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1. Introduction.

We are concerned with the motion of a hypersurface whose speed locally
depends on the normal vector field and its derivatives. To be specific let $\Gamma_{t}$

denote the hypersurface expressed as the boundary of a bounded open set $D_{t}$

in $R^{n}(n\geqq 2)$ at time $t$ . Let $n$ denote the unit exterior normal vector field to
$\Gamma_{t}=\partial D_{t}$ . It is convenient to extend $n$ to a vector field (still denoted by $n$ ) on
a tubular neighborhood of $\Gamma_{t}$ such that $n$ is constant in the normal direction
of $\Gamma_{t}$ . Let $V=V(t, x)$ denote the speed of $\Gamma_{t}$ at $x\in T_{t}$ in the exterior normal
direction. The equation for $\Gamma_{t}$ we consider here is of form

(1.1) $V=f(t, x, n(x), \nabla n(x))$ on $T_{t}$ ,

where $f$ is a given function and $\nabla$ stands for spatial derivatives. MateriaI
science provides a lot of examples of (1.1) where $\Gamma_{t}$ is an interface bounding
two phases of materials (see [2, 11, 12] and references therein). For example if

(1.2) $V=-divn$ ,

the hypersurface $\Gamma_{t}$ moves by its ( $n-1$ times) mean curvature and (1.2) is
known as the mean curvature flow equation. We note that this equation arises
as a singular limit of some reaction-diffusion equations $[3, 17]$ . It is also im-
portant to consider anisotropic properties of materials. A typical model (cf.
$[11, 12])$ is

(1.3) $\beta(n)V=-\sum_{i=1}^{n}\partial_{X_{i}}\partial(\frac{\partial H}{\partial p_{i}}(n))+c$ ,

where $H$ is convex on $R^{n}$ and positively homogeneous of degree one, $\beta$ is a
positive function on a unit sphere $S^{n-1}$ in $R^{n}$ and $c$ is a constant. The equa-
tion (1.3) includes (1.2) as a particular example with $H(p)=|p|,$ $\beta=1$ and $c=0$ .
We remark that in general the right hand side of (1.3) is not expressed as a
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function of principal curvatures $\kappa_{1},$
$\cdots$ , $\kappa_{n-1}$ of $\Gamma_{t}$ and $n$ . In other words

(1.4) $V=g(\kappa_{1}, \cdots, \kappa_{n-1}, n)$

excludes (1.3), although (1.4) itself is interesting.
A fundamental analytic question to (1.1) is to construct a global-in-time

unique solution $\{\Gamma_{t}\}_{t\geqq 0}$ for a given initial data $\Gamma_{0}$ (allowing that $\Gamma_{t}$ becomes
empty in a finite time). There are a couple of approaches depending on des-
cription of (hyper) surfaces. A classical approach appeals to a parametrization
of $\Gamma_{t}$ . For the mean curvature flow equation (1.2) Huisken [13] constructed a
unique smooth solution $\Gamma_{t}$ which shrinks to a point in a finite time provided
that $\Gamma_{0}$ is uniformly convex and $C^{2}$ and that $n\geqq 3$ . A similar result is proved
by Gage and Hamilton [8] when $n=2$ . Moreover, Grayson [10] proved that
any embedded curve moved by (1.2) never becomes singular unless it shrinks
to a point. However, for $n\geqq 3$ even embedded surface may develop singularities
before it shrinks to a point. Even when $n=2$ such singularities may develop
if we consider

(1.5) $V=-divn+c$

with some constant instead of (1.2). Angenent [1] constructed a weak solution
across singularities for a class of parabolic equation (1.1) provided that $n=2$

(see also [2]); however, $f$ is assumed ‘symmetric’ so that the orientation of
the curve does not affect its evolution. In particular (1.5) is excluded (unless

$c=0)$ . The uniqueness of his weak solution is not claimed in [1]. It also seems
difficult to track the evolution of $\Gamma_{t}$ across singularities by a parametrization
of $\Gamma_{t}$ when $n\geqq 3$ .

TO overcome this difficulty one way would be to describe surfaces in a
weak sense such as varifolds in geometric measure theory. For (1.2) Brakke
[4] constructed a global varifold solution for arbitrary initial data. Unfortu-
nately, the uniqueness of such a solution is not known. Another way is to
describe a surface $\Gamma_{t}$ as a level set of a function $u$ satisfying a second order
evolution equation in $R^{n}$ :

(1.6) $\partial_{t}u+F(t, x, \nabla u, \nabla^{2}u)=0$ ,

where $\partial_{t}=\partial/\partial t$ and $\nabla^{2}u$ denotes the Hessian matrix of $u$ in space variables.
This idea is introduced by Osher and Sethian [18] for a numerical calculation
of (1.5) and independently by Chen and the authors [5]. In [5] we introduced
a weak notion for solution $\Gamma_{t}$ of (1.1) through viscosity solutions of (1.6). We
constructed a unique global weak solution $\{\Gamma_{t}\}_{t\geq 0}$ with arbitrary initial data
for a certain class of (1.1) including (1.2), (1.3) and (1.5) (where $H$ is $C^{2}$ outside
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the origin and $\beta$ is continuous). Almost at the same time Evans and Spruck
[7] constructed the same solution but only for (1.2). We note that Tso [19]
applies a variant of a level surface approach to (1.4) when $-g$ is the Gauss-
Kronecker curvature. He constructed smooth $\Gamma_{t}$ shrinking to a point in a finite
time provided that $\Gamma_{0}$ is uniformly convex and $C^{2}$ . The corresponding result
to (1.2) is proved by Huisken [13] as is explained in the second paragraph.

Our main goal is to clarify the class of equations of form (1.1) to which
the level surface approach in [5] yields a unique global weak solution $\{\Gamma_{t}\}_{t\not\geqq 0}$

with a given initial data. We first derive (1.6) from (1.1). Suppose that $u>0$

in $D_{t}$ and $u=0$ on $\Gamma_{t}$ . If $u$ is $C^{2}$ and $\nabla u\neq 0$ near $\Gamma_{t}$ , we see

(1.7a) $n=- \frac{\nabla u}{|\nabla u|}$ on $\Gamma_{t}$ .

Unfortunately, the vector field $m=-\nabla u/|\nabla u|$ near $\Gamma_{t}$ is not constant in the
normal direction of $\Gamma_{t}$ , so our $\nabla n$ in (1.1) may not agree with $\nabla m$ on $\Gamma_{t}$ . It
turns out that

$\nabla n=\nabla m-n\otimes(n\cdot\nabla)m$ on $\Gamma_{t}$ ,

where $m$ and $n$ are regarded as row vectors and $\otimes$ denotes a tensor product
of vectors in $R^{n}$ . A direct calculation yields

(1.7b) $\nabla n=-\frac{1}{|\nabla u|}Q_{\overline{p}}(\nabla^{2}u)$ , $\overline{p}=\frac{\nabla u}{|\nabla u|}$ and

$Q_{\overline{p}}(X)=R_{\overline{p}}XR_{\overline{p}}$ with $R_{\Phi}=I-$fi@fi ,

where $X$ is an $n\chi n$ real symmetric matrix and $I$ denotes the identity matrix.
It follows from $(1.7a, b)$ and $V=\partial_{t}u/|\nabla u|$ that (1.1) is formally equivalent to
(1.6) on $\Gamma_{t}$ with

(1.8) $F(t, x, p, X)=-|p|f(t,$ $x,$
$-\overline{p},$ $- \frac{1}{|p|}Q_{\overline{p}}(X))$ , $\overline{p}=\frac{p}{|p|}$ ,

where $p$ is a nonzero vector in $R^{n}$ . A direct calculation shows tlwt $F$ in (1.8)

has the scaling invariance

(1.9) $F(t, x, \lambda p, \lambda X+p\otimes y+y\otimes p)=\lambda F(t, x, p, X)$

for all $\lambda>0$ , $p\in R^{n}\backslash \{0\}$ , $y\in R^{n},$ $X\in S_{n}$ ,

where $S_{n}$ denotes the space of all $n\cross n$ real symmetric matrices. We say $F$ is
strongly geometric if $F$ satisfies (1.9). In this paper we shall show that every
strongly geometric $F$ is of the form (1.8) with some $f$ and $f$ is (essentially)
uniquely determined by $F$. This shows that the concept “strongly geometric”
is very natural to study the equation (1.1) by our level surface approach. Clearly,
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$F$ is geometric in the sense of [5], i. e.,

(1.9) $F(t, x, \lambda p, \lambda X+\sigma p\otimes p)=\lambda F(t, x, p, X)$

for all $\lambda>0,$ $\sigma\in R,$ $p\in R^{n}\backslash \{0\},$ $X\in S_{n}$

if $F$ is strongly geometric. The converse is true provided that $F$ is degenerate
elliptic and continuous in $X$ for $p\neq 0$ . It will turn out that the results in [5]
yield a unique global weak solution $\{\Gamma_{t}\}_{t\geqq 0}$ of (1.1) with an arbitrary initial
data $\Gamma_{0}$ provided that $f$ is degenerate elliptic, continuous and grows linearly
in $\nabla n$ , where $f$ is assumed to be independent of $x$ . We present our theory in
[5] for geometric parabolic equations under simpler assumptions of $F$ but slightly
stronger then those of [5]. When $F$ is independent of $t$ and $x$ , both assump-
tions are equivalent. We thank to the referee for valuable comments especially
on the form (1.7b) and relation between (1.9) and (1.9).

This work was done while the second author was a graduate student of
the Department of Mathematics of Hokkaido University. This work is partly
supported by the Japan Ministry of Education, Science and Culture through
grant no. 01740076 and 01540092.

2. Geometric equations.

The equation (1.6) is called (strongly) geometric if $F$ is (strongly) geometric.
We observe in this section that there is roughly a one-to-one correspondence
from a strongly geometric equation to (1.1). Indeed we shall show at least
formally that every level surface of a function $u$ moves by (1.1) for some $f$ if
and only if (1.6) is strongly geometric. Moreover, $f$ is uniquely determined
by $F$.

For $\overline{p}\in S^{n-1}$ we introduce a linear operator $Q_{\overline{p}}$ from $M_{n}$ into itself defined
by

(2.1) $Q_{\overline{p}}(X)=R_{\overline{p}}XR_{\overline{p}}$ , $R_{\overline{p}}=I-\overline{p}\otimes\overline{p}$ , for $X\in M_{n}$ ,

where $M_{n}$ denotes the space of all $n\cross n$ real matrices. We note that the right
hand side of (2.1) appears in (1.8).

LEMMA 2.1. (i) The operator $Q_{fi}$ is a $P^{r0j}$ ection, $i.e.,$ $Q_{i}^{2}=Q_{\overline{p}}$ .
(ii) Let $L_{j}$, denote a vector subspace of $S_{n}$ defined by

$L_{p}=\{\overline{p}\otimes y+y\otimes\overline{p};y\in R^{n}\}$ .
It holds

(2.2) $S_{n}\cap kerQ_{\overline{p}}=L_{\overline{p}}$ .
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PROOF. (i) This follows directly from (2.1) if we observe

(2.3) $(x\otimes\overline{p})(\overline{p}\otimes y)=x\otimes y$

with $x=y=\overline{p}$ .
(ii) By (2.3) it is clear that $L_{\overline{p}}$ is contained in the kernel of $Q_{\overline{p}}$ . It remains

to prove that $Q_{\overline{p}}(X)=O$ for $X\in S_{n}$ implies $X\in L_{\overline{p}}$ . For an orthogonal matrix
$U$ it follows from the definition (2.1) that

$U^{-1}Q_{\overline{p}}(X)U=Q_{\overline{q}}(Y)$ , $\overline{q}=\overline{p}U$ , $Y=U^{-1}XU$ , $X\in M_{n}$ .

We take $U$ so that $q=(1, 0, \cdot , 0)$ and observe that $Q_{q}(Y)=O$ implies

$Y=(\begin{array}{llll}y_{1} y_{2}’ \cdots y_{n}’\vdots y_{n} O \end{array})$ with $y_{j},$ $y_{j}’\in R$ .

If $Y$ is symmetric, we see $y_{J}=y_{j}^{f}$ for 7‘12. Since $X\in S_{n}$ implies $Y\in S_{n}$ , we
now conclude that for $X\in S_{n}$ the condition $Q_{\overline{p}}(X)=O$ implies

$Y= \overline{q}\otimes y+y\bigotimes_{\square }\overline{q}$

whicb is the same as $X\in L_{\overline{p}}$ .

We next introduce a (smooth) vector bundle $E$ over $S^{n-1}$ of the form

(2.4) $E=\{(\overline{p}, Q_{\overline{p}}(X));\overline{p}\in S^{n-1}, X\in S_{n}\}$ .

The bundle $E$ is a subbundle of a trivial bundle $S^{n-1}\cross S_{n}$ and its fibre dimen-
sion equals $n(n-1)/2$ . Let $Q$ be a bundle map

$Q:S^{n-1}\cross S_{n}arrow E$

defined by
$Q(\overline{p}, X)=(\overline{p}, Q_{\overline{p}}(X))$ .

Let $L$ be a bundle over $S^{n-1}$ of form

(2.5) $L=\{(\overline{p}, X);\overline{p}\in S^{n-1}, X\in L_{\overline{p}}\}$ .

The bundle $L$ is a subbundle of $S^{n-1}\cross S_{n}$ . Since $Q$ is surjective, Lemma 2.1
provides a characterization of $E$ as a quotient bundle.

LEMMA 2.2. The vector bundle $E$ is isomorphic to the quotient bundle

$S^{n-1}\cross S_{n}/L=\{(\overline{p}, [X]);\overline{p}\in S^{n-1}, [X]\in S_{n}/L_{\overline{p}}\}$ .

We now turn to study relation (1.8) of $f$ and $F$. Since our argument is
pointwise in $t$ and $x$ we suppress $t,$ $x$-dependence of $f$ and $F$ in this section.
The expression (1.7b) of $\nabla n$ shows that our $f$ in (1.1) needs to be defined only
on $E$ not whole $S^{n-1}\cross M_{n}$ . We thus consider the space $\mathscr{F}$ of all real valued
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functions $f$ defined on $E$. To each $f$ we correspond a function $F$ on $(R^{n}\backslash \{0\})$

$\cross S_{n}$ by (1.8), $i$ . $e.$ ,

$F(p, X)=-|p|f(-\overline{p},$ $- \frac{1}{|p|}Q_{\overline{p}}(X))$ , $\overline{p}=\frac{p}{|p|}$ .

Let $\mathcal{G}$ denote the set of all strongly geometric real valued function $F$ defined
on $(R^{n}\backslash \{0\})\cross S_{n}$ . Lemma 2.2 now shows that the concept “strongly geometric”
is very natural.

THEOREM 2.3. The mapping $f->F$ is a bijection from $\mathscr{F}$ to $\mathcal{G}$ .

PROOF. Let $\mathcal{G}’$ be the set of all real valued functions $F’$ on $S^{n-1}\cross S$.
satisfying

(2.6) $F’(\overline{p}, X+\overline{p}\otimes y+y\otimes\overline{p})=F’(\overline{p}, X)$ for all $y\in R^{n},$ $(\overline{p}, X)\in S^{n-1}\cross S_{n}$ .
By (1.9) we see the mapping $F’->F$ defined by

$F(p, X)=|p|F’(\overline{p},$ $\frac{X}{|p|})$ , $\overline{p}=\frac{p}{|p|}$

gives a bljection from $\mathcal{G}’$ to $\mathcal{G}$ . By the definition (2.5) of $L$ and (2.6) one may
identify $F’\in \mathcal{G}’$ with a function on $S^{n-1}\cross S_{n}/L$ . By Lemma 2.2 the mapping
$f-F’$ defined by

$F’(\overline{p}, X)=-f(-\overline{p}, -Q_{\overline{p}}(X))$

gives a bijection from $\mathscr{F}$ to $\mathcal{G}’$ since $Q_{\overline{p}}=Q_{-\overline{p}}$ . Since the mapping $f-,F$ is a
composition of $f->F’$ and $F’-F$, it gives a bijection from $\mathscr{F}$ to $\mathcal{G}$ . $\square$

By Theorem 2.3 we see every level surface of a function $u$ moves by (1.1)

for some $f$ if and only if (1.6) is strongly geometric at least formally, where
$F$ is uniquely determined from $f$ by (1.8).

REMARK 2.4. A function $F$ is strongly geometric if $F$ is geometric, de-
generate elliptic and continuous in $X$ for $p\neq 0$ . Here we say $F$ is degenerate
elliptic if $F$ satisfies

$F(p, X)\leqq F(p, Y)$ for $X\geqq Y,$ $X,$ $Y\in S_{n}$ ,

where $S_{n}$ is equipped with the usual ordering.

Indeed, to show (1.9) it suffices to prove

(2.7) $F(p, X+P\otimes y+y\otimes p)=F(p, X)$ , $P\neq 0$

for $y$ orthogonal to $p$ since (1.9) is assumed. We may assume $y\neq 0$ . We set
$\overline{p}=p/|p|$ and $\overline{y}=y/|y|$ . An elementary calculation shows that
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$(\begin{array}{ll}c 00 d\end{array})\leqq(\begin{array}{ll}0 1l 0\end{array})\leqq(\begin{array}{ll}a 00 b\end{array})$

provided $ab\geqq 1,$ $cd\geqq 1,$ $a>0,$ $c<0$ . This estimate yields

$cp\otimes\overline{p}+d\overline{y}\otimes j^{\mathfrak{s}}$ $ $-\otimes 5^{7}+\overline{y}\otimes\overline{p}\leqq a\overline{p}\otimes\overline{p}+b5^{i}\otimes 5^{i}$ in $S_{n}$

which deduces

(2.8) $F(p, X+\mu b\overline{y}\otimes 5^{7})=F(p, X+\mu(a\overline{p}\otimes\overline{p}+b5^{i}\otimes 5^{i}))$

$\leqq F(p, X+p\otimes y+y\otimes p)$

;$ $F(p, X+\mu(c\overline{p}\otimes\overline{p}+d5^{i}\otimes\overline{y}))$

$=F(p, X+\mu d5^{i}\otimes 5^{i})$ , $\mu=|y|\cdot|p|$ ,

since $F$ is degenerate elliptic and geometric. Keeping the relation $ab\geqq 1,$ $cd\geqq 1$ ,

$a>0,$ $c<0$ we send $b,$ $d$ to zero in (2.8) and obtain (2.7) since $F$ is continuous
in $X$ for $p\neq 0$ .

REMARK 2.5. In Introduction we extend a unit normal vector field $n$ to an
open neighborhood of the hypersurface $\Gamma_{t}$ so that $n\cdot\nabla n=0,$ $i$ . $e.,$ $n$ is constant
on the normals to the hypersurface. From this choice it follows that $\nabla n$ is
given by

$\nabla n=0\oplus(-L)$ ,

where $L$ is the Weingarten map of the hypersurface; the direct sum corresponds
to the decomposition of the tangent space $T_{x}R^{n}=R^{n}$ at $x\in\Gamma_{t}$ :

$R^{n}=\langle n\rangle\oplus\langle n\rangle^{\perp}$ , $\langle n\rangle^{\perp}=T_{x}\Gamma_{t}$ ,

where $\langle n\rangle$ is the normal vector space of $\Gamma_{t}$ at $x$ . Thus $\nabla n$ is identified with
a self adjoint linear transformation on the tangent space $T_{x}\Gamma_{t}$ of the hyper-
surface. The space of such transformations has dimension $n(n-1)/2$ , which
agrees with the fibre dimension of $E$ defined in (2.4). When we consider
$f(n, \nabla n)$ for the function $f$ : $Earrow R$, one implicitly assume that $\nabla n$ has $n(n-1)/2$

independent components. We remark that an eigenvalue of $L$ is called a prin-
cipal curvature and that the trace of $L$ equals $n-1$ times the mean curvature
of the hypersurface.

3. Existence and uniqueness of weak solutions.

We shall clarify the class of hypersurface evolution equations (1.1) to which
our theory of geometric parabolic equations developed in [5] yields a unique
global weak solution for a given initial data. We shall also simplify the assump-
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tions of [5]. We first define a weak solution $\{(\Gamma_{t}, D_{t})\}_{t\geqq 0}$ of (1.1) through a
viscosity solution of (1.6) similarly to [5]. As in [5] we discuss the case when
$\Gamma_{t}$ is compact.

DEFINITION 3.1. Let $D_{0}$ be a bounded open set and $\Gamma_{0}(\subset R^{n}\backslash D_{0})$ be a com-
pact set containing $\partial D_{0}$ . Let $\{(\Gamma_{t}, D_{t})\}_{t\geqq 0}$ be a family of compact sets and
bounded open sets in $R^{n}$ . Suppose that for some $\alpha<0$ there is a viscosity solu-
tion $u\in C_{\alpha}([0, T]\cross R^{n})$ for (1.6) with (1.8) in $(0, \infty)\cross R^{n}$ such that zero level
surface of $u(t, \cdot)$ at time $i\geqq 0$ equals $\Gamma_{t}$ and that the set $D_{t}$ where $u>0$ is
bounded open. If $(\Gamma_{t}, D_{t})|_{t=0}=(\Gamma_{0}, D_{0})$ , we say $\{(\Gamma_{t}, D_{t})\}_{t\geqq 0}$ is a weak solution
of (1.1) with initial data $(\Gamma_{0}, D_{0})$ . Here $T>0$ is arbitrary and $v\in C_{\alpha}(A)$ means
$v-\alpha$ is continuous and has compact support in $A$ .

Instead of giving a definition of a viscosity solution we just remark that a
viscosity solution is a kind of weak solutions satisfying the comparision principle
for nonlinear degenerate elliptic equations. A fundamental theory is established
by Jensen [16] and Ishii [14] (see also [15] and [6]). Since our $F$ in (1.8) is
not continuous at $p=0$ even if $f$ is continuous, we were forced to extend their
theory. We here reproduce results on geometric parabolic equations in [5].

We consider (1.6) in $(0, \infty)\cross R^{n}$ with $F$ independent of $x$ . The function $F$ is
assumed to satisfy the following conditions.
(FO) $F:J=(0, \infty)\cross(R^{n}\backslash \{0\})\cross S_{n}arrow R$ is geometric, $i$ . $e.,$ $F$ satisfies (1.9).
(F1) $F:Jarrow R$ is continuous.
$\langle$ F2) $F$ is degenerate elliptic $i$ . $e.$ ,

$F(t, p, X)\leqq F(t, p, Y)$ if $X\geqq Y$ .

(F3) $-\infty<F_{*}(t, 0, O)=F^{*}(t, 0,0)<\infty$ .
$\langle$ F4) Let $T$ be a positive number. It holds

$(-)$ $F_{*}(t, p, -I)\leqq c_{-}(|p|)$

$(+)$ $F^{*}(t, p, I)\geqq-c_{+}(|p|)$

for all $0<t<T$ with some $c_{\pm}(\sigma)\in C^{1}[0, \infty)$ and $c_{0}>0$ (depending only on
$T)$ such that $c_{f}(\sigma)\geqq c_{0}$ for all $\sigma\geqq 0$ .

Here 1 denotes the identity matrix and $F_{*}:$ $\overline{J}arrow R\cup\{\pm\infty\}$ is the lower semi-
continuous relaxation of $F:Jarrow R,$ $i$ . $e.$ ,

$F_{*}(z)= \lim$ $\inf F(w)$ , $z=(t, p, X) \in\frac{J}{}$ .
$\epsilon\downarrow 0|w-z|<\epsilon w\in J$

The function $F^{*}$ is defined by $F^{*}=-(-F)_{*}$ .
We note that $(FO)-(F2)$ imply that $F$ is strongly geometric by Remark 2.4.
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PROPOSITION 3.2 ([5, Theorems 6.8 and 7.1]). Assume that $(FO)-(F4)$ .
(i) Let $\alpha<0$ . For $a\in C_{\alpha}(R^{n})$ there is a unique global viscosity solution $u_{a}$

of (1.6) such that $u_{a}(0, x)=a(x)$ and that $u_{a}$ is in $C.([0, T]\cross R^{n})$ for every $T>0$ .
(ii) Let $\Gamma_{t}$ denote the zero level surface of $u_{a}(t, \cdot)$ and $D_{t}$ denote the set

where $u_{a}(t, \cdot)>0$ . The family $\{(\Gamma_{t}, D_{t})\}_{t\geqq 0}$ is uniquely determined by $(\Gamma_{0}, D_{0})$

and independent of $a$ and a.

By Theorem 2.3 (FO) follows from the condition that $F$ is expressed as in
(1.8) with $f$ : $(0, \infty)\cross Earrow R$ where $E$ is the bundle defined by (2.4). Proposition
3.2 yields a unique global solution of (1.1) (cf. [5, Theorem 7.3]).

PROPOSITION 3.3. Assume that $F$ defined in (1.8) satisfies $(F1)-(F4)$ . Suppose
that $D_{0}$ is a bounded $op$on set and $\Gamma_{0}(\subset R^{n}\backslash D_{0})$ is a compact set containing $\partial D_{0}$ .
Then there is a unique global weak solution $\{(\Gamma_{t}, D_{t})\}_{t\geqq 0}$ of (1.1) wifh initial data

$(\Gamma_{0}, D_{0})$ .

REMARK 3.4. Proposition 3.2 is based on the comparison principle for visco-
sity solutions in a bounded domain. It turns out that the proof in [5] of the
comparison principle can be simplified if we appeal to a maximum principle of
Crandall and Ishii [6]. We give a simplified proof in our paper with Ishii and
Sato [9] as well as extensions to the case when $F$ depends on $x$ and the domain
is unbounded.

We seek simple conditions on $f$ so that Proposition 3.3 is applicable to (1.1).

For tbis purpose we first study conditions $(F1)-(F4)$ . It is convenient to intro-
duce

(3. 1)
$M(s)= \sup_{1p|\leqq 1,p\neq 0}F(s, p, -1)$

,
$m(s)=1p \}\leqq 1\inf_{p\mp 0}F(s, P, I)$

.

LEMMA 3.5. Assume that $F$ satisfies (FO) and (F2).
(i) For $r\geqq 0$ it holds

$F^{*}(t, 0, O)= \lim_{\epsilon\downarrow 0}(\epsilon upM(s))|t\frac{s}{s}S|<\epsilon>0$ $F_{*}(t, 0, O)= \lim_{\epsilon\downarrow 0}(\epsilon nfm(s))|t\frac{i}{s}s|<g>0$

(ii) If $M^{*}(t)<\infty$ (resp. $m_{*}(t)>-\infty$ ), then $F^{*}(t, 0,0)=0(F_{*}(t, 0,0)=0)$ .
(iii) If $F$ is independent of $t$ , the following three conditions are equivalent.

(a) $F^{*}(O, 0)<\infty$ (resp. $F_{*}(O,$ $0)>-\infty$ )

(b) $M<\infty$ $(m>-\infty)$

(c) $F^{*}(O, O)=0$ $(F_{*}(O, O)=0)$ .

PROOF. (i) If $|X|$ denotes the operator norm of $X\in S_{n}$ , the estimate $|X|$

$\leqq\epsilon$ implies
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$-\epsilon I\leqq X\leqq\epsilon I$ .

Since $F$ is degenerate elliptic by (F2), we see

$\sup_{|X|\leq e}F(s, p, X)\leqq F(s, p, -\epsilon I)$ , $(s, p, X)\in J$ .

The converse inequality is trivial since $|-\epsilon 1|=\epsilon$ . We thus observe that

$|pl \leqq\epsilon\sup_{p\neq 0}\sup_{|X|\xi 6}F(s, p, X)=\sup_{p\neq 0}F(s|p1\leqq\epsilon p, -\epsilon l)=\epsilon\sup_{1p|\leqq\epsilon,p\neq 0}F(s, p/\epsilon, -1)=\epsilon M(s)$

since $F$ is geometric by (FO). This yields the first identity of (i). The second
identity is parallelly proved.

(ii) This follows immediately from (i) since it always holds $M_{*}(t)>-\infty$

and $m^{*}(t)<\infty$ .
(iii) By (i) the condition (b) follows from (a). By (ii) the condition (b) im-

plies (c). Clearly (c) implies (a) and the proof is now complete. $\square$

We consider a slightly stronger condition than (F1) on the continuity of $F$

in $t$ .
(F1) $F:[0, \infty)\cross(R^{n}\backslash \{0\})\cross S_{n}arrow R$ is continuous.

LEMMA 3.6. Assume that $F$ satisfies $(F1^{f})$ . Let $M$ and $m$ be as in (3.1).

The condition (F4–) (resP. $(F4+)$ ) is equivalent to

(3.2-) $M^{*}(t)<\infty$ for $t\geqq 0$ .
($(3.2+)$ $m_{*}(t)>-\infty$ for $t>0.$ )

PROOF. We only prove that (F4–) is equivalent to (3.2-) since the other
equivalence is parallelly proved. The condition (F4–) implies

$M(t) \leqq\sup_{1p|\leqq 1}c_{-}(|p|)$ for $0\leqq t\leqq T$

which yields (3.2–). Since $M^{*}(t)$ is upper semicontinuous, (3.2–) implies that

$\sup_{0tT}M(t)=c_{T}<\infty$ .

This yields (F4–) since $F(t, P, -I)$ is bounded on

$[0, T]\cross\{p\in R^{n} ; 1\leqq|P|\leqq R\}$

for every $R>1$ by (F1). $\square$

LEMMA 3.7. Assume that $F$ satisfies (FO), (F1) and (F2).
(i) The conditions $(3.2\pm)$ imply $(F3)-(F4)$ .
(ii) If $F$ is independent of $t$ , then
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(3.3) $M<\infty$ and $m>-\infty$

is equivalent to $(F3)-(F4)$ . Here $M$ and $m$ are defined by (3.1).

PROOF. This follows from a combination of Lemmas 3.5 and 3.6. $\square$

We now rewrite our conditions in terms of $f$ when $F$ is of the form (1.8).

The condition (F1) is clearly equivalent to
(f1’) $f$ : $[0, \infty)\cross Earrow R$ is continuous, where $E$ is the bundle defined by (2.4).

The condition (F2) is clearly equivalent to
(f2) $f(t, -\overline{p}, -Q_{\overline{p}}(X))\geqq f(t, -\overline{p}, -Q_{\overline{p}}(Y))$ for $X\geqq Y,\overline{p}\in S^{n-1}$ and $r\geqq 0$ .
This condition means that $f$ is degenerate elliptic. By (1.8) and (3.1) we
observe that

$M(s)=- \inf_{0<\rho<1}\rho nff|^{\frac{i}{p}}|=1(s,$ $-\overline{p},$ $\frac{I-\overline{p}\otimes\overline{p}}{\rho})$

(3.4)

$m(s)=- \sup_{0<\rho<1}\rho|^{\frac{s}{p}}|=1$

It is easy to see that (3.3) is equivalent to

$\lim_{\rho\downarrow}\inf_{0}\rho|^{\frac{i}{p}}n|ff(-\overline{p},$ $\frac{I-\overline{p}\otimes\overline{p}}{\rho})>-\infty$

(3.5)

$\lim_{\rho\downarrow}\sup_{0}\rho|^{\frac{s}{p}}1=1$

This condition (and also (3.3)) is fulfilled if $f=f(\overline{p}, Z)$ is positively homogeneous
of degree one in $Z$ , where $(\overline{p}, Z)\in E$ , i. e.

(3.6) $;(p, \lambda Z)=\lambda f(\overline{p}, Z)$ for all $\lambda>0$ .

By Lemma 3.7 Proposition 3.3 deduces the unique existence of global weak
solutions under conditions easier to check.

THEOREM 3.8. Assume that $f$ is independent of $x$ and satisfies $(f1^{f})$ and (f2).

Assume that $f$ satisfies $(3.2\pm)$ with (3.4) or that $f$ is independent of $t$ and satisfies
(3.5). Let $D_{0}$ be a bounded open set in $R^{n}$ and let $\Gamma_{0}(\subset R^{n}\backslash D_{0})$ be a compact
set containing $\partial D_{0}$ . Then there is a unique global weak solution $\{(\Gamma_{t}, D_{t})\}_{t\geqq 0}$ of
(1.1) with initial data $(\Gamma_{0}, D_{0})$ .

REMARK 3.9. The examples (1.2), (1.3) and (1.5) fulfill all the assumptions
of Theorem 3.8; here we assume that $H\in C^{2}(R^{n}\backslash \{0\})$ is convex and positively
homogeneous of degree one and that $\beta$ is continuous. Indeed, it is easy to
check (fl‘) and (f2) directly. In these examples $f$ is independent of $t$ and
satisfies (3.6). Since (3.6) implies (3.5), our $fsati\grave{s}fies$ all assumptions of Theo-
rem 3.8.
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REMARK 3.10. For the mean curvature flow equation (1.2) Evans and
Spruck [7] proved that the family $\{\Gamma_{t}\}_{t\geq 0}$ of the weak solution $\{(\Gamma_{t}, D_{t})\}_{t\geqq 0}$ is
determined only by $\Gamma_{0}$ and is independent of $D_{0}$ . In other words there is no
need to distinguish interior and exterior bounded by $\Gamma_{t}$ . This property holds
for more general equation

$V=f(t, n, \nabla n)$

with $f$ in Theorem 3.8 provided that

$f(t, -\overline{p}, -Z)=-f(t, p, Z)$ , $(\overline{p}, Z)\in E$ .

Instead of giving a proof we remark that this fact is easily proved by combin-
ing arguments in $[7, 9]$ .
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