V)

y=pweRd
Xp"%dp{ni(dw)+ntdw)},
where
n¥(dw) = c¥w)o,(dw).

(Case 3)  ao+0,>ar, or a,+d =ar and IimK(p)/Ki(p)ff < 1.
000

In this case we only assume (4.4). Then the limit process is the stable process
governed by L* given by (4.5) with n¥=0.

3. Finally we consider the case that

v(x, dy) = vo(x, dy)+vx, dy),
where
vo(x, dy) = gux, p)dp5rp<z>x(dw),

p is an S¢-'-valued continuous periodic function, and g, satisfies the condition
(A.1)-(3)-(v) corresponding to Case A, is periodic in x with period 1. Note
that the assumption (A.1)-(3)-(iii), (iv) hold with U={1}, m(du)=0,(du), p(x, u)
=p(x). We denote by g the invariant measure of the cadlag process on T'¢
governed by L defined by (1.1) with y=y,+v,. Suppose

g%, p) = co(x, )P TP Ky(p)fr®,  x & R%, p = p.,

for a sufficiently large p., where ¢, is nonnegative, bounded, continuous on R*
X (0, <o), periodic in x with period 1; a, is continuous, periodic with period 1,
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and 1<a;=min,a,(x)<max.a,(x)<2; K, is a slowly varying function; and S,
is continuous and periodic with period 1. We also assume (4.1). Set Bi=
max, By(x), a=(ay+d)Aaz, and K(p)=Ky(p) if ay+d,<a7, =K,(0)?# otherwise.
The scaled cadlag process {eXZ(t/e“K(1/¢))} is equivalent to the cadlag process
{XL(t)} governed by

L= fGtn—fa—-yIrw)

y=pweR?

gix/e, p/e)

X{medw et K(1/e)

ea—noK(l/e) dpa(p(r/e))(dw)}-
Dividing into three cases as above, we observe the limit process of {XZ‘®)}.
(Case 1) ao+0, < az, or a,+0,=a; and Li__mKo(p)/Kg(p)ﬂ; >1.

Assume (4.2). Then the limit process is governed by L* of the form (4.3).
(Case 2) a8, = a; and lim K(p)/K(p)P% = 1.
p -0

In this case we assume, besides (4.2), that there exists the limit measure

4.6) 2¥(6) = lim~

r
S dpg d; 2 -y -1
r—c ¥ Jpg (z€T%: ag(rI=ay, f2(2)=F3)1NP~1(O)

co(x, p)u(dx),
for ©= 8(S%"'). Then the limit process is governed by the following L*.

A7 Lrfo={ e n—f0=y-9f)

Xp ' dp{nfdw)+nFdw)} .
(Case 3)  ao+0,>a;, or a,+d,=a; and EaKo(p)/Kz(p)ﬂ;<l.

In this case we only assume (4.6). Then the limit process is the stable process
governed by L* given by (4.7) with n¥=0.

4. Let y=Y_1voi+ v+ 2k o1v0:, Where vo;, vi; and v,; are Lévy measures
of the type of v, v, and vy, mentioned above, respectively, /=1, 2, ---. Then it
is easy to see that Theorem 3.1 holds for this y. Especially, in the case where
v is given as (1.4), we get the assertion mentioned in the last paragraph of
Section 1.
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