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Introduction.

We begin by giving an explanation of our motivation. Given a C* manifold
M, 2*(M) denotes the differential graded algebra of all C> differential forms
on M. Let G be a semi-simple Lie group, K its maximal compact subgroup,
and I" a discrete subgroup of G. The inclusion of invariant algebras

2%G/K) .Q*(G/K)r = Q*(I'\G/K)
induces the homomorphism
H*Q*G/K)°)—> H¥I'\G/K).

In the case I" is cocompact, Matsushima established that it is isomorphic
for sufficiently small *. Using this homomorphism Borel [B] determined the
stable real cohomology of arithmetic groups.

Our purpose is to find an analogue of this Matsushima’s theory for the
moduli space of compact Riemann surfaces of genus g, M,. More precisely we
want to find out a group which transitively acts on the Teichmiiller space
of compact Riemann surfaces of genus g, T,, and includes the mapping class
group M, as a “discrete” subgroup. Then we want to investigate the invariant
differential forms on T, under the group and its relation to the real cohomology
of M,.

On the other hand, by Dehn-Lickorish [L], the mapping class group #,
is generated by the Dehn twists associated to the simple closed curves in the
oriented closed surface of genus g, ,. The twist associated to a simple closed
curve a is described as follows; cut X, along a, rotate one boundary relative
to the other in the angle 2z, and reglue in this new position. Varying the
rotation angle over the real numbers, Fenchel-Nielsen defined the flow on the
Teichmiiller space T,, called the Fenchel-Nielsen flow associated to « [W1][G2].
When we define FN the subgroup of Diff(T,) generated by the Fenchel-Nielsen
flows associated to all simple closed geodesics, FN includes H, as a “discrete”
subgroup. Furthermore the group FN acts on T, transitively in view of a
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theorem of Abikoff [Ab, Ch. 3, §4]. Thus we employ the group FN as the
required analogue of G. Indeed, for g=1, we have H,=SL(2, Z) and FN=
SL(2, R).

In the present paper, our main result is the following

THEOREM.
H*QXT Y= QXT )Y = Rlw] for % < 3g—5.

Here w=Q%T,) denotes the Weil-Petersson Kihler form.
Combining it with various known results, we obtain

COROLLARY. The homomorphism
HYQXT )™) —> HXM,)
induced by the inclusion
QHT N C QKT ) M"e = Q*M,)

s stably injective (Miller [Mi], Morita [Mo]), (even stably) not surjective for
x=4 (Miller [Mi], Morita [Mo]), stably isomorphic for x=0, 1, 2 (Harer [H],
Powell [P]).

The non-surjectivity follows from that the image does nof contain the
Morita-Mumford characteristic class e; for /=2. Therefore, unfortunately, the
group FN turned out to be unable to determine the stable real cohomology of
the moduli space of compact Riemann surfaces.

Our proof of involves a tensor calculus with respect to the Fenchel-
Nielsen coordinates associated to a pantalon decomposition. Following Wolpert
[W3], we use an orientation-reversing involution p of 2, fixing the pantalon
decomposition. *%(T,)*V splits into the +1 eigenspaces of the action of p
(§2), which enables us to compute 2*(T,)F¥. Our calculation for *=2 (§4) is
complicated but elementary, while for *=1 (§3) we need the positivity of the
Weil-Petersson Hessian of the geodesic length functions [W4].

The author would like to express his sincere gratitude to Prof. S. Morita
for his helpful suggestions.

1. Definitions, Results, and Basic properties.

Fix an integer g=2. Let
Y, : the closed oriented C* 2-manifold of genus g,
T, : the Teichmiiller space of compact Riemann surfaces of genus g,
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la: Ty—Rs,: the geodesic length function of @, where a is (the isotopy
class of) a simple closed curve in ¥, [W4],

weQ¥T,): the Weil-Petersson Kéhler form [AhJ[G1],

Hh : the Hamiltonian vector field with respect to the symplectic structure
@ whose potential is he C~(T,).

The vector field Hh is characterized by the formula

(Hh)w = —dh,

where ¢ denotes the interior product. The flow generated by H((1/47)(,2),
exptH((1/4r)l,?), coincides with the Fenchel-Nielsen flow associated to a that
we mentioned in Introduction [WI].

Now fix an arbitrary real analytic function f: Rs,—R, which satisfies, for
all [eR-,,

(1.1 f[iH>0
and ’
(1.2) rihz0

(e.g., f(D=!, (1/4xn)[?, 2cosh((/2).). We define the (f-) Fenchel-Nielsen group
FN=FN; as the subgroup in Diff(T,) generated by exp(tHf(l,)), where t (resp.
a) runs over all reals (resp. all simple closed geodesics). The group denoted
by FN in Introduction is FN¢ 2 in the present notation.

Since FN acts on T, preserving the 2-form @, we obtain

(1.3) R[w] C Q%(T )V .

Here, given a C= manifold M, 2*(M) denotes the differential graded algebra of
all C= differential forms on M. Our main result is

THEOREM. Under the above assumptions,
OQXT )Y = Rlw] for x <3g—5.

The rest of this paper is devoted to the proof of this [Theoreml. Clearly
we have

LEMMA 1. 0 8Q%T,) is FN-invariant if and only if
L(Hf(la))8 =0

for any simple closed curve a in %, where L(-) denotes the Lie derivative.

In view of a theorem of Abikoff [Ab, Ch. 3, §4], the group FN acts on
T, transitively, which implies
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LEMMA 2.
(1) For any x&T,, the evaluation map

evy 1 QXT )FY — A*T T

s injective.

6g—6
(2) dim@™(T ¥ < ( )
n
(3) QAT )Y =R  (the constant functions).
(4) ng—e(Tg)FN — R(w)ag—a .

(2) and (3) follow from (1), and (4) from (1) and

For the rest of this paper, we fix a pantalon decomposition = {a;}{¢® of
Y,. By definition, each a;, 1</<3g—3, is a simple closed curve in 2',, no two
a;’s intersect each other, and the complement X, —\Ui%«; is diffeomorphic to
the disjoint union of 2g—2 copies of pantalons, where pantalon means the com-
plement of three disjoint discs in S%. For example we may fix the decomposi-
tion shown in Figure 1 associated to the trivalent graph in Figure 2.

Figure 1.

—

Figure 2.

Let {l;, t;}327® be the Fenchel-Nielsen coordinates associated to the decom-
position 2. [; is the geodesic length of a;, [,;,, and ¢; measures the hyperbolic
displacement between the canonical points on both sides of a; (1=/<3g—3)
[AbJ[W3]. Wolpert [W3, Theorem 1.3] shows the formula

3g-3

(1.4) o= 2 di;\dt;.
i=1
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We define the modified Fenchel-Nielsen coordinates {k;, s;}347® associated to the
decomposition ¢ as follows;

ki= f(h)
(1.5) 1,
ST
The coordinates {k;, s;}}4r® are real analytic on 7,. From follows
3g-3
(1-6) W = 2 dkz/\dsi.
i=1
Especially, for 1</<3g-3,
0
Hf(l,.)= Hk; =
(L.7) flay) 1= 7
0
HSi = —Gk, .

We introduce the following notation to carry out some tensor calculus with
respect to the modified Fenchel-Nielsen coordinates.

NOTATION.
1 0 0 7l 0
(q) . ;g T — “en e . hod
(1-8) 011.‘-511,..7'1;.---,],1' p!q! 0( ak1,1 v Tty akip ; asjly » asjq ) e C(Tg)
(LY) 6= 3 0@ s dhiy o dbidsy - ds;, € QT)

T ipn i dg

for 0€Q™T,), p+qg=n, and 1<iy, -, ip, J4, -+, J4<38—3.
Then immediately
0 — i @ .
g=0

LEMMA 3.

(1) The function 02...i, 555, does not depend on the s;'s, 1I<7<3g-3,
when 0 2™(T Y, p+q=n, and 1<y, -+, ip, J1, -, 1<32—3.

(2) For 02T )Y and 0<qg<n,

d(6®) = (dg)®.
Proor. (1) By the fact

L(%)dk;f,(%)ds,-:o, for 1<, §, jo<3g—3
0 Jo

and [Lemma ], we obtain
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0= L(Hf(lay))0

0
=191 7}
. (aSjo)
30{?) L. dg e d

— e tpJidg v d b,

= pglnfl.---.i,,z.]ji,n-.jq asi”jo dkiy - dkidsg - dsg,.
Hence, for i<iy, -, ip, Ji, = Jor J0<38—3,

80§§3...,¢p,j,,...,,q —0
aSjo

(2) follows from (1) immediately.

2. Wolpert’s involution.

Following Wolpert we introduce an orientation-reversing involution p
of Y, fixing the pantalon decomposition @= {a;}i®.

To define p, consider a pantalon with a hyperbolic structure with geodesic
boundary. Then the pantalon has a unique isometric reflection p, fixing each
boundary component. On each boundary component p, has two fixed points,
which are the canonical points mentioned in the preceding section. Let {/;, ¢;} 213
be the Fenchel-Nielsen coordinates associated to the decomposition @, and ReT,
a marked Riemann surface which satisfies

2.1) ti=0 (1=/£3g-3).

Represent each a; as a unique geodesic in R. Then each component of the
complement R—\Uea; is a pantalon with a hyperbolic structure with geodesic
boundary, which has a unique isometric reflection p, fixing each boundary
component. From assembling the reflections p, of each hyperbolic pantalon,
we can construct a reflection p of R. p is an orientation-reversing involution
of X, fixing each a; setwise, and determines an element of the extended
mapping class group EM,=m,Diff(¥,). Recall the extended mapping class
group EM, acts on the Teichmiiller space T, naturally [W3].

LEMMA 4.

1) ol =1y (1£i<3g-3).
(2) p¥i=—t; (1=5i<3g-3).
3) o*o = —w.

PROOFS. (1) and (3) are contained in [W3, Lemma 1.1].
(2) From [W3, Lemma 1.1] follows
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nq
2
But, from the construction of p, p(R)=R, and, from t{(R)=0. Hence we
obtain n;=0.

Using (1.5) we define the modified Fenchel-Nielsen coordinates {&;, s;}347°
from the coordinates {/;, #;}327%. [Lemma 4 implies the following.

LEMMA 5.

1) o*ki=k, (1=Z:/£3g-3).

(2) p*ds; = —ds; (1=5i£3g-3).

3 pxHf(la) = —Hf(lpca>) a: a simple closed curve.

(3) follows from Lemma 4(3) and the fact

P*la = [p(a) .

Especially, from (3), the action of p preserves 2*%(T,)¥. Since p is involutive,
QT )FY splits into the +1 eigenspaces of the action of p. Thus we define

QT ,)F¥, :=the +1 eigenspace of p in Q%(T )Y
QKT )FY_:=the —1 eigenspace of p in Q*(T,)F¥.
Then we have
QF(T )FY = QT F¥ . DQXT Y _.

The following enables us to compute Q*(T,)F¥,

LEMMA 6. If we set, for 0= Q%T )",

0,:= 3 0@
q: even
0_:: 2 0((1)’
¢: odd

then we have
8. QKT FY,

0. QKT )FY_.

ProoF. By Lemma 31) each 6. ; ,...;, does not depend on the s,’s,
which implies

*Qo . . =g
p 611,...,1p,]i,...,1q - 0"1"""1)'11'.""'7(1 .

Hence, by Lemma 5(2),
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p*ﬁ(q) — (_l)qg(q)
This proves Lemma 6.
COROLLARY. Let 6=2™T )Y and 0<q<n. Then we have
| (L(Hf(1.)§@)® = 0.
PrROOF. By we may assume
= 3 6@,
g’ =q(2)

Since, for a vector field X on T,

(L(X)0@)™ = if |g—r|>1,
we have

(L(X)0)® = (L(X)f@)?,
which proves

3. QYT ,)¥=0.

In this section we prove Q4T ,V=0 using the positivity of the Weil-
Petersson Hessian of geodesic length functions [W4]. Let {r.}4-, be a collec-
tion of simple closed curves filling up %,. We set

A
kyi= Elf([ra)-
Then Kerckhoff [K. Lemma 3.1] shows

LEMMA (KERCKHOFF). The function 2é-ilye: T, — R attains a minimum
in T,.

We remark the same holds for the function k;,=Xf(l;2): T,— R, since f
satisfies the condition
On the other hand Wolpert (W4, Theorem 4.6] proves

THEOREM (WOLPERT). For an arbitrary closed curve a in 2, the Weil-
Petersson Hessian of the function l,: T ,—R is positive definite.

By the convexity of the function f (1.2), we have

LEMMA 7. For an arbitrary a, the Weil-Petersson Hessian of the function
flla): T;—R is positive definite.

REMARK. Only this lemma requires the condition
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Combining the above lemmata, we obtain

LEMMA 8. For almost every x=T,, the matrices

0*k 0k
(akia;ej(x))lgi,jgsg—s and (3Sia;j(x)>1§i.j§3g—3

are non-degenerate.

Proor. By [Lemmal (Kerckhoff) and the succeeding remark, there is a point
x0T, where the function £k, attains a minimum. At x, the Hessian of k%,
with respect to the coordinates {Z;, s;}3%7® coincides with the Weil-Petersson
Hessian of k£, and is positive definite by Lemma 7. Hence the given matrices
are positive definite and non degenerate at x,. Since k,, k;, and s; are all real
analytic on T',, the matrices are nondegenerate almost everywhere on T',, which
proves Lemma 8

Now we can prove

LEMMA 9.
QT )Y =0.

PrROOF. Take an arbitrary 6<QY(T,)"Y. implies 8, e
QT HFN. Let {r.}a-, be the collection mentioned above. Using (8/0k;)=—Hs;
(1.7), we obtain

0= ZLHf U N0P)® = (DX LHSf (L)X d s )

= SROP(LCS s = Fppop ST

_ b ()
= 22305

dk;

2
db; = 220§l)~i&—dki-
J

1 6klak]

Hence, for each i,

ok
= (1 7
0=20"5n ok,

From follows

052 =0 (1£7=53g-3),
that is
o =0.
The same holds for ¢,
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4. Fenchel-Nielsen tensor calculus.

Fix a pantalon decomposition = {a;}i%® of X,. We impose upon & the
condition that each a; is a boundary component of two different pantalons. For
example the decomposition shown in Figure 1 satisfies the condition. In this
section we prove our [Theorem| by means of a tensor calculus with respect to
the modified Fenchel- N1elsen coordinates {%;, s;}3%r® associated to the decomposi-

tion 2.
The restriction *<3g—5 comes from the following.
LEMMA 10. For n<3g—4, the map
N QYT ) —> Q*XT,)
is injective.
PROOF. Let
V.=R,
X1, ***, Xn, Xns1, ***, X2n: @ basis of V,
Uy, ***, Un, Unsr, ***, Usn s the basis of V, *(the dual of V,) satisfying
Sus, xp=0y  (1=4, j<2n),

W = Ui Nl S AV * (1=i<n),
n n
= 20:= 2 UiNUnyi-
i=1 i=1

follows from the following
(1) The map wA : A* 'V, * — AV * is isomorphic.
(2) The map wA : A*V ,* — A**V * is injective for *<n—1.

PROOF OF (1). Let
{1, -, m} = iy, -, BT 5 jobTT{as =, @r TE{bs, o, b .
p+qg+2r=n+1
Then the map w/A\ maps
Ug N\ s Nty /\un+,-1/\ ot Nnss,
AL B DK@t 00, Ay )

into
P NANSAN T IVAN PR ARAN SN SV A OV
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which means its surjectivity. Since the dimension of the range is equal to that
of the domain, the map wA : A"V, *—A"*V * is isomorphic.

PROOF OF (2). We prove (2) inductively on n. Clearly it holds for n=0, 1.
Suppose n=2. In view of (1), we may assume *=k<n—2. Let

[ Vn-l _—> Vn
Xi—> X5, Xnotei —> Xni (1£:£n-1)
be the inclusion. Consider the morphism of the exact sequences

S
0 — kere* —> AV, * — A*V . * — 0

Vool e

0 —> ker¢* —> A**V % —s ARV, _* —s (),

where the vertical arrows denote wA. Because of the assumption 2<n—2 and
the inductive assumption the right vertical arrow is injective. Hence it suffices
to show that the left arrow is injective. We have the direct sum decomposition

kerc* = x ,AAF WV o ¥ P AA*F Vo *Pw, AN A* 2V, %,

The mapw/\ preserves the decomposition and is injective on each component

by the inductive assumption. So the left arrow is injective, which completes
the proof of
We prove our by assembling the following five lemmas

LEMMA 11. Let 2€£n<3g—4. Suppose 0=8™(T,) satisfies
4 =0

(LHf()8™)™ =0 for an arbitrary a.
Then 8¢ =0.

LEMMA 12. Let 0=¢g<n, p=n—gq, and
0= 209 € Q(T,)".
q’'sq
Then we have
0%2-“.1@,.7'1;."-.741 = 07 Zf {ily Tty zp} ¢ {]'1) Tty ]q} .

LEMMA 13. Let
0= 3 09 < QT,)F".

<n-q

Then 6=0.
LEMMA 14. Let n=2m+1, o=V T,), and
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0 =™ No+ 3 09 QT )N,
gsm

Then 6=0. \

LEMMA 15. Let p+g=n, and 0= QT ,FY. Suppose

0’5?,)-".132),],;,---,]'(1 = 0’ Z'f {Z‘l,- Ty Z'p} ¢ {jlr Tty 7q} -,
Then there exists o=@ TP =Q9 P (T,) such that
0@ = w”ANop.
The proofs are delayed until that of the following theorem finishes.

THEOREM. ,
QXT )Y = Rlw] for = <3g-—5.

PROOF. The cases *=0, 1 are proved in Lemmas 2(3) and 9, respectively.
For *=2, we claim as follows. '

(4.1) 2<n<3g—4,n:even, § = QYT )Y, and df =0= 6 = Ro"'*
4.2) 2<n<3g—4,n:0dd, 8 € QT )Y, and d§ =06 =0
(4.3) 2=<n<3g—5 n:even and § Q“(Tg)” = € Ro™'?

44) 2=<n=3g—5n:odd and 6 € Q T, =6 =0

PROOF OF (4.1). From the assumption df=0 and Lemma 3(2), d§=0.
Corollary of Lemma 6 implies (L(Hf(la))ﬁ(‘”)‘”:O for an arbitrary a.- Hence,
by Lemma 11, we have §=3),c,-:0°. Applying Lemmas 12 and 15 to §<*,
we obtain =@ ?=2"%T,) such that

0D =wNe

Lemma 10 and the assumption 2<n=<3g—4 show ¢ satisfies the hypothesis of
Lemma 11. Hence we have ¢=0, and §¢*~=0. Iterating these considerations,
we conclude

0= 2 0942"° (e R).

a<n—-gq

Since 2w™*=2™(T )Y, 0 —Aw™*=Q2™(T ,)FY, which implies §=2iw"/? by Lemma
13. This proves (4.1).

PROOF OF (4.2). In a similar manner to (4.1), we conclude

6 =oAL S @,

a<n-q

where ¢=¢®<2YT,). Lemma 14 implies §=0.
PROOF OF (4.3). Since dd=0, we can apply (4.2) to df. Hence df=0.
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Thus, by (4.1), 6= Ro™*.
PRrROOF OF (4.4). Applying (4.1) to 48,
df = 20" (1€ R).
From [Lemma 3J2) follows

4@ =0 (%ng).

Hence Lemmas [0, [, 12 and @5 can be applied to # in a similar manner to
(4.1), and we conclude

6 = (P/\w(n-l)/2+ 2 0(q),
a<n~q

where ¢=¢p®=Q%T,), which proves §=0 by
Thus the proof of is completed except for those of Lemmas [1-15.

ProOF oF LEMMA 11. First of all we prove 6. ; is constant on T,.
By Lemma (1), we have
a95™.. ; .. .
T 20 (g, i, -, j2S38-3),
J
Hence '
0=dewm™
005™... ;.

that is,

(n)
0052 5,

T = 0 (lgi, jl: ) Jnésg—g)-

Thus 0;7..; (1=, -+, jn=3g—3) is constant on T,.
Fix 1=:<3g—3. Let B be a simple closed curve in X, which intersects
«; and does not intersect a; (j=7) (see Figure 3). We notice 0f(l/5)/ds;=0

(j#1). Since each 6., ;, is constant,

Figure 3.
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0= (L(Hf(lg)O™)™

2
=n3 B 05 Ffs) ds;ds;, - ds;,

Jo Ji»* JIn gs Ok 8 ,oak“
0*f(lg)
(71) . . R
= n E 0 i asiakh ds,dsjz ds;,.
Applying the interior product ¢(0/0s;),
0*f(lp)
— (n) nds;
0 fl--".in%bfz.m.fn0“""'j“ 55k, dsj, - dsj,.

Hence we obtain, if 77, -+, Ja,

a*f(lp)
— ()
(4.5) 0= 208 ge 5
From we can deduce the following

0.%1)12 J 01(;”)12
(4.6) if 32(¢Jo, Ju Ja s ]n) such that

a;, a;, and a;, are boundary components of a single pantalon.
052ty =0
4.7) if Elz(q&]l, Je **, Jn) such that

ai, a;, and a;, are boundary components of a single pantalon.

Lemma 11 follows from (4.6) and (4.7). In fact, for an arbitrary 6{"..; , apply-
ing (4.6) repeatedly, there is obtained a 0;’{’_._ i satisfying the hypothesis of
" dn
(4.7) and
0(n) j —— 0(71)

J1s j'l""'j'n.

By (4.7) we conclude 857 ; =0(1<7,, -+, j2<38—3).
To prove (4.6) and (4.7), consider the situation shown in Figure 4(1). For
simplicity we renumber the a;’s. We set

(2)

t=0, 11=13=13=14.
Figure 4.
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t = t, = the twist parameter along a,
li=lo, (0<i<4)
t

S = —FZ77C

f'Wo)
ki= f{l) 0=i54).

From Wolpert’s cosine formula [W2][G2] it follows

ol
—a—tf— = cos f,+cosf,,
where 6, and 6, denote the angles between the geodesics 8 and «,.
we have
alg _
Tt 0
0ls _
otol, 0.
__ -1
6215_+ p(A—21) 0

0tol; — — 2(p+1) A p+ A Apt+ AT

231

Hence

at the point t=0, [,=2log g, and [;=2logA(1<i<4) (see [WIL]). Therefore,
when we denote by ¢; the value of 0°f(l5)/0s0k; at the point s=0, k,;=k,=Fk;,

=k,, we have
It is easy to show

61: _‘62: 63: '—04.

Furthermore, at the point,

°f(lg) _ 0
653/@0 )

Thus, evaluating there, we obtain

(4.8) 0=0{"in=08 iyt 05, in— 05y -
Since the same holds for the situation shown in Figure 4(2),
4.9 0=0{", in=05 . sn—05 i, 0y 5 -

Summing up and [(4.9) we conclude

(n) . = fn) .
1, jo.eendn — 02,]2,...,]n

if 0#7,, -+, 70, and

a,, @, and a, are boundary components of a single pantalon,
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since each #;7.. ; is constant. (4.6) and (4.7) follows from (4.10) immediately,
which completes the proof of Lemma 1]

Proor oF LEMMA 12. Fix 1=<7/<3g—3. Let B be a simple closed curve
in Y, which intersects @; and does not intersect a; (j+7) (see Figure 3). It
should be observed that af(lg)/ds;=0 (j+i).

0= (L(HS((s)@)e+>

0*f(lp)

- _ @ .. 9TV g L db des e des

pgﬁ'}:i%;}ﬁg" O8... 10507, 35,51, dsjdki, - dkq dsj, - ds;,
0*f(lg)

== asizﬁg—iz,...,i;;z'il,-..,jqeé?%z""' ipinnig@SidRiy - dkids; o dsj,.

Easily we have 0°f(l5)/0s,*%0, which is real analytic on T,. Hence

0= P .01{?%2""-ip-jl-'",fquidkiz'“dkipdsh.“dsjq'

iz“n.ip,jlﬁn‘]q
Thus we obtain
00yt iymig =0, i i&{jy, -, Jo},
which proves
PROOF OF LEMMA 13. Let 0 =3, .,09 = Q"(T,)"Y, and ¢g<n—q=: p.
Applying to 6,
07(533"'-ip'ji"“'jq = 0, lf {il, ey, Zp} (Z: {]'1, ey, ]'q} .

Since p>¢, the hypothesis of is always satisfied, and so #?=0. Iterating
this procedure, we obtain §=0.

PrROOF oF LEMMA 14. From follows
S 09 e QT )Y,
g=m(2)

which vanishes by Hence we may assume
6 = 2 G = wm/\(p+0(m—l)+0CM—3)+ oo,
gEM(2)

Set
3g-3
o= 2 @ids;.
j=1
Fix 1</<3g—3, and let B be as in Lemma 12. We have

0= (L(H(f(Lg)0)™

= o™ /\2 (PHM

11,12 aklz dklz
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| OHf(l5)k;
+(7fl+2>2 . 2 {0{?221) 1m+2vf1""'jm“1_‘*fa(‘8é—>~;
T ’

dedki;"‘ dkim+2ds.7'1 dsjm-l}

0*f(lg)
- 2;,,”1212 1ok, az dkjds; - dkj,ds;, dk;,
o f(l
—(m+2)——= f( ﬂ) . +2{053@2—}.?.,imﬂ_h,...,jm_l
]1’...’]'%_1

dsidkiz - dk

im+2dsf1 dsfm-1} .

Here for each term in the first summation the indices of dk includes those of
ds, while for each (nontrivial) term in the second the index i of ds is not
contained in the indices of dk.. Hence we conclude

2 01?:”;;,’:-)3im+2,j1,m,jm_1dsidki2 - dk

12, lm+2
1 im—-1

del dsjm—l =0.

im+2
In a similar manner to Lemmas and I3, we obtain 8™~V =0, and so
0 =" Ne+0™ P+ o,

Hence 6 — @™ A@=34sm-s0P=2?™(T )Y vanishes by Since, for
n<3g—2, the map

oA QT ) —> 2*+Y(T,)

is injective, o= 24T ,)"Y. Thus §=w™Ap=0 by which completes
the proof of

ProOOF OF LEMMA 15. We set

6i,..

. - g( o . _0 J o . _0 )
vipdrende T p! r! akil ’ aSiI’ ’ ak,p ’ asip ’ as,-l’ ’ 3sz ’
where 7 :=g—p. By the hypothesis,

6@ = 2 @1,1 ""'-’.rdkildsil‘”dkipdsipdsjl.“dsjp'
’p
Jl
Our purpose is to show that the function 6,
the indices 7y, -+, 7p.
For a simple closed curve S8 in Y,

0= (L(Hf(lp))ﬁ‘q’)‘q’
== (Hf(lﬁ)@” ""jr)dkildsiln' dkipdsi?)dsjl.“dsjp

i1,
i ’p

-H)E 2 {(61'0. igientps fpaees j,"@il, g ip. 11,---,1,:)

ETE
0]1 :p

Lo dgu iy does not depend upon
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0*f(lp)
T, Hendsn s dbidseds, - ds, |
0*f (L)
+7§;%:E:}£{911 ip‘jl_...,jrm dki1d3i1 dkipdsipdeodst dsj,.}-

Collecting the terms satisfying
#({the indices of dk} N {the indices of ds})= p—1,

we have
(4.11) 0= S{Oup tp 1y 15— Ottty 1 17)

0*f(lg)

akioasil dkiodsil dkipdsipdsjl ves dsjp},

where the sum runs over the indices (<o, 71, 72, =+, ip, J1, =+, Jr=3¢—3 under
the condition 7,%#7,, 51, -+, 7,. Applying the interior product ¢(8/0k;,)(0/0s:,)--
z(a/ak,.p)e(a/asip> to we obtain, for 1<4,, -+, 1,<3g2—3,

(412) 0= 2 {(@io» g, tp,jl,...,j,r—‘@il_ YRS A PR jr)

0°f(lp)

To#iy,J1. iy
akioasil

To prove Lemma IS by means of we define the notion of a @-path:
P=(a,, -+, a4) is a P-path, if

dbydsydsy, -+ dsy, ).

a; € {1, -+, 3¢g—3} (0=/<A), and
@q,_, and a,; are boundary components of a single pantalon (1=/<A).

For a subset J={s}, :--, 72} {1, :--, 3g—3}, we define the obstacle number
v(J, P) of a ®@-path P=(a,, ---, a4) with respect to the subset / as follows:

W], P)i=max {0} \Ufi,—ir+1; a,€] LS Vi<i,)
We prove the following inductively on .
J=1{48 -, bl -, 3g—3}
P={(a,, -, a4): P-path
(4.13) Go, as & J
wWJ, P)<v
D Oapigin .30 = Oagig i

From (4.13), Lemma 15 follows immediately.
The case y=0. Take an arbitrary J={j3, ---, 79}. It suffices to show [(4.13

;0

0
p’71 v J o

J
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for a @-path P=(a,, a,) satisfying »(J, P)=0. Let B be a simple closed curve
which intersects a,, and does not intersect a;(j+a,) as in Evaluat-
ing (4.12) for the curve S,

0= 0*f(lp) (6

A ot 1 37— Oty gt
T T R

dkoydse,dsy, -+ ds;,}
Since a,, and a,, are boundary components of a pantalon, we have

0*f(Lp)

Tadss. TV

Applying the interior product ¢(0/0k,)c(0/0s4,)(0/0s50)---¢(3/0s;0), we obtain

@al' i2"“' 0 = @

LI R ag. g e bp 5Y e 520

which proves for v=0.

The case v=1. Take an arbitrary J={j}, ---, j¢}. It suffices to show [4.13)
for a @-path P=(a,, ‘-, ay+,) satisfying a,, a,..¢J and ¢, J(1=<i<y). Re-
numbering the set /, we may assume

a; =71 (1Ziy).

Let B be a simple closed curve which intersect a.,(1</<v-+1) “along” 2-path
P and does not intersect a;(j+a;, 1<i<v)(see Figure 5).

Figure 5.

Evaluating [(4.12) for the curve 8,

0= 3 2@

Qg igien i dpond
Aoy Y = D

fly) 4,

-0, .
Qgs g, ety J1o JT) akaoasai

aodsaidel deT .

Applying the interior product 0(0/0k,)e(0/0Sa,,,)d0/0s59)-+-¢(3/0s;2), We obtain
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(4.14)

N. Kawazumr

0= é > (@ai:iz»""' 0, 79

]

i=1 Jpan jr#0 P B LS R
_@ . . 0 ) 0 0)_%)__
@g. g ip JyonJgor Gyt g iy 0kg 0s,
0 i
+(@av+1 igomip j(l) jo—@ao ig, g jg jo)m.
I ZYRINE P | I ) I PR PN 1 B )
akaoas%ﬂ

Now we have

v({j?} R jg—-l) ali+17 ].g-("l, Tty ]"?‘}; (007 R ai)) = Z._'l-

Hence, by the inductive assumption, the :-th term of (4.14) vanishes for 1<:<y.
From the definition of the curve 8, we have 0°/(l)/0k;0s4,,, 0. Therefore

Oayiyigomip s s2 = Oag iy iy, 9,52

which completes the inductive proof of

implies that the function Oy .. ;. ..;, does not depend upon the
indices 7;, ---, i,. This proves
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