J. Math. Soc. Japan Vol. 44, No. 2, 1992

On unimodal Lévy processes on the nonnegative integers

By Toshiro WATANABE

(Received Oct. 1, 1990) (Revised April 5, 1991)

1. Introduction and main results.

Let $R = (-\infty, \infty)$, $R_{\pm} = [0, \infty)$, $Z = \{0, \pm 1, \pm 2, \dots\}$ and $Z_{\pm} = \{0, 1, 2, \dots\}$. A measure $\mu(dx)$ on **R** is said to be unimodal with mode a if $\mu(dx) = c\delta_a(dx) + c\delta_a(dx)$ f(x)dx, where $-\infty < a < \infty$, $c \ge 0$, $\delta_a(dx)$ is the delta measure at a and f(x) is non-decreasing for x < a and non-increasing for x > a. A measure $\mu(dx) =$ $\sum_{n=-\infty}^{\infty} p_n \delta_n(dx)$ on Z is said to be discrete unimodal with mode $a \ (a \in \mathbb{Z})$ if p_n is non-decreasing for $n \leq a$ and non-increasing for $n \geq a$. A probability measure $\mu(dx)$ is said to be strongly unimodal (resp. discrete strongly unimodal) if, for every unimodal (resp. discrete unimodal) probability measure $\eta(dx)$, the convolution $\mu * \eta(dx)$ is unimodal (resp. discrete unimodal). Let X_t $(0 \le t < \infty)$ be a Lévy process (that is, a process with stationary independent increments starting at the origin) on **R** or **Z** with the Lévy measure $\nu(dx)$. The process X_t on **R** (resp. on Z) is said to be unimodal (resp. discrete unimodal) if the distribution of X_t is unimodal (resp. discrete unimodal) for every t>0. The process X_t on R (resp. on Z_+) is said to be of class L (resp. discrete class L) if the distribution of X_t is of class L (resp. discrete class L). A necessary and sufficient condition for the process X_t on R (resp. on Z_+) to be of class L (resp. discrete class L) is that $|x|\nu(dx)$ is unimodal with mode 0 (resp. discrete unimodal with mode 1 on Z_+).

The following theorem is our main result.

THEOREM 1.1. Let X_t be a Lévy process on \mathbb{Z}_+ with the Lévy measure $\nu(dx) = \sum_{n=1}^{3} n^{-1}k_n \delta_n(dx)$ satisfying $0 < 2k_1 \leq 3k_2$. Then X_t is discrete unimodal if and only if

(1.1)
$$k_1 \ge k_2 \quad and \quad k_1k_3 \le k_1^2 - k_1k_2 + k_2^2.$$

REMARK 1.1. In Theorem 1.1, we can choose k_n $(1 \le n \le 3)$ in such a way that $k_1, k_3 < k_2$. In this case, X_t is discrete unimodal but not of discrete class L.

REMARK 1.2. Let $X_i^{(1)}$ and $X_i^{(2)}$ be independent and discrete unimodal Lévy

processes in Theorem 1.1 such that $k_1^{(1)} = k_2^{(1)} = k_3^{(1)} = 1$ and $k_1^{(2)} = 1$, $k_2^{(2)} = 2/3$, $k_3^{(2)} = 7/9$. Then $X_t = X_t^{(1)} + X_t^{(2)}$ satisfies the conditions $3k_2 \ge 2k_1$ and $k_1 \ge k_2$ but does not satisfy the condition $k_1k_3 \le k_1^2 - k_1k_2 + k_2^2$. Hence X_t is not discrete unimodal.

Many results on the unimodality of Lévy processes are obtained by Medgyessy [6], Sato [7, 8], Sato-Yamazato [9], Steutel-van Harn [11], Watanabe [12, 13], Wolfe [14, 15], and Yamazato [16, 17]. But a necessary and sufficient condition for the unimodality of Lévy processes in terms of their Lévy measures is not known. Among these works, main related results are the following. Wolfe [15] proves that if a Lévy process on \mathbf{R} (resp. on \mathbf{Z}) is unimodal (resp. discrete unimodal), then the Lévy measure $\nu(dx)$ (resp. $\nu(dx)$ + $c\delta_0(dx)$ for some c>0) is unimodal (resp. discrete unimodal) with mode 0, and that the converse does not hold. As a big advancement, Yamazato [16] shows that Lévy processes of class L are unimodal. Steutel-van Harn [11] proves the discrete unimodality of Lévy processes of discrete class L on \mathbf{Z}_+ . Watanabe [12] constructs unimodal Lévy processes on \mathbf{R}_+ and \mathbf{R} that are not of class L. Sato [8] proves that the mode a(t) of the distribution of any unimodal Lévy process X_t on \mathbf{R}_+ is non-decreasing for t>0.

Existence of a unimodal Lévy process on Z_+ which is not of class L (Remark 1.1) is a discrete version of a result of Watanabe [12]. But our method of the proof is different from the continuous case. In order to prove Theorem 1.1, we give a necessary and sufficient condition for Lévy processes on Z_+ , to be discrete unimodal in terms of a zero of the polynomial $Q_n(t)$, defined in (2.3), in Section 2. A discrete analogue of Sato's result [8] plays an essential role in the proof. General results on discrete unimodality and discrete strong unimodality given in Section 2 will be of interest in themselves. In Section 3, we prove Theorem 1.1. In Section 4, we apply our results in Section 2 to unimodal Lévy processes on R_+ , and give a necessary and sufficient condition for the unimodality of Lévy processes on R_+ .

2. Discrete unimodal Lévy processes on Z_+ .

In this section, let X_t be a Lévy process on Z_+ , not identically zero. Then we have

(2.1)
$$E \exp(izX_t) = \exp(t\psi(z)),$$
$$\psi(z) = \sum_{n=1}^{\infty} (e^{izn} - 1)n^{-1}k_n,$$

with the Lévy measure $\nu(dx) = \sum_{n=1}^{\infty} n^{-1} k_n \delta_n(dx)$ satisfying $\sum_{n=1}^{\infty} n^{-1} k_n < \infty$. Let $\mu_t(dx) = \sum_{n=0}^{\infty} p_n(t) \delta_n(dx)$ be the distribution of X_t . Then we have a relation by

Katti [4] or Steutel [10]:

(2.2)
$$nP_n(t) = t \sum_{j=1}^n k_j P_{n-j}(t)$$

for $n \ge 1$, where $P_n(t) = p_n(t)/p_0(t)$ for $n \ge 0$. Define $P_{-1}(t) = 0$ and $Q_n(t) = P_n(t)$ $-P_{n-1}(t)$ for $n \ge 0$. Then we obtain from (2.2) that

(2.3)
$$nQ_n(t) = \sum_{j=1}^n (tk_j - 1)Q_{n-j}(t)$$

for $n \ge 1$. From (2.2) and (2.3), we find that if $k_1 > 0$, then $P_n(t)$ and $Q_n(t)$ are polynomials of degree n and the highest coefficients are positive. Also the equation (2.2) implies that if $k_1=0$, then $P_1(t)=0$ for every t>0 and hence X_t is not discrete unimodal. Therefore we assume, from now on, that $k_1>0$.

LEMMA 2.1. If X_t is discrete unimodal, then, for every $n \ge 1$, there exists $t_n > 0$ such that $Q_n(t) < 0$ for $0 < t < t_n$.

PROOF. Suppose that X_t is discrete unimodal. We have by (2.3)

(2.4)
$$Q_1(t) = (k_1 t - 1)Q_0(t) = k_1 t - 1 < 0$$

for $0 < t < k_1^{-1}$. Hence 0 is the unique mode of $\mu_t(dx)$ for $0 < t < k_1^{-1}$. It follows that $Q_n(t) \leq 0$ for all $n \geq 1$ and for $0 < t < k_1^{-1}$. Since $Q_n(t)$ is a polynomial, it has only a finite number of zeros. Therefore there exists $t_n > 0$ such that $0 < t_n \leq k_1^{-1}$ and $Q_n(t) < 0$ for $0 < t < t_n$.

LEMMA 2.2. Let $T \ge 0$. If $\mu_t(dx)$ is discrete unimodal for t > T, then the largest mode a(t) of $\mu_t(dx)$ is non-decreasing for t > T.

REMARK 2.1. If a distribution is unimodal, then either its mode is unique or the set of its modes is a closed interval. We mean by the largest mode the largest one in the set of modes of a distribution. This lemma is a discrete analogue of Theorem 2.1 of Sato [8].

PROOF. Suppose that $\mu_t(dx)$ is discrete unimodal for t > T. We have

(2.5)
$$P_{a(t)}(t+s) = \sum_{j=0}^{a(t)} P_{a(t)-j}(t)p_j(s)$$

and

$$P_{a(t)-1}(t+s) = \sum_{j=0}^{a(t)-1} P_{a(t)-j-1}(t)p_j(s)$$

for s > 0 and for t > T. Hence we get

(2.6)
$$Q_{a(t)}(t+s) = P_0(t)p_{a(t)}(s) + \sum_{j=0}^{a(t)-1} Q_{a(t)-j}(t)p_j(s) > 0$$

T. WATANABE

for s>0 and for t>T, noting that $Q_{a(t)-j}(t)\geq 0$ for $0\leq j\leq a(t)-1$. We obtain from (2.6) that $a(t)\leq a(t+s)$ for s>0 and for t>T. This proves Lemma 2.2.

THEOREM 2.1. A process X_t is discrete unimodal if and only if $Q_n(t)$ has a unique positive zero α_n of odd order for every $n \ge 1$ and α_n is non-decreasing in n.

PROOF OF THE "IF" PART OF THEOREM 2.1. The polynomial $Q_n(t)$ is nonpositive for $0 \le t \le \alpha_n$ and non-negative for $t \ge \alpha_n$. It follows from (2.4) that $\alpha_1 = k_1^{-1}$. Since α_n is non-decreasing, $Q_n(t) \le 0$ for all $n \ge 1$ and for $0 < t < k_1^{-1}$. Hence $\mu_t(dx)$ is discrete unimodal with mode 0 for $0 < t < \alpha_1$. For $\alpha_n \le t \le \alpha_{n+1}$, we have $Q_j(t) \ge 0$ for $1 \le j \le n$ and $Q_j(t) \le 0$ for $j \ge n+1$. Therefore, $\mu_t(dx)$ is discrete unimodal with mode n when $\alpha_n \le t \le \alpha_{n+1}$. We shall prove that T = $\sup_{n\ge 1}\alpha_n = \infty$, which will complete the proof of the "if" part. Suppose that $T < \infty$. Then we get $Q_n(t) \ge 0$ for t > T and for all $n \ge 1$. But this implies that $\sum_{n=0}^{\infty} P_n(t) = \infty$ for t > T. This is a contradiction.

PROOF OF THE "ONLY IF" PART OF THEOREM 2.1. Suppose that X_t is discrete unimodal. We find from Lemma 2.1 and from $Q_n(t) \to \infty$ as $t \to \infty$ that $Q_n(t)$ has at least one positive zero of odd order. Suppose that $Q_n(t)$ has distinct positive zeros of odd orders. Let β_n and γ_n be, respectively, the smallest and the largest such zero. Then we can choose $\varepsilon > 0$ such that $Q_n(\beta_n + \varepsilon) > 0$, $Q_n(\gamma_n - \varepsilon) < 0$ and $\beta_n + \varepsilon < \gamma_n - \varepsilon$. But this contradicts Lemma 2.2. Hence $Q_n(t)$ has a unique positive zero of odd order. Suppose that $\alpha_m > \alpha_{m+1}$ for some $m \ge 1$. Then we can find $\varepsilon > 0$ such that $Q_{m+1}(\alpha_{m+1} + \varepsilon) > 0$, $Q_m(\alpha_m - \varepsilon) < 0$ and $\alpha_{m+1} + \varepsilon < \alpha_m - \varepsilon$. But this contradicts Lemma 2.2. Therefore, α_n is non-decreasing in $n \ge 1$. The proof is complete.

COROLLARY 2.1. If X_t is discrete unimodal, then (1.1) holds.

PROOF. The polynomial $Q_1(t)$ has a unique positive zero $\alpha_1 = k_1^{-1}$. We obtain from (2.3) that

(2.7)
$$2Q_2(t) = k_1^2 t^2 + (k_2 - 2k_1)t$$

and

(2.8)
$$6Q_3(t) = k_1^3 t^3 + 3(k_2 - k_1)k_1 t^2 + (2k_3 - 3k_2)t.$$

Hence $Q_2(t)$ has a unique positive zero $\alpha_2 = -k_1^{-2}k_2 + 2k_1^{-1}$, if $2k_1 > k_2$. The inequality $\alpha_1 \leq \alpha_2$ holds if and only if $k_1 \geq k_2$. From (2.8), $Q_3(t)$ has a unique positive zero α_3 if and only if either $2k_3 = 3k_2$ and $k_1 > k_2$ or $2k_3 < 3k_2$. And α_3 is given by

(2.9)
$$\alpha_3 = 2^{-1} k_1^{-2} [3(k_1 - k_2) + \{9(k_1 - k_2)^2 - 4k_1(2k_3 - 3k_2)\}^{1/2}].$$

242

The inequality $\alpha_2 \leq \alpha_3$ holds if and only if $k_1k_3 \leq k_1^2 - k_1k_2 + k_2^2$. Hence (1.1) holds by Theorem 2.1.

COROLLARY 2.2. Suppose that $\lambda(dx) = \sum_{n=0}^{\infty} k_{n+1} \delta_n(dx)$ is discrete unimodal. Then X_t is discrete unimodal if and only if X_t is of discrete class L, that is, k_n is non-increasing for $n \ge 1$.

PROOF. If X_t is of discrete class L on Z_+ , then X_t is discrete unimodal by Steutel-van Harn [11]. Conversely, suppose that X_t and $\lambda(dx)$ are discrete unimodal on Z_+ . From Corollary 2.1, the inequality $k_1 \ge k_2$ holds. Hence there are two cases.

Case 1. $k_1 > k_2$ or $k_1 = k_2 = \cdots = k_m > k_{m+1}$ for some $m \ge 2$. Then, since $\lambda(dx)$ is discrete unimodal, k_n is non-increasing for $n \ge 1$.

Case 2. $k_1 = k_2 = \cdots = k_m < k_{m+1}$ for some $m \ge 2$. We shall show that absurdity occurs in this case. We obtain from (2.2) that

(2.10)
$$(m+1)Q_{m+1}(t) = (k_1t-1)P_m(t) + t \sum_{j=1}^m (k_{j+1}-k_j)P_{m-j}(t) = (k_1t-1)P_m(t) + (k_{m+1}-k_m)t.$$

Letting $t = \alpha_1 = k_1^{-1}$, we get

(2.11)
$$(m+1)Q_{m+1}(\alpha_1) = (k_{m+1}-k_m)\alpha_1 > 0.$$

But this contradicts $\alpha_1 \leq \alpha_{m+1}$. This proves Corollary 2.2.

We can prove the following theorem by argument similar to Theorem 2.1.

THEOREM 2.2. Fix T>0. The distribution $\mu_t(dx)$ is discrete unimodal for every t>T if and only if there exists an integer $A \ge 0$ such that, for $1 \le n \le A$, $Q_n(t)$ has no zero of odd order on (T, ∞) and, for $n \ge A+1$, $Q_n(t)$ has a unique zero β_n of odd order on (T, ∞) and β_n is non-decreasing in $n \ge A+1$.

PROOF OF THE "IF" PART OF THEOREM 2.2. For $1 \le n \le A$, the polynomial $Q_n(t)$ is non-negative for t > T. For every $n \ge A+1$, $Q_n(t)$ is non-positive for $T < t \le \beta_n$ and non-negative for $t \ge \beta_n$. It follows that $Q_n(t) \le 0$ for every $n \ge A+1$ and for $T < t < \beta_{A+1}$. Hence $\mu_t(dx)$ is discrete unimodal with mode A for $T < t < \beta_{A+1}$. By argument similar to Theorem 2.1, we can show that $\mu_t(dx)$ is discrete unimodal with mode n when $\beta_n \le t \le \beta_{n+1}$ ($n \ge A+1$). Also we can prove that $\sup_{n \ge A+1} \beta_n = \infty$, which completes the proof of the "if" part.

PROOF OF THE "ONLY IF" PART OF THEOREM 2.2. Suppose that $\mu_t(dx)$ is discrete unimodal for every t > T. Then $\mu_T(dx)$ is discrete unimodal, because $\mu_t(dx)$ converges weakly to $\mu_T(dx)$ as $t \to T$. Let A be the largest mode of

T. WATANABE

 $\mu_T(dx)$. We prove that, for $1 \le n \le A$, $Q_n(t)$ does not have a zero β_n of odd order satisfying $\beta_n > T$. In fact, if such a zero β_m exists for some m $(1 \le m \le A)$, then we can find $\varepsilon > 0$ such that $\beta_m - \varepsilon > T$ and $Q_m(\beta_m - \varepsilon) < 0$. But this contradicts Lemma 2.2. Next we show that, for every $n \ge A+1$, there exists $t_n > T$ such that $Q_n(t) < 0$ for $T < t < t_n$. Suppose that, for some $m \ge A+1$, there exists a sequence s_n such that $T < s_n$, $Q_m(s_n) \ge 0$ and $s_n \to T$ as $n \to \infty$. Since $Q_m(t)$ has only a finite number of zeros, we can assume $Q_m(s_n) > 0$. This implies that $m \le a_n$, where a_n is a mode of $\mu_{s_n}(dx)$. Because a_n converges to a mode a of $\mu_T(dx)$ as $n \to \infty$, we have $A+1 \le m \le a \le A$, which is a contradiction. It follows from this and from $Q_n(t) \to \infty$ as $t \to \infty$ that, for every $n \ge A+1$, $Q_n(t)$ has at least one zero β_n of odd order satisfying $\beta_n > T$. By argument similar to Theorem 2.1, we can prove that such a zero β_n is unique and non-decreasing in $n \ge A+1$. Thus we have proved Theorem 2.2.

We consider the following condition. Let N be a positive integer.

(H)
$$k_n > 0$$
 for $1 \leq n \leq N$ and $k_n = 0$ for $n \geq N+1$.

LEMMA 2.3. (Hansen [2]) Suppose that $k_n^2 \ge k_{n+1}k_{n-1}$ for all $n \ge 2$. Then $\mu_t(dx)$ is discrete strongly unimodal if and only if $t \ge k_1^{-2}k_2$.

LEMMA 2.4. Suppose that X_t satisfies the condition (H). Then there exists $T \ge 0$ such that $\mu_t(dx)$ is discrete strongly unimodal for every $t \ge T$.

The smallest T satisfying the above condition is denoted by T_N . This T_N depends not only on N but also on k_n $(1 \le n \le N)$ in general.

PROOF OF LEMMA 2.4. We shall prove by induction in N.

(i) Suppose that N=1. Then $\mu_t(dx)$ is a Poisson distribution and hence discrete strongly unimodal by Keilson-Gerber [5]. This means $T_1=0$. (In case N=2, the assertion is a direct consequence of Lemma 2.3. Thus $T_2=k_1^{-2}k_2$.)

(ii) Assume that Lemma 2.4 is true when N=j. Consider the case N=j+1. We can choose $k_n^{(1)}$ such that $(k_n^{(1)})^2 \ge k_{n+1}^{(1)} k_{n-1}^{(1)}$ for $2 \le n \le j$, $k_n^{(1)} < k_n$ for $1 \le n \le j$ and $k_n^{(1)} = k_n$ for $n \ge j+1$. Let $k_n^{(2)} = k_n - k_n^{(1)}$. Then we have $\mu_t(dx) = \mu_t^{(1)} * \mu_t^{(2)}(dx)$, where $\mu_t^{(i)}(dx)$ (i=1, 2) is the distribution of the process $X_t^{(i)}$ whose Lévy measure is given by $\nu^{(i)}(dx) = \sum_{n=1}^{\infty} n^{-1} k_n^{(i)} \delta_n(dx)$. The distribution $\mu_t^{(2)}(dx)$ is discrete strongly unimodal for $t \ge T_j$ by the assumption. And, by Lemma 2.3, $\mu_t^{(1)}(dx)$ is discrete strongly unimodal for $t \ge T' = \max(T, T_j)$.

Let us denote by [x] the largest integer not exceeding x.

THEOREM 2.3. Suppose that X_t satisfies the condition (H). Then X_t is discrete unimodal if and only if $Q_n(t)$ has a unique positive zero α_n of odd order for $1 \le n \le M+N$ and α_n is non-decreasing in $1 \le n \le M$, where $M = [T_N \sum_{j=1}^N k_j]$.

244

Proof of the "only if" part of Theorem 2.3 is trivial by Theorem 2.1.

PROOF OF THE "IF" PART OF THEOREM 2.3. Suppose that $Q_n(t)$ has α_n for $1 \leq n \leq M+N$ and α_n is non-decreasing in $1 \leq n \leq M$. We shall prove that

(2.12)
$$\alpha_M \leq T_N < \alpha_{M+1} \quad \text{or} \quad T_N < \alpha_M.$$

Suppose that $T_N \ge \alpha_M$. Then we have $Q_j(T_N) \ge 0$ for $1 \le j \le M$. Hence we get $P_j(T_N) \le P_M(T_N)$ for $0 \le j \le M$. We obtain from (2.2) that

(2.13)
$$(M+1)P_{M+1}(T_N) = T_N \sum_{j=1}^N k_j P_{M-j+1}(T_N)$$
$$\leq P_M(T_N) T_N \sum_{j=1}^N k_j < (M+1)P_M(T_N).$$

Hence we have $Q_{M+1}(T_N) < 0$ and $T_N < \alpha_{M+1}$. Thus we have proved (2.12). Recalling Lemma 2.4, (2.12), and the proof of the "only if" part of Theorem 2.2, we find that there exists a non-negative integer $A \leq M$ (A = M if $\alpha_M \leq T_N < \alpha_{M+1}$ and $A \leq M-1$ if $T_N < \alpha_M$) such that, for every $n \geq A+1$, $Q_n(t)$ has a unique zero β_n of odd order satisfying $\beta_n > T_N$ and β_n is non-decreasing in $n \geq A+1$. This implies that α_n is non-decreasing in $1 \leq n \leq M+N$ and that

$$(2.14) T_N < \alpha_{M+1} \leq \cdots \leq \alpha_{M+N} \leq \beta_{M+N+1} \leq \beta_{M+N+2} \leq \cdots,$$

noting that $\alpha_n = \beta_n$ for $A+1 \le n \le M+N$. From (2.14), there exists $\varepsilon > 0$ such that $Q_{M+j}(t) \le 0$ for $1 \le j \le N$ and for $0 < t < T_N + \varepsilon$. Therefore we have by (2.3)

(2.15)
$$(M+N+1)Q_{M+N+1}(t) = t \sum_{j=1}^{N} k_j Q_{M+N+1-j}(t) - P_{M+N}(t) < 0$$

for $0 < t < T_N + \varepsilon$. By induction in *j*, we get $Q_{M+N+j}(t) < 0$ for $0 < t < T_N + \varepsilon$ and for all $j \ge 1$. Hence the unique zero β_n of odd order satisfying $\beta_n > T_N$ is a unique positive zero of odd order for every $n \ge M + N + 1$. It follows from (2.14) that $Q_n(t)$ has a unique positive zero α_n of odd order for every $n \ge 1$ and α_n is non-decreasing in $n \ge 1$. Therefore, X_t is discrete unimodal by Theorem 2.1. The proof of Theorem 2.3 is complete.

REMARK 2.2. Suppose that X_t satisfies the condition (H) with N=2. Then X_t is discrete unimodal if and only if $k_1 \ge k_2$.

PROOF. The "only if" part of the proof is clear from Corollary 2.1. Conversely, if $k_1 \ge k_2$, then X_t is of discrete class L and, by Steutel-van Harn [11], discrete unimodal.

3. Proof of Theorem 1.1.

In this section, we prove Theorem 1.1, by using Corollary 2.1, Theorem 2.3, and the following lemma.

LEMMA 3.1. Let $A_n(t) = \sum_{j=0}^n a_j t^j$ be a polynomial of degree n $(n \ge 1)$, Suppose that there exists an integer m $(0 \le m \le n-1)$ such that $a_j \le 0$ for $0 \le j \le m-1$, $a_m < 0$, $a_j \ge 0$ for $m+1 \le j \le n-1$, and $a_n > 0$. Then $A_n(t)$ has a unique positive zero, which is of order one.

PROOF. We shall prove by induction in m.

(i) Suppose that m=0. Then the derivative $A'_n(t)>0$ for each t>0 and $A_n(0)=a_0<0$. Hence, for every $n\geq 1$, $A_n(t)$ has a unique positive zero, which is of order one.

(ii) Assume that, for every $n \ge 1$, Lemma 3.1 is true when m=j $(0 \le j \le n-1)$. Consider the case m=j+1. Since the derivative $A'_n(t)$ satisfies the conditions of Lemma 3.1 with m=j, it has a unique positive zero θ , which is of order one by the assumption. Hence $A'_n(t) < 0$ for $0 < t < \theta$, $A'_n(\theta) = 0$, and $A'_n(t) > 0$ for $t > \theta$. Because $A_n(0) = a_0 \le 0$, $A_n(t)$ has a unique positive zero, which is of order one.

Proof of the "only if" part of Theorem 1.1 is clear from Corollary 2.1.

Conversely, suppose that $0 < 2k_1 \le 3k_2$ and (1.1) hold. If $k_2 \ge k_3$, then X_t is of discrete class L and, by Steutel-van Harn [11], discrete unimodal. Therefore we can assume $k_2 < k_3$. Then we have $T_3 \le k_2^{-3} k_3^2$ (see the proof of Lemma 2.4). Let $a = k_1^{-1} k_2$, $b = k_1^{-1} k_3$, and $c = k_2^{-1} k_3$. Then we obtain from (1.1), $2k_1 \le 3k_2$, and $k_2 < k_3$ that

(3.1)
$$2/3 \leq a < b \leq a^2 - a + 1 \leq 1, \quad c \leq a + a^{-1} - 1 \leq 7/6.$$

Hence we have

(3.2)
$$M = [T_3(k_1 + k_2 + k_3)] \leq [c^2(a^{-1} + 1 + c)] \leq [539/108] = 4.$$

From (3.2) and Theorem 2.3, we have only to prove the unique existence of α_n for $1 \le n \le 7$ and the inequality $\alpha_1 \le \alpha_2 \le \alpha_3 \le \alpha_4$. Define $A_n(t) = n ! Q_n(k_1^{-1}t) = \sum_{j=0}^n a_{nj} t^j$ for $n \ge 1$. Then we get by (2.3) that

$$(3.3) A_1(t) = t - 1, A_2(t) = t^2 + (a - 2)t, A_3(t) = t^3 + (3a - 3)t^2 + (2b - 3a)t, A_4(t) = t^4 + (6a - 4)t^3 + (3a^2 - 12a + 8b)t^2 - 8bt, A_5(t) = t^5 + (10a - 5)t^4 + (15a^2 - 30a + 20b)t^3 + (-15a^2 + 20ab - 40b)t^2,$$

$$\begin{split} A_6(t) &= t^6 + (15a - 6)t^5 + (45a^2 - 60a + 40b)t^4 \\ &\quad + (15a^3 - 90a^2 + 120ab - 120b)t^3 + (40b^2 - 120ab)t^2 , \\ A_7(t) &= t^7 + (21a - 7)t^6 + (105a^2 - 105a + 70b)t^5 \\ &\quad + (105a^3 - 315a^2 + 420ab - 280b)t^4 \\ &\quad + (-105a^3 + 210a^2b - 840ab + 280b^2)t^3 - 280b^2t^2 . \end{split}$$

Hence we obtain from (3.1) and (3.3) that $a_{nn}=1$ for all $n \ge 1$ and $a_{10}<0$, $a_{20}=0$, $a_{21}<0$, $a_{30}=0$, $a_{31}<0$, $a_{32}<0$, $a_{40}=0$, $a_{41}<0$, $a_{42}<0$, $a_{43}\geq0$, $a_{50}=a_{51}=0$, $a_{52}<0$, $a_{53}>0$, $a_{54}>0$, $a_{60}=a_{61}=0$, $a_{62}<0$, $a_{63}<0$, $a_{64}>0$, $a_{65}>0$, $a_{70}=a_{71}=0$, $a_{72}<0$, $a_{73} < 0$, $a_{74} < 0$, $a_{75} > 0$, and $a_{76} > 0$. Thus $A_n(t)$ satisfies the condition in Lemma 3.1 and hence, for $1 \le n \le 7$, $Q_n(t)$ has a unique positive zero α_n , which is of order one. The proof of Corollary 2.1 shows that $\alpha_1 \leq \alpha_2 \leq \alpha_3$. We shall show that $\alpha_3 \leq \alpha_4$, which will complete the proof of Theorem 1.1. We have

$$(3.4) 24Q_4(k_1^{-1}t) = (t+3a-1)6Q_3(k_1^{-1}t)+3B(t)$$

where $B(t) = (-2a^2 + a + 2b - 1)t^2 + (3a^2 - 2ab - a - 2b)t$. Hence the inequality $\alpha_3 \leq \alpha_4$ is equivalent to

$$(3.5) B(k_1\alpha_3) \leq 0.$$

Since $0 < -2a^2 + a + 2b - 1 \le 1 - a$ and $-3a^2 + 2ab + a + 2b > -a^2 + 3a$ by (3.1), it is sufficient for (3.5) that

(3.6)
$$k_1 \alpha_3 \leq (1-a)^{-1} (3a-a^2).$$

We obtain from (2.9) and (3.1) that

. ...

and

(3.7)
$$k_{1}\alpha_{3} = 2^{-1}(3(1-a) + \{9(1-a)^{2} + 4(3a-2b)\}^{1/2}) \\ < 3(1-a) + 1 \le 2 \le (1-a)^{-1}(3a-a^{2}),$$

which implies (3.6) and hence $\alpha_3 \leq \alpha_4$. Thus the proof is complete.

4. Application to Lévy processes on R_+ .

Let $\mu(dx)$ be a measure on \mathbf{R}_{+} for which the Laplace transform $L\mu(s) =$ $\int_{a}^{\infty} e^{-sx} \mu(dx) \text{ exists for } s > 0. \text{ For } s > 0, \text{ define the measure } \eta^{(s)}(\mu, dx) \text{ on } \mathbf{Z}_{+} \text{ by}$

(4.1)
$$\eta^{(s)}(\mu, dx) = \sum_{n=0}^{\infty} p_n^{(s)}(\mu) \delta_n(dx),$$

where

$$p_n^{(s)}(\mu) = (n!)^{-1} \int_0^\infty e^{-sx} (sx)^n \mu(dx)$$

Note that if $\mu(dx)$ is a probability measure on \mathbf{R}_+ , then $\eta^{(s)}(\mu, dx)$ is a probability measure on \mathbf{Z}_+ for every s > 0.

In this section, let X_t be a non-deterministic Lévy process on R_+ without drift and let $\mu_t(dx)$ be the distribution of X_t . Then we have

(4.2)
$$\int_{0}^{\infty} e^{izx} \mu_{t}(dx) = e^{i\phi(z)},$$
$$\psi(z) = \int_{0}^{\infty} (e^{izx} - 1)\nu(dx)$$

with $\nu(\{0\})=0$ and $\int_0^{\infty} x(1+x)^{-1}\nu(dx) < \infty$,

By argument in the proof of Forst's theorem [1], we find that $\eta_t^{(s)}(dx) = \eta^{(s)}(\mu_t, dx)$ is the distribution of a Lévy process $Y_t^{(s)}$ on \mathbb{Z}_+ , whose Lévy measure is given by

(4.3)
$$\nu^{(s)}(dx) = \sum_{n=1}^{\infty} p_n^{(s)}(\nu) \delta_n(dx),$$

where $p_n^{(s)}(\nu) = (n!)^{-1} \int_0^\infty e^{-sx} (sx)^n \nu(dx)$ for $n \ge 1$.

A measure $\mu(dx)$ on **R** (resp. on **Z**) is said to be unimodal (resp. discrete unimodal) with mode ∞ if $\mu(dx)=f(x)dx$ (resp. $\mu(dx)=\sum_{n=-\infty}^{\infty}p_n\delta_n(dx)$), where f(x) (resp. p_n) is non-decreasing for $-\infty < x < \infty$ (resp. $-\infty < n < \infty$). In the following lemma, $\mu(dx)$ and $\eta^{(s)}(\mu, dx)$ may have the mode ∞ .

LEMMA 4.1. Let $\mu(dx)$ be a measure on \mathbf{R}_+ for which the Laplace transform $L\mu(s)$ exists for s>0. Then $\mu(dx)$ is unimodal on \mathbf{R}_+ if and only if $\eta^{(s)}(\mu, dx)$ is discrete unimodal on \mathbf{Z}_+ for every s>0.

PROOF. Suppose that $\mu(dx)$ is unimodal with mode a. If $a < \infty$, then we can write $\mu(dx) = c\delta_a(dx) + f(x)dx$, where $c \ge 0$ and f(x) is non-decreasing for 0 < x < a and non-increasing for x > a. If $a = \infty$, then we can write $\mu(dx) = f(x)dx$ with non-decreasing f(x).

Suppose first that c=0 and $\mu(dx)$ is a finite measure. Then we can prove that $\eta^{(s)}(\mu, dx)$ is discrete unimodal on \mathbb{Z}_+ for every s>0. In fact, by Holgate [3], $\eta^{(1)}(\mu, dx)$ is discrete unimodal. For $s \neq 1$, define $\mu_s(dx) = s^{-1}f(s^{-1}x)dx$. Then $\eta^{(s)}(\mu, dx) = \eta^{(1)}(\mu_s, dx)$ is discrete unimodal.

Secondly suppose that c>0 or $\mu(dx)$ is a infinite measure. Then we can make a sequence $\mu_n(dx)$ of measures on \mathbf{R}_+ such that if $a < \infty$, $\mu_n(dx) = (cnI_{[a, a+n^{-1}]}(x)+I_{[0, a+n]}(x)f(x))dx$ and if $a=\infty$, $\mu_n(dx)=I_{[0, n]}(x)f(x)dx$, where $I_E(x)$ is the indicator function of the interval E. The finite measure $\mu_n(dx)$ is unimodal and does not have a point mass. Since $\eta^{(s)}(\mu_n, dx)$ is discrete unimodal and converges vaguely to $\eta^{(s)}(\mu, dx)$ as $n \to \infty$, $\eta^{(s)}(\mu, dx)$ is discrete

248

unimodal for every s > 0.

Conversely suppose that $\eta^{(s)}(\mu, dx)$ is discrete unimodal for every s > 0. Define $\zeta^{(s)}(dx) = \sum_{n=0}^{\infty} p_n^{(s)}(\mu) \delta_{n/s}(dx)$. Then $\zeta^{(s)}(dx)$ is vaguely convergent to $\mu(dx)$ as $s \to \infty$ by Forst [1] and discrete unimodal on $\{n/s : n \in \mathbb{Z}_+\}$ with some mode a(s) for each s > 0. We can find a sequence s_n such that $s_n \to \infty$ and $a(s_n) \to a$ $(0 \le a \le \infty)$ as $n \to \infty$. It is clear that $\mu(dx)$ is unimodal with mode a. The proof of Lemma 4.1 is complete.

REMARK 4.1. Lemma 4.1 is essentially due to Forst [1] and Holgate [3]. Also Forst [1] proves that $\mu(dx)$ is unimodal with mode 0 if and only if $\eta^{(s)}(\mu, dx)$ is discrete unimodal with mode 0 for every s>0. Similarly we can prove that $\mu(dx)$ is unimodal with mode ∞ if and only if $\eta^{(s)}(\mu, dx)$ is discrete unimodal with mode ∞ for every s>0.

THEOREM 4.1. A Lévy process X_t without drift is unimodal on \mathbf{R}_+ if and only if $Y_t^{(s)}$ is discrete unimodal on \mathbf{Z}_+ for every s > 0.

Proof is clear from Lemma 4.1.

Let $Q_n^{(s)}(t)$ be the polynomial $Q_n(t)$ in (2.3) corresponding to the Lévy process $Y_t^{(s)}$ on \mathbb{Z}_+ . We obtain the following corollary from Theorems 2.1 and 4.1.

COROLLARY 4.1. A Lévy process X_t without drift is unimodal on \mathbf{R}_+ if and only if, for every s>0, $Q_n^{(s)}(t)$ has a unique positive zero $\alpha_n^{(s)}$ of odd order for each $n \ge 1$ and $\alpha_n^{(s)}$ is non-decreasing in n.

COROLLARY 4.2. Suppose that $x\nu(dx)$ is unimodal on \mathbf{R}_+ . Then X_t without drift is unimodal on \mathbf{R}_+ if and only if X_t is of class L.

PROOF. If X_t is of class L on \mathbf{R}_+ , then X_t is unimodal by Wolfe [14]. Conversely suppose that X_t and $\tilde{\nu}(dx) = x\nu(dx)$ are unimodal on \mathbf{R}_+ . Let $\nu^{(s)}(dx) = \sum_{n=1}^{\infty} n^{-1} k_n^{(s)} \delta_n(dx)$ (see (4.3)) and define $\lambda^{(s)}(dx)$ by

(4.4)
$$\lambda^{(s)}(dx) = \sum_{n=1}^{\infty} k_{n+1}^{(s)} \delta_n(dx) = \sum_{n=0}^{\infty} s p_n^{(s)}(\tilde{\nu}) \delta_n(dx) \,.$$

Then $\lambda^{(s)}(dx)$ is discrete unimodal on \mathbb{Z}_+ for every s > 0 by Lemma 4.1. Since $Y_t^{(s)}$ is discrete unimodal on \mathbb{Z}_+ by Theorem 4.1, $\lambda^{(s)}(dx)$ is discrete unimodal with mode 0 for every s > 0 by Corollary 2.2. Hence $x\nu(dx)$ is unimodal with mode 0 by Remark 4.1. It follows that X_t is of class L on \mathbb{R}_+ . We have proved Corollary 4.2.

ACKNOWLEDGEMENT. The author would like to thank Prof. K. Sato for his helpful advice.

T. WATANABE

References

- G. Forst, A characterization of self-decomposable probabilities on the half-line, Z. Wahrsch. verw. Gebiete, 49 (1979), 349-352.
- [2] B.G. Hansen, On log-concave and log-convex infinitely divisible sequences and densities, Ann. Probability, 16 (1988), 1832-1839.
- [3] P. Holgate, The modality of some compound Poisson distributions, Biometrika, 57 (1970), 666-667.
- [4] S.K. Katti, Infinite divisibility of integer valued random variables, Ann. Math. Statist., **38** (1967), 1306-1308.
- [5] J. Keilson and H. Gerber, Some results for discrete unimodality, J. Amer. Statist. Assoc., 66 (1971), 386-389.
- [6] P. Medgyessy, On a new class of unimodal infinitely divisible distribution functions and related topics, Studia Sci. Math. Hungar., 2 (1967), 441-446.
- [7] K. Sato, Bounds of modes and unimodal processes with independent increments, Nagoya Math. J., 104 (1986), 29-42.
- [8] K. Sato, Behavior of modes of a class of processes with independent increments, J. Math. Soc. Japan, 38 (1986), 679-695.
- [9] K. Sato and M. Yamazato, On distribution functions of class L, Z. Wahrsch. verw. Gebiete, 43 (1978), 273-308.
- [10] F.W. Steutel, On the zeros of infinitely divisible densities, Ann. Math. Statist., 42 (1971), 812-815.
- [11] F.W. Steutel and K. van Harn, Discrete analogues of self-decomposability and stability, Ann. Probability, 7 (1979), 893-899.
- [12] T. Watanabe, Non-symmetric unimodal Lévy processes that are not of class L, Japan. J. Math., 15 (1989), 191-203.
- [13] T. Watanabe, On the strong unimodality of Lévy processes, Preprint.
- [14] S.J. Wolfe, On the unimodality of L functions, Ann. Math. Statist., 42 (1971), 912-918.
- [15] S.J. Wolfe, On the unimodality of infinitely divisible distribution functions, Z. Wahrsch. verw. Gebiete, 45 (1978), 329-335.
- [16] M. Yamazato, Unimodality of infinitely divisible distribution functions of class L, Ann. Probability, 6 (1978), 523-531.
- [17] M. Yamazato, On strongly unimodal infinitely divisible distributions, Ann. Probability, 10 (1982), 589-601.

Toshiro WATANABE Nakamandokoro Aizubangemachi Fukushimaken, 969-65 Japan