
J. Math. Soc. Japan
Vol. 44, No. 1, 1992

Non-commutative lens spaces

By Kengo MATSUMOTO and Jun TOMIYAMA

(Received July 18, 1990)
(Revised Nov. 16, 1990)

0. Introduction.

It is based on the classical Gelfand-Naimark theorem for commutative $C^{*}-$

algebras to think of the theory of $c*$-algebras as non-commutative general
topology. In the early part of the $1980’ s$ , the explosive development of K-
theory for $c*$-algebras began to make a much stronger case for $C^{*}$-algebras as
non-commutative topology ([BDF], [Col], [Ell], [Ka], [PV], [Ro], interalia).

AS part of such a development of $K$-theory in operator algebras, Connes began
to investigate the theory of non-commutative differential geometry in [Co2].

Since then, many operator algebraists have investigated non-commutative ge-
ometry and topology in the setting of $c*$ -algebras, for example, higher di-
mensional non-commutative tori in [E12], Yang-Mills on non-commutative 2-tori
in [CR], the K\"unneth and universal coefficient theorems of $K$-theory in [RS],

deformation quantization by Poisson structures in [Ri2], and quantum groups
in [Wol], [Wo2]. These special non-commutative $c*$-algebras, resembling
ordinary manifolds in a sense, are sometimes called “non-commutative manifolds”.
Although we have not found yet the decisive definition of non-commutative
manifold, these $c*$-algebras are often considered as non-commutative manifolds,
and the theory of non-commutative geometry and topology on them has been
developing. Among the examples of non-commutative manifolds, the irrational
rotation $c*$-algebras, called non-commutative tori, have been playing a central
r\^ole, especially in Connes’s non-commutative differential geometry. Since many
examples support the prosperity of ordinary topology and differential geometry
today, the presentation of new examples of “non-commutative manifolds” would
perhaps be significant for the development of the theory of non-commutative
manifolds in the future. With this in mind, we shall provide some new ex-
amples of non-commutative manifolds in the category of $c*$-algebras and in-
vestigate their structures.

This paper is the second step (following [Mal]) of our plan, in which we
aim toward the construction of a theory of non-commutative 3-manifolds.

The first author (in [Mal]) has introduced one method of deforming a 3-
sphere into non-commutative $c*$-algebras which gives rise to a one-parameter
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family $\{S_{\theta}^{3}\}_{\theta\in R}$ of $c*$-algebras. He has characterized them as the universal $C^{*}-$

algebras determined by the following relations:

$S^{*}S=SS^{*}$ , $T^{*}T=TT^{*}$ , $TS=e^{2\pi i\theta}ST$ ,

$(1-T^{*}T)(1-S^{*}S)=0$, $|S||=||T||=1$ .

TO recall their construction, they have been obtained by attaching two non-
commutative solid tori, the crossed product $c*$-algebras $C(D^{2})\cross_{0}Z$ of continuous
function algebras on the 2-disk in the complex plane by rotation by $\theta$ around
the origin, on their boundaries. Namely, they are defined as non-commutative
versions of genus one Heegaard splitting of $S^{3}$ .

It is known to many topologists that a 3-manifold which can be obtained
by a genus one Heegaard splitting, in the class of compact connected orientable
3-manifolds without boundary, is a lens space. In the present paper, following
the idea used in the construction of the non-commutative 3-sphere mentioned
above, we shall define non-commutative versions of lens spaces and study their
structure. We shall then prove a complete structure theorem for these non-
commutative lens spaces as $C^{*}$-algebras, and realize them as the universal $C’-\vee’$

algebras determined by certain relations.
Recall that, for coprime integers $P,$ $q$ , the lens space $L(p, q)$ of type $(p, q)$

can be obtained by sewing two solid tori on their boundaries, which are 2-tori,
by identifying a meridian on one solid torus with a $(q, p)$-torus knot on the
other solid torus. Here a $(q, p)$-torus knot means a knot written on the bound-
ary of a solid torus which runs $q$ times along a longitude $P$ times along a
meridian (cf. [He], [Ja]). We will imitate this construction in the category of
non-commutative $c*$-algebras to get non-commutative versions of $L(p, q)$ .

In this connection, note that we already have non-commutative versions of
solid torus, $D_{\theta}=C(D^{2})x_{\theta}Z$, defined in [Mal], and of the 2-torus, $A_{\theta}=C(S^{1})\cross$

$\theta Z$, defined in [Ril]. By using the toral automorphisms on $A_{\theta}$ given in [Bre]

and [Wa], we shall construct non-commutative lens spaces $L_{0}(P, q)$ with a
deformation parameter $\theta\in R$. This construction is carried out in \S 1. It is
almost unnecessary to say that this construction is a generalization of that of
the 3-sphere $S_{\theta}^{3}$ . In fact, for $(P, q)=(1,0)$ , we have $L_{\theta}(1, O)=S_{\theta}^{3}$ . In \S 2, we
show that the algebras $L_{\theta}(p, q)$ are nuclear and that they are not of type I
for irrational $\theta’ s$ . Their $K$-groups have torsion depending on $p$ . Note that in
the commutative case we have, as very interesting examples of these manifolds,
the 3-sphere $S^{3}$ , three demensional real projective space $RP^{3}$ , and a trivial $S^{2}-$

bundle over $S^{1}$ . We will discuss non-commutative versions of these manifolds
in \S 3. There is another description of lens spaces. By considering $S^{3}$ as the
unit sphere of $C^{2}$ , we have a cyclic group action $\tau$ on $S^{3}$ given by $\tau(z, w)=$

$(e^{2\sim i/p}\vee z, e^{2q\pi i/p}w),$ $(z, w)\in S^{3}$ . It is known that $L(p, q)$ can be realized as the
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orbit space of $S^{3}$ under the action $\tau$ . Namely, the universal covering space of
$L(p, q)$ , whose covering transformation group is generated by the action $\tau$ , is
$S^{3}$ . In \S 4 and \S 5, we shall present corresponding discussions for our non-
commutative versions and prove the following theorem:

THEOREM A (Theorem 5.1). The non-commutative lens space $L_{0}(p, q)$ can be
realized as a fixed $p\alpha nt$ subalgebra of the non-commutative 3-sphere $s\partial/p$ under a
certain cyclic group action on it.

Let $V$ and $U$ be unitary generators of $A_{0}$ satisfying the relation $VU=$
$e^{2\pi i0}UV$. In \S 6, we will analyze the structure of $L_{\theta}(p, q)$ to obtain the follow-
ing structure theorem:

THEOREM $B$ (Theorem 6.8). The non-commutative lens space $L_{\theta}(p, q)$ can be
realized as the $C^{*}$-algebra of all $A_{\theta}$ -valued continuous functions on closed interval
[–1, 1] whose values at $-1$ and 1 belong to $C^{*}(V)$ and $C^{*}(V^{q}U^{p})$ , the $C^{*}$-subal-
gebras of $A_{\theta}$ generated by $V$ and $V^{q}U^{p}$ respectively.

This result is based on the fact that our non-commutative solid torus be-
comes the $c*$-algebra of all $A_{0}$ -valued continuous functions on $[0,1]$ whose
values at $0$ belong to the $c*$-subalgebra $C^{*}(V)$ generated by $V$ . By Theorem
$B$ we know the complete structure of $L_{\theta}(p, q)$ as $C^{*}$-algebra modulo $A_{\theta}$ . In
particular, our non-commutative 3-sphere $S_{\theta}^{3}$ has its structure as the $c*$-algebra
of all $A_{\theta}$ -valued continuous functions, whose values at $-1$ and 1 belong to the
$c*$-subalgebra $C^{*}(U)$ and $C^{*}(V)$ respectively.

Furthermore, in \S 7, we will realize $L_{0}(p, q)$ as a universal $C^{*}$-algebra
generated by three elements with some relations. Under the assumption that
$q$ must be 1 when $p=0$ , the result is the following one:

THEOREM $C$ (Theorem 7.6). For non-negative coprime integers $q,$ $p,$ $L_{0}(p, q)$

can be realized as the universal $C^{*}$-algebra generated by three normal operators
$B,$ $C$ and $N$ with the following relations:

(1) $CB=e^{2p\pi i\theta}BC$

(2) $CN=e^{2..i0}-NC$ , $BN=e^{2q\pi\ell\theta}NB$

(3) $B^{*}B+C^{*}C=1$

(4) $N^{*}N=B^{*}B\cdot C^{*}C$

(5) $C^{q}N^{p}=(C^{*}C)^{(p+q)/2}(B^{*}B)^{(p-1)/2}\cdot B$ $(p\approx O)$

$(B^{*}B)^{1/2}\cdot C=(C^{*}C)^{1/2}\cdot B$ $(p=0)$ .
Theorem $C$ may be regarded as a generalization of the main theorem in

[Mal]. However, the proof of Theorem $C$ will be given by a completely dif-
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ferent method from the extended version of the proof of the theorem in [Mal].

We will use Theorem $B$ for our proof this time.
The above operator relations seem to be different from a generalized form

appeared in [Mal]. We shall study, in \S 8, the operator relations of $L_{\theta}(1,0)=$

sg in detail so that we shall know that they are very similar to those of
Woronowicz’s quantum group $S_{\nu}U(2)$ . Finally, we will refer to an interesting
example of non-commutative lens spaces, that is $L_{\theta}(2,1)=RP_{\theta}^{3}$ the non-com-
mutative real projective space. We will describe explicitly the operator rela-
tions of $RP_{\theta}^{3}$ as the universal $C^{*}$-algebra.

We remark that a non-commutative version of 2-sphere has recently con-
structed and studied in [BEEK] by using a non-commutative 2-torus. But the
method of its construction is completely different from that of our construction
of non-commutative lens spaces.

It is possible to generalize our discussions for higher dimensional lens spaces
and deformation $C^{*}$-algebras of $L(p, q)$ by continuous functions in their centers
instead of constant $\theta$ . These discussions will be appeared somewhere (cf.
[Ma2], [Ma3] $)$ .

We are deeply indebted to S. L. Woronowicz for his helpful discussions and
suggestions about the structure of tbe $c*$-algebras $L_{\theta}(p, q)$ . Thanks are also
due to Y. Kametani for fruitful discussions in the presentation of this paper.

1. Preliminaries ascd the construction of non-commutative lens spaces.

Let $\theta$ be an arbitrary but fixed real number. We provide first some nota-
tions following [Mal].

Let $D^{2}$ be the closed unit disk in the complex plane whose boundary is the
unit circie $S^{1}$ . We consider the $\theta$ -rotation homeomorphism $\alpha_{0}$ on $D^{2}$ given by

$\alpha_{\theta}(re^{2\pi i\xi})=re^{2ri(\xi+\theta)}$ $0\leqq r$ , $\xi\leqq 1$ .

It then induces an automorphism on the $C^{*}$ -algebra $C(D^{2})$ of all complex valued
continuous functions on $D^{2}$ , which is also denoted by $\alpha_{\theta}$ . Note that the restric-
tion of $\alpha_{\theta}$ to the boundary $\partial D^{2}=S^{1}$ also gives a homeomorphism on it. Then
the non-commutative solid torus $D_{0}$ has been defined, in [Mal], as the crossed
product $C^{*}$-algebra $C(D^{2})\cross_{\theta}Z$ .

In the $C^{*}$-algebra $D_{\theta}$ , there exist two canonical generators $y$ and $v$ . I $Ile$

former is the normal operator coming from the generating function of $C(D^{2})$

defined by
$y(re^{2\pi i\xi})=re^{2\pi i\xi}$ $0\leqq r$ , $\xi\leqq 1$ .

And the latter is the unitary operator coming from the positive generator of
the infinite cyclic group $Z$ in $C(D^{2})\cross_{\theta}Z$ . Hence they satisfy the following
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covariant relatlon in $D_{\theta}$ :
$vyv*=e^{2\pi i\theta}y$ . (1-1)

Next, consider $(-\theta)$-rotation homeomorphism on $D^{2}$ . Let $x$ and $u$ be the
elements in $D_{-\theta}=C(D^{2})\cross-0Z$ corresponding to the $y$ and $v$ respectively. Thus
we have the similar covariant relation to (1-1) in $D_{-\theta}$ :

$uxu*=e^{-2\tau i\theta_{\chi}}$ . (1-2)

NOW the surjection from $C(D^{2})$ to $C(S^{1})$ , which is induced by restricting func-
tions of $C(D^{2})$ to the boundary $\partial D^{2}=S^{1}$ , is compatible with the $\theta$ -rotation
homeomorphism on them. Hence it lifts to a surjection $\pi_{0}$ from $C(D^{2})\cross_{\theta}Z=$

$D_{\theta}$ onto $C(S^{1})\cross_{0}Z$, which is written as $A_{\theta}$ throughout this paper regardless
as $\theta$ is irrational or not. Similarly we have a surjection $\pi-\theta$ from $D_{-\theta}$ to $A_{-\theta}$ .
Put

$U=\pi_{\theta}(y)$ , $V=\pi_{\theta}(v)$ and $0=\pi- o(x)$ , $i^{\rangle}=\pi_{-0}(u)$ .

Then $V$ and $U$ are the generating pair of unitaries in $A_{0}$ as well as the pair
$(\hat{V}, O)$ in $A_{-0}$ satisfying familiar relations:

$VU=e^{2\pi i0}UV$ and $\hat{V}\hat{U}=e^{-2\pi i0}\hat{U}\hat{V}$ (1-3)

Let $\rho_{0}$ be the isomorphism from $A_{-\theta}$ to $A_{0}$ given by

$\rho_{0}(0)=V$ and $\rho_{0}(\hat{V})=U$ .

Then the $C^{*}$-algebra, our non-commutative 3-sphere, $S_{\theta}^{3}$ has been defined as

$S_{0}^{3}=\{(a, b)\in D_{-0}\oplus D_{\theta}|\rho_{0}\circ\pi_{-\theta}(a)=\pi_{0}(b)\}$ .

We will consider next to replace the above $\rho_{0}$ by another isomorphisms
and construct a number of non-commutative 3-manifolds, which we call non-
commutative lens spaces.

NOW fix coprime integers $p,$ $q$ , and take two integers $l$ and $m$ satisfying

ql–pm $=1$ so that the determinant of the matrix $A=[_{p}^{q}ml]$ is one. Then tbe

matrix $A$ induces the automorphism $\rho_{A}$ on $A_{0}$ as in the following way:

$\rho_{A}(V)=e^{-pq\pi i\theta}V^{q}U^{p}$ and $\rho_{A}(U)=e^{-lm\pi i\theta}V^{m}U^{\iota}$ . (1-4)

It is easy to see that $\rho_{AB}=\rho_{A^{\circ}}\rho_{B}$ for $A,$ $B\in SL(2, Z)$ . Namely, $\rho$ gives an
action of $SL(2, Z)$ on $A_{0}$ (cf. [Bre], [Wa]).

We define the $c*$-algebra $L_{\theta}(P, q)$ , which we call the non-commutative lens
space of type $(p, q)$ , by the following way;

$L_{\theta}(p, q)=\{(a, b)\in D_{0}\oplus D_{\theta}|\rho_{A}\circ\pi_{\theta}(a)=\pi_{0}(b)\}$ .

We shall show that the above definition is independent of the choice of
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integers 1 and $m$ . The fact is rather obvious in the commutative case.
The following lemma plays crucial r\^oles in our further discussions.

LEMMA 1.1. Let $\rho_{\Lambda}$ be the automorphism on $A_{\theta}$ defined from a matrix $A=$

$[cad]\in SL(2, Z)$ by

$\rho_{A}(V)=e^{-ac\pi\ell 0}V^{\alpha}U^{c}$ and $\rho_{A}(U)=e^{-bd\Gamma i0}V^{b}U(f$

Then there exists an automorphism $\hat{\rho}_{\Lambda}$ on $D_{\theta}$ satisfying

$\pi_{\theta}\circ\hat{\rho}_{A}=\rho_{A}\circ\pi_{\theta}$ (1-5)

if and only if $a=d=\pm 1$ and $c=0$ .

PROOF. Assume that there exists an automorphism $\hat{\rho}_{A}$ on $D_{\theta}$ satisfying
(1-5). Then we have the following commutative diagram on K-theory:

$K_{1}(D_{\theta})>K_{1}(A_{\theta})\underline{(\pi_{\theta})_{*}}$

$\downarrow(\hat{\rho}_{A})_{*}$ $\downarrow(\rho_{\Lambda})_{*}$

$K_{1}(D_{\theta})K_{1}(A_{\theta})\overline{(\pi_{\theta})_{*}}$

We note that $K_{1}(D_{0})$ is isomorphic to $Z$ whose generator is the class of $v$ so
that we see

$(\hat{\rho}_{A})_{*}([v])=\pm[v]$ in $Z[v]=K_{1}(D_{\theta})$ .

Therefore we have

$(\pi_{\theta})_{*}\circ(\hat{\rho}_{A})_{*}([v])=(\pi_{\theta})_{*}(\pm[v])=\pm[V]$ in $K_{1}(A_{\theta})$

and
$(\rho_{A})_{*}\circ(\pi_{\theta})_{*}([v])=(\rho_{A})_{*}([V])=a[V]+c[U]$ in $K_{1}(A_{\theta})$ .

This implies that $c=0,$ $a=\pm 1$ and hence $d=\pm 1$ .
Conversely, for a given matrix $A=\{\begin{array}{ll}1 b0 1\end{array}\}$ , we put

$\hat{\rho}_{A}(v)=V$ and $\hat{\rho}_{A}(y)=e^{-b\pi i\theta}v^{b}y$ .

Notice that $\hat{\rho}_{A}(y)$ and the unit 1 generate a commutative $c*$-algebra. As $\hat{\rho}_{A}(v)$

and $\hat{\rho}_{A}(y)$ satisfy the covariance relation:

$\hat{\rho}_{A}(v)\hat{\rho}_{A}(y)\hat{\rho}_{\Lambda}(v)^{*}=e^{2\tau i\theta}\hat{\rho}_{A}(y)$ ,

$\hat{\rho}_{A}$ can yield an automorphism on $D_{\theta}$ because of the universality of the crossed
product $C(D^{2})\cross_{\theta}Z$ . It is then clear that $\hat{\rho}_{A}$ satisfies the condition (1-5).

When the matrix $A$ is of the form $\{\begin{array}{ll}-1 b0 -1\end{array}\}$ , by putting

$\hat{\rho}_{A}(v)=v*$ and $\hat{\rho}_{A}(y)=e^{b\pi i\theta}v^{b}y*$ ,
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we obtain a desired automorphism on $D_{\theta}$ by the same reason as above. $\square$

PROPOSITION 1.2. In the construction of $L_{0}(P, q)$ , the isomorphism class of
$L_{0}(p, q)$ does not dePend on the choice of integers 1, $m$ satisfying ql-pm $=1$ .

PROOF. Let $j,$ $k$ be another pair of integers satisfying $q$] $-pk=1$ . Put

$A=\{\begin{array}{ll}q mp l\end{array}\}$ and $B=\{\begin{array}{ll}q kp J\end{array}\}$ .

For the difference between $L_{\theta}(p, q)$ constructed through $A$ and $L_{0}(p, q)$ done
through $B$ , we write them as $L_{\theta}^{A}(p, q)$ and $L_{\theta}^{B}(p, q)$ respectively. As the matrix
$D=A^{-1}B$ is of the form $\{\begin{array}{ll}1 *0 1\end{array}\}$ , there exists an automorphism $\hat{\rho}_{D}$ on $D_{0}$ by

Lemma 1.1, which satisfies $\pi_{\theta}\circ\hat{\rho}_{D}=\rho_{D}\circ\pi_{0}$ . Define the automorphism $\Phi$ on
$D_{\theta}\oplus D_{0}$ by $\Phi(a, b)=(\hat{\rho}_{D}(a), b),$ $(a, b)\in D_{\theta}\oplus D_{\theta}$ . One easily sees that $\Phi$ induces
an isomorphism from $L_{0}^{B}(P, q)$ to $L_{\theta}^{A}(P, q)$ . In fact, for $(a, b)\in D_{\theta}\oplus D_{\theta}$ satisfy-
ing $\rho_{B}\circ\pi_{\theta}(a)=\pi_{\theta}(b)$ , we have

$\rho_{A}\circ\pi_{\theta}(\hat{\rho}_{D}(a))=\rho_{A}\circ\rho_{D}\circ\pi_{0}(a)=\rho_{AD}\circ\pi_{\theta}(a)=\pi_{\theta}(b)$ .

Thus $\Phi(a, b)$ belongs to $L_{\theta}^{A}(P, q)$ . Since the construction of the inverse isomor-
phism from $L_{0}^{A}(P, q)$ to $L_{0}^{B}(P, q)$ goes in a similar way, they are mutually
isomorphic. $\square$

We have another, but similar, construction of $L_{0}(p, q)$ by using attaching
matrix of determinant of minus one.

For given coprime integers $P,$ $q$ , we take integers $r,$ $s$ satisfying ps–qr $=1$ .
The matrix $E=[qp$ $r]$ is of determinant minus one. Let $\hat{V}$ and $\hat{U}$ be canonicaI

unitary generators for $A_{-0}$ satisfying $\hat{V}\hat{U}=e^{-2\pi i\theta}O\hat{V}$ . The matrix $E$ induces
an isomorphism $\rho_{E}$ from $A_{-\theta}$ to $A_{0}$ such that

$\rho_{E}(\hat{V})=e^{-pq\pi i0}V^{q}U^{p}$ and $\rho_{E}(O)=e^{-rs\tau i\theta}V^{s}U^{r}$ .

Here we define a new $C^{*}$-algebra $L_{0}(p, q)$ as

$L_{0}(p, q)=\{(a, b)\in D_{-\theta}\oplus D_{\theta}|\rho_{E}\circ\pi_{-\theta}(a)=\pi_{0}(b)\}$

Similarly to Lemma 1.1, the following lemma assures that it is independent of
the choice of the integers $r,$ $s$ as long as ps–qr $=1$ . We skip the proof since
it goes along with the same lines of the proof of Lemma 1.1.

LEMMA 1.3. Let $\rho_{B}$ an isomorphism from $A_{-\theta}$ to $A_{\theta}$ defined from the matrix
$B=\lfloor_{C}^{-}a$ $db]$ in $GL(2, Z)$ of determinant minus one by

$\rho_{B}(\hat{V})=e^{-ac\pi i\theta}V^{a}U^{c}$ and $\rho_{B}(O)=e^{-bcL\pi i\theta}V^{b}U^{d}$ .
Then there exists an isomorphism $\hat{p}_{B}$ from $D_{-\theta}$ to $D_{0}$ satisfying
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$\pi_{0}\circ\hat{\rho}_{B}=\rho_{B}\circ\pi_{- 0}$

if and only if $a=-d=\pm 1$ and $c=0$ . Thus, by using similar discussions to the
previous one, we $al$so have the following:

PROPOSITION 1.4. The isomorphism class of $C^{*}$-algebra $\hat{L}_{0}(p, q)$ does not
depend on the choice of integers $r,$ $s$ as long as $ps-qr=1$ .

Furthermore one may see the next proposition.

PROPOSITION 1.5. $L_{0}(p, q)$ is isomorPhic to $L_{0}(p, q)$ .

PROOF. For the coprime integers $P$ and $q$ , we take two pairs of two in-
tegers $(l, m)$ and $(r, s)$ sucb that ql–pm $=1$ and qr–ps $=-1$ . Put

$A=\{\begin{array}{ll}q mp l\end{array}\}$ and $E=\{\begin{array}{ll}q sp r\end{array}\}$ .

Then we have $A^{-1}E=[_{0}^{1}$ $ls-mr-1\rfloor$ . Hence by Lemma 1.3, the isomorphism $\rho_{A^{-1}E}$

from $A_{-\theta}$ to $A_{0}$ can be extended to an isomorphism $\hat{\rho}_{A}-1E$ from $D_{-\theta}$ to $D_{\theta}$

satisfying
$\pi_{0}\circ\hat{\rho}_{A- 1E}=\rho_{A^{-1}E}\circ\pi_{-\theta}$ .

It follows that the isomorphism $\Psi$ from $D_{-0}\oplus D_{\theta}$ to $D_{0}\oplus D_{0}$ defined by

$\Psi(a, b)=(\hat{\rho}A^{-1}E(a), b)$ , $(a, b)\in D_{-\theta}\oplus D_{\theta}$

induces an isomorphism from $L_{0}(p, q)$ to $L_{0}(p, q)$ as in the proof of Proposition
1.2. $\square$

Thus we need not make difference between $L_{0}(p, q)$ and $L_{0}(p, q)$ henceforth.
Hence we unify and write them as $L_{\theta}(p, q)$ .

We remark that in the definition of $L_{0}(p, q)$ , we may rearrange the attach-
ing isomorphism $\rho_{E}$ as the following one:

$\tilde{\rho}_{E}(\hat{V})=V^{q}U^{p}$ and $\tilde{p}_{E}\langle O)=V^{s}U^{r}$

for $E=\{\begin{array}{ll}q sp r\end{array}\}$ with minus one determinant. In fact, we can show the follow-

ing lemma:

LEMMA 1.6. Put

$\tilde{L}_{0}(p, q)=\{(a, b)\in D_{-0}\oplus D_{0}|\tilde{p}_{E}\circ\pi_{\theta}(a)=\pi_{\theta}(b)\}$ .
Then the algebra $\tilde{L}_{0}(p, q)$ is isomorphic to $L_{\theta}(p, q)$ .

PROOF. Since

$e^{-pq\pi i\theta}\tilde{\rho}_{E}(\hat{V})=\rho_{E}(\hat{V})$ and $e^{-rs\pi i\theta}\tilde{\rho}_{E}(O)=p_{E}(0)$ ,
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we have
$\rho_{E}^{-1}\circ\tilde{\rho}_{E}(\hat{V})=e^{pq\pi i0}\hat{V}$ and $\rho_{E}^{-1}\circ\tilde{\rho}_{E}(O)=e^{rs\pi i\theta}O$ .

Then the following correspondence $\xi$ in $D_{-\theta}$

$\xi(u)=e^{pq\pi t\theta}u$ and $\xi(x)=e^{rsxi\theta}x$

gives rise to an automorphism on $D_{-\theta}$ and the following diagram becomes
commutative:

$D_{-\theta}\underline{\xi}D_{-0}$

$\pi-\theta\downarrow$ $\downarrow\pi- 0$

$A_{-\theta}\overline{\rho_{E}^{-1}\circ\tilde{\rho}_{E}}A_{-\theta}$

Therefore the restriction of the automorphism $\xi\oplus id$ on $D_{-\theta}\oplus D_{\theta}$ to $\tilde{L}_{\theta}(p, q)$

gives an isomorphism from it to $L_{0}(p, q)$ . Actually, for a pair $(a, b)\in D_{-0}\oplus D_{0}$

satisfying $\tilde{p}_{E}\circ\pi_{-0}(a)=\pi_{\theta}(b)$ , we have

$p_{E^{\circ\pi-0(\xi(a))=\rho_{E}\circ(\rho_{E}^{-1}\circ\tilde{\rho}_{E})\circ\pi-\theta(a)=}}\tilde{p}_{E}\circ\pi_{-0}(a)=\pi_{\theta}(b)$ . $\square$

Similar arguments to the above discussions are also applied to a matrix of
determinant one. Hence we sometimes adopt $\tilde{\rho}_{E}$ in place of $\rho_{E}$ making no
difference between them henceforth.

2. Basic properties of $L_{0}(p, q)$ .
AS we know from the construction, $L_{\theta}(p, q)$ may be regarded as a $C^{*}-$

algebra not so badly behaved from the structural point of view. For $\theta$ being
irrational its structure is however not so close to that of a commutative $C^{*}-$

algebra. In fact, we have the following:

PROPOSITION 2.1. For each pair of copnme integers $p,$ $q$ , we have
$(i)$ $L_{\theta}(p, q)$ is nuclear for each $\theta\in R$,
(ii) $L_{0}(p, q)$ is not of type I for each irrational $\theta\in R$

(see [Pe] or [Tol] as references for nucleanty and type $I$ ).

PROOF. (i) Take two integers $r,$ $s$ such that ps-qr $=1$ and put $E=\{\begin{array}{ll}q sp r\end{array}\}$ .
We denote by 1 and $J$ the kernel of the upper horizontal surjection and that
of the lower one respectively in the following pull back diagram

$L_{0}(p, q)-D_{\theta}$

$\downarrow$ $\downarrow\pi_{\theta}$

$D_{-\theta}-$ $A_{\theta}$

$\rho_{E}\circ\pi-0$
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where eacb surjection from $L_{\theta}(p, q)$ to $D_{\theta}$ and $D_{-\theta}$ is defined as the projection
onto each component. Then the next diagram is commutative in the two
squares and both horizontal sequences are exact:

$0arrow larrow L_{\theta}(p, q)arrow D_{\theta}arrow 0$

$\downarrow$ $\downarrow$ $\downarrow\pi_{\theta}$

$0arrow Jarrow D_{-0}-A_{\theta}arrow 0$ .
$\rho_{E}\circ\pi_{-\theta}$

One can then verify easily that $I$ and $J$ are mutually isomorphic and nuclear.
In fact, they are isomorphic to the crossed product $c*$-algebra $C_{0}(D^{2})\cross-\theta Z$ of
the algebra $C_{0}(D^{2})$ of all continuous functions on the disk $D^{2}$ with vanishing at
the boundary $\partial D(=S^{1})$ by the action of rotation by $(-\theta)$ on $D^{2}$ . Hence it
follows that $L_{0}(p, q)$ is nuclear.

(ii) Since there exists a surjective homomorphism from $L_{\theta}(p, q)$ to $A_{\theta}$ ,
$L_{\theta}(p, q)$ is not of type I as long as neither is $A_{\theta}$ . $\square$

Let $L(p, q)$ be the usual lens space. When $\theta=0$ , our lens space $L_{0}(p, q)$

is naturally isomorphic to the $c*$-algebra of all complex valued continuous
functions on $L(p, q)$ . In roughly classifying the spaces $L(P, q)$ concerning
about $p,$ $q$ , we observe first their homology groups. They are known as

$H_{1}(L(p, q);Z)=Z/pZ$ (cf. [He]).

In comparison with the above homology group, it is worth computing K-groups
of our lens spaces.

PROPOSITION 2.2. For all $p,$ $q$ and $\theta$ , we have

$K_{0}(L_{\theta}(p, q))=(Z/pZ)\oplus Z$ and $K_{1}(L_{\theta}(p, q))=\{_{Z\oplus Z}^{Z}$ $(p\neq 0)(p=0)$

.

PROOF. Let $E=[_{p}^{q}$ $rs]$ be a matrix of determinant minus one. We apply

Mayer-Vietris sequence of $K$-groups for the following pull back diagram (cf.
[B1] $)$ :

$L_{0}(P, q)D_{\theta}\underline{i}$

$j\downarrow$ $\downarrow\pi_{\theta}$

$D_{-\theta}arrow p_{E}\circ\pi_{-0}$

$A_{\theta}$ .

Hence we have the next exact sequence:
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$K_{0}(L_{\theta}(p\uparrow’ q))>K_{0}(D_{-\theta})\oplus K_{0}(D_{\theta})K_{0,\downarrow}(A_{\theta})\underline{(i,j)_{*p_{E}\underline{\circ\pi-\theta}}}-\pi_{\theta*}$

$K_{1}(A_{0})\rho_{E^{o}}\overline{\pi_{-\theta}-\pi}_{\theta*}K_{1}(D_{-\theta})\oplus K_{1}(D_{\theta})K_{1}(L_{\theta}(p\overline{(i,j)_{*}}q))$
.

It follows that
$K_{0}(L_{\theta}(p, q))Z[1]\oplus Z[1]Z[p]\oplus Z[1]\underline{(i,J)_{*}}p_{E}\underline{\circ\pi_{-\theta}-\pi}_{0*}$

$Z[V]\oplus Z[U]Z[u]\oplus Z[v]K_{1}(L_{0}(p\uparrow\downarrow\rho_{E}\overline{\circ\pi_{-\theta}-\pi}_{\theta*}\overline{(i,j)_{*}}q))$

,

where a projection $P$ of $A_{\theta}$ at the upper right corner means one of two gener-
ators for $K_{0}(A_{0})$ which is called a Rieffel projection (cf. [Ril]). $Now_{a}^{r}it$ is
easy to see that the upper right horizontal arrow gives the mapping

$(m, n)\in Z\oplus Zarrow(0, m-n)\in Z[p]\oplus Z$

whereas the lower left one gives the mapping

$(m, n)\in Z[u]\oplus Z[v]\underline{[_{p0}^{q-1}]}$

(mq-n, $mp$ ) $\in Z[V]\oplus Z[U]$ .

Thus it follows that

$K_{0}(L_{\theta}(p, q))=(Z/pZ)\oplus Z$ and

by routine calculations.

3. Some examples.

$K_{1}(L_{\theta}(p, q))=\{\begin{array}{l}Z (p\sim o)Z\oplus Z (p=0)\end{array}$

$\square$

In this section, we observe some interesting examples of non-commutative
lens spaces keeping in mind the usual lens spaces.

First of all, if we take $\{\begin{array}{ll}0 11 0\end{array}\}$ as the attaching matrix, the resulting $C^{*}-$

algebra $L_{\theta}(1,0)$ is nothing but the non-commutative 3-sphere $S_{0}^{3}$ introduced in
[Mal]. Furthermore, we have, as in the case of the usual lens spaces, the
following fact.

PROPOSITION 3.1. $L_{0}(1, q)$ is isomorphic to $S_{0}^{3}$ for each $q\in Z$ .

PROOF. Take $[_{1}^{q}$ $01]$ as an attaching matrix to construct $L_{\theta}(p, q)$ . Put

$E=[_{1}^{q}$ $01]$ and $F=[_{0}^{1}$ $-q1]$ . Then we have $E=F^{-1}\{\begin{array}{ll} 11 0\end{array}\}$ . By Lemma 1.1,

there exists an automorphism $\hat{\rho}_{F}$ on $D_{\theta}$ satisfying $\pi_{\theta}\circ\hat{\rho}_{F}=\rho_{F}\circ\pi_{\theta}$ . Consider
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the automorphism $\xi$ on $D_{-0}\oplus D_{\theta}$ defined by

$\xi:(a, b)\in D_{-\theta}\oplus D_{\theta}arrow(a,\hat{p}_{F}(b))\in D_{-\theta}\oplus D_{0}$ .

Then $\xi$ induces an isomorphism from $L_{\theta}(1, q)$ to $L_{0}(1,0)(=S_{\theta}^{3})$ . In fact, for a
pair $(a, b)\in D_{-0}\oplus D_{\theta}$ such that $\rho_{E}\circ\pi_{-\theta}(a)=\pi_{\theta}(b)$ , we have

$\rho_{F}-1^{\circ}p_{0}\circ\pi-\theta(a)=\pi_{0}(b)$ ,

where $\rho_{0}$ means the isomorphism from $A_{-\theta}$ to $A_{0}$ induced by the matrix $\{\begin{array}{ll}0 11 0\end{array}\}$ .

It follows that $\rho_{0}\circ\pi-\theta(a)=p_{F}\circ\pi_{0}(b)-\pi_{\theta}(\hat{\rho}_{F}(b))$ so that $(a,\hat{p}_{F}(b))$ gives an ele-
ment of $L_{0}(1,0)$ , that is of $S_{\theta}^{3}$ . $\square$

Next example is a non-commutative version of a product 3-manifold $S^{2}\cross S^{1}$ ,

which is realized as the manifold attached two solid tori on their boundaries
without twisting. Hence we can take the identity matrix as an attaching
matrix. Now consider the action on 2-sphere defined by $\theta$ -rotation along long-
itudes round an axis. The action on $C(S^{2})$ induced by the $\theta$ -rotation is also
denoted by $\theta$ . We have then,

PROPOSITION 3.2. $L_{0}(0,1)$ is isomorphic to $C(S^{2})\cross_{\theta}Z$.

PROOF. By definition of $L_{0}(0,1)$ , we have

$L_{0}(0,1)=\{(a, b)\in D_{\theta}\oplus D_{\theta}|\pi_{\theta}(a)=\pi_{\theta}(b)\}$

$=(C(D^{2}) \cross_{\theta}Z)\bigcup_{C(S^{1})\cross_{\theta^{Z}}}(C(D^{2})\cross_{\theta}Z)$

$=(C(D^{2}) \bigcup_{C(S^{1})}C(D^{2}))\cross_{\theta}Z$

$=C(S^{2})\cross_{\theta}Z$ ,

where the above notations $A \bigcup_{c}B$ for $C^{*}$-algebras $A,$ $B$ and $C$ mean the fibre

product $C^{*}$-algebra as in [Mal]. $\square$

The final example is the algebra $L_{0}(2,1)$ . When $\theta=0$ , it is known as three
dimensional real projective space. Thus we may call the $C^{*}$-algebra $L_{0}(2,1)$

non-commutative real projective space and write it as $RP_{\theta}^{3}$ . As $L(2,1)$ is also
homeomorphic to the compact Lie group $SO(3)$ , we think $L_{0}(2,1)=RP_{\theta}^{3}$ as a
deformation of $SO(3)$ . On the other hand $SO(4)$ is topologically regarded as
the space $S^{3}\cross SO(3)$ , so that the tensor product $C^{*}$-algebra $S_{\theta}^{3}\otimes RP_{0}^{3}$ may be
thought of a deformation of $SO(4)$ into non-commutative $C^{*}$-algebras. These
deformations of compact Lie groups are completely different ones from those
algebras invented by Rieffel and Woronowicz (cf. [Ri2], [Wol]). We will refer
to the $c*$-algebra $RP_{\theta}^{3}$ in the final section again.
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4. Non-commutative fibred solid tori of type $(p, q)$ .
There is another description of the usual lens space $L(p, q)(p\neq 0)$ in

topology. Consider $S^{3}$ as the unit sphere of $C^{2}$ . Let $\tau_{p,q}$ be the homeomor-
phism on $S^{3}$ defined by

$\tau_{p},q(z, w)=(\omega z, \omega^{q}w)$ $(z, w)\in S^{3}$

where $\omega=e^{2\pi i/p}$ is the principal p-th root of unity. Hence $\tau_{p,q}$ gives a
$Z_{p}(=Z/pZ)$-action on $S^{3}$ . It is then known that $L(p, q)$ is realized as the orbit
space of this action. Therefore $S^{3}$ is the universal covering space of $L(p, q)$ .

In this section as well as the next one, we shall prove corresponding facts
in our non-commutative context. Namely, we realize our non-commutative lens
spaces as fixed point subalgebras of $S_{\theta}^{3}$ under finite cyclic group actions. Hen-
ceforth we fix coprime integers $p,$ $q$ .

We try first to give a $Z_{p}$ -action on $S_{0}^{3}$ . Consider the following corres-
pondence on $S_{0}^{3}$ .

$Sarrow\omega^{q}S$ , $Tarrow\omega T$

where the operators $S$ and $T$ , satisfying the relations cited in \S 0, are defined
by $(u, y)$ and $(x, v)$ in the subalgebra $S_{\theta}^{3}$ of $D_{-0}\oplus D_{0}$ respectively (see [Mal]).

One then easily verifies that the above correspondence gives rise to an auto-
morphism on $S_{\theta}^{3}$ by the universality of the algebra with respect to the operator
relations between $S$ and $T$ . We denote it by $g(P, q)$ or simply $g$ . Notice that
this action may be lifted up to each $c*$-algebra $D_{-\theta}$ and $D_{\theta}$ , and hence to
$D_{-0}\oplus D_{\theta}$ . Actually the following correspondences give automorphisms on them:

$x,$ $u\in D_{-0}arrow\omega x,$ $\omega^{q}u\in D_{-\theta}$ , $y,$ $v\in D_{0}arrow\omega^{q}y,$ $\omega v\in D_{\theta}$

We wrlte them also as $g$ above.
Before looking at the structure of the fixed point subalgebra $(S_{0}^{3})^{g}$ , we

study the fixed point subalgebras $(D_{-0})^{g}$ and $(D_{\theta})^{g}$ .
LEMMA 4.1. $(D_{\theta})^{g}$ and $(D_{-\theta})^{g}$ are the $C^{*}$ -subalgebras generated by

$\{y^{i}y^{*j}v^{k}|q(i-])+k\in pZ\}$ and $\{x^{t}x^{*m}u^{n}|1-m+qn\in pZ\}$ ,

respectively.

PROOF. AS in [Mal, Lemma 2.1], $D_{\theta}$ is the $c*$-algebra generated by ele-
ments of polynomials of the forms:

$\{ \Sigma d_{ijk}y^{i}y^{*j}v^{k}|d_{ijk}\in C\}$

$\%,1_{z^{0}}^{\geqq}$

whose coefficients $\{d_{ijk}\}$ are uniquely determined by the elements. By using
the canonical expectation $E$ from $D_{0}$ to $(D_{\theta})^{g}$ given by
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$E(a)=(1/p) \sum_{k=1}^{p}g^{k}(a)\in(D_{\theta})^{g}$ $a\in D_{\theta}$ ,

we can see that any element of $(D_{0})^{g}$ can be approximated by polynomlals
fixed by $g$ . Thus, by comparing the coefficients between

$\sum_{\ell_{\dot{k}}\in_{Z}^{\geqq 0}}d_{tjk}y^{i}y^{*j}v^{k}$
and

$if \geqq 0\sum_{d\in Z}d_{ijk}\omega^{q(i-j)+k}y^{i}y^{*j}v^{k}$
,

we can conclude the assertion for the case of $(D_{0})^{g}$ . The other $C^{*}$-algebra,
$(D_{-\theta})^{g}$ , we can deal with in a similar way. $\square$

Next, we attempt to find minimal generators for $(D_{\theta})^{g}$ and $(D_{-\theta})^{g}$ .
LEMMA 4.2. Any polynomial of $y^{t}y^{*j}v^{k}$ such that $q(i-])+k\in pZ$ is generated

by $yv^{p-q}$ and $v^{p}$ .

PROOF. Take an integer $m$ such that $q(i-J)+k=pm$ . Then, by the co-
varlance relation (1–1), we see easily that $y^{i}y^{*j}v^{k}$ is a scalar multiple of
$(yv^{p- q})^{i}(yv^{p-q})^{*j}(v^{p})^{m-(i-j)}$ . $\square$

On the other hand, the situation for $x^{t}x^{*m}u^{n}$ such that $l-m+qn\in pZ$ is a
little different from the above one. Take two integers $r,$ $s$ such that ps–qr $=1$ .
We fix such a pair $r,$ $s$ . Corresponding to Lemma 4.2, we have:

LEMMA 4.3. Any Polynomial of $x^{t}x^{*m}u^{n}$ such that $l-m+qn\in pZ$ is generated
by $xu^{r}$ and $u^{p}$ .

PROOF. Take an integer $k$ such that $l-m+qn=pk$ . As in the proof of
the previous lemma, we see that $x^{t}x^{*m}u^{n}$ is a scalar multiple of $(xu^{r})^{\iota}(xu^{r})^{*m}$

$(u^{p})^{ns-rk}$ . $\square$

Furthermore we must provide one another lemma.

LEMMA 4.4.
(i) The $C^{*}$-algebra $C^{*}(yv^{p-q}, v^{p})$ generated by $yv^{p-q}$ and $v^{p}$ is isomorphic

to the C’-algebra $C^{*}(y, v^{p})$ generated by $y$ and $v^{p}$ .
(ii) Similarly, $C^{*}(xu^{r}, u^{p})$ is isomorphic to $C^{*}(x, u^{p})$ .
PROOF. It is easy to see that, in $D_{\theta}$ , the following correspondence $\Phi$ gives

an automorphism:
$\Phi(y)=yv^{p- q}$ , $\Phi(v)=v$ ,

because of the universality of $D_{\theta}$ . By restricting $\Phi$ to the $C^{*}$ -subalgebra
$C^{*}(y, v^{p})$ , we obtain a desired isomorphism between $C^{*}(yv^{p-q}, v^{p})$ and $C^{*}(y, v^{p})$ .
We similarly conclude the assertion (ii). $\square$

With these lemmas, we know the structure of the fixed point subalgebras
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$(D_{\theta})^{g}$ and $(D_{-\theta})^{g}$ in the following way.

PROPOSITION 4.5.
(i) $(D_{0})^{g}$ is isomorphic to $D_{p\theta}$ .
(ii) $(D_{-\theta})^{g}$ is isomorphic to $D_{-p\theta}$ .
PROOF. Once we know that $(D_{0})^{g}$ is isomorphic to $C^{*}(y, v^{p})$ in $D_{\theta}$ , it is

a standard fact that the algebra is isomorphic to $D_{p\theta}$ . We leave the details to
the reader. $\square$

REMARK 4.6. In general, for any $\theta\in R$, the following correspondence $\pi$

from $D_{-0}$ to Do:
$\pi(x)=y^{*}$ , $\pi(u)=v$

gives an isomorphism between them. Hence $D_{-p\theta}$ is isomorphic to $D_{p\theta}$ .

REMARK 4.7. When we regard $D_{p\theta}$ as the fixed point subalgebra $(D_{\theta})^{g}$ ,
it may be interpreted as a non-commutative version of a fibered solid torus of
type $(p, q)$ (cf. [Ja]).

5. Realization of $L_{\theta}(p, q)$ as a fixed point subalgebra of $S_{\theta}^{3}$ .
Continued from the previous section, this section is devoted to prove

Theorem A. Namely, we shall show the following theorem:

THEOREM 5.1. The fixed $p\alpha nt$ subalgebra of S\S under the action $g(P, q)$ of
the cyclic grouP $Z_{p}$ is isomorphic to $L_{p\theta}(P, q)$ .

TO prove the theorem, we need several steps. We notice first the following
fact:

LEMMA 5.2. The fixed point subalgebra $(sg)^{g}$ forms the algebra

$\{(a, b)\in(D_{-\theta})^{g}\oplus(D_{\theta})^{g}|\rho_{0}\circ\pi_{-\theta}(a)=\pi_{0}(b)\}$ .

PROOF. It is obvious. $\square$

Note that the next correspondences on $A_{-\theta}$ and $A_{\theta}$

$A_{-\theta}arrow A_{-\theta}$ $A_{0}arrow A_{\theta}$

$\hat{V}arrow\omega^{q}\hat{V}$ $Uarrow\omega^{q}U$

$0arrow\omega\hat{U}$ $Varrow\omega V$

give rise to automorphisms on them respectively. We write them also as $g(p, q)$

or simply $g$ . Then the above automorphisms are compatible with those cor-
responding ones on $D_{-\theta}$ and $D_{\theta}$ through $\pi- 0$ and $\pi_{\theta}$ respectively. Namely, we
have
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$g\circ\pi-\theta=\pi_{-\theta}\circ g$ and $g\circ\pi_{\theta}=\pi_{\theta}\circ g$ .

Let $U_{p}$ and $V_{p}$ (resp. $O_{p}$ and $\hat{V}_{p}$ ) be unitary generators for $A_{p0}$ (resp. $A_{-p\theta}$ )

satisfying

$V_{p}U_{p}=e^{2xip\theta}U_{p}V_{p}$ (resp. $i_{p}^{\rangle}O_{p}=e^{-2\pi ip0}O_{p}i_{p}^{\rangle}$ ).

Then, by using similar discussions to Lemma 4.1, 4.2 and 4.3, we can see that
the following map $\Psi$ from $(A_{\theta})^{g}$ to $A_{p\theta}$

$\Psi(UV^{p-q})=U_{p}$ , $\Psi(V^{p})=V_{p}$

induces an isomorphism between them. Similarly the map $\Phi$ from $(A_{-\theta})^{g}$ to
$A_{p\theta}$ defined by

$\Phi(Oi^{\}_{p-q}})=O_{p}$ , $\Phi(\hat{V}^{p})=i_{p}^{\rangle}$

gives an isomorphism between tbem. Thus, we have

LEMMA 5.3.
(i) $(A_{0})^{g}$ is isomorphic to $A_{p\theta}$ through $\Psi$

(ii) $(A_{-\theta})^{g}$ is isomorphic to $A_{-p\theta}$ through $\Phi$ .

Let $\Lambda$ be the isomorphism from $(D_{\theta})^{g}$ to $D_{p\theta}$ given by

$\Lambda(yv^{p-q})=y_{p}$ , $\Lambda(v^{p})=v_{p}$

as in the prevlous section. Similarly we denote by $--$ the isomorphism from
$(D_{-\theta})^{g}$ to $D_{-p0}$ obtained by

$\Xi(xu^{r})=x_{p}$ , $\Xi(u^{p})=u_{p}$ .

The following lemma is a direct consequence from the above arguments.

LEMMA 5.4. Keep the above notations. Then both the following diagrams
are commutative:

$\Lambda$ $\Xi$

(i) $(D_{\theta})^{g}arrow D_{p\theta}$ (ii) $(D_{-\theta})^{g}arrow D_{-p\theta}$

$\pi_{\theta}\downarrow$

$\Psi$

$\downarrow\pi_{p\theta}$ $\pi-\theta\downarrow$

$\Phi$

$\downarrow\pi_{-p\theta}$

$(A_{\theta})^{g}arrow A_{p\theta}$ $(A_{-0})^{g}arrow A_{-p\theta}$ .

Namely, we have $\pi_{p\theta}\circ\Lambda=\Psi\circ\pi_{0}$ and $\pi_{-p\theta}\circ\Xi=\Phi\circ\pi_{-\theta}$ .

LEMMA 5.5. Put

$\mu_{1}=e^{-p(p+1)(p-q)\pi i0}$ and $\mu_{2}=e^{-r(r+1)(p- q)\pi i\theta}$ .

The map $\Pi$ given by

$\Pi(\hat{V}_{p})=\mu_{1}V_{p}^{q-p}U_{p}$ and $\Pi(O_{p})=\mu_{2}V_{p}^{s-r}U_{p}^{r}$ .
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defines an isomorphism from $A_{-p0}$ to $A_{p\theta}$ . Then the fixed point subalgebra $(SS)^{g}$

is isomorphic to the $c*$-algebra $L_{p\theta}’(p, q-P)$ defined by

$L_{p0}’(p, q-p)=\{(a, b)\in D_{-p\theta}\oplus D_{p\theta}|\Pi\circ\pi_{-p\theta}(a)=\pi_{p0}(b)\}$ .

PROOF. Set $\Pi(\hat{V}_{p})=\mu_{1}V_{p}^{q-p}U_{p}^{p}$ and $\Pi(O_{p})=\mu_{2}V_{p}^{s-r}U_{p}^{r}$ . Then we remark
that $\Pi$ gives an isomorphism from $A_{-p\theta}$ to $A_{p\theta}$ . In fact, the determinant of

the matrix $\{\begin{array}{ll}q-p s-rp r\end{array}\}$ is $(q-p)r-p(s-r)=-1$ so that it follows that

$\Pi(\hat{V}_{p})\Pi(\hat{U}_{p})=e^{2\pi ip\theta}\Pi(\hat{U}_{p})\Pi(\hat{V}_{p})$

and $\Pi(\hat{V}_{p})$ and $\Pi(O_{p})$ generate $A_{p\theta}$ . We notice that the direct sum $--\oplus\Lambda$

yields an isomorphism from $(D_{-0})^{g}\oplus(D_{0})^{g}$ to $D_{-p\theta}\oplus D_{p\theta}$ . Since, by Lemma 5.2,

$(S_{0}^{3})^{g}=\{(a, b)\in(D_{-\theta})^{g}\oplus(D_{0})^{g}|\rho\circ\pi-0(a)=\pi_{\theta}(b)\}$ ,

it suffices to show that $\Pi\circ\pi_{-p\theta}(\Xi(a))=\pi_{p\theta}(\Lambda(b))$ if $p_{0}\circ\pi-\theta(a)=\pi_{\theta}(b)$ for $(a, b)\in$

$(D_{-0})^{g}\oplus(D_{\theta})^{g}$ . Here, by Lemma 5.4, we have

$\pi_{p0}(\Lambda(b))=\Psi(\pi_{0}(b))=\Psi(\rho_{0}(\pi_{-\theta}(a)).$ (5-1)

NOW, by definition of $\Pi$ , we see that

$\Psi\circ\rho_{0}\circ\pi-\theta(xu^{r})=\Psi\circ\rho_{0}(O\hat{V}^{r})=\Psi(VU^{r})=\mu_{2}\Psi((V^{p})^{s- r}(UV^{p- q})^{r})$

$=\mu_{2}(V_{p})^{s- r}(U_{p})^{\tau}=\Pi(0_{p})$

and

$\Psi\circ\rho_{0}\circ\pi-\theta(u^{p})=\Psi\circ\rho_{0}(\hat{V}^{p})=\Psi(U^{p})=\mu_{1}\Psi((V^{p})^{q- p}(UV^{p-q})^{p})$

$=\mu_{1}(V_{p})^{q-p}(U_{p})^{p}=\pi(\hat{V}_{p})$ .
Furthermore, as we know

$\pi_{-p0}\circ\Xi(xu^{r})=0_{p}$ and $\pi_{-p\theta^{\circ}-}^{-}(u^{p})=\hat{V}_{p}$

we have

$\Psi\circ\rho_{0}\circ\pi-\theta(xu^{\tau})=\Pi^{-}\circ\pi_{-p}0^{\circ}-(xu^{r})$ and $\Psi\circ p_{0}\circ\pi-\theta(u^{p})=\Pi\circ\pi_{-p0^{\circ}-(\mathcal{U}^{p})}^{-}$ .

Since $xu^{r}$ and $u^{p}$ generate $(D_{-\theta})^{g}$ , we have

$\Psi\pi=\Pi\circ\pi_{-p\theta^{o}-}^{-}$ . (5-2)

By combining (5-1) and (5-2), we see that $\Pi\circ\pi_{-p\theta}(_{-}^{-}(a))=\pi_{p\theta}(\Lambda(b))$ . Hence
$--(a)\oplus\Lambda(b)$ belongs to $L_{p\theta}’(p, q-p)$ . As one can easily construct the inverse
isomorphism of $--\oplus\Lambda$ from $L_{p\theta}’(p, q-p)$ to $(S_{\theta}^{3})^{g},$ $--\oplus\Lambda$ gives an isomorphism
between them. This completes the proof. $\square$
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LEMMA 5.6. $L_{p\theta}’(p, q-p)$ is isomorphic to $L_{p\theta}(p, q-P)$ .
PROOF. Set $E=\{\begin{array}{ll}q-p s-rp r\end{array}\}$ and $F=E^{-1}=\{\begin{array}{ll}-r s-rp p-q\end{array}\}$ . We consider the

isomorphism $\rho_{F}$ from $A_{p\theta}$ to $A_{-p\theta}$ defined in \S 1. Namely it is determined as
$\rho_{F}((V_{p})^{q-p}(U_{p})^{p})=e^{-p(q-p)\pi\ell\theta}\hat{V}_{p}$

and
$p_{F}((V_{p})^{s-r}(U_{p})^{r})=e^{-r(s-r)xi\theta}U_{p}$ .

Then we have
$\rho_{F}\circ\Pi(\hat{V}_{p})=\mu_{1}e^{-p(q- p)\pi i\theta}\hat{V}_{p}$

and
$\rho_{F}\circ\Pi(O_{p})=\mu_{2}e^{-r(s-r)\pi t0}O_{p}$ .

NOW it is easy to see that the following correspondence $\xi$ in $D_{-p\theta}$

$\xi(u_{p})=\mu_{1}e^{-p(q- p)\pi i\theta}u_{p}$ and $\xi(x_{p})=\mu_{2}e^{-r(s-r)\pi i\theta}x_{p}$

gives rise to an automorphism on $D_{-p\theta}$ , and it makes the following diagram
commutative:

$D_{-p\theta}D_{-p\theta}\underline{\xi}$

$\pi_{-p0\downarrow}A_{-p\theta}\overline{p_{F}\circ\Pi}A_{-p0}\downarrow\pi_{-p0}$

Namely we have $\pi_{-p\theta}\circ\xi=\rho_{F}\circ\Pi\circ\pi_{-p0}$ . Consider the automorphism $\xi\oplus id$ on
$D_{-p\theta}\oplus D_{p\theta}$ . Its restriction to the $c*$-subalgebra $L_{p0}’(p, q-P)$ then defines an
isomorphism to $L_{p0}(p, q-p)$ . In fact, for a pair $(a, b)\in D_{-p\theta}\oplus D_{p\theta}$ satisfying
$\Pi\circ\pi_{-p\theta}(a)=\pi_{p0}(b)$ , we have

$p_{E}\circ\pi_{-p\theta}(\xi(a))=\rho_{E}\circ\rho_{F}\circ\Pi\circ\pi_{-p\theta}(a)=\Pi\circ\pi_{-p0}(a)=\pi_{p\theta}(b)$ .

One may also easily construct the inverse isomorphism of $\xi\oplus id$ . Therefore we
see that $L_{p\theta}’(p, q-P)$ is isomorphic to $L_{p0}(p, q-p)$ . $\square$

Having finishing these steps, we reach one of our main results.

FINAL PROOF OF THEOREM 5.1. By Lemma 5.5 and Lemma 5.6, we have

$(S\S)^{}\cong L_{p\theta}(p, q-P)$ .

AS $\omega^{q}=\omega^{p+q}$ , where $\omega=e^{2\tau i/p}$ , we see that $g(p, q)=g(P, P+q)$ . Moreover if a
paire $(p, q)$ is coprime, so is a pair $(p, p+q)$ . Therefore we obtain the desired
conclusion. $\square$



Non-commutative lens $sPaces$ 31

Following the commutative case, we prove the next result.

PROPOSITION 5.7. If two integers $q$ and $q’$ satisfy $qq’\equiv-1$ (modulo $p$ ), then
we have $L_{\theta}(p, q)=L_{\theta}(p, q’)$ .

PROOF. Take an integer $k$ such that $qq’+1=pk$ , whence $1/p=k-(qq’/p)$ .
Let $\eta$ be the automorphism on $S_{\theta}^{3}$ defined by

$\eta(T)=S^{*}$ and $\eta(S)=T$ ,

which is well defined because of the universality of $S_{\theta}^{3}$ with respect to its
relations. Then we have $\eta^{o}g(p, q)=g(P, q’)^{q}\circ\eta$ , because

$g(p, q’)^{q}(S^{*})=((\omega^{q’})^{q}S)^{*}=\omega S^{*}$ and $g(p, q’)^{q}(T)=\omega^{q}T$ .

Hence $\eta$ induces an isomorphism between $(S_{0}^{3})^{g(p.q)}$ and $(S_{\theta}^{3})^{g(p.q’)q}$ . Therefore
by Theorem 5.1 together with the next lemma, we end the proof. $\square$

LEMMA 5.8. For two pairs $(p, q)$ and $(p, q’)$ of $co$-pnme integers, the algebra
$(S\S)^{}$ coincides with $(S\S)^{}$ .

PROOF. It is clear that $(S_{\theta}^{3})^{g(p.q)}$
’ is contained in $(S_{\theta}^{3})^{g(p.q’)^{q}}$ . Conversely,

take an element $a\in S_{\theta}^{3}$ such that $g(p, q’)^{q}(a)=a$ . Choose two integers $r,$ $s$

satisfying ps–qr $=1$ as usual, and note that $g(p, q)^{p}$ and hence $g(p, q)^{ps}$ are
identity. Hence we have

$g(p, q’)(a)=g(p, q^{f})^{ps}\circ g(p, q’)^{-qr}(a)=a$ .

Thus $a$ is fixed by the action $g(p, q’)$ . $\square$

6. The structure of $L_{\theta}(p, q)$ as a $C^{*}$-algebra of $A_{\theta}$ -valued functions.

In this section, we study the structure of $L_{\theta}(p, q)$ as $C^{*}$-algebra and prove
Theorem $B$ , which appears as Theorem 6.8. Namely, we show that $L_{\theta}(p, q)$

is realized as a $c*$-algebra of $A_{0}$ -valued continuous functions on the interval
[–1, 1]. AS $L_{\theta}(p, q)$ is a $c*$-algebra constructed by attaching two non-com-
mutative solid tori $D_{\theta}$ , we observe first the structure of $D_{0}$ and prove that it
isla $c*$-algebra of $A_{\theta}$ -valued continuous functins on $[0,1]$ .

For a real number $r$ such that $0\leqq r\leqq 1$ , let $S_{r}$ be the circle with radius $r$

round the origin in the complex plane, where $S_{0}$ means the one point $\{0\}$ .
Then the restriction of a function of $C(D^{2})$ to $S_{r}$ yields a surjection $\rho_{r}$ from
the crossed product $C(D^{2})\cross_{\theta}Z$ to the crossed product $C(S_{r})\cross_{\theta}Z$. For any $r\in$

$(0,1]$ , we denote by $y_{r}$ the restriction of $y$ to $S_{r}$ , where the function $y$ is



32 K. MATSUMOTO and J. TOMIYAMA

defined as $y(re^{2\pi i\xi})=re^{2\pi i\xi},$ $r,$ $\xi\in[0,1]$ . Notice that the following isomorphism
given by

$y_{r}\in C(S_{r})arrow ry\in C(S^{1})$

induces an isomorphism from $C(S_{r})\cross_{\theta}Z$ to $C(S^{1})\cross_{0}Z=A_{\theta}$ . We denote it by
$\Psi_{r}$ . When $r=0$ , we denote by $\Psi_{0}$ the natural imbedding of the group $C^{*}-$

algebra $C_{r}^{*}(Z)$ to the $C^{*}$ -subalgebra $C^{*}(V)$ generated by the left regular
representation of $Z$ in $C(S^{1})\cross_{\theta}Z$ . Thus each $a\in D_{\theta}$ gives rise to the $A_{\theta^{-}}$

valued function $\Lambda(a)$ on $[0,1]$ as in the following way:

$\Lambda(a\chi r)=\Psi_{r}\circ\rho_{r}(a)\in A_{\theta}$ $r\in[0,1]$ .

Then a straightforward calculation shows that, for any polynomial $a=$

$\sum d_{ijk}y^{i}y*^{j}v^{k}$ in $D_{\theta}$ , the above function $\Lambda(a)$ is continuous on $[0,1]$ . Moreover,
since the family of such polynomials is dense in $D_{\theta}$ , we can see that the same
conclusion holds for any element $a\in D_{\theta}$ .

Hence we obtain the following.

LEMMA 6.1. For each $a\in D_{0},$ $\Lambda(a)$ is an $A_{\theta}$ -valued continuous function on
$[0,1]$ .

Thus, for each $a\in D_{0},$ $\Lambda(a)$ gives an element of $C([0,1], A_{\theta})$ the $c*$-algebra
of all continuous functions from $[0,1]$ to $A_{\theta}$ . We set the $c*$-algebra

$C_{V}([0,1], A_{\theta})=\{a\in C([0,1], A_{\theta}) a(O)\in C^{*}(V)\}$ .

By construction of $\Lambda$ , we see that, for each $a\in D_{0},$ $\Lambda(a)$ belongs to
$C_{V}([0,1], A_{\theta})$ . Therefore the algebra $D_{0}$ is embedded into $C_{V}([0,1], A_{0})$

through the map $\Lambda$ . In fact, we have:

LEMMA 6.2. For each $a\in D_{\theta}$ , if $\Lambda(a)=0$ , then $a=0$ .

PROOF. For each element $a$ of the crossed product $D_{\theta}=C(D^{2})\cross_{\theta}Z$, we may
define the n-th Fourier coefficient $a(n)\in C(D^{2}),$ $n\in Z$, of $a$ by

$a(n)=E(av^{-n})$ , $n\in Z$ ,

where $E$ means the canonical conditional expectation from $D_{0}$ to $C(D^{2})$ (cf.
[Tol, Chapter 3] $)$ . For $r\in(O, 1]$ , let $E_{\tau}$ be the canonical conditional expecta-
tion from $C(S_{r})x_{\theta}Z$ to $C(S_{r})$ . As these expectations are compatible with the
homomorphisms $\rho_{r}’ s$ , we have

$a(n)(re^{2\pi i\xi})=E_{r}(p_{r}(a)v^{-n})(re^{2\pi i\xi})$ , $r,$ $\xi\in(0,1]$ , $n\in Z$ ,
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Hence, if $\Lambda(a)=0$ and hence $\rho.(a)=0$ for all $r\in(O, 1]$ , then $a(n)=0$ for all
$n\in Z$, and $a=0$ . $\square$

Henceforth we identify $D_{\theta}$ as a $C^{*}$ -subalgebra of $C_{V}([0,1], A_{\theta})$ through $\Lambda$ .
We shall show that it coincides with $C_{V}([0,1], A_{\theta})$ .

Let $l_{r}$ be the kernel of $\Psi_{r}\circ\rho_{r}$ , which is an ideal of $D_{\theta}$ . Then we bave
the following lemma.

LEMMA 6.3. For a distinct pair $t,$ $s$ , the ideal $I_{t}+I_{s}$ contains the unit of
$D_{\theta}$ , hence $I_{t}+I_{s}=D_{\theta}$ .

PROOF. Assume that $t<s$ and define the function $y_{t}$ as

$y_{t}(re^{2\pi i\xi})=\{$

$0$ for $0\leqq r\leqq t$

$(r-t)/(s-t)$ for $t\leqq r\leq--s$

1 for $s\leqq r\leqq 1$ .

Write $y_{s}=1-y_{t}$ , then obviously $y_{t}\in I_{t},$ $y_{s}\in I_{s}$ and $y_{s}+y_{t}=1$ . $\square$

PROPOSITION 6.4. $D_{0}$ coincides with $C_{V}([0,1], A_{\theta})$ . Namely the non-com-
mutative solid torus $D_{\theta}$ is realized as the $C^{*}$ -algebra of all $A_{\theta}$ -valued continuous
functions on $[0,1]$ whose values at $0$ belong to the $C^{*}$-subalgebra $C^{*}(V)$ generated
by $V$.

PROOF. By tbe non-commutative Stone-Weierstrass Theorem for continuous
cross section $C^{*}$ -algebra [To2, Theorem 2.2], we have only to prove the follow-
ing lemma: $\square$

LEMMA 6.5. Put $A(r)=A_{\theta}r\in(O, 1]$ and $A(O)=C^{*}(V)$ . For any distinct points
$t,$ $s\in[0,1]$ , and elements of fibers $c\in A(t)$ and $d\in A(s)$ , there exists an $A_{\theta}$-valued
continuous function $h\in D_{\theta}$ with $h(t)=c$ and $h(s)=d$ .

PROOF. AS the homomorphism $\Psi_{r}\circ\rho_{r}$ from $D_{0}$ to $A(r)$ is surjective for
each $r\in[0,1]$ , we may take $f$ and $g\in D_{\theta}$ such that $f(t)=c$ and $g(s)=d$ . By
the previous lemma, we may write $f-g$ as $a_{t}-a_{s}$ for some $a_{t}\in I_{t}$ and $a_{s}\in I_{s}$ .
Then put $h=f-a_{t}=g-a_{s}$ , which is a desired one. $\square$

The assertion for the algebra $D_{-\theta}$ also holds if we replace $\theta$ by $-\theta$ . We
use this fact in our coming discussions. For an element $a\in D_{-\theta}$ we also denote
$a$ the corresponding function in $C_{\hat{V}}([0,1], A_{-\theta})$ .

TO realize $L_{\theta}(p, q)$ , as an algebra of $A_{\theta}$ -valued continuous functions on
the interval [–1, 1], we need further discussions.
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Let $E=\{\begin{array}{ll}q sp r\end{array}\}$ be an attaching matrix of determinant minus one in the

construction of $L_{0}(p, q)$ . Recall that $\rho_{E}$ gives an isomorphism from $A_{-0}$ to $A_{\theta}$

defined by

$\rho_{E}(\hat{V})=e^{-pq\tau i0}V^{q}U^{p}$ and $\rho_{E}(O)=e^{-rS\pi i0}V^{s}U^{r}$

and $L_{0}(p, q)$ is defined as
$\{(a, b)\in D_{-\theta}\oplus D_{\theta}|\rho_{E}\circ\pi_{-\theta}(a)=\pi_{\theta}(b)\}$ .

LEMMA 6.6. $D_{-\theta}$ is isomorphic to the following $c*$-algebra

$C_{(q,p)}([-1,0], A_{\theta})=\{a\in C([-1,0], A_{\theta}) a(-1)\in C^{*}(V^{q}U^{p})\}$ .

PROOF. By the previous discussions, we have

$D_{-\theta}=\{a\in C([-1,0], A_{-\theta})|a(-1)\in C^{*}(\hat{V})\}$ .

Under the identification between $C([-1,0], A_{-\theta}\llcorner)$ and $C([-1, O])\otimes A_{\pm\theta}$ , one sees
that the isomorphism $id\otimes p_{E}$ from $C([-1, O])\otimes A_{-\theta}$ to $C([-1, O])\otimes A_{\theta}$ induces
the desired isomorphism from $D_{-\theta}$ to $C_{(q,p)}([-1,0], A_{\theta})$ . $\square$

We also write the isomorphism from $D_{-\theta}$ to $C_{(q,p)}([-1,0], A_{\theta})$ given in
the above proof as $id\otimes\rho_{E}$ . Let $\hat{\pi}_{\theta}$ be the surjective homomorphism from
$C_{(q.p)}([-1,0], A_{\theta})$ to $A_{\theta}$ defined by $\hat{\pi}_{\theta}(a)=a(O)$ .

We then have the next lemma.

LEMMA 6.7. The following diagram is commutative:

$D_{-\theta}\underline{id\otimes\rho_{E}}C_{(qp)}([-1,0], A_{\theta})$

$\pi-0\downarrow$

$\rho_{E}$

$\downarrow\pi_{\theta}$

$A_{-0}-A_{0}$ .

PROOF. It suffices to check the generators $x,$ $u$ of $D_{-\theta}$ . We first easily
see that $x,$ $u$ in $C_{V}([-1,0], A_{-0})=D-0$ can be written as

$x(t)=(1+t)0$ , $u(t)-\hat{V}$ $t\in[-1,0]$ .

Hence it follows that

ft $\theta^{\circ(id\otimes\rho_{E})(x)}=(id\otimes\rho_{E})(x)(0)=\rho_{E}(O)=e^{-rs\pi i\theta}V^{s}U^{r}$

and
$j?_{0^{\circ}}(id\otimes\rho_{E})(u)=(id\otimes\rho_{E}\chi_{\mathcal{U}}\chi 0)=p_{E}(\hat{V})=e^{-pq\pi t\theta}V^{q}U^{p}$ ,

which are nothing but the images of $x,$ $u$ through $\rho_{E}\circ\pi-\theta$ . $\square$



Non-commutative lens spaces 35

THEOREM 6.8. $L_{\theta}(p, q)$ is isomorphic to the following $c*$-algebra of $A_{\theta^{-}}$

valued continuous functions on [-1, 1]:

$\{f\in C([-1,1], A_{0}) f(-1)\in C^{*}(V^{q}U^{p}), f(1)\in C^{*}(V)\}$ .

PROOF. By construction and previous lemmas, we first see that $L_{\theta}(p, q)$

is isomorphic to the following $c*$-algebra:

$\{(a, b)\in C([-1,0], A_{-\theta})\oplus C([0,1], A_{\theta})|a(-1)\in C^{*}(\hat{V}),$ $b(1)\in C^{\star}(V)\}$ .
$\rho_{E}\circ(a(0))=b(0)$

Since we have $p_{E}(a(0))=(id\otimes\rho_{E})(a)(0)$ by Lemma 6.7, the above $C^{*}$-algebra is
isomorphic, through $(id\otimes p_{E})\oplus id$ , to the following one:

$\{(a, b)\in C([-1,0], A_{\theta})\oplus C([0,1], A_{\theta})|a(-1)\in C^{*}(V^{q}U^{p}),$ $b(1)\in C^{*}(V)\}$ .
$a(0)=b(0)$

The above $C^{*}$-algebra is a desired one so that we complete the proof. $\square$

7. Realization of $L_{\theta}(p, q)$ as a universal $c*$-algebra.

The purpose of this section is to prove Theorem $C$ , which is our final goal.
In the case of $p=0$, we assume that $q$ must be 1. Throughout this section, we
fix arbitrary coprime non-negative integers $p,$ $q$ .

Recall that $L_{0}(p, q)$ is realized as the following $c*$-subalgebra of the algebra
of all $A_{0}$ -valued continuous functions on $[0, \pi/2]$ :

$L_{0}(p, q)=\{f\in C([0, \pi/2], A_{\theta})|f(0)\in C^{*}(V^{q}U^{p}), f(\pi/2)\in C^{*}(V)\}$ .

NOW, we define the three candidate operators in $C([0, \pi/2], A_{\theta})$ for Theorem
$C$ as in the following way:

$B(t)=\cos t\cdot V^{q}U^{p}$ , $C(t)=\sin t\cdot V$ , $N(i)=\sin t\cdot\cos t\cdot U$ $t\in[0, \pi/2]$ .

The following result is obtained by easy caluculation.

LEMMA 7.1. Keep the above notations. Then the oPerators $B,$ $C$ and $N$ belong
to $L_{\theta}(p, q)$ and satisfy the operator identities from (1) to (5) in Theorem $C$ .

Next, we prove that the three operators $B,$ $C$ and $N$ generate $L_{\theta}(p, q)$ as
$c*$-algebra. We put $S=C^{*}(B, C, N)$ , the $c*$-subalgebra of $L_{\theta}(p, q)$ generated
by them. We regard $L_{0}(P, q)$ as an algebra of $A_{\theta}$ -valued continuous functions
on $[0, \pi/2]$ as in the previous section. For each $t\in[0, \pi/2]$ , we set
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$L_{\theta}(t)=\{$

$C^{*}(V^{q}U^{p})$ $t=0$

$A_{\theta}$ $t\in(0, \pi/2)$

$C^{*}(V)$ $t=\pi/2$ .

We denote by $\lambda_{t}$ the natural surjection from $L_{\theta}(p, q)$ to $L_{0}(t)$ . Put $J_{t}=S\cap$

$ker(\lambda_{t})$ : the intersection between $S$ and the kernel of $\lambda_{t}$ .
We then have the following.

LEMMA 7.2. For any distinct points $t,$ $s\in[0, \pi/2],$ $J_{t}+J_{s}$ contains the unit
of $L_{0}(p, q)$ , hence $]_{t}+J_{s}=S$ .

PROOF. We may assume $t<s$ . We notice $B^{*}B(t)=\cos^{2}t,$ $C^{*}C(t)=\sin^{2}t,$ $t\in$

$[0, \pi/2]$ and hence $B^{*}B+C^{*}C=1$ . Thus the subalgebra of all scalar valued
continuous functions on $[0, \pi/2]$ is generated by $C^{*}C$ and $B^{*}B$ so that they
belong to $S$ . Define the function $y_{t}$ as

$y_{t}(r)=\{$

$0$ for $0\leqq r\leqq t$

$(r-t)/(s-t)$ for $t\leqq r\leqq s$

1 for $s\leqq r\leqq\pi/2$

and put $y_{s}=1-y_{t}$ . We then easily see that $y_{t}\in J_{t},$ $y_{s}\in J_{s}$ and $y_{t}+y_{s}=1$ . $\square$

LEMMA 7.3. For any two elements $c\in L_{\theta}(t),$ $d\in L_{\theta}(s)$ of fibers at two distinct
Points $t,$ $s\in[0, \pi/2]$ , there exists an element $h\in S$ such that $\lambda_{t}(h)=c$ and $\lambda_{s}(h)=d$ .

Proof is similar to that of Lemma 6.5.
Tberefore by the Stone-Weierstrass Theorem for continuous cross section

$C^{*}$-algebras as in [To2], we conclude the following:

PROPOSITION 7.4. $S$ cozncides with $L_{\theta}(p, q)$ . Namely the $c*$-algebra $L_{\theta}(p, q)$

is generated by $B,$ $C$ and $N$.
Next, we shall sbow the universality of $L_{\theta}(p, q)$ as the $C^{*}$ -algebra cor-

responding to the operator relations in Theorem $C$ .
Let $\mathcal{L}_{0}(p, q)$ be the universal $c*$-algebra with respect to the relations in

Theorem $C$ . The algebra is defined as the quotient $C^{*}$-algebra of the universal
unital $c*$-algebra with three normal generators by the ideal generated by the
relations from (1) to (5) in Theorem $C$ . We denote by $Q,$ $R$ and $Y$ the
generators of $\mathcal{L}_{0}(p, q)$ corresponding to $B,$ $C$ and $N$ respectively. Then, by
the universality of $X_{\theta}(p, q)$ , there exists a surjective homomorphism $\Phi$ from
$\mathcal{L}_{\theta}(p, q)$ to $L_{0}(p, q)$ such that

$\Phi(Q)=B$ , $\Phi(R)=C$ , $\Phi(Y)=N$ .
We shall show that $\Phi$ is isometric and hence it becomes an isomorphism.
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LEMMA 7.5. For any irreducible representation $(\pi, \mathcal{H})$ of $\mathcal{L}_{0}(p, q)$ , there
exists an irreducible representation $(\rho_{\pi}, \mathcal{H})$ of $L_{\theta}(Pq)$ such that

$\pi(Q)=\rho.(B)$ , $\pi(R)=\rho.(C)$ , $\pi(Y)=\rho.(N)$

and hence $\pi(X_{\theta}(p, q))=\rho_{\pi}(L_{\theta}(p, q)$ .

PPOOF. By the operator relations of $Q,$ $R$ and $Y$ corresponding to (1), (2)

in Theorem $C$ , and [Fug], [Put], we see that the three oPerators $Q^{*}Q,$ $R^{*}R$

and $Y^{*}Y$ belong to the center of $\mathcal{L}_{\theta}(p, q)$ . Hence $\pi(R^{*}R)$ is a scalar which is
written as $\mu$ .

CASE 1. $0<\mu<1$ . AS $\pi(Q^{*}Q)=1-\mu$ by the corresponding relation to (3),

the relation (5) implies the following:

$\pi(R)^{q}\pi(Y)^{p}=\mu^{(p+q)/2}(1-\mu)^{(p- 1)/2}\pi(Q)$ $(P\neq 0)$

$(1-\mu)^{1/2}\pi(R)=\mu^{1/2}\pi(Q)$ $(p=0)$

so that $\pi(Q)$ is generated by $\pi(R)$ and $\pi(Y)$ . Since it follows that

$\pi(R)\pi(Y)=e^{2\pi i\theta}\pi(Y)\pi(R)$

we see that $\pi(\mathcal{L}_{\theta}(p, q))$ is a homomorphic image of $A_{\theta}$ . It induces the irredu-
cible representation $\rho_{r}$ of $L_{\theta}(p, q)$ through $A_{\theta}$ with the required properties.

CASE 2. $\mu=0$ . In this case, by (4), the $C^{*}$ -algebra $\pi(C_{\theta}(p, q))$ becomes a
commutative algebra generated by $\pi(Q)$ and 1. As $\pi$ is irreducible, it is noth-
ing but $C1$ . Hence the quotient map from $L_{\theta}(p, q)$ to $L_{0}(0)$ induces the desired
irreducible representation of $L_{0}(p, q)$ .

CASE 3. $\mu=1$ . By the same discussions as tbe case of $\mu=0$ , we can con-
clude the desired assertion.

This completes tbe proof. $\square$

NOW we reach the following final theorem.

THEOREM 7.6. The natural surjection $\Phi$ from $\mathcal{L}_{0}(p, q)$ to $L_{\theta}(p, q)$ is iso-
metric. Hence it induces an isomorPhism between them.

PROOF. By Lemma 7.5, for eacb irreducible representation $\pi$ of $X_{\theta}(p, q)$ ,
we can find an irreducible representation $\rho_{\pi}$ of $L_{\theta}(p, q)$ which satisfies $\pi=$

$\rho_{\pi}\circ\Phi$ . Hence we have for each $X\in \mathcal{L}_{\theta}(p, q)$ ,

$||\pi(X)||=||p_{\pi}\circ\Phi(X)||\leqq|II\Phi(X)||$

so that
$\sup_{\Pi\tau\in}||\pi(X)||\leqq||\Phi(X)||$
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where $\Pi$ means the set of all irreducible representations of $\mathcal{L}_{\theta}(p, q)$ . Since
the norm of $X$ in $\mathcal{L}_{\theta}(p, q)$ is given by $\sup_{\pi\in\Pi}||\pi(X)||$ , we obtain the inequality

$||X||\leqq||\Phi(X)||$ . Hence we complete the proof. $\square$

Here we refer to the classification of $L_{0}(p, q)$ concerning about $\theta$ under
fixed coprime integers $P$ and $q$ . Recall the case of $A_{\theta}$ . As in [Ril], for ir-
rational numbers $\theta_{1},$ $\theta_{2}$ , if $\theta_{1}\neq\pm\theta_{2}mod Z,$ $A_{\theta_{1}}$ may not be isomorphic to $A_{\theta_{2}}$ .
Therefore we have

PROPOSITION 7.7. Fix two integers $P$ and $q$ . For irrational numbers $\theta_{1},$ $\theta_{2}$ ,

if $L_{0_{1}}(p, q)$ and $L_{\theta_{2}}(p, q)$ are mutually isomorPhic, then $\theta_{1}\equiv\pm\theta_{2}mod Z$.
PROOF. It is immediate from the Rieffel’s result of $A_{\theta}$ by considering ir-

reducible representations of $L_{0_{i}}(p, q)$ . $\square$

8. Non-commutative $S^{3}$ and $RP^{3}$ .
In this section, we treat the two special non-commutative lens spaces, three

dimensional sphere and real projective space.
AS we stated before, the lens space of type $(1, 0)$ is homeomorphic to the

3-sphere. Thus when we take $(1, 0)$ as $(p, q)$ in Theorem $C$ , we have some
operator relations which realize $S_{\theta}^{3}$ as a universal $c*$-algebra. In fact, one sees
the following.

PROPOSITION 8.1. The non-commutative 3-sphere $s\partial$ becomes the universal
$C^{*}$-algebra generated by two operators $B,$ $C$ with the following relations:

$B^{*}B=BB^{*}$ , $C^{*}C=CC^{*}$ , $CB=e^{2_{\overline{J}}.i\theta}BC$ , $B^{*}B+C^{*}C=1$ .

PROOF. In Theorem $C$ , when $(p, q)=(1,0)$ , one sees that $N$ is generated
by $B,$ $C$ by the relation (5). Hence only the relations (1) and (3) survive. $\square$

By the above corollary, we come to know that the operator relations of
$S_{\theta}^{3}$ in [Mal], which are stated in the section $0$ , are equivalent to those in
Proposition 8.1. In fact, the following correspondence connect the two operator
relations:

$B=S/(S^{*}S+T^{*}T)^{1/2}$ , $C=T/(S^{*}S+T^{*}T)^{1/2}$ .

We are very interested in the operator relations cited in Proposition 8.1 because
they are similar to those of the quantum $SU(2)$ of Woronowicz which is written
as $S_{\nu}U(2)$ in [Wol] and [Wo2]. Roughly speaking, the Woronowicz’s quantum
groups S. $U(2)$ are obtained by deformation of $SU(2)$ along real line reminding
its group structure. However the above proposition means that our non-com-
mutative 3-spheres $S_{\theta}^{3}$ are the deformation $C^{*}$-algebra of $SU(2)$ deformed along



Non-commutative lens sPaces 39

the complex numbers with modulus one.
NOW we refer to the non-commutative version of real projective space.

Since the lens space $L(2,1)$ of type $(2, 1)$ is homeomorphic to three dimensional
real projective space $RP^{3}$ , we may consider $L_{0}(2,1)$ as a non-commutative
version of $RP^{3}$ which we write as $RP_{\theta}^{3}$ . Thus as a corollary of Theorem $C$ ,
we may write down operator relations of $RP_{\theta}^{3}$ , as well as those of $S_{0}^{3}$ , as a
univesal $C^{*}$ -algebra.

PROPOSITION 8.2. The non-commutative real Projective sPace $RPg$ is the
universal $c*$ -algebra generated by three operators determined by the following
relations:

$B^{*}B=BB^{*}$ , $C^{*}C=CC^{*}$ , $N^{*}N=N$ $*$

$CB=e^{4\pi i\theta}BC$ , $CN=e^{2ri\theta}NC$ , $BN=e^{2\pi i\theta}NB$ ,

$B^{*}B+C^{*}C=1$ ,

$N^{*}N=B^{*}B\cdot C^{*}C$ ,

$CN^{2}=(C^{*}C)^{3/2}(B^{*}B)^{1/2}B$ .

It is nuclear for each $\theta\in R$ and is not of tyPe I for irrational $\theta$ . The $K$-groups
of the algebra are

$K_{0}(RP_{\theta}^{3})=Z\oplus Z/2Z$ and $K_{1}(RP_{0}^{3})=Z$ .

PROOF. The operator relations are seen directly from Theorem $C$ . The
rest of the proposition is also clear from our previous discussions. $\square$

REMARK. Since $RP^{3}$ is homeomorphic to the Lie group $SO(3)$ , we may
also regard $RP_{\theta}^{3}$ as a non-commutative version of $SO(3)$ .
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