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\S 0. Introduction.

In this paper we give a correction and a proof of the result announced in
[2]. Let $X$ be an algebraic K3 surface defined over $C$ . The second cohomo-
logy group $H^{2}(X, Z)$ has a canonical structure of a lattice of rank 22 induced
from the cup product. Let $S_{X}$ be the Picard group of $X$. Then $S_{X}$ admits a
structure of sublattice of $H^{2}(X, Z)$ . Let $T_{X}$ be the orthogonal complement of
$S_{X}$ in $H^{2}(X, Z)$ which is called a transcendental lattice of $X$. Put $H_{X}=$

$Ker$ {Aut $(X)arrow 0(S_{X})$ }, where $O(S_{X})$ is the group of isometries of the lattice $S_{X}$ .
Nikulin [3] proved that $H_{X}$ is a finite cyclic group of order $m$ and $\varphi(m)$ is a
divisor of the rank of $T_{X}$ , where $\varphi$ is the Euler function. We now give a
correction of the result in [2] as follows:

THEOREM. Let $X$ be an algebraic $K3$ surface and $m_{X}$ the order of $H_{X}$ .
Assume that the lattice $T_{X}$ is unimodular $(i. e. det(T_{X})=\pm 1)$ . Then

(i) $m_{X}$ is a divisor of 66, 44, 42, 36, 28 or 12.
(ii) Suppose that $\varphi(m_{X})=rank(T_{X})$ . Then $m_{X}$ is equal to either 66, 44, 42,

36, 28 or 12. Mcreover for $m=66,44,42,36,28$ or 12, there exists a unique
(up to isomorphisms) $K3$ surface with $m_{X}=m$ .

In [2], on page 358, line 9, the statement “the order of the restriction $\ldots$

is false, and the Vorontsov’s result [12] is correct. In [12], Vorontsov proved
the result (i) of the above Theorem. In case $T_{X}$ is non unimodular, he also
proved a similar result as the above theorem (see Corollary 6.2). His method
is based on the theory of a cyclotomic field $Q(m)$ . Here we use mainly the
theory of elliptic surfaces due to Kodaira [1] and Nikulin’s results on finite
automorphisms of K3 surfaces [3], [4]. Also we give examples of such K3
surfaces. Some of them are independently constructed by I. Dolgachev, K.
Saito [6], T. Shioda, and the author.

In Section 1, we recall the result of Nikulin [3] on automorphisms of K3
surfaces. Section 2 is devoted to some remarks on elliptic pencils on K3 sur-
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faces. In Section 3, we give examples of algebraic K3 surfaces as mentioned
in Theorem, (ii). Sections 4 and 5 are devoted to a proof of Theorem. In
Section 6, using the theory of elliptic surfaces, we give an another proof of
Vorontsov’s result on non unimodular case, and in Section 7, we also give
examples of algebraic K3 surfaces with non unimodular transcendental lattices
and $\varphi(m_{X})=rank(T_{X})$ .

ACKNOWLEDGEMENT. I would like to thank to the referee who gave me
an idea of a simple proof of the uniqueness in the main theorem.

\S 1. Automorphisms of K3 surfaces.

A lattice $L$ is a free $Z$-module of finite rank endowed with a integral sym-
metric bilinear form $\langle$ , $\rangle$ . By $L_{1}\oplus L_{2}$ , we denote the orthogonal direct sum of
lattices of $L_{1}$ and $L_{2}$ . An isomorphism of lattices preserving the bilinear form
is called an isometry. For a lattice $L$ , we denote by $0(L)$ the group of iso-
metries of $L$ . A lattice $L$ is even if $\langle x, x\rangle$ is even for each $x\in L$ . A lattice
$L$ is non-degenerate if the determinant $\det(L)$ of the matrix of its bilinear form
is non-zero, and unimodular if $\det(L)=\pm 1$ . We denote by $U$ the hyperbolic

lattice $\{\begin{array}{ll}0 11 0\end{array}\}$ which is an even unimodular lattice of signature $(1, 1)$ , and by

$A_{k},$ $D_{l}$ or $E_{m}$ an even negative definite lattice of rank $k,$ $1$ or $m$ associated to
the Dynkin matrix of type $A_{k},$ $D_{l}$ or $E_{m}(m=6,7,8)$ respectively. Note that
$E_{8}$ is unimodular. For a lattice $L$ and an integer $m$ , we denote by $L(m)$ the
lattice whose quadratic form is the one on $L$ multiplied by $m$ .

Let $L$ be a non-degenerate lattice. Then the bilinear form of $L$ determines
a canonical embedding $L\subset L^{*}=Hom(L, Z)$ . We denote by $A_{L}$ the factor group
$L^{*}/L$ which is a finite abelian group. It follows from definitions that $L$ is
unimodular if and only if $A_{L}$ is trivial. We denote by $l(L)$ the number of
minimal generators of $A_{L}$ . A lattice $L$ is 2-elementary if $A_{L}$ is a 2-elementary

abelian group. For a 2-elementary lattice $L$ , define

$\delta(L)=\{$

$0$ if $\langle t, t\rangle\in Z$ for any $t\in L^{*}$

1 otherwise

where the form $\langle$ , $\rangle$ on $L^{*}$ is defined by extending the form of $L$ on $L^{*}$ under
the above embedding $L\subset L^{*}$ . It is known that an isomorphism class of 2-
elementary lattice of signature $(1, r)$ is determined by the invariants (rank $(L)$ ,

$l(L),$ $\delta(L))$ ( $[4]$ , Theorem 4.3.2).

A compact connected complex surface $X$ is called a $K3$ surface if its
canonical line bundle is trivial and $\dim H^{1}(X, O_{X})=0$ . The second cohomology
group $H^{2}(X, Z)$ admits a canonical structure of a lattice induced from the cup
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product $\langle, \rangle$ . It is even, unimodular and signature $(3, 19)$ , and hence isomorphic
to $U\oplus U\oplus U\oplus E_{8}\oplus E_{8}$ . Let $S_{X}$ be the Picard group of $X$. Then $S_{X}$ has a
structure of sublattice of $H^{2}(X, Z)$ . We call $S_{X}$ the Picard lattice of $X$. Let
$T_{X}$ be the orthogonal complement of $S_{X}$ in $H^{2}(X, Z)$ which is called a trans-
cendental lattice of $X$. The group Aut (X) of automorphisms of $X$ naturally

acts on the lattices $S_{X}$ and $T_{X}$ .

PROPOSITION 1.1. The represenfation $Aut(X)$ on $S_{X}\oplus T_{X}$ is faithful, $i$ . $e$ .
the induced map $Aut(X)arrow O(S_{X})\cross O(T_{X})$ is $in_{J}$ ective.

PROOF. Let $g$ be an automorphism of $X$ wbich acts trivially on $S_{X}$ and
$T_{X}$ . Since $S_{X}\oplus T_{X}$ is of finite index in $H^{2}(X, Z),$ $g$ also acts trivially on
$H^{2}(X, Z)$ . It now follows from the Torelli theorem for K3 surfaces [5] that $g$

is the identity.

Let $\omega_{X}$ be a non trivial holomorphic 2-form on $X$. If $g\in Aut(X),$ $g^{*}(\omega_{X}\lambda$

$=\alpha(g)\omega_{X}$ for some $\alpha(g)\in C^{*}$ . Hence we have a representation $\alpha$ : Aut $(X)arrow C^{*}$ .

PROPOSITION 1.2 ([3], Theorem 3.1). If $X$ is algebraic, then $\alpha(Aut(X))$ is
a finite cyclic group. Moreover if $m=|\alpha(Aut(X))|>1$ and $\alpha(Aut(X))=\langle g\rangle$ , then
$\alpha(g)$ is a primitive m-th root of 1 and $T_{X}\otimes Q$ is a direct sum of rePresentations
over $Q$ of the cyclic group of order $m$ having maximal rank. In Particular,
$\varphi(m)|rank(T_{X})$ .

Put $H_{X}=Ker$ {Aut $(X)arrow 0(S_{X})$ } and $m_{X}=|H_{X}|$ . By Propositions 1.1, 1.2
and the fact rank $(T_{X})\leqq 21$ , we have

COROLLARY 1.3 ([3], Corollary 3.3). If $X$ is algebraic, then $H_{X}$ is a finite
cyclic group. The non-tnvial elements of $H_{X}$ act non-trivially on $\omega_{X}$ . Moreover
$m_{X}\leqq 66$ .

LEMMA 1.4. Let $\sigma\in H_{X}$ and let $R$ be a smooth rational curve on X. Then
$\sigma(R)=R$ .

PROOF. Since $\sigma\in H_{X},$ $\sigma^{*}[R]=[R]$ . On the otber hand, $R^{2}=-2$ . Hence
$\sigma(R)=R$ .

\S 2. Elliptic pencils on K3 surfaces.

Let $X$ be an algebraic K3 surface. An elliptic pencil $\pi$ : $Xarrow P^{1}$ is a holo-
morphic map $\pi$ from $X$ to $P^{1}$ whose general fibres are smooth elliptic curves.
Let $F$ be a reducible singular fibre of $\pi$ . Then every component of $F$ is a
smooth rational curve. The dual graph $\Gamma$ of $F$ is defined as follows: (i) The
vertices of $\Gamma$ correspond to components of F. (ii) Two vertices $C$ and $C’(C$
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and $C’$ are components of $F$ ) are joined by $m$-tuple lines if and only if $C\cdot C’$

$=m$ . It is known that the dual graph of reducible singular fibres are as fol-
lows ([1]):

$A_{1}$ : – ; $\tilde{A}_{n}$ :

$D_{n}$ :

$\tilde{E}_{7}$ : ;

; $E_{6}$ : ;

$\tilde{E}_{8}$ :

If the dual graph of $F$ is of type $\tilde{K}=\tilde{A}_{m},$ $D_{n}$ or $\tilde{E}_{l}$ , we denote by the same
letter $\tilde{K}$ ( $=\tilde{A}_{m},$ $D_{n}$ or $\tilde{E}_{l}$ respectively) the sublattice of $S_{X}$ generated by com-
ponents of $F$. Then $\tilde{K}$ is contained in the orthogonal complement $[F]^{\perp}$ of the
class $[F]$ in $S_{X}$ and $\tilde{K}/Z[F]$ is isomorphic to a lattice $K=A_{m},$ $D_{n}$ or $E_{l}$

respectively.

LEMMA 2.1. Let $X$ be an algebraic $K3$ surface and let $S_{X}$ be the Picard
lattice of X. Assume $S_{X}=U\oplus K$ where $K$ is a negative definite even lattice.
Then (i) $X$ has an elliptic pencil $\pi$ with a section. (ii) Denote by $F$ a fibre of $\pi$ .
Then $[F]^{\perp}/Z[F]\cong K$.

PROOF. Let $\{e, f\}$ be a basis of $U$ witb $\langle e, e\rangle=\langle f, f\rangle=0$ and $\langle e, f\rangle=1$ .
If necessary replacing $e$ by $\varphi(e)$ , where $\varphi(\in O(S_{X}))$ is a composition of reflec-
tions induced from smooth rational curves on $X$, we may assume tbat $e$ is
represented by the class of a smootb elliptic curve $F$ and the linear system $|F|$

defines an elliptic pencil $\pi:Xarrow P^{1}$ (See [5], \S 3, Proof of Corollary 3). Let $R$

be a divisor which represents the class $f-e$ . Then $R^{2}=-2$ . By the Riemann-
Roch theorem, either $R$ or $-R$ is effective. Since $R\cdot F=1,$ $R$ is effective.

Put $R= \sum_{i=1}^{m}a_{\tau}R_{i}$ , where $R_{t}$ is an irreducible component of $R$ and $a_{i}(1\leqq i\leqq m)$
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is a positive integer. Since F. $R_{i}\geqq 0(1\leqq i\leqq m)$ and $F\cdot R=1$ , there exists an
unique component $R_{k}$ such that $a_{k}=1,$ $F\cdot R_{k}=1$ and $F\cdot R_{i}=0$ for any $i\neq k$ . If
RZIO, then $R_{k}$ is not isomorphic to a smooth rational curve. On the other
hand, the map $\pi|_{R_{k}}$ : $R_{k}arrow P^{1}$ is of degree 1 because $F\cdot R_{k}=1$ , which is impos-
sible. Therefore $R_{k}^{2}=-2$ , and hence $R_{h}$ is a section of $\pi$ . Since $[F]=\varphi(e)$ ,
the assertion (ii) is obvious.

LEMMA 2.2. Let $X$ be an algebraic $K3$ svrface. Assume that $X$ has an
elliptic pencil $\pi$ : $Xarrow P^{1}$ and $[F]^{\perp}/Z[F]\cong K_{1}\oplus\cdot$ $\oplus K_{\gamma}$ , where $F$ is a fibre of $\pi$

and $K_{i}(1\leqq i\leqq r)$ is a lattice isomorphic to $A_{m},$ $D_{n}$ or $E_{l}(m\geqq 1,$ $n\geqq 4$ and $1=$

$6,7,8)$ . Then $\pi$ has a reducible singular fibre $F_{i}(1\leqq i\leqq r)$ whose dual graph is
of type $\tilde{K}_{i}$ (1Si; $r$).

PROOF. Let $e_{i}\in[F]^{\perp}(1\leqq i\leqq k)$ such that $\langle e_{i}, e_{i}\rangle=-2,$ $\langle e_{i}, e_{j}\rangle\geqq 0(i\neq j)$ and
$\{e_{i}mod [F]\}$ is a base of $[F]^{\perp}/Z[F]$ . By the Riemann-Roch theorem, we may
assume that all $e_{i}$ are represented by effective divisors. Put $e_{i}=\Sigma_{j}a_{i.j}[R_{i.j}]$

where $R_{i,j}$ is an irreducible curve and $a_{i}.j$ is a positive integer $(1\leqq i\leqq k)$ . Since
$F\cdot R_{i.j}\geqq 0$ and F. $e_{i}=0$ , we have F. $R_{i.j}=0$ . This means that $R_{i,j}$ is linearly
equivalent to $F$ or $R_{i,j}$ is a ccmponent of some reducible singular fibre of $\pi$ .
Hence $[F]^{\perp}$ is generated by components of fibres of $\pi$ . Let $F_{1},$ $\cdots$ , $F_{t}$ be all
reducible singular fibres of $\pi$ and let $\tilde{S}_{i}$ be the lattice generated by components
of $F_{i}(1\leqq i\leqq t)$ . Put $S_{i}=\tilde{S}_{\mathfrak{i}}/Z[F]$ . Then $S_{i}$ is isomorphic to $A_{m},$ $D_{n}$ or $E_{\iota}$

$(m\geqq 1, n\geqq 4,1=6,7,8)$ . We have seen tbat $[F]^{\perp}/Z[F]=S_{1}\oplus\cdot..\oplus S_{t}$ . Note
that $A_{m},$ $D_{n}$ and $E_{\iota}$ are indecomposable, that is, $A_{m},$ $D_{n}$ and $E_{l}$ are not iso-
morphic to the direct sum of two lattices of type $A_{m’},$ $D_{n’}$ or $E_{l’}$ . Hence
$t=r$ and $S_{i}\cong K_{\sigma(t)},$ $1\leqq i\leqq r$ , where $\sigma$ is a permutation of $\{1, \cdots r\}$ . Since the
dual graph of $F_{i}$ is determined by $S_{i}$ , we have the desired result.

Let us assume that $S_{X}=U(m)\oplus K_{1}\oplus\cdots\oplus K_{r}$ where $r\iota=1$ or 2, and $K_{\ell}$

$\langle$ $1\leqq i\leqq r)$ is a lattice isomorphic to $A_{1},$ $D_{4n}(n\geqq 1),$ $E_{7}$ or $E_{8}$ . Note that $S_{X}$ is
a 2-elementary lattice. It follows from the result of [4], \S 4-2 that there exists
an automorphism $\sigma$ of $X$ of order 2 with $\sigma^{\star}|S_{X}=1_{S_{X}}$ and $\sigma^{*}|T_{X}=-1_{\tau_{X}}$ .
Then by the same proof as that of Lemma 2.1, there exists an elliptic pencil
$\pi=|F|$ : $Xarrow P^{1}$ with $[F]^{\perp}/Z[F]\cong K_{1}\oplus\cdots\oplus K_{\tau}$ . By Lemma 2.2, $\pi$ has a redu-
cible singular fibre $F_{i}$ (l<i$r) whose dual graph is of type $\tilde{K}_{i}(1\underline{<-}i\leqq r)$ . Since
$0\in H_{X},$ $\sigma$ preserves the structure cf $\pi$ .

LEMMA 2.3. Under the abote sifuation, the followmgs hold:
(i) In case that the dual graph of singular fibre $F_{0}$ is of type $\tilde{D}_{4n},\tilde{E}_{7}$ or

$\tilde{E}_{s},$
$\sigma$ acts on $F_{0}$ as follows.
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$F_{0}$ : type $\tilde{D}_{4n}$ ; $F_{0}$ : type $\tilde{E}_{7}$ ; $\tilde{F}_{0}$ : tyPe $E_{8}$

$\frac{\frac{||}{11I}|||}{\frac{1}{||}||\frac{1|1|||}{1I}}\cdots\cdot I$

$\frac{\frac 1||||||}{|,|\frac{1_{I}}{|||}}$

$+$
$\frac{\frac||||1||||}{||||}$ $\frac{1I||||t}{\frac||,|||||}$

$\frac{t1}{||11}$
$\frac{1}{1,}$ –

where $a$ acts on dotted lines identically and acts on simple lines as an automor-
phism of order 2.

(ii) Assume that $\pi$ has a section $R$ and has at least one reducible singular

fibre with the dual graph of type $\tilde{D}_{4n},\tilde{E}_{7}$ or $E_{8}$ . Then $R$ is a fixed curve of $\sigma$ .

PROOF. (i) By Lemma 1.4, $a$ preserves each component of $F_{0}$ and eacb
section invariant. Note that there exists a component $C_{0}$ of $F_{0}$ which meets
three other component. This means that $a$ is an automorphism of $C_{0}$ witb
three fixed points. Hence $C_{0}$ is a fixed curve of $a$ . On tbe other hand, $\sigma^{*}\omega_{X}$

$=-\omega_{X}$ where $\omega_{X}$ is a nowhere vanishing holomorphic 2-form on $X$. There-
fore the set of fixed points of $\sigma$ is either empty or a smooth curve. It now
follows from this fact that the dotted lines in the above figures are exactly
the set of fixed points of $a|F_{0}$ .

(ii) Let $F_{0}$ be a reducible singular fibre with the dual graph of type $\tilde{D}_{4n}$ ,
$\tilde{E}_{7}$ or $\tilde{E}_{8}$ . Then the assertion follows from the following two facts:

(a) $a$ acts on any simple components of $F_{0}$ as a non-trivial automorphism
of order 2; (b) $R$ meets exactly one simple component of $F_{0}$ transversallv and
$\sigma$ has no isolated fixed points.

\S 3. Examples.

In the following, we denote by $e_{\nu}$ a primitive v-th root of 1.

(3.0) For $m=66$ or 42, we gave an example of K3 surface with $m_{X}=m$ in
[2]. Here we give affine equations of such K3 surfaces:

(3.0.1) $m=66$ : $X:y^{2}=x^{3}+t \prod_{i=1}^{11}(t-e_{11}^{i})$ ,

$g:(x, y, t)arrow(e_{66}^{2}\cdot x, e_{66}^{3}\cdot y, e_{66}^{6}\cdot t)$ ,

$S_{X}\cong U$ , $T_{X}\cong U\oplus U\oplus E_{8}\oplus E_{8}$ .
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(3.0.2) $m=42$ : $X:y^{2}=x^{3}+t^{5} \prod_{i\simeq 1}^{7}(t-e_{7}^{i})$ ,

$g:(x, y, t)arrow(e_{42}^{2}\cdot x, e_{42}^{3}\cdot y, e_{42}^{18}\cdot t)$ ,

$S_{X}\cong U\oplus E_{8}$ , $T_{X}\cong U\oplus U\oplus E_{8}$ .

(3.1) $m=44$ . We consider the elliptic curve $E$ over the function field $C(t)$

defined by the equation:
$y^{2}=x^{3}+x+t^{11}$

Let $X$ be tbe Kodaira-N\’eron model of $E$ over $C(t)$ , which is a nonsingular
projective surface having an elliptic pencil $\pi$ . $X$ is also constructed by the
following way: let $(x:y:z)$ be a system of a homogeneous coordinate of $P^{2}$ .
We take two copies $W_{0}=P^{2}\cross C_{0}$ and $W_{1}=P^{2}\cross C_{1}$ of the cartesian product
$P^{2}\cross C$ and form their union $W=W_{0}\cup W_{1}$ by identifying $(x : y : z, t)\in W_{0}$ with
$(x_{1} y_{1} : z_{1}, t_{1})\in W_{1}$ if and only if $t\cdot t_{1}=1,$ $x=t^{4}\cdot x_{1},$ $y=t^{6}\cdot y_{1}$ and $z=z_{1}$ . Then $X$

is given by the following equations:

$f=zy^{2}-x^{3}-xz^{2}-z^{3}t^{11}=0$ ,

$f_{1}=z_{1}y_{1}^{2}-x_{1}^{3}-t_{1}^{8}x_{1}z_{1}^{2}-t_{1}z_{1}^{3}=0$ .

By the theory of elliptic surfaces [1], [8], [9], we can see that $\pi$ has a singular
fibre of type II over $t=\infty$ and 22 singular fibres of type $I_{1}$ over $t^{22}=-4/27$ .
Since $\pi$ has a singular fibre and the base curve of the elliptic pencil $\pi$ is $P^{1}$ ,
$b_{1}(X)=0$ . Moreover $\omega=dt\Lambda(zdx-xdz)/(\partial f/\partial y)$ defines a non-vanishing holomor-
phic 2-form on $X$. Hence $X$ is a K3 surface. We define an automorphism $g$

induced from the following automorphism of $E$ :
$(x, y, t)arrow(e_{44}^{22}x, e_{44}^{11}y, e_{44}^{2}t)$ .

Then $g^{*}\omega=e_{44}^{13}\cdot\omega$ . By Proposition 1.2, rank $(T_{X})=20$ and hence rank $(S_{X})=2$ .
On the other hand, $S_{X}$ contains classes of a section $\{x=z=0\}$ and a fibre which
generates the unimodular lattice $U$ . Therefore $S_{X}\cong U$ . Since $|\det(S_{X})|=$

$|\det(T_{X})|,$ $T_{X}$ is also unimodular. By the classification of even indefinite uni-
modular lattices (cf. [7], Cbap. 5), we have $T_{X}\cong U\oplus U\oplus E_{8}\oplus E_{8}$ . Obviously $g$

acts on $S_{X}$ trivially.

(3.2) $m=36$ . Let $X$ be the Kodaira-N\’eron model of the following elliptic
curve over $C(t)$ :

$y^{2}=x^{3}-t^{5} \cdot\prod_{i=1}^{6}(t-e_{6}^{i})$ .

By the same way as in (3.1), the elliptic surface $X$ is a K3 surface. $X$ has a
singular fibre of type $lI^{*}$ over $t=0$ and 7 singular fibres of type II over $t=\infty$
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and $t^{6}=l$ . $X$ has an automorphism $g$ induced from the following automorphism
of the elliptic curve over $C(t)$ :

$(x, y, t)arrow(e_{36}^{2}\cdot x, e_{36}^{s}\cdot y, e_{36}^{so}\cdot t)$ .

By the same reason as in (3.1), we have that rank $(S_{X})=22-rank(T_{X})=10$ . On
the other hand, $S_{X}$ contains classes of a section, a fibre and components of
singular fibres which generate the unimodular lattice $U\oplus E_{8}$ . Hence $S_{X}\cong U\oplus E_{8}$

and $T_{X}\cong U\oplus U\oplus E_{8}$ . Since a singular fibre of type $II^{*}$ has no symmetry, $g$

acts on $S_{X}$ trivially.

(3.3) $m=28$ . Let $X$ be the Kodaira-N\’eron model of the following elliptic
curve over $C(t)$ :

$y^{2}=x^{3}+x+t^{7}$ .
By the same way as in (3.1), the elliptic surface $X$ is a K3 surface. $X$ has a

$--$ singular fibre of type $II^{*}$ over $t=\infty$ and 14 singular fibres of type $I_{1}$ over $t^{14}=$

$-4/27$ . $X$ has an automorphism $g$ induced from foilowing automorphism of
the elliptic curve over $C(t)$ :

$(x, y, t)arrow(e_{28}^{14}\cdot x, e_{28}^{7}\cdot y, e_{28}^{2}\cdot t)$ .

By the same reason as in (3.2), $S_{X}\cong U\oplus E_{8},$ $T_{X}\cong U\oplus U\oplus E_{8}$ and $g$ acts on $S_{X}$

trivially.

(3.4) $7n=12$ . Let $X$ be the Kodaira-N\’eron model of the following elliptic
curve over $C(t)$ :

$y^{2}-x^{3}-t^{5}(t-1)(t+1)$ .
By the same way as in (3.1), $X$ is a K3 surface. $X$ has 2 singular fibres of
tyPe $II^{*}$ over $t=0,$ $\infty$ and 2 singular fibres of type II over $t=\pm 1$ . $X$ has an
automorphism $g$ induced from the following automorphism of the elliptic curve
over $C(t)$ :

$(x, y, t)arrow(e_{12}^{2}\cdot x, e_{12}^{3}\cdot y, -t)$ .
By the same reason as in (3.2), $S_{X}\cong U\oplus E_{8}\oplus E_{8},$ $T_{X}\cong U\oplus U$ and $g$ acts on $S_{X}$

trivially.

$R+MARK3.5$ . We note here the following fact which is not used in the
proof of our Theorem. The above elliptic K3 surfaces have a unique section.
Moreover the set of all smooth rational curves on $X$ is the set consisting of
components of reducible singular fibres and the section. This follows from the
Vinberg’s result in [11]. The dual graph of all smooth rational curves on $X$

is as follows:
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$0$

$S_{X}=U$

where a vertex $O$ ’ corresponds to a smooth rational curve and two vertices
$E$ and $E’$ are joined by $n$ -tuple line if and only if the intersection number
$E\cdot E’$ is equal to $n$ .

\S 4. Automorphisms which act trivially on Picard groups.

In this section, we shall prove the first part of the theorem.

LEMMA 4.1. If $T_{X}$ is unimodular, then $S_{X}\cong U,$ $U\oplus E_{8}$ or $U\oplus E_{8}\oplus E_{8}$ .

PROOF. Since $|\det(T_{X})|=|\det(S_{X})|,$ $S_{X}$ is also an even unimodular lattice.
By the Hodge index theorem, the signature of $S_{X}$ is $(1, \rho(X)-1)$ . Hence the
assersion follows from [7], Chap. 5.

LEMMA 4.2. If $T_{X}$ is unimodular, then $X$ has an elliptic pencil with a sec-
tion. $\Lambda loreover$ its reducible singular fibre (if exists) is of type $II^{*}$ .

PROOF. This follows from Lemmas 2.1, 2.2 and 4.1.

The first part of the theorem follows from the following:

THEOREM 4.3. (i) If $S_{X}\cong U$ , then $m_{X}|66,44$ or 12.
(ii) $lfS_{X}\cong U\oplus E_{8}$ , then $m_{X}|42,36$ or 28.
(iii) If $S_{X}\cong U\oplus E_{8}\oplus E_{8}$ , then $m_{X}|12$ .
(iv) If $\varphi(m_{X})=rank(T_{X})$ , then $m_{X}=66,44,42,36,28$ or 12.

PROOF. In the following, we mean by an automorphism of an elliptic curve
$F$ an automorphism preserving a group structure of $F$. Let $\pi:Xarrow P^{1}$ be an
elliptic pencil as in Lemma 4.2. Recall that an irreducible singular fibre of $\pi$

is either of type $I_{1}$ or cf type II ([1]). Let $r$ (resp. $s$ ) be the number of
singular fibres of tyPe $I_{1}$ (resp. type II). It is known that

$F: \sum_{singu1arfibre}e(F)=e(X)=24$ ,

where $e(M)$ is the Euler number of a topological space $M$. Since the Euler
number of a singular fibre of type $I_{1}$ , II or $II^{*}$ is 1, 2 or 10, respectively, we
have $2s+r=24-10\cdot k$ , where $k$ is the $n\llcorner^{1}mber$ of singular fibres of type $II^{*}$ .
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CASE (i): $S_{X}=U$ . In this case, $2s+r=24$ . By Proposition 1.2, it suffices
to see that 5 I $m_{X}$ and 8 I $m_{X}$ .

LEMMA 4.4. 5 I $m_{X}$ .

PROOF. Let $g\in H_{X}$ and assume $|g|=5$ . Then $g$ preserves a section $E$ of
the elliptic pencil $\pi$ (Lemma 1.4). On the other hand, if $g^{k}|E=1,$ $g^{k}$ acts on
a fibre $F$ as an automorphism. Note that $|g^{k}|$ is a divisor of 4 or 6. Hence
$g$ acts on $E$ as an automorphism of order 5. Since $2s+r=24$ , the pair $(s, r)$

is equal to $(12, 0)$ , $(7,10)$ or $(2, 20)$ . In any case, the set of fixed points of $g$

lies on the singular fibres of type II. Therefore, if $g$ has a fixed curve, then
its Euler number is non negative. It now follows from the Lefschetz fixed
point formula (cf. [10], Lemma 1.6) and Proposition 1.2 that:

$0\leqq\#$ {isolated fixed points of $g$ } $+_{c:}$

fixed
$\sum_{curve}$

of
$ge(C)$

$= \sum_{i}traceg^{*}|H^{i}(X, Q)=2+traceg^{*}|S_{X}\otimes Q+traceg^{*}|T_{X}\otimes Q$

$=2+2+(-1)\cross 5=-1$ .
Thus we have a contradiction.

LEMMA 4.5. 8 I $m_{X}$ .

PROOF. Assume that $8|m_{X}$ and let $g\in H_{X}$ with $|g|=8$ . If $g$ acts on a
section $E$ as an automorphism of order 2, then $g^{2}$ acts on each fibre as an
automorphism of order 4. Therefore the functional invariant of the elliptic
pencll $\pi$ is equal to the constant 1728 (cf. [1]). However this is impossible
since each singular fibre is either of type $I_{1}$ or of type II. Hence $|g|E|=4$ or
8, and the pair $(s, r)$ is one of the following: $(12, 0)$ , $(10,4),$ $(8,8),$ $(6,12)$ ,
$(4, 16)$ , $(2, 20)$ , $(0,24)$ .

CLAIM. $g$ acts on $E$ as an automorphism of order 4.

PROOF OF CLAIM. If $g$ acts on $E$ as an automorphism of order 8, then
$(s, r)$ is either $(8, 8)$ or $(0,24)$ . Moreover two $g$-invariant fibres are smooth and
the set of fixed points of $g^{4}$ lies on these two fibres. A similar argument as
in the proof of Lemma 4.4 shows that this case contradicts the Lefschetz fixed
point formula.

In case $(s, r)=(12,0),$ $(8,8),$ $(4,16)$ or $(0,24)$ : In this case, two g-invariant
fibres $F_{1}$ and $F_{2}$ are smooth. Recall that $g^{*}\omega_{X}=\alpha(g)\omega_{X}$ , where $\alpha(g)$ is a primi-
tive 8-th root of 1. Let $P$ be the intersection of the section $E$ and $F_{1}$ . By
considering the action of $g$ on the tangent space of $P,$ $g$ acts on $F_{1}$ as an auto-
morphism of order 8 because $g$ acts on $E$ of order 4. This contradicts the
fact that no smooth fibres have an automorphism of order 8.
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In case $(s, r)=(10,4),$ $(6,12)$ or $(2, 20)$ : Set $c=g^{4}$ . Then $f^{*}|S_{X}=1_{S_{X}}$ and
$f^{*}|T_{X}=-1_{\tau_{X}}$ . It follows from [4], Theorem 4.2.2 that the set of fixed points
of $f$ is the smooth curve $C+E’$ , where $C$ is a smooth curve of genus 10 and
$E’$ is a smooth rational curve. By the above claim, $E’=E$ . Since $g$ acts on
$E$ as an automorphism of order 4 and $C\cdot F>0,$ $|g|C|=4$ . Let $F_{1}$ and $F_{2}$ be
singular fibres of type II invariant under $g$ . Then the set of fixed points of $g$

and $g^{2}$ on $C$ is contained in $C\cap(F_{1}\cup F_{2})$ . Since $F_{j}(1\leqq_{J}\leqq 2)$ is not a fixed
curve of $c,$

$C$ passes through the singular points of $F_{1}$ and $F_{2}$ , and both $g$ and
$g^{2}$ have exactly two fixed points on $F_{j}$ which are $E\cap F_{j}$ and $C\cap F_{j}(=the$

singular point of $F_{J}$ ) $(]=1,2)$ (see Figure 1).

Figure 1.

By the Hurwitz formula, we have

4 (2 $\cdot$ genus $(C/\langle g\rangle)-2$ )$+2(4-1)=2$ . genus $(C)-2=18$ .
Hence

8 (genus $(C/\langle g\rangle)-1$ ) $=12$ .
This is a ccntradiction. Thus we now have proved Theorem 4.3, (i).

CASE (ii): $S_{X}=U\oplus E_{8}$ . In this case, $2s+r=14$ . It suffices to prove $m_{X}$

$\neq 26,13,10,8,5$ . Note that $\pi$ has a singular fibre of type $II^{*}$ invariant under
the action of $g$ . By the relation $2s+r=14$ , $g$ does not act on the base of
order 5 or 10, and hence $m_{X}\neq 5,10$ .

LEMMA 4.6. $m_{X}\neq 26,13$ .

PROOF. Assume $13|m_{X}$ and let $g\in H_{X}$ be of order 13. First note that any
smooth elliptic curve has no automorphism of order 13. Hence $g$ acts on a
section $E$ as an automorphism of order 13, $(s, r)=(O, 14)$ and $g$ preserves one
singular fibre $F$ of type $I_{1}$ . Moreover $g$ fixes the intersection point $F\cap E$ and
the singular point of $F$, and hence $F$ is a fixed curve of $g$ . Hence $g$ acts on
the tangent space at the singular point of $F$ trivially. This contradicts the
fact $g^{*}\omega_{X}=e_{13}\cdot\omega_{X}$ .
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LEMMA 4.7. $m_{X}\neq 8$ .

PROOF. If $m_{X}=8$ , then $g$ acts on a section $E$ as an automorphism of order
4 or 8 because the functional invariant of $\pi$ is not equal to the constant 1728.
Hence by $2s+r=14,$ $(s, r)=(5,4)$ or $(1, 12)$ and $g$ acts on the base of order 4.
Note that there exists exactly one singular fibre $F$ of type II invariant under
$g$ . Since $g^{4}|S_{X}=1$ and $g^{4}|T_{X}=-1$ , the set of fixed points of $g^{4}$ is equal to
the smooth curve $C+E_{1}+\cdots+E_{5}$ , where $C$ is a smooth curve of genus 6, $E_{i}$

$(1\leqq i\leqq 5)$ are smooth rational curves ([4], Theorem 4.2.2). By Lemma 2.3, we
may assume that $E=E_{1}$ and $E_{i}(2\leqq i\leqq 5)$ are some components of the singular
fibre $F’$ of type $II^{*}$ . Then $|g|C|=4$ because $g$ acts on the base as an auto-
morphism of order 4 and $C\cdot F>0$ . Denote by $D$ the component with multi-
plicity 3 of $F’$ which intersects the component with multiplicity 6. Then $g^{4}$

acts on $D$ as an involution (Lemma 2.3), and hence $C$ intersects $D$ transversally

and does not meet cther components of $F’$ . Also $F$ is nct a fixed curve of $g^{4}$ ,
$C$ passes through the singular points of $F$. Thus botb $g$ and $g^{2}$ have exactly

two fixed points $C\cap F$ and $C\cap D$ on $C$ (see Figure 2).

$F’$ $F$

Figure 2 (the dotted lines are the fixed $cu^{arrow}ves$ of $g^{4}$ ).

By the Hurwitz formula, we have

$10=2$ . genus $(C)-2=4$ ( $2\cdot$ genus $(C/\langle g\rangle)-2$ ) $+3\cdot 2$ .

This is a contradiction. Thus we have proved Theorem 3.3, (ii).

CASE (iii): $S_{X}=U\oplus E_{8}\oplus E_{8}$ . In this case, $2s+r=4$ . It suffices to show
that $m_{X}\neq 10,5,8$ . By the relation $2s+r=4,$ $m_{X}\neq 10,5$ . We denote by $F_{1},$ $F_{2}$

the singular fibres of $\pi$ of type $II^{*}$ which are invariant under the action of $g$ .

LEMMA 4.8. $m_{X}\neq 8$ .
PROOF. If $m_{X}=8$ , then by $2s+r=4,$ $(s, r)=(O, 4)$ and $g$ (resp. $g^{4}$ ) acts on

the section $E$ (resp. on fibres) as an automorphism of order 4 (resp. of order 2).

Since $g^{4}|S_{X}=1$ and $g^{4}|T_{X}=-1$ , the set of fixed points of $g^{4}$ is equal to the
smooth curve $C+E_{1}+\cdots+E_{9}$ , where $C$ is a smooth curve of genus 2 and $E_{i}$ ,
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$1\leqq i\leqq 9$ , are smooth rational curves ([4], Theorem 4.2.2). By Lemma 2.3, we
may assume that $E_{1}=E$ and $E_{j},$ $2\leqq$ ];S9, are some components of $F_{1}$ and $F_{2}$ .
Then $|g|C|=4$ because $C\cdot F>0$ and $g$ acts on the base as an automorphism
of order 4. Denote by $D_{i}$ the component with multiplicity 3 of $F_{i}$ which inter-
sects the component with multiplicity 6 of $F_{i}(i=1,2)$ . Then $g^{4}$ acts on $D_{i}$ as
an involution (Lemma 2.3), and hence $C$ intersects $D_{i}$ transversally $(i=1,2\rangle$

and does not meet other components of $F_{1}$ and $F_{2}$ . Thus both $g$ and $g^{2}$ have
exactly two fixed points $C\cap D_{i}(i=1,2)$ on $C$ (see Figure 3).

$----t^{\iota^{--------\ulcorner^{J}}--}------1^{-}--c---- 1_{---------}^{D_{1}}--1_{-}^{D_{2_{--}^{-}}}----\lrcorner_{----}^{-}t_{-\}-}^{-}-\downarrow-$

$-\{-\lrcorner_{--}|_{--}E=E_{1}$

$F_{1}$ $F_{2}$

Figure 3 (the dotted lines are the fixed curves of $g^{4}$ ).

By the Hurwitz formula, we have

$2=2$ . genus $(C)-2=4$ ( $2\cdot$ genus $(C/\langle g\rangle)-2$ ) $+3\cdot 2$ .

This is a contradiction. Thus we have proved Theorem 4.3, (iii).

NOW the last assertion (iv) follows from the following:

LEMMA 4.9. 2 $|$ $|H_{X}|$ .

PROOF. First note that $H^{2}(X, Z)\cong S_{X}\oplus T_{X}$ since $S_{X}$ is unimodular. Let $\vee$

’

be an involution of the lattice $H^{2}(X, Z)=S_{X}\oplus T_{X}$ such that $f|S_{X}=1$ and $e|T_{X}$

$=-1$ . Obviously $f$ preserves a holomorphic 2-form and effective cycles on $X$.
Hence by the Torelli theorem for K3 surfaces [5], there exists an automor-
phism $a$ of order 2 with $\sigma^{*}=c$ . Thus we have now finished the proof of
Theorem 4.3.

PROPOSITION 4.10. Assume $\varphi(m_{X})=rank(T_{X})$ . $Lefn$ be the order of the
action of $H_{X}$ on the base of $\pi$ . Then the pair $(S, r)$ and $n$ are uniquely deter-
mined by $m_{X}$ as in the following table:
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$m_{X}$
$|$

$-(n-|$

$66$

$(12, 0)$

$11$

PROOF. If $m_{X}=66$ , 42, 36 or 12, then by the relation $2s+r=24-10k$ ,

general fibres have an automorphism of order 3, and hence the functional in-
variant of $\pi$ is equal to the constant $0$ . Therefore there are no singular fibres
of type $I_{1}$ . If $m_{X}=44$ (resp. 28), then $g$ acts on a section as an automorphism
of order 22 (resp. 14), because general fibres have no automorphisms of order 4.
Hence $(s, r)=(1,22)$ or $(0,24)$ (resp. $(s,$ $r)=(O,$ $14)$). If $g$ is of order 44 and
$\langle$

$s,$ $r)=(O, 24)$ , then two $g$-invariant fibres are of type $I_{1}$ . By the same argu-
ment as in the proof of Lemma 4.6, we have a contradiction.

\S 5. Uniqueness.

In this section, we shall prove the second assertion of the theorem. The
idea of our proof is due to the referee. Let $X$ be an algebraic K3 surface.
Assume that $\varphi(m_{X})=rankT_{X}$ and $m_{X}=66,44,42,36,28$ or 12. Let $\pi$ : $Xarrow P^{1}$

be an elliptic pencil with a secticn mentioned in \S 4. The type of singular
fibres of $\pi$ is completely determined by $m_{X}$ (Lemma 4.2, Proposition 4.10). Let
$X_{\eta}$ a generic fibre of $\pi$ . Then $X_{\eta}$ is an elliptic curve over the function field
$C(t)$ of $P^{1}$ with a rational point and $\pi$ : $Xarrow P^{1}$ is the minimal model of $X_{\eta}$ .
Let

$y^{2}=x^{3}+a(t)x+b(t)$

be the Weierstrass model of $X_{\eta}$ . The discriminant $\Delta(r)$ and the functional
invariant ] $(t)$ are defined by the formula

$\Delta(t)=4a(t)^{3}+27b(t)^{2}$ and $j(t)=a(t)^{3}/\Delta(t)$ .

Let $\nu_{t}\equiv ord_{t}(\Delta)(mod 12),$ $\gamma_{t}=ord_{t}(](t))$ . Then the type of a singular fibre de-
pends on $v_{t},$ $\gamma_{t}$ . In our case, we have the following table (c. f. [1], p. 604,
Table 1, [9], \S 5):

Table 1.
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In case $m_{X}=66,42,36$ or 12, general fibres of $\pi$ have an automorphism of
order 3. Hence $j(t)\equiv 0$ and hence $a(t)\equiv 0$ .

(5.1) In case $m_{X}=66,$ $\pi$ has exactly 12 singular fibres of type II (Proposi-

tion 4.10). We may assume that $\pi$ has singular fibres over $t=0,$ $\xi_{1},$ $\cdots$ , $\xi_{11}$

$(\neq\infty),$ $g$ preserves the fibre $\pi^{-1}(0)$ invariant and $g$ acts on the base as $g(t)=$

$e_{11}\cdot t$ where $e_{11}$ is a primitive ll-th root of unity. Tben by the above Table 1,
$\nu_{0}=\nu_{\xi_{1}}=...=\nu_{\xi_{11}}=2$ and $\nu_{t}=0$ for any $t\neq 0,$ $\xi_{1}$ , $\cdot$ , $\xi_{i1}$ . Therefore

$\Delta(t)=u(t)^{12}\cdot\{t^{2}\prod_{i\Rightarrow 1}^{11}(t-\xi_{i})^{2}\}$

for some $u(t)\in C(t)$ . After a change of coordinate

$(x, y, t)arrow(u(t)^{2}\cdot x, u(t)^{3}\cdot y,$ $t)$ ,

we may assume $b(t)=t\Pi_{x=1}^{11}(t-\xi_{t})$ . Thus $\pi$ : $Xarrow P^{1}$ is isomorphic to the example
(3.0.1).

(5.2) In case $m_{X}=42,36$ or 12, the same way as in (5.1) shows the elliptic
K3 surface $\pi:Xarrow P^{1}$ is isomorphic to the examples (3.0.2), (3.2) or (3.4), respec-
tively.

(5.3) In case $m_{X}=44$ , $\pi$ has exactly one singular fibre of type II and 22
singular fibres of type $I_{1}$ (Proposition 4.10). Moreover $g$ preserves the singular
fibre of type II invariant and acts on the set of singular fibres of type $I_{1}$ as a
permutation of order 22. By a change of coordinate of the base, we may
assume that $\pi$ has the singular fibre of type II over $t=\infty$ , has the singular
fibres of type $I_{1}$ over $t=(-4/2)^{1/22}\cdot e_{22}^{k}(1\leqq k\leqq 22)$ , and $g$ acts on $P^{1}$ by $g(t)=$

$e_{22}t$ where $e_{22}$ is a primitive 22-th root of unity. Since $j(t)$ has exactly 22 poles
of order 1 at $t=(-4/27)^{1/22}\cdot e_{22}^{k}(1\leqq k\leqq 22)$ (see Table 1), we get $J(t)=1/(4+27t^{22})$ .
Then $b(t)^{2}=a(t)^{3}\cdot t^{22}$ , and hence $a(t)^{1/2}\in C(t)$ . Thus we have

$y^{2}=x^{3}+c(t)^{2}\cdot x+c(t)^{3}\cdot t^{11}$ $(c(t)=a(t)^{1/2})$ .

By our assumption on singular fibres,

$\Delta(t)=c(t)^{6}(4+27t^{22})=u(t)^{12}\cdot(4+27t^{22})$

for some $u(t)\in C(t)$ . After a change of coordinate

$(x, y, t)arrow(u(t)^{2}\cdot x, u(t)^{3}\cdot y,$ $t)$ ,

we have an equation $y^{2}=x^{3}+x+t^{11}$ . Thus $\pi$ : $Xarrow P^{1}$ is isomorphic to the ex-
ample (3.1).

(5.4) In case $m_{X}=28$ , the same way as in (5.3) shows that $\pi:Xarrow P^{1}$ is
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isomorphic to tbe example (3.3).

\S 6. Non unimodular case.

First of all we give a proof of the following basic result due to Vorontsov
[12].

THEOREM 6.1 ([12], Theorem 4). Let $X$ be an algebraic $K3$ surface with
$|H_{X}|=m_{X}>1$ . Assscme that the transcendental latfice $T_{X}$ is non unimodular,

$z$ . $e$ . $A_{\tau_{X}}\neq\{0\}$ . Then
(i) $m_{X}=P^{k}$ for some prime number $p$ ,
(ii) $A_{\tau_{X}}$ is a $P$-elementary abelian group.

PROOF. Let $P$ be a prime number with $P|m_{X}$ and let $g\in H_{X}$ with $|g|=p$ .
Then, for any $x^{*}\in T_{X}^{*}=Hom(T_{X}, Z)$ ,

$\tilde{x}=\sum_{\nu=1}^{p}(g^{*})^{\nu}(x^{*})$

is a $g^{\cross}$-invariant vector in $T_{X}\otimes Q$ . Therefore, $\alpha(g)\langle\omega_{X},\tilde{x}\rangle=\langle g^{*}\omega_{X}, g^{*}(\tilde{x})\rangle=$

$\langle\omega_{X}, x\rangle$ , where $\omega_{X}$ is a non-zero holomorphic 2-form on $X$. Since $\alpha(g)\neq 1$ ,
$\prec\omega_{X},\tilde{x}\rangle=0$ , and hence $\tilde{x}\in(T_{X}\cap S_{X})\otimes Q=\{0\}$ . Thus $\tilde{x}=0$ . On the other hand,
$g^{*}$ acts trivially on $A_{S_{X}}\cong A_{\tau_{X}}$ , and hence $\tilde{x}\equiv px^{*}(mod T_{X})$ . Therefore $px^{*}\equiv 0$

$\langle mod T_{X})$ .

COROLLARY 6.2 ([12], Thecrem 7). We keep the assumption of Theorem 6.1.
Then $m_{X}=2^{k}(1\leqq k\leqq 4),$ $3^{l}(1\leqq l\leqq 3),$ $5^{n}(n=1,2),$ $7,11,13,17$ or 19.

PROOF. Since $\varphi(m_{X})|rank(T_{X})$ and rank $(T_{X})\leqq 21$ , it follows from Theorem
6.1 that $m_{X}$ is one of the above list or $m_{X}=2^{5}$ .

LEMMA 6.3. $m_{X}\neq 2^{5}$ .

PROOF. If $m_{X}=2^{5}$ , then rank $(T_{X})=\varphi(m_{X})=2^{4}$ and rank $(S_{X})=6$ . By Theo-
rem 6.1, (ii), $S_{X}$ is a 2-elementary even indefinite lattice of rank 6. Such lattices
are completely described by the Nikulin’s theorem ([4], Thecrem 4.3.2) as fol-
lows: we use the same notation as in [4]. Since rank $(S_{X})\equiv l(S_{X})(mod 2)([4]$ ,

Theorem 4.3.2, (2) $)$ and $l(S_{X})\leqq rank(S_{X}),$ $l(S_{X})=2,4$ or 6. By [4], Theorem
4.3.2, (6), (7), if $l(S_{X})=2$ (resp. $l(S_{X})=6$ ), then $\delta(S_{X})=0$ (resp. $\delta(S_{X})=1$ ). Hence
(rank $(S_{X}),$ $l(S_{X}),$ $\delta(S_{X})$ ) $=(6,2,0),$ $(6,4,0),$ $(6,4,1)$ or (6, 6, 1). Thus we have
that $S_{X}\cong U\oplus D_{4},$ $U(2)\oplus D_{4},$ $U\oplus A_{1}^{4}$ or $U(2)\oplus A_{1}^{4}$ , where $A_{1}^{4}=A_{1}\oplus A_{1}\oplus A_{1}\oplus A_{1}$ . By

the same proof as that of Lemma 2.1, there exists an elliptic pencil $\pi=|F|$ :
$Xarrow P^{1}$ with $[F]^{\perp}/Z[F]\simeq D_{4}$ or $A_{1}^{4}$ . By Lemma 2.2, $\pi$ has a singular fibre of
type I2, III or $I_{\cup}^{*}$ .
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CLAIM 1. The cases $S_{X}\cong U\oplus A_{1}^{4}$ and $U(2)\oplus A_{1}^{4}$ do not occur.

PROOF OF CLAIXI 1. If $S_{X}\cong U\oplus A_{1}^{4}$ or $U(2)\oplus A_{1}^{4}$ , then $g$ acts on the base
of $\pi$ identically because $\pi$ has four reducible sidgular fibres of type I2 (or III)

and $g\in H_{X}$ . In case $S_{X}\cong U\oplus A_{1}^{4}$ , this is impossible because $\pi$ has a section
(Lemma 2.1) and the functional invariant of $\pi$ is not equal to the constant 1728.
In case $S_{X}\cong U(2)\oplus A_{1}^{4}$ , the set of fixed points of $g^{16}$ is a smootb irreducible
curve $C$ of genus 5 ([4], Theorem 4.2.2). It is easy to see that $C$ meets trans-
versally each component of a reducible singular fibre of $\pi$ at two points. Thus
$C\cdot F=4$ where $F$ is a general fibre. Hence $g^{4}$ has four fixed points $C\cap F$ on $F$.
This contradicts the fact that no smooth elliptic curves have an automorphism
of order 8.

CLAIM 2. In case $S_{X}\cong U\oplus D_{4}$ or $U(2)\oplus D_{4},$ $g$ acts on the base as an auto-
morphism of order 16.

PROOF OF CLAIM 2. In case $S_{X}\equiv U\oplus D_{4}$ , $\pi$ has a section (Lemma 2.1).

Hence the assertion follows from the formula $\Sigma_{F:fibre}e(F)=24$ and the fact
that the functional invariant of $\pi$ is not equal to the constant 1728. Also, in
case $S_{X}\cong U(2)\oplus D_{4}$ , the above formula implies $|g|P^{1}|\neq 32$ . Now we assume
$|g|P^{1}|\leqq 8$ . By [4], Theorem 4.2.2, the set of fixed points cf $g^{16}$ is a smooth
curve $C+E$ , where $C$ is a smooth curve of genus 6 and $E$ is a multiple com-
ponent of the singular fibre $F_{1}$ of type $I_{0}^{*}$ (Lemma 2.3). It follows from Lemma
2.3 that $C$ meets transversally each simple component of $F_{1}$ at one point.
Hence $C\cdot F_{1}=4$ . If $g^{s}|C$ is trivial, then a general fibre $F$ of $\pi$ has an auto-
morphism $g^{8}|F$ of order 4 which fixes $C\cap F$. This is a contradiction, and
hence $g^{8}$ acts on $C$ as an involution. If there exists a singular fibre $F’$ of type
$I_{1}$ , then $C$ meets $F’$ at the singular point and other two points of $F’$ . On the
other hand, $g^{8}$ acts on $F’$ as an automorphism of order 4 which is impossible.
Hence it now follows from the formula $\Sigma_{F.fibre}e(F)=24$ that $\pi$ has exactly one
singular fibre $F_{1}$ of type $I_{\cup}^{*}$ and 9 singular fibres $G_{i}$ of type II $(1\leqq i\leqq 9)$ . Since
C. $F_{1}=4,$ $C$ meets each $G_{i}$ at tbe singular point and a smooth point cf $G_{i}$ .
The involution $g^{s}|C$ has at least 22 fixed points on $C$ which are $C\cap F_{1}$ and
$C\cap G_{i}$ . This contradicts the Hurwitz formula.

It follcws from Claim 2, Lemma 2.2 and the formula $\Sigma_{f_{1}bre}e(F)=24$ th\^at $\pi$

has exactly one singular fibre $F_{1}$ of type $I_{0}^{*}$ , one singular fibre $F_{2}$ of type II and
16 singular fibres cf type $I_{1}$ . By [4], Theorem 4.2.2, the set of fixed points of
the involution $g^{16}$ is the foliowing smooth reducible curve:

(a) In case $S_{X}\cong U\oplus D_{4},$ $C+E_{1}+E_{2}$ where $C$ is a smooth curve of genus
7, $E_{1}$ and $E_{2}$ are smooth raticral curves. By Lemma 2.3, we may assume that
$E_{1}\lambda$: a section of $\pi$ and $E_{2}$ is the multiple component of $F_{1}$ .
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(b) In case $S_{X}\cong U(2)\oplus D_{4},$ $C+E$ where $C$ is a smooth curve of genus 6
and $E$ is the multiple component of $F_{1}$ (Lemma 2.3).

In either case $g$ acts on $C$ as an automorphism of order 16 because $C\cdot F>C$

and $g$ acts on the base as an automorphism of order 16. Let $F_{\iota}=L_{1}+L_{2}+L_{3}+$

$L_{4}+2L_{5}$ be the irreducible decomposition of $F_{1}$ . By Lemma 2.3, $g^{16}$ acts on $L_{i}$

as an involution (1Sz S4).

In case (a), we may assume that $L_{1}$ meets $E_{1}$ . Since $F_{2}$ and $L_{j}$ are not
fixed curves of $g^{16},$ $C\cdot L_{j}=1(2\leqq_{J}\leqq 4)$ and $C$ passes through the singular point
of $F_{2}$ . Hence $g^{k}$ $(k=2,4,8)$ has exactly four fixed points on $C$ which are
$C\cap L_{j}(2\leqq_{J}\leqq 4)$ and the singular point of $F_{2}$ (see Figure 4). Hence bv the
Hurwitz formula, $16(2g(C/\langle g\rangle)-2)+15\cdot 4=2g(C)-2=12$ , which is a contradic-
tion.

In case (b), $C\cdot L_{j}=1(1\leqq j\leqq 4)$ and $C$ passes through the singular point and
a smooth point of $F_{2}$ (see Figure 5). By the same way as in the case (a), we
have a contradiction. Thus we have proved Lemma 6.3 and Corollary 6.2.

$L_{1}$ $L_{2}$ $L_{3}$ $L_{4}$

$-----t------$

$F_{1}$ $F_{2}$

Figure 4

$F_{1}$ $F_{2}$

Figure 5
(the dotted lines are the fixed curves of $g^{16}$ ).

THEOREM 6.4 ([12], Theorem 7). We keep the assumption of Theorem 6.1.
Suppose that rank $(T_{X})=\varphi(m_{X})$ . Then $m_{X}=3^{k}(1\leqq k\leqq 3),$ $5^{n}(n=1,2),$ $7,11$ ,
13, 17 or 19. Moreover if $m$ is one of these, then there exists an algebraic $K3$

surface with $m_{X}=m$ and rank $(T_{X})=\varphi(m)$ .

PROOF. For existence, we shall give examples of such K3 surfaces in \S 7.
By Corollary 6.2, we only need to see that there exist no algebraic K3 surfaces
with $m_{X}=2^{k}(1\leqq k\leqq 4)$ and rank $(T_{X})=\varphi(m_{X})$ . Since rank $(T_{X})\geqq 2$ , the case
$m_{X}=2$ does not occur.

CLAIM 1. $m_{X}\neq 4$ .

PROOF OF CLAIM 1. If $m_{X}=4$ , then rank $(T_{X})=2$ and $S_{X}$ is an even 2-
elementary indefinite lattice of rank 20 (Theorem 6.1, (ii)). By the fact $l(S_{X})$

$=l(T_{X})\leqq rank(T_{X})$ and [4], Theorem 4.3.2, (2), (3), we have (rank $(S_{X}),$ $l(S_{X})$ ,
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$\delta(S_{X}))=(20,2,1),$ $i$ . $e$ . $S_{X}\cong U\oplus E_{8}\oplus E_{8}\oplus A_{1}\oplus A_{1}$ . Consider the elliptic pencil $\pi$

with a section defined by an element $x\in U$ with $x^{2}=0$ (Lemma 2.1). Then $\pi$

has two singular fibres of type $II^{*}$ and two singular fibres of type I2 (or III)

(Lemma 2.2). This implies that the functional invariant of $\pi$ is not constant.
Since $g\in H_{X}$ and $\pi$ has 4 reducible singular fibres, $g$ acts on the base of $\pi$

identically. Hence $g$ acts on general fibres as an automorphism of order 4,
which is a contradiction.

CLAIM 2. $m_{X}\pm 8$ .

PROOF OF CLAIM 2. If $m_{X}=8$ , then rank $(T_{X})=4$ , rank $(S_{X})=18$ and $l(S_{X}\rangle$

$=l(T_{X})\leqq rank(T_{X})$ . It follows from [4], Theorem 4.3.2 that (rank $S_{X},$ $l(S_{X})$ ,
$\delta(S_{X}))=(18,2,0),$ $(18,2,1),$ $(18,4,0)$ or (18, 4, 1), $i$ . $e$ . $S_{X}\cong U\oplus E_{8}\oplus D_{8},$ $U\oplus E_{8}\oplus$

$E_{7}\oplus A_{1},$ $U\oplus D_{8}\oplus D_{8}$ or $U\oplus E_{7}\oplus E_{7}\oplus A_{1}\oplus A_{1}$ , respectively. Consider the elliptic
pencil $\pi$ with a section $E$ defined by an element $x\in U$ with $x^{2}=0$ (Lemma 2.1).

In case $S_{X}\cong U\oplus E_{8}\oplus E_{7}\oplus A_{1}$ or $U\oplus E_{7}\oplus E_{7}\oplus A_{1}\oplus A_{1},$ $\pi$ has at least three
reducible singular fibres (Lemma 2.2). By the same argument as in the Proof
of Claim 1, we have a contradiction.

If $S_{X}\cong U\oplus E_{8}\oplus D_{8}$ or $U\oplus D_{8}\oplus D_{8},$ $g$ acts on the base as an automorphism
of order at least 4 because the functional invariant of $\pi$ is not constant. It
follows from the formula $\Sigma_{F.fibre}e(F)=2$ that $\pi$ has 4 irreducible singular
fibres of type $I_{1}$ and $g$ acts on the base as an automorphism of order 4.

In case $S_{X}\equiv U\oplus E_{8}\oplus D_{8},$ $\pi$ has a singular fibre $F_{1}$ of type $II^{*}$ and a singular
fibre $F_{2}$ of type $I_{4}^{*}$ (Lemma 2.2). The set of fixed points of the involution $g^{4}$

is $C+ \sum_{i\Leftarrow 1}^{8}E_{i}$ ([4], Theorem 4.3.2), where $C$ is a smooth elliptic curve and $E_{i}$

(l$i\leqq 8) are smooth rational curves. By Lemma 2.3, we may assume that
$E_{1}=E$ and $E_{i},$ $2\leqq i\leqq 8$ , are components of $F_{1},$ $F_{2}$ . Recall that the set of fixed
points of $g^{4}$ is a smooth curve (c.f. \S 2). If $C$ is a fibre of $\pi$ , then $C\cdot E=1$

which contradicts the above remark. Hence C. $F_{1}>0$ . Therefore $g$ acts on $C$

as an automorphism of order 4 because $|g|E|=4$ . Denote by $D_{1}$ the component
with multiplicity 3 of $F_{1}$ which intersects the component with multiplicity 6
and by $L_{i}$ (l:$ i;$3) the simple components of $F_{2}$ with $L_{i}\cdot E=0(1\leqq i\leqq 3)$ . Then
by Lemma 2.3, $L_{i}(1\leqq i\leqq 3)$ and $D_{1}$ are not fixed curves of $g^{4}$ , and hence $C\cdot L_{i}$

$=C\cdot D_{1}=1$ and $C$ does not meet any other components of $F_{1}$ and $F_{2}$ . Thus
both $g$ and $g^{2}$ have exactly 4 fixed points $C\cap D_{1},$ $C\cap L_{i}(1\leqq i\leqq 3)$ on $C$ (see
Figure 6).
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$F_{1}$ $F_{2}$

Figure 6 (the dotted lines are fixed curves of $g^{4}$ ).

By the Hurwitz formula, we have

$0=2g(C)-2=4(2g(C/\langle g\rangle)-2)+12$ .

This is a contradiction.
In case $S_{X}\cong U\oplus D_{8}\oplus D_{8},$ $\pi$ has two reducible singular fibres $F_{1},$ $F_{2}$ of type

$I_{4}^{*}$ (Lemma 2.2). The set of fixed points of the involution $g^{4}$ is $\Sigma_{i=1}^{8}E_{i}$ , where
$E_{i}(1\leqq i\leqq 8)$ are smooth rational curves. By Lemma 2.3, we may assume that
$E_{1}=E$ and $E_{i}(2\leqq i\leqq 7)$ are components of $F_{1},$ $F_{2}$ . Let $L$ be a simple com-
ponent of $F_{1}$ which does not meet the section $E$ . By Lemma 2.3, $g$ has a fixed
point $P$ on $L$ which is not the intersection point of $L$ and other component.
Since $g$ has no isolated fixed points, tbe curve $E_{8}$ passes through $p$ . Thus $E_{8}$

meets 6 simple components of $F_{1}$ and $F_{2}$ not meeting $E$ (see Figure 7). On the
other hand, $|g|E_{8}|=4$ because $F\cdot E_{8}>0$ and $g$ acts on the base as an automor-
phism of order 4. This contradicts the Hurwitz formula.

$F_{1}$ $F_{2}$

Figure 7 (the dotted lines are the fixed curves of $g^{4}$ ).

CLAIM 3. $m_{X}\neq 16$ .

PROOF OF CLAIM 3. If $m_{X}=16$ , then rank $(T_{X})=8$ , rank $(S_{X})=14$ and $l(S_{X})$

$=l(T_{X})\leqq 8$ . It follows from [4], Theorem 4.3.2 that (rank $(S_{X}),$ $l(S_{X}),$ $\delta(S_{X})$ ) $=$
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$(14, 2, 0),$ $(14,4,0),$ $(14,4,1),$ $(14,6,0),$ $(14,6,1)$ , $(14, 8, 0)$ or (14, 8, 1), $i$ . $e$ .
$S_{X}\cong U\oplus E_{8}\oplus D_{4}$ , $U\oplus D_{8}\oplus D_{4}$ , $U\oplus E_{8}\oplus A_{1}^{4}$ , $U\oplus D_{4}^{3},$ $U\oplus D_{8}\oplus A_{1}^{4},$ $U(2)\oplus D_{4}^{3}$ or $U\oplus$

$D_{4}^{2}\oplus A_{1}^{4}$ . By the same proof as that of Lemma 2.1, there exists an elliptic
pencil $\pi=|F|$ : $Xarrow P^{1}$ with $[F]^{\perp}/Z[F]\cong U^{\perp}$ in $S_{X}$ .

If $\pi$ has a section and has at least three reducible singular fibres, then by
the same argument as in the proof of the above Claim 1, we have a contra-
diction.

In case $S_{X}\cong U(2)\oplus D_{4}^{3},$ $g$ acts on the base as identity and the set of fixed
points of $g^{8}$ is $\Sigma_{i=1}^{4}E_{i}$ , where $E_{i}$ is a smooth rational curve. By Lemma 2.3,
we may assume that $E_{i}(1\leqq i\leqq 3)$ are the multiple components of the singular
fibres of type $I_{0}^{*}$ . It is easy to see that $E_{4}$ meets a general fibre at 4 points.
This implies that a general fibre has an automorphism $g^{4}$ of order 4, and hence
the local functional invariant of $\pi$ is equal to the constant 1728. This is a
contradiction.

Hence we may assume that $S_{X}\cong U\oplus E_{8}\oplus D_{4}$ or $U\oplus D_{8}\oplus D_{4}$ . In these cases,
it is easy to see that $\pi$ has exactly 8 irreducible singular fibres of type $I_{1}$ and
$g$ acts on the base as an automorphism of order 8. By the similar proof of
Claim 2, we can see that these cases do not occur. Thus we have proved
Theorem 6.4.

\S 7. Examples (non unimodular case)

In this section we give examples of algebraic K3 surfaces which have non
unimodular transcendental lattice $T_{X}$ and $\varphi(|H_{X}|)=rank(T_{X})$ (see Theorem 6.4).

By the result of Vorontsov ([12], Theorem 7), such a K3 surface is isomcrphic
to one of these examples. Our examples are elliptic K3 surfaces except $m_{X}=25$ .
In the following we give affine equations of these elliptic K3 surfaces.

(7.1) $m_{X}=19$ . $X:y^{2}=x^{3}+t^{7}x+t$ ,

$g:(x, y, t)arrow(e_{19}^{7}\cdot x, e_{19}\cdot y, e_{19}^{2}\cdot t)$ .

(7.2) $m_{X}=17$ . $X:y^{2}=x^{3}+t^{7}x+t^{2}$ ,

$g$ : $(x, y, t)arrow(e_{17}^{7}\cdot x, e_{17}^{2}\cdot y, e_{17}^{2}\cdot t)$ .
(7.3) $m_{X}=13$ . $X:y^{2}=x^{3}+t^{5}x+t$ ,

$g:(x, y, t)arrow(e_{13}^{6}\cdot x, e_{13}\cdot y, e_{13}^{2}\cdot t)$ .
(7.4) $m_{X}=11$ . $X:y^{2}=x^{3}+t^{5}x+t^{2}$ ,

$g$ : $(x, y, t)arrow(e_{11}^{5}\cdot x, e_{11}^{2}\cdot y, e_{11}^{2}\cdot t)$ .
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(7.5) $m_{X}=7$ . $X:y^{2}=x^{3}+t^{3}x+t^{8}$ ,

$g:(x, y, t)arrow(e^{3}\cdot x, e_{7}\cdot y, e_{7}^{2}\cdot t)$ .

(7.6) $m_{X}=5$ . $X:y^{2}=x^{3}+t^{3}x+t^{7}$ ,

$g:(x, y, t)arrow(e_{5}^{3}\cdot x, e_{5}^{2}\cdot y, e_{5}^{2}\cdot t)$ .

(7.7) $m_{X}=27$ . $X:y^{2}=x^{3}+t \cdot\prod_{\nu=1}^{9}(t-e_{27}^{3\nu})$ ,

$g:(x, y, t)arrow(e_{27}^{2}\cdot x, e_{27}^{3}\cdot y, e_{27}^{6}\cdot t)$ .

(7.8) $m_{X}=9$ . $X:y^{2}=x^{3}-t^{5} \cdot\prod_{\nu=1}^{3}(t-e_{9}^{3\nu})$ ,

$g$ : $(x, y, t)arrow(e_{9}^{2}\cdot x, e_{9}^{3}\cdot y, e_{9}^{3}\cdot t)$ .

(7.9) $m_{X}=3$ . $X:y^{2}=x^{3}-t^{5}(t-1)^{5}(t+1)^{2}$ ,

$g$ : $(x, y, t)arrow(e_{3}\cdot x, y, t)$ .

REMARK 7.10. Let $\pi$ : $\tilde{X}arrow P^{1}$ be the Kodaira-N\’eron model of $X$. Let $r$ be
the rank of the Mordell-Weil group of $\pi$ . Then it follows from [9], \S 5 that
$r$ and the singular fibres of $\pi$ are as follows:

Table 2.

By the formula rank $(S_{X})=2+r+\Sigma_{F:fibre}$[ $\#$ {components of $F\}-1$ ] $([8])$ , we
can see $\varphi(m_{X})=rank(T_{X})$ .

REMARK 7.11. In the above examples, $g\in H_{X}$ . In fact, in case of $m_{X}=5$ ,

7, 11, 13, 17 or 19, any reducible singular fibres have no symmetries of order
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$m_{X}$ . In particular, $g$ preserves each component of them. In case of $m_{X}=3,9$ ,

or 27, by definition of (X, $g$ ), $g$ preserves at least one section, and hence $g$

preserves each component of reducible singular fibres. It is known that $S_{X}$ is
generated by sections and components of singular fibres ([8]). On the other
hand, $g^{*}|S_{X}\otimes Q$ is a representation of the cyclic group of order $m_{X}$ over $Q$ .
Since $r\leqq 1$ , we have the desired result.

Note that all above elliptic K3 surfaces have an automorphism $c:(x, y, t)arrow$

$(x, -y, t)$ . However this involution acts on $S_{X}$ nontrivially.

(7.12) $m_{X}=25$ . In this case, rank $(S_{X})=22-rank(T_{X})=2$ . By the theory
of reductions of indefinite bilinear forms of rank 2, there are no elements $x\in S_{X}$

for which $x^{2}=0$ . In particular, $X$ does not have a structure of elliptic surfaces
([5], \S 3, Corollary 3). We construct a K3 surface with $m_{X}=25$ as follows:

Let $C$ be a non singular sextic curve in $P^{2}$ defined by the following equa-
tion: $C=\{x_{0}^{6}+x_{0}x_{1}^{5}+x_{1}x_{2}^{5}=0\}$ . Let $\varphi be$ atransformation defined by $\varphi(x_{0}:x_{1}:x_{2})$

$=(x_{0} : e_{25}^{5}\cdot x_{1} : e_{2\overline{o}}^{4}\cdot x_{2})$ . Then $C$ is invariant under $\varphi$ . Denote by $X$ the double
covering of $P^{2}$ ramified at $C$ . Then $X$ is a K3 surface. Let $g$ be an auto-
morphism induced from $\varphi$ so that the order of $g^{*}|T_{X}$ is odd. Note that an
affine equation of $X$ is given by $z^{2}=1+x^{5}+xy^{6}$ and $\omega_{X}=(dx\Lambda dy)/z$ defines a
nowhere vanishing holomorphic 2-form on $X$. Then $g^{*}\omega_{X}=e_{25}^{9}\omega_{X}$ . Since
$\varphi(25)|rank(T_{X}),$ $rank(S_{X})=2$ . Moreover $g|S_{X}\otimes Q$ is representation of $Z/25$

over $Q$ , and hence $g$ acts trivially on $S_{X}$ .
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