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1. Introduction.

Let $(M, g)$ be a compact $n$ -dimensional Riemannian manifold without bound-
ary $(n\geqq 3)$ and $S_{g}$ be its scalar curvature. Define a new metric $\hat{g}$ which is
pointwise conformal to $g$ by $\hat{g}$ $:=u^{p-2}g$ with a positive smooth function $u$ .
Then its scalar curvature is given by

$S_{\hat{g}}=u^{1-p}(a\Delta_{g}u+S_{g}u)$

where $p=2n/(n-2),$ $a=4(n-1)/(n-2)$ and $\Delta_{g}$ is the Laplacian with respect to
$g$ , namely

$\Delta_{g}u:=-g^{ij}\nabla_{i}\nabla_{j}u$ .

NOW we are interested in the question of which kind of functions can be
realized as scalar curvatures in the conformal class of $g$ . In particular, we
assume $g$ is invariant under the action of some isometry group $\Gamma$ , and consider
$\Gamma$-invariant scalar curvatures realized with $\Gamma$-invariant metrics. From the
above formula, $f$ is realized if and only if there exists at least one solution of
the following nonlinear elliptic differential equation:

$(*)$ $\{a\Delta_{g}u+S_{g}u=fu^{p-1}u>0$ on $M$ .
In the case $f$ is a constant, it is called the Yamabe problem, and if $f$ has

the same signature as the Yamabe invariant $\mu(M)$ (see Definitions 1.1), then $(*)$

has at least one solution (cf. [17], [15], [1], [10]; see also [8]). On the other
hand, several authors discussed also about the case $f$ is not a constant and it
is known that in the case $(M, g)=(S^{n}, g_{0})$ (that is the standard sphere), $(*)$

does not always have a solution (cf. [5], [2]) even if $f>0$ (namely $f$ has the
same signature as $\mu(S^{n})>0)$ . Aubin [1] obtained the useful criterion for
the existence of a solution of $(*)$ , and several authors generalized it to the $\Gamma-$

invariant case. From this criterion and using Green function, Schoen [10]
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solved the Yamabe problem completely. By the similar method, Escobar and
Schoen [4] get a sufficient condition called a flatness condition. In this paper,
we consider its generalization.

TO describe the above known results and our results, we prepare some
definitions. Throughout this PaPer, we use the same notations as above and
the following

DEFINITIONS 1.1.

(1) $J(u):=a|| \nabla_{g}u||_{2^{2}}+\int_{M}S_{g}u^{2}dV_{g}$ $(u\in H_{1}(M))$ .

$\mu(M):=\inf\{\frac{J(u)}{||u||_{p^{2}}}|u\in H_{1}(M)\backslash \{0\}\}$ .

$4\alpha(M)$ is called the Yamabe invariant of $(M, g)$ and for convenience, we denote

$\mu_{n}:=\mu(S^{n})$ $(=n(n-1)\omega_{n}^{2/n})$

where $\omega_{n}=volS^{n}$ .
(2) For any compact subgroup $\Gamma$ of the isometry group of $(M, g)$ and any $j\in$

$N\cup\{+\infty\}$ , we set
$F_{j}:=\{x\in M|\#\Gamma x=_{J\}}$ ,

$D_{j}:= \{x\in M\}\#\Gamma_{X}\leqq j\}=\bigcup_{i=1}^{j}F_{i}$ .

If $\Gamma$ is noncompact, replace $\Gamma$ by its closure.
(3) For any $f\in C^{0.\alpha}(M)(0<\alpha<1)$ which is $\Gamma$-invariant and $\max_{M}f>0$ .

$H_{\Gamma.f}(M):=\{u\in H_{1}(M)|u:\Gamma$-invariant, $\int_{M}f|u|^{p}dV_{g}>0\}$ ,

$||u||_{p.f}:=( \int_{M}f|u|^{p}dV_{g})^{1/p}$ $(u\in H_{\Gamma,f}(M))$ ,

$\mu_{\Gamma.f}(M):=\inf\{\frac{J(u)}{||u||_{p.f^{2}}}|u\in H_{\Gamma.f}(M)\}$ ,

$N_{r_{f}:=} \{_{J}\in N|F_{j}\neq\emptyset, \max_{D_{j}}f>0\}$ .

TO solve equation $(*)$ , we employ the standard variational principle. Namely
we try to find $u\in H_{\Gamma.f}(M)$ which realizes $\mu_{\Gamma.f}(M)$ . If such $u$ exists, by N.
Trudinger’s regularity theorem (cf. [15]) and the maximal principle, we can
show that $|u|$ is a $\Gamma$-invariant $C^{2}$-solution of $(*)$ . About any minimizing sequ-
ence of $J(u)/||u||_{p.f^{2}}$ , we know the following significant criterion obtained at
first by T. Aubin (cf. [1]) and generalized by P. Lions et al. (cf. [7]; see also
Vaugon [16], Chen [3] $)$ .

THEOREM A. SuPPose $\mu(M)>0$ , and $f$ is a $\Gamma$-invariant $C^{0.\alpha}$-function with
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$0<\alpha<1$ such that $mx_{M}f>0$ . If
(A)

$\mu_{\Gamma.f}(M)<_{J^{2/n}}(\max_{D_{j}}f)^{-2/p}\mu_{n}$

for any $j\in N_{\Gamma,f}$ , then any minimizing sequence of $J(u)/||u||_{p.f^{2}}$ has a subsequence
which converges $H_{1}$-strongly in $H_{\Gamma,f}(M)$ , namely equation $(*)$ has a $\Gamma$-invariant
$C^{2}$-solution.

Actually the Yamabe problem was solved by showing (A) in the case $(M, g)$

is not conformally equivalent to ( $S^{n}$ , go), $\Gamma=id$ and $f$ is a constant, that is

$\mu_{id.1}(M)=\mu(M)<1^{2/n}(\max 1)^{-2/p}\mu_{n}=\mu(S^{n})$ .

It has not been shown in general case yet but $n=3$ and $\Gamma=id$ . By testing a
constant function 1, we obtain the following integral condition:

(I)
$\int_{M}fdV_{g}>]^{-p/n(\frac{\int_{M}S_{g}dV_{g}}{\mu_{n}})_{\max_{D_{j}}f>0}^{p/z}}$ .

The method emploied by Schoen [10] is more useful. Actually, by using it,

J. Escobar and R. Schoen obtained a flatness condition for $n\geqq 3$ , and solved
this problem completely for $n=3$ . They also considered the same condition as
above in the case $(M, g)=$ ( $S^{n}$ , go) and $f$ is invariant under the action of some
nontrivial finite subgroup $\Gamma$ of the isometry group of ( $S^{n}$ , go) (that is $0(n+1)$)

without fixed point. By the similar method, Chen [3] generalized it to the
case with fixed point.

In this paper, we shall consider the case $(M, g)$ is not necessarily con-
formally equivalent to ( $S^{n}$ , go) and $\Gamma$ is not necessarily finite, and obtain the
following flatness condition:

(F) there exists $x_{j}\in D_{j}$ such that

$f(x_{j})= \max f>0$ ,
$D_{j}$

$f(x)\geqq f(x_{j})-C(d_{g}(x, x_{j}))^{n-1}$ near $x_{j}$

for some $C>0$ .
Parts of our main results are stated as follows.

THEOREM 1.2. Let $(M, g)$ be a locally conformally flat manifold which is
not conformally equivalent to ( $S^{n}$ , go) and $\mu(M)>0$ , and let $f\in C^{0.\alpha}(M)(0<\alpha<1)$

be $\Gamma$-invariant and $\max_{M}f>0$ . Then there exists a $C^{2}$-solution of equation $(*)$ ,

provided that conditions (F) and (S) hold for each $j\in N_{\Gamma.f}$ where
(S) there exists a $\Gamma_{0}$-invariant smooth function $\lambda_{0}>0$ which is defined in some neigh-
borhood $B_{\epsilon}(x_{j})$ such that $\lambda_{0^{p-2}}g|_{B_{\epsilon}(x_{f})}$ is flat where $\Gamma_{0}$ $:=\{h\in\Gamma|hx_{j}=x_{j}\}$ .

THEOREM 1.3. Let $(M, g)$ be a compact3-dimensional manifold which is not
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conformally equivalent to $(S^{3}, g_{0})$ and $\mu(M)>0$ , and let $f\in C^{2.\alpha}(M)(0<\alpha<1)$ be
$\Gamma$-invariant and $\max_{M}f>0$ . Then there exists a $C^{4}$-solution of equation $(*)$ .

Sections 2 and 3 are devoted to the full statements in Theorems 2.1 and
3.1 and the proofs for these. The above assertions are involved in these theo-
rems. After observations on the condition (S) are made in Section 4, some
relations between the symmetry and the nonuniqueness of solutions of equation
$(*)$ are given in Section 5.

The author would like to express his sincere gratitude to Prof. S. Mura-
kami and Prof. A. Kasue for their constant encouragement and valuable sug-
gestion, and also to Prof. O. Kobayashi and Dr. S. Nayatani for their useful
comments.

2. The locally conformally flat case.

In this section, we treat the case $(M, g)$ is locally conformally flat. Before
stating the main existence theorem, we prove the following crucial

LEMMA 2.1. Suppose $(M, g)$ is locally conformally flat and $J\in N_{\Gamma,f}$ . If con-
ditions (F) and (S) hold, then (A) is true except the case $(M, g)=$ ( $S^{n}$ , go) and $J^{=1}$

simultaneously, where (S) is as in Theorem 1.2.

PROOF. We shall show that for each $j\in N_{\Gamma,f}$ , there exists $u\in H_{\Gamma.f}(M)$

such that

(A) $\frac{J(u)}{||u||_{p.f^{2}}}<j^{2/n}(\max_{D_{j}}f)^{-2/p}\mu_{n}$ .

STEP 1. Since $x_{j}\in D_{j}$ , there exists $j’\leqq_{J}$ such that $x_{j}\in F_{J’}$ . Then $\Gamma_{0}$ is
compact and $|\Gamma:\Gamma_{0}|=j’$ , so there exist $h_{1}(=e),$ $h_{2}$ , $\cdot$ . , $h_{J’}\in\Gamma$ such that

$\Gamma=\sum_{i=1}^{j’}h_{i}\Gamma_{0}$ .

We put $y_{i}$ $:=h_{i}x_{j}$ ( $1\leqq$ Vi::$j’), then

$\Gamma_{X_{j}}=\{x_{j}, h_{2}x_{j}, \cdots h_{j’}x_{j}\}=\{y_{1}, y_{2}, \cdots , y_{j’}\}$ .

We may take $\epsilon$ to satisfy $B_{\epsilon}(y_{i})\cap B_{\epsilon}(y_{i’})=\emptyset$ for any $i\neq i’$ , and define a posi-
tive smooth function $\lambda$ by

$\lambda(x):=\sum_{\ell=1}^{j’}(\eta(\lambda_{0}-1))oh_{i}^{-1}(x)+1$ (V $x\in M$ )

where $\eta$ is a cut-off function which is defined by
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$\eta(x)=\{01 ^{for} d_{g}(X,x_{j})\leqq\epsilon/2$

for $d_{g}(x, x_{j})\geqq\epsilon$ .
and depends only on $d_{g}(x, x_{j})$ . Since $d_{g}(x, x_{j})$ is $\Gamma_{0}$-invariant, so is $\eta$ . Now
for any $h\in\Gamma$ ,

$\sum_{i=\perp}^{j’}h_{i}\Gamma_{0}=\Gamma=h^{-1}\Gamma=\sum_{i=\perp}^{j’}h^{-1}h_{i}\Gamma_{0}$ .

This implies there exist $k_{1},$ $\cdots$ , $k_{j’}\in\Gamma_{0}$ such that

$\{h^{-1}h_{1}, \cdots , h^{-1}h_{j’}\}=\{h_{1}k_{1}, \cdots, h_{j’}k_{j’}\}$ .

Hence for any $x\in M$,

$\lambda(hx)=\sum_{i=1}^{j’}(\eta(\lambda_{0^{-1}}))\circ h_{i^{-1}}h(x)+1=\sum_{i’=1}^{j’}(\eta(\lambda_{0^{-1}}))\circ k_{t’}^{-1}h_{i’}^{-1}(x)+1$

$= \sum_{i^{l}=1}^{j’}(\eta(\lambda_{0^{-1}}))\circ/\iota_{\iota’}^{-1}(x)+1=\lambda(x)$ ,

namely $\lambda$ is $\Gamma$-invariant. So we can define a new $\Gamma$-invariant metric $\xi:=\lambda^{p-2}g$

which is pointwise conformal to $g$ and flat near $x_{j}$ .

STEP 2. NOW since $\mu(M)>0$ , there exists a unique Green function for
$aA_{g}+S_{g}$ at $x_{j}$ , and we denote it by $G_{0}$ . For its uniqueness, it must be $\Gamma_{0^{-}}$

invariant. Denote the distance $d_{\hat{g}}(x, y)$ between $x$ and $y$ with respect to the
metric $\hat{g}$ by $|x-y|$ for simplicity, and take $\rho_{0}>0$ such that $\hat{g}|_{B_{2\rho_{0}}}(y_{i})$ is flat
for any $i$ . If we replace $G_{0}$ by some multiple of $G_{0}$ , then we have

$G_{0}(x)=|x-x_{j}|^{2-n}+A_{0}+\alpha(x)$ (V $x\in B_{2\rho_{0}}(x_{j})$ )

with some constant $A_{0}\geqq 0$ and some $\alpha$ such that $A_{\hat{g}}\alpha=0,$ $\alpha(x_{j})=0$ (cf. [10]).

For any $k\in\Gamma_{0}$ and $x\in B_{2\rho_{0}}(x_{j})\backslash \{x_{j}\}$ .
$\alpha(kx)=G_{0}(kx)-(|kx-x_{j}|^{2-n}+A_{0})=G_{0_{\backslash }^{(}}x)-(|x-x_{j}|^{2-n}+A_{0})=\alpha(x)$ .

which shows $\alpha$ is also $\Gamma_{0}$-invariant. Set

$G(x):= \sum_{i=1}^{j’}G_{0}\circ h_{i^{-1}}(x)$ .

Then it is clearly well defined and $I^{7}$-invariant. In addition, for any $i_{1}$ and
$x\in B_{2\rho_{0}}(y_{i_{1}})$ , we get

$G(x)=|x-y_{i_{1}}|^{2-n}+A+\beta_{i_{1}}(x)$

where
$A:=A_{0}+_{i}t_{1}G_{0}\circ h_{i^{-1}}(y_{i_{1}})$ .

$\beta_{i_{1}}\circ 1(x)-G_{0}\circ h_{i^{-1}}(y_{\iota_{1}}))$ .
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Since there exist $k_{1},$ $\cdots$ , $k_{j’}\in\Gamma_{0}$ such that

$\{h_{i_{1^{-1}}}h_{1}, \cdots , h_{i_{1}^{-1}}h_{j’}\}=\{h_{1}k_{1}, \cdots h_{j’}k_{j’}\}$

as before, and in paticular $h_{i_{1^{-1}}}h_{i_{1}}=e=h_{1}k_{1}$ ,

$A=A_{0}+ \sum_{i\neq i_{1}}G_{0}\circ h_{i}^{-1}(h_{i_{1}}x_{j})=A_{0}+\sum_{i^{r}\neq 1}(G_{0}\circ k_{i’}^{-1})\circ h_{i’}^{-1}(x_{j})$

$=A_{0}+ \sum_{i’\neq 1}G_{0}\circ h_{i’}^{-1}(x_{j})\geqq 0$ .

This shows $A$ is a nonnegative constant independent of Zl. On the other hand,
for any $h\in\Gamma$ , there exists $i_{2}$ such that $hy_{i_{1}}=y_{t_{2}}=h_{i_{2}}x_{j}$ , namely $h_{i_{2^{-1}}}hh_{i_{1}}\in\Gamma_{0}$ .
NOW there exist $k_{1}$ , , $k_{j’}\in\Gamma_{0}$ such that

$\{h^{-1}h_{1}, \cdots , h^{-1}h_{j’}\}=\{h_{1}k_{1}, \cdots . h_{j’}k_{j’}\}$

as before, and in paticular $h^{-1}h_{i_{2}}=h_{i_{1}}k_{i_{1}}$ . Hence for any $x\in B_{2\rho_{0}}(y_{i_{1}})$ .
$hx\in B_{2\rho_{0}}(y_{t_{2}})$

and
$\beta_{i_{2}}(hx)=\alpha\circ h_{i_{2}}^{-1}(hx)+_{i\neq i_{2}}(G_{0}\circ h_{i^{-1}}(hx)-G_{0}\circ h_{i^{-1}}(y_{t_{2}}))$

$= \alpha\circ(h_{i_{2}}^{-1}hh_{i_{1}})\circ h_{i_{1}}^{-1}(x)+\sum_{i\neq i_{2}}(G_{0}\circ h_{i^{-1}}(hx)-G_{0}\circ h_{i^{-1}}(hy_{i_{1}}))$

$= \alpha\circ h_{i_{1^{-1}}}(x)+\sum_{i\neq i_{1}}((G_{0}\circ k_{i’}^{-1})\circ h_{i’}^{-1}(x)-(G_{0}\circ k_{i’}^{-1})\circ h_{i’}^{-1}(y_{i_{1}}))$

$=\alpha\circ h_{i_{1}}^{-1}(x)+_{i\neq i_{1}}(G_{0}\circ h_{i’}^{-1}(x)-G_{0}\circ h_{i’}^{-1}(y_{i_{1}}))$

$=\beta_{i_{1}}(x)$ .
It is clear that $\Delta_{\hat{g}}\beta_{i_{1}}=0,$ $\beta_{i_{1}}(y_{i_{1}})=0$ .

STEP 3. For any $\epsilon>0$ , let

$u_{\epsilon}( \rho):=(\frac{\epsilon}{\epsilon^{2}+\rho^{2}})^{(n-2)/2}$ $(\forall\rho\in R)$ .

Take a smooth function $\psi$ satisfying

$\psi(t)=\{$

1 for $t\leqq 1$

$0$ for $t\geqq 2$

$0\leqq\psi\leqq 1$ for $1\leqq t\leqq 2$ .
and let

$\psi_{0}(\rho):=\psi(\frac{\rho}{\rho_{0}})$ $(\forall\rho\in R)$

where $\rho_{0}$ is as in Step1. Then $\psi_{0}$ is a smooth function such that
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$\psi_{0}(\rho)=\{\begin{array}{l}100\leqq\psi_{0}\leqq 1 for\rho_{o}\leqq\rho\leqq 2\rho_{0}|\frac{d\psi_{0}}{d\rho}(\rho)|\leqq C\rho_{0^{-1}} forsomeC>0.\end{array}$

for $\rho\leqq\rho_{0}$

for $\rho\geqq 2\rho_{0}$

NOW we define $\phi$ by

$\varphi’(x):=\{$

$u_{\epsilon}(|x-y_{i}|)$ on $B_{\rho_{0}}(y_{t})$

$\epsilon_{0}(G(x)-\psi_{0}(|x-y_{i}|)\beta_{\ell}(x))$ on $B_{2\rho_{0}}(y_{i})\backslash B_{\rho_{0}}(y_{i})$

$\epsilon_{0}G(x)$ elsewhere

where $\epsilon_{0}$ is chosen so as to satisfy

$u_{\epsilon}(|x-y_{i}|)=\epsilon_{0}(G(x)-\psi_{0}(|x-y_{i}|)\beta_{i}(x))$ on $\partial B_{\rho_{0}}(y_{t})$

that is

$( \frac{\epsilon}{\epsilon^{2}+\rho^{2}})^{(n- 2)/2}=\epsilon_{0}(\rho_{0^{2-n}}+A)$ .

Clearly $\phi$ is a positive $\Gamma$-invariant $C^{0}$-function which is smooth in $M \backslash \bigcup_{i=1}^{J’}\partial B_{p_{0}}(y_{i})$ .
By direct computation and the definition of Green function, we see

$a\Delta_{\hat{g}}\phi+S_{\hat{g}}\phi=\{$

( $4n(n-1)\dot{\varphi}^{p-1}$ on $\bigcup_{i=1}^{j’}B_{\rho_{0}}(y_{i})$

$0$ on $M^{j’}\backslash UB_{2\rho_{0}}(y_{i})i=1$

NOW let $u:=\lambda\phi$ . Then $u$ is also $\Gamma$-invariant and $u\in H_{\Gamma.f}(M)$ for any suffici-
ently small $\epsilon>0$ , since we assume $f(x_{J})>0$ , that is, $f(y_{i})>0$ for any $i$ . More-
over $u$ satisfies

$aA_{g}u+S_{g}u=\{$

$4n(n-1)u^{p- 1}$ on $\bigcup_{i=1}^{j’}B_{\rho_{0}}(y_{i})$

$0$ on $M^{j’}\backslash UB_{2\rho_{0}}(y_{i})i=1$

Actually this is derived easily from the following formula:

$(a\Delta_{g}+S_{g})(\lambda v)=\lambda^{p-1}(a\Delta_{\rho}+S_{\hat{g}})v$ .

STEP 4. First by the above formula, we see

$\frac{J(u)}{||u||_{p,f^{2}}}=\frac{a||\nabla_{g}u||_{2}^{2}+\int_{M}S_{g}u^{2}dV_{g}}{(\int_{M}f|u|^{p}dV_{g})^{2/p}}=\frac{a||\nabla_{\hat{g}}\phi||_{2}^{2}+\int_{M}S_{\hat{g}}\phi^{2}dV_{\hat{9}}}{(\int_{M}f|\phi|^{p}dV_{\rho})^{2/p}}$ .

NOW applying the same argument as in Escobar and Schoen [4] and Chen [3],
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we can obtain tbe estimate (A). Actually

$a|| \nabla_{\hat{g}}u_{\epsilon}||_{2,B_{\rho_{0}}(y_{i})}^{2}+\int_{B_{\rho_{0}}(y_{i)}}S_{\hat{g}}u_{\epsilon}^{2}dV_{\hat{g}}$

$= \int_{B_{\rho_{0}}(y_{i})}u_{\epsilon}\neg$

$=4n(n-1) \int_{B_{p_{0}}(x_{j)}}u_{\epsilon}^{p}dV_{\hat{g}}+a\int_{\partial B_{\rho_{0}}(x_{j)}}u_{\text{\’{e}}}\frac{\partial_{\mathcal{U}_{\epsilon}}}{\partial n}ds$

$\leqq\mu_{n}(\int_{B_{\rho_{0}}(x_{j})}u_{\epsilon}^{p}dV_{\hat{g}})^{2/p}+a\int_{\hat{o}B_{\rho_{0}}(x_{j)}}u_{\epsilon}\frac{\partial_{\mathcal{U}_{\epsilon}}}{\partial n}ds$

because

$\int_{B_{\rho_{0}}(x_{f})}u_{\epsilon}^{p}dV_{\hat{g}}\leqq\int_{R^{\mathcal{R}}}u_{\epsilon}^{p}dx=4^{-n/2}\omega_{n}=(\frac{\mu_{n}}{4n(n-1)})^{1-2/p}$

Similarly

$a|| \nabla_{\hat{g}}(\epsilon_{0^{2}}G)||_{2.M\backslash \bigcup_{t}B_{\rho_{0}}(y_{i})}+\int_{M\backslash g^{B_{\rho_{0}}(y_{i)}}}S_{\hat{g}}(\epsilon_{0}G)^{2}dV_{\rho}$

$= \int_{M\backslash \bigcup_{l}B_{\rho_{0}}(y_{i)}}(a\Delta_{\hat{g}}(\epsilon_{0}G)+S_{\hat{g}}(\epsilon_{0}G))\epsilon_{0}GdV_{\hat{g}}-a\int_{\cup\partial B_{\rho_{0}}(y_{i)}}\epsilon_{0}G\frac{\partial}{\partial n}(\epsilon_{0}G)ds$

$=-]’a \epsilon_{0^{2}}\int_{\partial B_{\rho_{0}}(x_{j)}}G\frac{\partial G}{\partial n}ds$ .

Hence

$a|| \nabla_{\hat{g}}\phi||_{2}^{2}+\int_{M}S_{\hat{g}}\phi^{2}dV_{\dot{g}}$

$\leqq j’\mu(\int_{B_{\rho_{0}}(x_{j})}u_{\epsilon}^{p}dV_{\dot{g}})^{2/p}+]’a\int_{\hat{o}B_{\rho_{0}}(x_{f)}}\{u_{\epsilon}\frac{\partial u_{\epsilon}}{\partial n}-\epsilon_{0^{2}}G\frac{\partial G}{\partial n}\}ds$

$+_{J’} \epsilon_{0^{2}}\int_{B_{2\rho_{0}}(x_{j})\backslash B_{\rho_{0}}(x_{j)}}[a\{|\nabla_{\rho}(G-\psi_{0}\beta_{1})|^{2}-|\nabla_{\hat{g}}G|^{2}\}$

$+S_{\hat{g}}\{(G-\psi_{0}\beta_{1})^{2}-G^{2}\}]dV_{\hat{g}}$

$=:I+II+III$ .
NOW as Schoen [10] estimated, since

$|(G-\psi_{0}\beta_{1})^{2}-G^{2}|$ :Sl $Cp_{0^{3-n}}$

on $B_{2\rho_{0}}(x_{j})\backslash B_{\rho_{0}}(x_{j})$ ,
$||\nabla_{\hat{g}}(G-\psi_{0}\beta_{1})|^{2}-|\nabla_{\hat{g}}G|^{2}|\leqq C\rho_{0}^{1-n}$

we see
$|III|\leqq C\epsilon_{0^{2}}\rho_{0}$ .

for some $C>0$ . On the other hand, if we take $\epsilon<\rho_{0}$ , then
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$u_{\epsilon} \frac{\partial u_{\epsilon}}{\partial n}-\epsilon_{0^{2}}G\frac{\partial G}{\partial n}\leqq-C_{0}A\epsilon_{0^{2}}\rho_{0^{1- n}}+C\epsilon_{0^{p}}\rho_{0^{1-2n}}$ on $\partial B_{\rho_{0}}(x_{J})$

since $\epsilon\leqq C\epsilon_{0^{2/(n-2)}}$ . Hence we also have

II $\leqq-C_{0}A\epsilon_{0^{2}}+C\epsilon_{0^{p}}p_{0^{-n}}$

for some $C>0$ and $C_{0}>0$ . Now from our hypothesis, we can assume

$f(x_{j})\leqq f(x)+Cp^{n-1}$ on $B_{\rho_{0}}(x_{j})$

so that

$f(x_{j}) \int_{B_{\rho_{0}}(x_{j})}u_{\epsilon}^{p}dV_{\rho}\leqq\int_{B(x)}fu_{\epsilon}^{p}dV_{\hat{g}}+C\int_{B(x}p^{n-1}u_{\epsilon}^{p}dV_{\hat{9}}$ .

Since

$\int_{B_{\rho_{0}}(x_{j})}\rho^{n- 1}u_{\epsilon}^{p}dV_{\hat{g}}=\int_{B_{\rho_{0}}(x_{f})}p^{n-1}(\frac{\epsilon}{\epsilon^{2}+\rho^{2}})^{n}dV_{\rho}$

$= \omega_{n-1}\int_{0}^{\rho_{0}}p^{n-1}(\frac{\epsilon}{\epsilon^{2}+\rho^{2}})^{n}\rho^{n-1}d\rho\leqq C\epsilon^{n-1}$

if we take sufficiently small $p_{0}$ , then

$\int_{M\backslash }f\phi^{p}dV_{\hat{g}}9^{B_{\rho}}0^{(y_{i})}\leqq\max|f|\{\epsilon_{0}(\rho_{0^{2-n}}+A)\}^{p}(vol(M,\hat{g}))\leqq C\epsilon_{0^{p}}p_{0^{-2n}}$ .

This implies

$I \leqq j’\mu_{n}\{f(x_{j})^{-1}(\int_{B_{\rho_{0}}(x_{f)}}fu_{\epsilon}^{p}dV_{\hat{g}}+C\int_{B_{\rho_{0}}(x_{j})}p^{n-1}u_{\epsilon}^{p}dV_{\hat{g}})\}^{2/p}$

$\leqq j’f(x_{j})^{-2/p}\mu_{n}(j^{;-1}\int_{\bigcup_{i}B_{\rho_{0^{(y_{i)}}}}}f\phi^{p}dV_{\hat{g}})^{2/p}+C\epsilon^{n-1}$

$=j^{\prime 1-2/p}f(x_{j})^{-2/p} \mu_{n}(\int_{M}f\phi^{p}dV_{B}-\int_{M\backslash \bigcup_{i}B_{\rho_{0}}(y_{i)}}f\phi^{p}dV_{\hat{9}})^{2/p}+C\epsilon^{n-1}\epsilon$

$\leqq j^{\prime 2/n}f(x_{j})^{-2/n}\mu_{n}(\int_{M}f\phi^{p}dV_{\hat{g}})^{2/p}+C\epsilon_{0^{p}}p_{0^{-2n}}+C\epsilon_{0^{2}}p_{0}$

for some $C>0$ . It follows that

$a|| \nabla_{p}\phi||_{2}^{2}+\int_{M}S_{\hat{g}^{(}}\beta^{2}dV_{\hat{g}}\leqq I+II+|III|$

$\leqq j^{\prime 2/n}f(x_{j})^{-2/p}\mu_{n}(\int_{M}f\phi^{p}dV_{\hat{g}})^{2/p}$

$+C\epsilon_{0^{p}}\rho_{0^{-2n}}+C\epsilon_{0^{2}}\rho_{0}-C_{0}A\epsilon_{0^{2}}+C\epsilon_{0^{p}}p_{0^{-n}}+C\epsilon_{0^{2}}p_{0}$

$\leqq_{J^{\prime 2/n}}f(x_{j})^{-2/p}\mu_{n}(\int_{M}f\phi^{p}dV_{\hat{g}})^{2/p}+C(\epsilon_{0^{p}}\rho_{0^{-2n}}+\epsilon_{0^{2}}p_{0})-C_{0}A\epsilon_{0^{2}}$
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If $(M, g)$ is not conformally equivalent to $(S^{n}, g_{0})$ , then $A_{0}>0$ because of the
positive mass theorem (cf. [13]). On the other hand if $j\neq 1$ , then obviously

$\sum_{i\neq 1}G_{0}\circ h_{i^{-1}}(x_{j})>0$ .

Hence
$A=A_{0}+ \sum_{i\neq 1}G_{0}\circ h_{i^{-1}}(x_{j})>0$ .

Thus if we take sufficiently small $\rho_{0}>0$ and smaller $\epsilon_{0}>0$ , we obtain the fol-
lowing estimate

$a|| \nabla_{\hat{g}}\phi||_{2}^{2}+\int_{M}S_{\delta}\phi^{2}dV_{\hat{g}}<j^{\prime 2/n}f(x_{j})^{-2/p}\mu_{n}(\int_{M}f\phi^{p}dV_{\rho})^{2/p}$

which shows

$\frac{J(u)}{||u||_{p.f^{2}}}=\frac{a||\nabla_{\hat{g}}\phi||_{2}^{2}+\int_{M}S_{\rho}\phi^{2}dV_{\hat{9}}}{(\int_{M}f|\phi|^{p}dV_{\hat{g}})^{2/p}}<j^{\prime 2/n}f(x_{j})^{-2/p}\mu_{n}$

$=j^{;2/n}( \max f)^{-2/p}\mu_{n}\leqq j^{2/n}(\max f)^{-2/p}\mu_{n}$ . Q. E. D.
$D_{j}$ $D_{j}$

NOW we obtain the following

THEOREM 2.2. Let $(M, g)$ be a compact locally conformally flat manifold
with $\mu(M)>0$ , and let $f\in C^{0.\alpha}(M)(0<\alpha<1)$ be $\Gamma$-invariant and $\max_{M}f>0$ . Then
there exists a $\Gamma$-invariant $C^{2}$-solution of equation $(*)$ , provided that for each $j\in$

$N_{\Gamma,f},$ $f$ satisfies one of the following:
(C-1) conditions (F) and (S) hold unless $(M, g)$ is conformally equivalent to
$(S^{n}, g_{0})$ and $j=1$ , and condition (F) holds in the above exceptional case where
(F) there exists $x_{1}\in D_{1}=F_{1}$ such that

$f(x_{1})= \max_{D_{1}}f>0$ .

$f(x)\geqq f(x_{1})+C(d_{g}(x, x_{1}))^{2}$ near $x_{1}$

for some $C>0$ ,

(C-2) condition (I) holds,
(C-3) there exists $j_{0}>j$ such that

$\max_{D_{j_{0}}}f\geqq(\frac{Jo}{j})^{p/n}\max_{D_{j}}f$

and (C-1) or (C-2) holds for $j_{0}$ .

PROOF. In the exceptional case in (C-1), since $A=0$ , the condition

$f(x)\geqq f(x_{1})-C(d_{g}(x, x_{1}))^{n-1}$

is not available but
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$f(x)\geqq f(x_{1})+C(d_{g}(x, x_{1}))^{2}$

as W. Chen showed by estimating solutions of the Yamabe problem (cf. [3]).
From this result, Lemma 2.1 and the results in Section 1, it follows that the
estimate (A) holds under the condition (C-1) or (C-2).

On the other hand, under the condition (C-3), since $f$ satisfies (C-1) or
(C-2) for $j_{0}>j$ , we get

$\frac{J(u)}{||u||_{p.f^{2}}}<j_{0^{2/n}}(\max_{D_{j_{0}}}f)^{-2/p}\mu_{n}$

$ $j_{0^{2/n}} \{(\frac{j_{0}}{j})^{p/n}\max_{D_{j}}f\}^{-2/p}\mu_{n}=]^{2/n}(\max_{D_{j}}f)^{-2/p}\mu_{n}$ . Q. E. D.

3. The Case $n=3$ .
In this section, we consider the case $n=3$ , and show a stronger result than

that of the previous section.

LEMMA 3.1. Suppose $n=3$ and $J\in N_{\Gamma.f}$ . If (F) holds, then (A) is true, ex-
cept the case $(M, g)=$ ( $S^{3}$ , go) and ] $=1$ simultaneously.

PROOF. Since $\mu(M)>0$ , there exists a unique Green function for $aA_{g}+S$.
at $x_{j}$ , and we denote it by $G_{0}$ . For its uniqueness, it must be $\Gamma_{0}$-invariant.
Denote the distance $d_{g}(x, y)$ between $x$ and $y$ with respect to the metric $g$ by
$|x-y|$ for simplicity. If we replace $G_{0}$ by some multiple of $G_{0}$ , then for any
$\rho_{0}>0$ .

$G_{0}(x)=|x-x_{j}|^{-1}+A_{0}+\alpha(x)$ $(\forall x\in B_{2\rho_{0}}(x_{j}))$

with some constant $A_{0}\geqq 0$ and some $\alpha$ such that $\Delta_{\hat{g}}\alpha=0$ . $\alpha(x_{j})=0$ (cf. [10]).

In addition, if $(M, g)$ is not conformally equivalent to $(S^{3}, g_{0})$ , then $A_{0}>0$ be-
cause of the positive mass theorem (cf. [12]). Construct $G$ and $u$ as before
and observe that

$a|| \nabla_{g}u_{\epsilon}||_{2.B_{\rho_{0}}(y_{i})^{2}}+\int_{B_{\rho_{0}}(y_{i)}}S_{g}u_{\epsilon}^{2}dV_{g}\leqq a||\nabla_{0}u_{\epsilon}||_{2.B_{\rho_{0}}(y_{i^{)^{2}}}}+Cp_{0}\epsilon_{0^{2}}$ ,

$\int_{B_{\rho_{0^{(x_{j})}}}}u_{\epsilon}^{p}dx\leqq\int_{B_{\rho_{0}}(x_{j)}}u_{\epsilon}^{p}dV_{g}+C\epsilon_{0}^{4}$

for some $C>0$, where $\nabla_{0}$ is the gradient with respect to the flat metric. Thus
we obtain the same estimate as (A). Q. E. D.

THEOREM 3.2. Let $(M, g)$ be a compact 3-dimensional manifold with $\mu(M)$

$>0$, and let $f\in C^{2.\alpha}(M)(0<\alpha<1)$ be $\Gamma$-invariant and $\max_{M}f>0$ . Then there
exists a $\Gamma$-invariant $C^{4}$-solution of equation $(*)$ if either of the following two
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$cond_{\theta}t\iota om$ holds:
(1) $(M, g)$ is not conformally equivalent to $(S^{3}, g_{0})$ .
(2) $(M, g)$ is conformally equivalent to $(S^{3}, g_{0})$ and additionally in the case

$1\in N_{\Gamma.f},$ $f$ satisfies one of the conditions (C-1), (C-2) and (C-3) for $j=1$ .

PROOF. From Lemma 3.1, it is enough to show that (C-1) is satisfied
whenever $j\in N_{\Gamma,f}$ , unless $(M, g)$ is conformally equivalent to $(S^{3}, g_{0})$ and $j=1$

simultaneously.
If $F_{j}\neq\emptyset$ , then obviously there exists $x_{j}\in D_{j}$ such that $f(x_{j})= \max_{D_{j}}f$ , and

there exists $J’$ $j such that $x_{j}\in F_{j’}$ . Set $\Gamma_{0}$ $:=\{h\in\Gamma|hx_{j}=x_{j}\}$ as before. Then
it is compact, $|\Gamma:\Gamma_{0}|=_{J’}$ and there exist $h_{1}(=e),$ $h_{2}$ , $\cdot$ .. , $h_{j^{t}}\in\Gamma$ such that

$\Gamma=i1\sum_{=}^{j’}h_{i}\Gamma_{0}$ .

Set
$M_{\Gamma_{0}}:=$ { $x\in M|hx=x$ for any $h\in\Gamma_{0}$ }.

Then for any $x\in M_{\Gamma_{0}}$ ,

$\Gamma_{X}=\{h_{1}x(=x), h_{2}x, \cdots h_{j^{t}}x\}$ .
Hence #\Gamma x$j’, that is, $x\in D_{j’}$ . This implies $M_{\Gamma_{0}}\subset D_{j’}\subset D_{j}$ and $f(x_{j})=$

$\max_{D_{j}}f=\max_{M_{\Gamma_{0}}}f$ , hence $\nabla_{g^{1}M_{\Gamma_{0}}}f(x_{j})=0$ . Then because of the principle of
symmetric criticality (cf. [9]), $\nabla_{g}f(x_{j})=0$ , from which it turns out that

$f(x)\leqq f(x_{j})-C(d_{g}(x, x_{j}))^{2}$ near $x_{f}$

for some $C>0$ . Q. E. D.

Under the same hyPothesis as in Theorem 3.1 (1), the existence of a solu-
tion has already been shown by [4], but we assert the existence of a $\Gamma-$

invariant solution. Solutions do not always have $\Gamma$-invariance (see Section 5).

On the other hand, about $(S^{3}, g_{0})$ , we see the assertion in [3] is valid with any
infinite $\Gamma$ too.

AS above, (F) is not needed at all in the case $n=3$ . In the case $n=4$ or
5, though we also see the following similar expansion

$G_{0}(x)=|x-x_{j}|^{2-n}+A_{0}+\alpha(x)$ ,

we cannot remove (F) by the same method. But it is not necessary as we
saw in (I). Moreover when we regard $f^{\ell_{\Gamma}}.f(M)$ as a functional on

{ $f\in C^{0.\alpha}(M)|\Gamma$-invariant, $ma^{xf>0\}}$ .
it is trivially upper semicontinuous with respect to $C^{0}$-norm. Hence for any
locally conformally flat manifold $M$ and any $\Gamma$ which satisfies (S) for any $x\in M$,
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we see the set

{ $f\in C^{0.\alpha}(M)|\Gamma$-invariant, $(*)$ has a $\Gamma$-invariant $C^{2}$-solution}
is at least open dense in

{ $f\in C^{0.\alpha}(M)|\Gamma$-invariant, $mMa^{xf}>0$ }.

4. Remarks on the condition (S).

The condition (S) was required to construct a $\Gamma$-invariant metric which is
flat near $x_{j}$ . In this section, we will see two examples about it.

PROPOSITION 4.1. When $(M, g)=(S^{n}, g_{0}),$ $(S)$ is automatically satisfied.

PROOF. We may regard $(M, g)$ as an imbedded submanifold of $R^{n+1}$ :

$M=S^{n}\subset R^{n+1}$ ,

$g_{0}= \sum_{i=1}^{n+1}(dx^{i})^{2}|_{Sn}$ .

Moreover we can take a coordinate system so that $x_{j}=(0, \cdots , 0,1)$ without loss
of generality, and then

$\Gamma_{0}\subset\{(\begin{array}{ll}A 00 1\end{array})\in O(n+1)|A\in O(n)\}$ .

Define
$\sigma$ : $S^{n}\backslash \{(0, \cdots, 0, -1)\}arrow R^{n}$

by

$\sigma(x^{1}, \cdots, x^{n}, x^{n+1})$ $:=( \frac{x^{1}}{1+x^{n+1}},$ $\cdots$ $\frac{x^{n}}{1+x^{n+1}})=(y^{1}, \cdots , y^{n})$ .

Then

$\sigma^{*}(\sum_{i=1}^{n}(dy^{i})^{2})=(\frac{1}{1+x^{n+1}})^{2}g_{0}$ .

so $\sigma$ is a conformal diffeomorphism. Hence if we set

$\lambda_{0}$ $:=( \frac{1}{1+x^{n+1}})^{2/(p-2)}$ ,

it is obviously $\Gamma_{0}$-invariant. Q. E. D.

But (S) is not always satisfied as follows.

PROPOSITION 4.2. When $(M, g)=(S^{1}\cross S^{n-1}, d\theta^{2}+g_{0}),$ $(S)$ is equivalent to the
following condition:
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(S) $\Gamma_{0}\subset SO(2)\cross O(n)$ .

PROOF. We may regard $(M, g)$ as an imbedded submanifold of $R^{2}xR^{n}$ :

$M=S^{1}\cross S^{n-1}\subset R^{2}\cross R^{n}$

$d \theta^{2}+g_{0}=\sum_{i=1}^{g}(dx^{\prime i})^{2}|_{S^{2}}+\sum_{i=1}^{n}(dx^{i})^{2}|_{s^{n-1}}$ .

Moreover we can take a coordinate system so that $x_{j}=(1, 0;0, \cdot.. , 0,1)$ with-
out loss of generality, and then

$\Gamma_{0}\subset\{((\begin{array}{ll}1 00 \pm 1\end{array}),$ $(\begin{array}{ll}A 00 1\end{array}))\in O(2)\cross O(n)|A\in O(n-1)\}$ .

For any open subsets $U\subset S^{1}$ and $V\subset S^{n-1}$ , choose an argument of the polar
coordinate of $U\subset R^{2}$ and define

$\tau:U\cross Varrow\tau(U\cross V)\subset R^{n}$

by
$\tau(\theta : x^{1}, \cdots x^{n}):=(e^{\theta}x^{1}, \cdots, e^{\theta}x^{n})=(y^{1}, \cdots y^{n})$ .

Then

$\tau^{*}(\sum_{i=1}^{n}(dy^{i})^{2})=e^{2\theta}(d\theta^{2}+g_{0})$ ,

so $\tau$ is a conformal diffeomorphism. Hence if we set

$\lambda_{0}:=e^{2\theta}/(p-2)$

it is obviously invariant by the action of

$\{((\begin{array}{ll}1 00 1\end{array}),$ $(\begin{array}{ll}A 00 1\end{array}))\in O(2)\cross O(n)|A\in O(n-1)\}$ .

On the other hand, by Liouville’s theorem (cf. [14]), we see any metric on
$\tau(U\cross V)$ which is pointwise conformal to

$\sum_{i=1}^{n}(dy^{i})^{2}$

can be written as

$( \sum_{i=1}^{n}(y^{i}-y_{0}^{i})^{2})\sum_{i=1}^{-2n}(dy^{i})^{2}$

for some $y_{0}\in R^{n}\backslash \tau(U\cross V)$ up to a constant. Hence by setting $y_{0}=:\tau(\theta_{0} ; x_{0})$ ,

we see any metric on $U\cross V$ which is pointwise conformal to $d\theta^{2}+g_{0}$ can be
written as

$(e^{2\theta}+e^{2\theta_{0}}-2e^{\theta+\theta_{0}} \sum_{i=1}^{n}x^{i}x_{0}^{i})^{-2}e^{2\theta}(d\theta^{2}+g_{0})$

for some $(\theta_{0} ; x_{0})\in(R\cross S^{n-1})\backslash (U\cross V)$ , or as
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$e^{-2\theta}(d\theta^{2}+g_{0})$ (this case can be regarded as for $\theta_{0}=-\infty$ )

up to a constant. Now the assertion is clear. Q. E. D.

5. The symmetry and the nonuniqueness of solutions.

In the previous sections, we considered the existence of a $\Gamma$-invariant solu-
tion of equation $(*)$ , but we do not know whether solutions given under differ-
ent sufficient conditions coincide or not in general. At least in the case $f$ is
a constant, if $\mu(M)<0$ , then $(*)$ has a unique solution, if $\mu(M)=0$ , then a unique
solution up to a constant, but if $\mu(M)>0$ , there are examples that $(*)$ has non-
unique solutions. Hence we may expect nonunique solutions also in the case
$f$ is not a constant. In this section, we consider some relation between the
symmetry and the nonuniqueness of solutions.

For example, suppose $(M, g)$ is $\Gamma$ -invariant and there exist $\Gamma’\subsetneqq\Gamma$ and $l\in$

$N_{\Gamma.f}\cap 1V_{\Gamma’.f}$ such that $f=S_{g}$ does not satisfy (C-1) but (C-2) for $j=l$ , and
satisfies one of (C-1), (C-2) and (C-3) for $j\in(N_{\Gamma.f}\cup N_{\Gamma’.f})\backslash \{l\}$ . Then trivially
$u\equiv 1$ is a solution of $(*)$ for $f=S_{g}$ :

$aA_{g}u+S_{g}u=S_{g}u^{p-1}$ .
On the other hand,

$\int_{M}S_{g}dV_{g}\leqq l^{-p/n}(\frac{\int_{M}S_{g}dV_{g}}{\mu_{n}})^{p/2}\max_{D_{l}}S_{g}$

,

namely

$\int_{M}S_{g}dV_{g}\geqq l(\max_{D_{l}}S_{g})^{-n/p}\mu_{n}^{n/2}$

Hence

$\frac{J(1)}{||1||_{p.S_{g}^{2}}}=\frac{a||\nabla_{g}1||_{2}^{2}+\int_{M}S_{g}\cdot 1^{2}dV_{g}}{(\int_{M}S_{g}|1|^{p}dV_{g})^{2/p}}=(\int_{Jf}S_{g}dV_{g})^{1-2/p}$

$\geqq l^{2/n}(\max_{D_{l}}S_{g})^{-2/p}\mu_{n}>\mu\Gamma’.f(M)$ .

NOW clearly $u\equiv 1$ does not realize $\mu_{\Gamma’.f}(M)$ , so there exists some other solu-
tion which realizes $\mu_{\Gamma’.f}(M)$ . Namely in this case, $(*)$ has at least two solu-
tions.

EXAMPLE 5.1. Suppose $(M, g)=(S^{1}\cross S^{2}, (\sin m\theta+C)^{4}(d\theta^{2}+g_{0}))(m\in N)$ . Then
by direct computation, we see
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$S_{g}=\frac{2\{(1+4m^{2})\sin m\theta+C\}}{(\sin m\theta+C)^{5}}$ ,

$\int_{M}S_{g}dV_{g}=8\pi^{2}(1+4m^{2}+2C^{2})$ ,

and for $C\geqq 4+5/(m^{2}-1)(<6)$ ,

$\max_{M}S_{g}=\frac{2(1+4m^{2}+C)}{(1+C)^{5}}$ .

Hence for $C\geqq 6$ , sufficiently large $m$ and $l|m$ such that $m/l$ is also sufficient
large,

1 $( \max_{M}S_{g})^{-1/2}\mu_{n}^{3/2}\leqq\int_{M}S_{g}dV_{g}$ ,

namely for such $l$ , (C-2) is not satisfied with $\Gamma=Z_{l}$ . On the other hand, since
$n=3$ , (C-1) is automatically satisfied for any $j$ . Thus equation

$8A_{g}u+S_{g}u=S_{g}u^{5}$

has a trivial solution $u\equiv 1$ and at least another solution which has a period
$2\pi/l$ .

If $\mu\Gamma’.f(M)<\mu\Gamma.f(M)$ for $\Gamma’\subseteqq\Gamma$ , any solution which realizes $\mu_{\Gamma’.f}(M)$ is
different from any solution which realizes $\mu r,$ $f(M)$ , but it is difficult to show
$\mu\Gamma’.f(M)<\mu\Gamma.f(M)$ in general. In the case $f$ is a constant, Kobayashi [6] and
Schoen [11] independently obtained the following result.

THEOREM B. Let $(M, g)=(S^{1}(r)\cross S^{n-1}, r^{2}d\theta^{2}+g_{0})$ . For any positive constant
$f$ and any $k\in N$.

(1) if $0<r\leqq 1/\sqrt{}\overline{n-2,}$ then $(*)$ has a unique solution $u=constant$ ,

(2) if $k/\sqrt{}\overline{n-2}<r\leqq(k+1)/\sqrt{}\overline{n-2,}$ then $(*)$ has a trivial solution $u=constant$

and an $S^{1}$-parameter family of solutions which has a primitive period $2\pi r/i$ for
any $i\leqq k$ . In particular, solutions which has a primitive period $2\pi r$ (namely with
no period) is minimizing, and

(3) $\lim^{\mu(S^{1}(r)XS^{n-1})=\mu}\cdot$ .

By (3), we can show some generalization of (1) and (2) to the case $f$ is not
a constant as follows.

THEOREM 5.2. Let $(M, g)=(M_{r}, g_{r})=(S^{1}(r)\cross S^{n-1}, r^{2}d\theta^{2}+g_{0})$ , and suppose
$Z_{j}$ acts on $S^{1}(r)$ for any $j\in N$ For any $m\in N$ there exists $r_{m}(n)>0$ such that

for any $r>r_{m}(n)$ and any $f\in C^{0.\alpha}(M)(0<\alpha<1)$ which is $Z_{m}$-invariant and
$\max_{M}f>0$, there exists a $Z_{l}$ -invariant $C^{2}$-solution of $(*)$ for any $l|m$ which is
different from each other if
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(1) $n=3$

$or$

(2) $n\geqq 4$ and $f$ satisfies each of the following conditions:
(C-1) there exists $x_{0}\in M$ such that

$f(x_{0})= \max_{M}f$ .

$f(x)\geqq f(x_{0})-C(d_{g}(x, x_{0}))^{n-1}$ near $x_{0}$

for some $C>0$ .

(C-2) $\int_{M}fdV_{g}>(2\pi r\frac{(n-2)\omega_{n-1}}{n\omega_{n}^{2/n}})^{p/2}\max_{M}f$ .

PROOF. For any $j\in N$ define a covering map

$\pi_{j}$ : $M_{r}arrow M_{r/j}$

by $\pi_{j}(\theta, x):=(J^{\theta}, x)$ . If $f$ is $Z_{j}$-lnvariant, then there exists $f’\in C^{0.\alpha}(M_{r/j})$

such that $f=f’\circ\pi_{j}$ and for any $u\in H_{z_{j},f}(M_{r})$ , there exists $u’\in H_{ia,f}(M_{r/j})$ such
that $u=u’\circ\pi_{j}$ . Hence

$\mu_{Z_{j},f}(M_{\tau})=\inf\{\frac{J_{M_{r}}(.u)}{||u||_{p.fM_{r}}2}|u\in H_{Z_{f}.f}(M_{r})\}$

$= \inf\{\frac{jJ_{M_{r/j}}(u’)}{j^{2/p}||u’||_{p.f’.M_{r/j}}2}|($

$=j^{1- 2/p} \inf\{\frac{J_{M_{r/j}}(u’)}{||u’||_{p.f’.M_{r/j}}2}|u’\in H_{\ell d,f’}(M_{r/j})\}$

$=j^{2/n} \mu_{id.f’}(M_{r/j})\geqq j^{2/n}(\max_{M}f)^{-2/p}\mu(M_{r/j})$ .

NOW denote the set of divisors of $m$ by $\{l_{1}, , l_{k}\}$ so that $l_{1}=1<l_{2}<...$

$<l_{k- 1}<l_{k}=m$ . Then by Theorem B. (3), it is clear that there exists $r_{m}(n)>0$

such that any $r>r_{m}(n)$ satisfies

$\mu(M_{r/l_{i+1}})\geqq(l_{\ell}/l_{i+1})^{2/n}\mu_{n}$

for any $i\leqq k-1$ . On the other hand, from the hypothesls, we can apply Theo-
rem 2.2 or 3.2 and see there exists a $Z_{\iota_{i}}$-invariant $C^{2}$-solution of $(*)$ . Denote
it by $u_{\iota_{i}}$ . Then it satisfies

$\frac{J_{M_{r}}(.u_{\iota_{i}})}{||u_{\iota_{i}}||_{pf.M_{r}^{2}}}=\mu_{z_{\iota_{i}}}.f(M_{\gamma})<l_{i}^{2/n}(\max_{M}f)^{-2/p}\mu_{n}$

$\leqq l_{i+1}^{2/n}(\max_{M}f)^{-2/p}\mu(M_{\gamma/\iota_{i+1}})\leqq\mu_{z_{\iota_{i+1}}}.f(M_{r})=\frac{J_{M_{\gamma}}(u_{\iota_{i+1}})}{||u_{\iota_{i+1}}||_{p,f.M_{r}^{2}}}$

for any $i\leqq k-1$ , namely solutions $u_{l_{1}},$
$\cdots$ , $u_{\iota_{k}}$ are different from each other.

Q. E. D.
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