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0. Introduction.

It is well-known that a countable theory is $\aleph_{1}$-categorical if and only if it
is $\omega$-stable and unidimensional. Tsuboi [7] has shown that a countable stable
theory is almost strongly minimal if and only if it can be extended to a strongly
unidimensional theory by adding finitely many constants, and he studied the
notion of strongly two-dimensional theories in [8] and obtained some nice
structure theorems for the big model of a theory with this property.

In the present paper, we define and study the notion of the strongly rc-
dimensional theories. Our results extends many of the results in Tsuboi [8].

A stable theory $T$ is called strongly $\kappa$-dimensional if all the types of $T$ (with

parameters in the big model) can be classified into $\kappa$ classes such that any two
types in the same class are not almost orthogonal. $T$ is called strongly non-
multidimensional if it is strongly $\kappa$-dimensional for some cardinal $\kappa$ . We show
that a strongly $\kappa$-dimensional theory is superstable and a strongly $\omega$-dimensional
countable theory is $\omega$-stable. This seems to be significant since there are non-
superstable two-dimensional theories and countable $non-\omega$-stable unidimensional
theories.

Since a strongly $\kappa$-dimensional theory $T$ is superstable and nonmultidimen-
sional, choosing a maximal orthogonal set of regular types on an $a$-model, every
non-algebraic type is not orthogonal to one of the members of this set. The
cardinality of this set is called the dimensionality of $T$ and denoted $\mu(T)$ . We
define the strong dimensionality of $T$ to be the smallest cardinal $\kappa$ such that
$T$ is strongly $\kappa$-dimensional. If every non-algebraic type is not almost ortho-
gonal to some member of the given set of regular types, then it is easy to see
that the theory is strongly nonmultidimensional. We show that a theory can
be extended to a strongly nonmultidimensional theory by adding constants if
and only if it can be extended to a theory such that every non-algebraic type
is not almost orthogonal to some member of a given maximal orthogonal set of
regular types on an $a$-model by adding constants. Therefore we have that the
strong dimensionality coincides with the usual dimensionality. For a countable
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stable theory $T$ , we will show that $T$ can be extended to a strongly $\omega$-dimen-
sional theory by adding countably many constants if and only if it can be ex-
tended to a theory such that every non-algebraic type is not almost orthogonal
to a strongly regular type on the prime model of $T$ by adding countably many
constants. In this case, $T$ will be $\omega$-stable. Now a question arises: If a
countable theory can be extended to a strongly $\omega$-dimensional theory by adding
constants, can we accomplish this by adding only countably many constants?
The answer is no. Th $(Z_{2}^{\omega}, +, H_{i})$ where $H_{i}$ are some subgroups of $Z_{2}^{\omega}$ is not
$\omega$-stable but it will be strongly unidimensional if we add the elements of $Z_{2}^{\omega}$

as constants.
If a theory $T$ is strongly nonmultidimensional, the big model $\mathfrak{C}$ of $T$ has

the following uniform structure with respect to the parameters:
There is a set $B$ and a non-orthogonal set $ip_{i}\}_{\iota<\kappa}$ of regular type on $B$

such that for every set $A$ extending $B$ ,

$\mathfrak{C}=acl(A\cup Up_{i}|A^{\mathfrak{C}})i<\kappa$

In the case that every $p_{i}$ has the $U$-rank 1, then we have the converse of the
above claim only assuming that

$\mathfrak{C}=acl(B\cup\bigcup_{i<\kappa}p_{i}^{\mathfrak{C}})$ .

With this theorem, we can see that many of the simple examples of tbe
nonmultidimensional theories fall in this category.

1. Preliminaries.

Our notations are standard. We work in the big model $\mathfrak{C}$ of the given
theory. For types $p$ and $q,$ $p\supset_{nf}q$ means that $p$ is a nonforking extension of
$q$ and $P\supset_{fk}q$ means that $p$ is a forking extension of $q$ . For a stationary type
$p,$ $p|A$ denotes the type parallel to $p$ .

DEFINITION. A stable theory $T$ is said to be strongly $\kappa$-dimensional if there
are $\kappa$ families of types $S_{i}(i<\kappa)$ such that

(1) every non-algebraic l-type of $T$ belongs to some $S_{i}$ , and
(2) any two types which belong to the same $S_{i}$ are not almost orthogonal.
A stable theory is said to be strongly nonmultidimensional if it is strongly

$\kappa$-dimensional for some cardinal $\kappa$ . The strong dimensionality of a stable theory
$T$ is the smallest cardinal $\kappa$ such that $T$ is strongly $\kappa$-dimensional.

DEFINITION. Let $p_{i}(i<\kappa)$ be stationary types on a set $A$ . A type $q$ is
called a Product of $p_{i}’ s$ if $q$ can be represented as tp $(\overline{b}/A)$ where $\overline{b}$ is an inde-
pendent sequence over $A$ such that each element of $\overline{b}$ realizes some $p_{i}$ .
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DEFINITION. Let $T$ be a complete theory. A theory $T’$ is called an ex-
tension of $T$ by adding constants if for some model $M$ of $T$ and for some sub-
set $A$ of $M,$ $T’=Th(M, a)_{a\in A}$ .

We state some elementary facts which will be used frequently in this paper.

LEMMA 1.1. (i) If $p$ and $q$ are not almost orthogonal and $A\supset dom(q)$ , then
$p$ is not almost orthogonal to one of the nonforking extensions of $q$ to $A$ .

(ii) If $p$ and $q$ are not almost orthogonal and $q$ is stationary, then $p$ is not
almost orthogonal to every nonforking extension of $q$ .

(iii) If $p$ and $q$ are not almost orthogonal, $q$ stationary and dom $(p)\supset dom(q)$ ,

then $q$ is not almost orthogonal to every nonforking extension of $p$ .
PROOF. (i) and (ii) are easy.
(iii) Let tp $(a/A)$ be a nonforking extension of $p$ where $A\supset dom(p)\supset dom(q)$ .

Since $p$ and $q$ are not almost orthogonal and $q$ stationary, there is $b$ such that
tp $(b/dom(p))\supset_{nfq}$ and a $t_{dom(p)}b$ . Let $tp(b’/Aa)\supset_{nf}tp(b/dom(p)\cup\{a\})$ . Since
$tp(a/A)\supset_{nf}p=tp(a/dom(p))$ , we have tp(ab’ $/A$ ) $\supset_{nf}tp(ab’/dom(p))=tp(ab/dom(p))$ .
Hence, $a$ $t_{A}b’$ and $tp(b’/A)\supset_{nf}tp(b/dom(p))\supset_{nfq}$ . So, $tp(a/A)$ and $q$ are not
almost orthogonal. $\square$

The following lemma is useful in our work.

LEMMA 1.2. Let $q_{i}\in S(B)(i<\lambda)$ be stationary types and $S$ a set of types on
B. Suppose that every non-algebraic type on a set of cardinality at most
$\max(|B|, \kappa(T)\cdot\lambda)$ extending a type in $S$ is not almost orthogonal to some product

of $q_{i}’ s$ . Then:
(i) Let $I_{i}$ be a countably infinite Morley sequence of $q_{i}$ for each $i$ such that

$\{I_{i}|i<\lambda\}$ is an independent set over B. Then every type $q\in S$ is realized in
$ac1(BU\bigcup_{i<\lambda}I_{i})$ .

(ii) $\cup\{q^{\mathfrak{C}}|q\in S\}\subset ac1(B\cup\bigcup_{i<\lambda}q_{i}^{\mathfrak{C}})$ .
PROOF. Let $a$ realize a type $p$ in $S$ . By stability of $T$ , we can choose a

set $I$ of cardinality $\kappa(T)\cdot\lambda$ such that
(a) $I$ is independent over $B$ such that each element of $I$ satisfies some $q_{i}$

and
(b) if $J$ is an independent set over $B$ such that $J$ extends $I$ and each ele-

ment of $J$ satisfies some $q_{i}$ , then $tp(a/BJ)$ does not fork over $BI$.
If $tp(a/BI)$ is non-algebraic, then it is not almost orthogonal to some $q_{i}$

$(i<\lambda)$ . Then we can choose $b$ realizing $q_{i}|(BI)$ such that $a$ and $b$ are depend-
ent over $BI$. But $Bb$ satisfies the condition of (b). This contradicts (b). So,
$a$ is in $ac1(B\overline{b})$ for some finite sequence $\overline{b}$ in $I$. Since $q_{i}’ s$ are stationary and

$\overline{b}$ is independent over $B$ as a set, we can embed $\overline{b}$ into $\bigcup_{i<\lambda}I_{i}$ by an automor-
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phism over $B$ . Hence, the lemma follows. $\square$

2. Characterizations of the strongly nonmultidimensional theorics.

Our main theorems in this section are Theorem 2.6 and Theorem 2.7.
Theorem 2.6 is a characterization of the strongly $\omega$-dimensional countable theories
and Theorem 2.7 is a characterization of the strongly nonmultidimensional theories.
We give several propositions to prove them. As the proofs almost go parallel
to each other, we will concentrate on proving propositions needed for Theorem
2.6 which we have to take care on the cardinality of parameters. We begin
with the proposition on the stability class.

PROPOSITION 2.1. A strongly nonmultidimensional theory is superstable. $A$

strongly $\omega$-dimensional countable theory is $\omega$ -stable.

PROOF. Let $T$ be a strongly $\lambda$-dimensional theory and $S_{i}(i<\lambda)$ be the
classes of types witness the strong $\lambda$-dimensionality of $T$ . If some $S_{i}$ does not have
a stationary type in it, choose some $q$ in $S_{i}$ and take the all nonforking exten-
sions to some model. Then every type in $S_{i}$ is not almost orthogonal to one
of the nonforking extensions of $q_{i}$ . So, we can assume that each $S_{i}$ has a
stationary type in it. Note that the dimensionality might be increased. But if
the theory is strongly $\omega$-dimensional, this modification does not affect the dimen-
sionality since we will see below that the theory is $\omega$-stable in this case and
the multiplicity of every type will be finite.

Choose a stationary type $q_{i}$ from each $S_{i}$ . Let $B$ be a set of cardinality
greater than $\kappa(T)\cdot\lambda$ and the cardinality of $\bigcup_{i<\lambda}dom(q_{i})$ . Without loss of gen-
erality, $B$ contains the domain of each $q_{i}$ . Then, every type is not almost
orthogonal to some $q_{i}|B$ . Choose a countable Morley sequence L. for each $q_{i}|B$

so that $\{I_{i}|i<\lambda\}$ is independent over $B$ . By Lemma 1.2, every type on $B$ is
realized in $B^{*}= ac1(BU\bigcup_{i<\lambda}I_{i})$ and $|B^{*}|=|B|$ . Hence, $T$ is superstable.

NOW suppose that $T$ is strongly $\omega$-dimensional and countable. Choose $\{q_{i}\}_{i<\omega}$

such that each $q_{i}$ is a stationary type on a countable set and every stationary
type on a countable set is not almost orthogonal to some $q_{i}$ . Let $M$ be a count-
able model of $T$ . We want to show that $S_{1}(M)$ is countable. We can assume
that $M$ contains the domain of each $q_{i}$ . Now suppose contrary that there are
uncountably many different types on $M$. Let $a_{i}$ be a realization of $q_{i}|M$ for
each $i<\omega$ , and Let $N$ be a countable model containing $M\cup\{a_{i}\}_{i<\omega}$ . As every
non-algebraic type on $M$ is not almost orthogonal to some $q_{i}$ , every non-algebraic
tyPe on $M$ has a forking extension to $N$. Since $N$ is countable, uncountably
many of them are not algebraic over $N$. Repeating this process, we get an
infinite forking sequence, contradicting the superstability of T. $\square$
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THEOREM 2.2. (i) Suppose that $T$ is a strongly $\omega$-dimensional countable theory
and let $\{p_{i}\}_{i<r}$ be a maximal orthogonal set of strongly regular tyPes on the Prime
model $M_{0}$ of T. Then there is a countable model $M\supset M_{0}$ such that for every
element $a$ and a set $A\supset M$, there is a tuple $\overline{b}$ realizing a product of $p_{i}|A’ s$ such
that $a\in ac1(A\overline{b})$ .

(ii) Suppose that $T$ is a strongly nonmultidimensional theory and let $\{p_{i}\}_{i<\iota}$

be maximal orthogonal set of regular types on an a-model $M_{0}$ of T. Then there
is a model $M\supset M_{0}$ such that for every element $a$ and a set $A\supset M$, there is a tuPle
$\overline{b}$ realiang a product of $p_{t}|A’ s$ such that $a\in ac1(A\overline{b})$ .

PROOF. (i) First of all, we show the theorem in the case $A$ is countable.
Let $S_{i}(i<\omega)$ be families of types such that

(a) every non-algebraic type on a countable set belongs to some $S_{i}$ and
(b) any two types in the same $S_{i}$ are not almost orthogonal.

For each $i<\omega$ , choose $q_{i}$ from $S_{i}$ such that $RM(q_{i})$ is the smallest in $S_{i}$ .
Choose countable model $M\supset M_{0}$ containing the domain of $q_{i}$ for all $i<\omega$ . Since
$T$ is $\omega$-stable, there are only finitely many nonforking extensions of $q_{i}$ to $M$

for each $i<\omega$ . Since every type in $S_{i}$ is not almost orthogonal to some non-
forking extension of $q_{i}$ to $M$, by dividing each $S_{i}$ into finitely many families,
we can assume that each $q_{i}$ has already been a type on $M$ and thus stationary.
Note that each $q_{i}$ is not almost orthogonal to some strongly regular type $p_{j}$ on
$M_{0}$ . For, since $T$ is nonmultidimensional, each $q_{i}$ is not orthogonal to $M_{0}$ , and
thus to some $p_{j}$ . Since $M\supset M_{0},$ $q_{i}XP_{J}|M$. Since $M$ is a model and $T\omega$-stable,
we have $q_{i}X^{a}P_{j}|M$.

TO prove the theorem for the case $A$ is countable, it is sufficient to prove
the following claim:

CLAIM. For all countable set $A\supset M$ and an element $a$ , there is a tuple $\overline{b}$

realizing a product of $p_{i}|A’ s$ such that $a\in ac1(A\overline{b})$ .
We prove the claim by induction on $\alpha=RM(a/A)$ . So, let $A\supset M$ be count-

able and $RM(a/A)=\alpha$ . Then, every non-algebraic extension of $tp(a/A)$ to a
countable set is not in $S_{l}$ such that $RM(q_{i})>\alpha$ by the minimality of $RM(q_{t})$ in
$S_{i}$ . Hence, every non-algebraic extension of $tp(a/A)$ to a countable set belongs
to some $S_{i}$ such that $RM(q_{i})\leqq a$ and thus is not almost orthogonal to some $q_{i}$

such that $RM(q_{i})\leqq\alpha$ . By Lemma 1.2, there is a tuple $\overline{c}$ such that $a\in ac1(A\overline{c})$ ,
$\overline{c}$ realizes a product of $q_{i}|A’ s$ such that $RM(q_{i})\leqq\alpha$ ( $\lambda=\omega$ and $\kappa(T)=\omega$). We
show that there is a tuple $\overline{b}$ realizing a product of $p_{i}|A’ s$ such that $\overline{c}\in ac1(A\overline{b})$ .
Then the claim follows. Suppose that for some $\overline{c}’\subset\overline{c}$ , there is a tuple $\overline{b}$ realiz-
ing a product of $p_{i}|A’ s$ such that $\overline{c}’\in ac1(A\overline{b})$ . It is sufficient to show that if
$\overline{c}’\neq\overline{c}$ then we can expand $\overline{c}’$ . Suppose that there is $c’\in\overline{c}-\overline{c}’$ . If $c’t_{A}\overline{b}$ , then
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$RM(c’’/A\overline{b})<RM(c’’/A)\leqq\alpha$ and thus there is a tuple $\overline{b}’$ realizing a product of
$(p_{i}|Ab)s$ such that $c’\in ac1(A\overline{b}\overline{b}’)$ by induction hypothesis. $\overline{b}\overline{b}’$ realizes a product
of $p_{i}A’ s$ . If c’ 1 $A\overline{b}$ , then $c’$ realizes $q_{J}|A\overline{b}$ for some $j$ . Since $q_{J}$ is not almost
orthogonal to some $p_{k}$ , there is $b_{0}$ realizing $p_{k}|$ Ab such that $c’t_{A\overline{b}}b_{0}$ . Then
$RM(c’’/A\overline{b}b_{0})<RM(q_{J})\leqq\alpha$ and thus there is a tuple $\overline{b}’$ realizing a product of
$(p_{i}|A\overline{b}b_{0})s$ such that $c’\in acl(Abb_{0}b’)$ by induction hypothesis. $bb_{0}b’$ realizes a
product of $p_{t}|A’ s$ and $\overline{c}c’\in ac1(A\overline{b}b_{0}\overline{b}’)$ . The claim follows.

NOW we have the theorem for the case the set $A$ is countable. In general
case, choose countable set. $A_{0}\subset A$ such that $tp(a/A)$ does not fork over $A_{0}$ .
Then there is a tuple $\overline{b}$ realizing a product of $p_{i}|A_{0}’ s$ such that $a\in ac1(A_{0}\overline{b})$ .
Choose $\overline{b}’$ such that $tp(\overline{b}’/aA)\supset_{nf}tp(\overline{b}/aA_{0})$ . Then, $a\in ac1(A\overline{b}’)$ and $tp(\overline{b}’/A)$

$\supset_{nf}tp(\overline{b}/M_{0})$ .
(ii) Proof goes almost parallel to that of (i) by making use of $D$-rank or

$U$-rank instead of the Morley rank. Even, we can make use of these ranks
in (i). $\square$

LEMMA 2.3. Suppose that $T$ is superstable, $a$ not algebraic over $A,$ $a\in$

$ac1(A\overline{b})$ , and $\overline{b}$ realizes a product of orthogonal regular types $p_{i}(i<k)$ on $A$ .
Then $tp(a/A)$ is not almost orthogonal to a power of some $p_{t}$ .

PROOF. Choose an $a$-model $M\supset A$ such that $a\overline{b}\downarrow AM$. Then $a$ belongs to
$M[\overline{b}]$ . So, we can make $M[a]\subset M[\overline{b}]$ . Since $a$ is not algebraic over $A,$ $M[a]$

$\neq M$. Then, we can choose $c\in\lambda I[a]-M$ such that $tp(c/M)$ is regular. Also,
we have $ct_{M}a$ . On the other hand, since $c\in M[b],$ $ct_{M}b’$ where $\overline{b}’$ is the
maximal subsequence of $\overline{b}$ realizing the unique $p_{i}$ not orthogonal to $tp(c/M)$ .
Since $wt(c/M)=1,$ a $e_{M}b’$ . As $a\overline{b}’$ I AM, a $t_{A}b’$ . Hence, $tp(a/A)$ is not almost
orthogonal to a power of $p_{i}$ . $\square$

PROPOSITJON 2.4. (i) Suppose that $T$ is countable. Let $B$ be a countable set
and $\{p_{i}\}_{i<\kappa}(\kappa\leqq\omega)$ be maxemal orthogonal set of (strongly) regular types on $B$ .
Suppose that every type on any set $A\supset B$ is not almost orthogonal to a power of
some $p_{i}$ . Then, there is a countable set $B’\supset B$ such that every non-algebraic type
on any set $A\supset B’$ is not almost orthogonal to some $p_{i}$ .

(ii) Let $B$ be a set and $\{p_{i}\}_{i<\lambda}$ be maximal orthogonal set of regular types
on B. Suppose that every type on any set $A\supset B$ is not almost orthogonal to a
power of some $p_{i}$ . Then, there is a set $B’\supset B$ such that every non-algebraic type
on any set $A\supset B’$ is not almost orthogonal to some $p_{i}$ .

PROOF. (i) Note that $T$ is $\omega$-stable by Lemma 1.2. Let $L$ be the countable
Morley sequence of $p_{t}$ for each $i<\kappa$ such that the set $\{I_{i}|i<\kappa\}$ is independent
over $B,$ $I=U_{i<\kappa}I_{i}$ , and $B’=BI$. Suppose $A\supset B’$ and $tp(a/A)$ is not algebraic.
Choose $\overline{c}\in A$ such that $tp(a/A)$ does not fork over $B\overline{c}$ and choose finite subset



Strongly nonmultidimensional theories 209

$I_{0}\subset I$ such that $tp(a\overline{c}/IB)$ does not fork over $I_{0}B$ . Let $I’=I-I_{0}$ . Since $I_{0}\downarrow BI’$ ,
we have $a\overline{c}I_{0}\downarrow BI’$ . Without loss of generality, $\overline{c}\supset I_{0}$ . So, we have,

$a\downarrow B\beta A$ (1)
and

$a\overline{c}\downarrow BI’$ (2)

NOW, choose $p_{i}$ such that $tp(a/B\overline{c})$ is not almost orthogonal to a power of
$p_{t}$ . Choose $\overline{b}b_{0}$ realizing a power of $p_{i}|B\overline{c}$ such that

$a\downarrow Bc\overline{b}$ and a $t_{B\overline{c}b}b_{0}$ .
Then,

$tp(a/B\overline{c}\overline{b})\Delta;^{a}p_{i}$ (3)
and

$a\overline{c}\downarrow_{B}\overline{b}$ . (4)

By (2) and (4), we can embed $\overline{b}$ into $I’$ over $a\overline{c}B$ . So, we can assume that
$\overline{b}\subset I’\subset A$ . Then $tp(a/A)\supset_{nf}tp(a/B\overline{c}\overline{b})$ by (1). Hence by (3) and Lemma 1.1 (iii),

we have $tp(a/A)X^{a}p_{i}$ .
(ii) The proof goes parallel to that for (i). In this case, choose a Morley

sequence $I_{i}$ of cardinality $\kappa_{r}(T)$ for each $p_{i}$ . Then choose $C\subset A$ of cardinality

less than $\kappa(T)$ in place of $\overline{c}$ , and then choose $I_{0}$ of cardinality less than $\kappa_{r}(T)$

as in (i). The rest of the argument goes exactly in the same way. $\square$

LEMMA 2.5. Let $P$ be a stationary regular type and let $q_{1}$ and $q_{2}$ be types

such that for both $i=1,2,$ $dom(q_{i})\supset dom(p)$ and $q_{i}$ is not almost orthogonal to $p$ .
Then, $q_{1}$ and $q_{2}$ are not almost orthogonal.

PROOF. Let $A=dom(q_{1})\cup dom(q_{2})$ and $tp(a_{i}/A)\supset_{nf}q_{i}$ for $i=1,2$ . Then
$tp(a_{i}/A)X^{a}p$ . Let $b_{i}$ be such that $a\vdash b_{i}$ and $tp(b_{i}/A)\supset_{nf}p$ for $i=1,2$ . Since
$p$ is stationary, $tp(b_{1}/A)=tp(b_{2}/A)$ . Hence, there is $a_{2}’$ such that $tp(a_{2}’/A)=$

$=tp(a_{2}/A)$ and $a_{2}’t_{A}b_{1}$ . Since $wt(b_{1}/A)=wt(p)=1$ , we have $a_{1}t_{A}a_{2}’$ . $\square$

NOW, we have the following two theorems.

THEOREM 2.6. The following are equivalent for a countable stable theory $T$ .
(i) $T$ can be extended to a strongly $\omega$-dimensional theory by adding at most

countably many constants.
(ii) There are a countable set $B$ and an at most countable orthogonal set

$\{p_{i}\}_{i<\kappa}(\kappa\leqq\omega)$ of strongly regular types on $B$ such that for every element $a$ and
a set $A\supset B$ , there is a tuple $\overline{b}$ realizing a product of $p_{i}|A’ s$ such that $a\in ac1(A\overline{b})$ .

(iii) There are a countable set $B$ and an at most countable orthogonal set
$\{p_{i}\}_{i4}(\kappa\leqq\omega)$ of strongly regular types on $B$ such that every type over a set
$A\supset B$ is not almost orthogonal to some power of $p_{t}$ .

(iv) There are a countable set $B$ and an at most countable orthogonal set



210 H. KIKYO

$tp_{i}\}_{t<\kappa}(\kappa\leqq\omega)$ of strongly regular types on $B$ such that every type over a set
$A\supset B$ is not almost orthogonal to some $p_{t}$ .

(v) $T$ can be extended to a strongly $\mu(T)$-dimensional theory by adding count-
ably many constants.

PROOF. (i) implies (ii) by Theorem 2.2 (i), (ii) implies (iii) by Lemma 2.3,
(iii) implies (iv) by Proposition 2.4 (i), and (v) implies (i) trivially. Now we show
the implication from (iv) to (v). Assume (iv). Consider the classes of types
$S_{i}=\{q|dom(q)\supset B, qX^{a}p_{i}\}$ for $i<\kappa$ . By Lemma 2.5, any two types in the same
$S_{i}$ are not almost orthogonal. By adding every element of $B$ as a constant,
the theory will be strongly $\kappa$-dimensional. $\kappa$ must be equal to $\mu(T)$ by the
definition of the dimensionality (in the usual sense). Hence, the theory will be
strongly $\mu(T)$-dimensional. Note that for the implications from (i) to (ii), (iii)

to (iv) and (iv) to (v), we may have to add countably many constants to the
set B. $\square$

THEOREM 2.7. The following are equivalent for a stable complete theory $T$ .
(i) $T$ can be extended to a strongly nonmultidimensional theory by adding

constants.
(ii) There are a set $B$ and an orthogonal set $\{p_{i}\}_{i<\iota}$ of regular types on $B$

such that for every element $a$ and a set $A\supset B$ , there is a tuple $\overline{b}$ realizing a
product of $p_{i}|A’ s$ such that $a\in ac1(A\overline{b})$ .

(iii) There are a set $B$ and an orthogonal set $\{p_{t}\}_{i<}of$ regular types on $B$

such that every type over a set $A\supset B$ is not almost orthogonal to some power of $p_{i}$ .
(iv) There are a set $B$ and an orthogonal set $\{p_{t}\}_{i<}of$ regular types on $B$

such that every type over a set $A\supset B$ is not almost orthogonal to some $p_{i}$ .
(v) $T$ can be extended to a strongly $\mu(T)$-dimensional theory by adding con-

stants.

PROOF. The proof goes parallel to that of Theorem 2.6. We give some
comments on the parameters. For the implication from (i) to (ii), we may have
to add $\lambda\cdot mult(T)$ constants to the set $B$ where $\lambda$ is the strong dimensionality
in (i) and mult$(T)$ is the multiplicity of $T$ . For the implication from (ii) to (iii),

we do not have to add any parameters, and for (iii) to (iv), we may have to
add $\kappa\cdot\kappa_{r}(T)$ constants to the set B. $\square$

3. Structure theorem.

NOW, we have the following structure theorem for the strongly nonmulti-
dimensional theories by Lemma 1.2.

THEOREM 3.1. (i) If a countable theory $T$ has a strongly $\omega$-dimensional ex-
tension by adding at most countably many constants, then there is a countable set
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$B$ and an orthogonal set $\{p_{t}\}_{\ell<\mathcal{K}}$ (rc:$\mbox{\boldmath $\omega$}) of strongly regular types on the prime
model of $T$ such that for every set $A$ extending $B$ ,

$( \zeta=ac1(A\cup\bigcup_{i<\kappa}p_{i}|A^{\mathfrak{E}})$ .

(ii) If a theory $T$ has a strongly nonmultidimensional extension by adding
constants, then there is a set $B$ and an orthogonal set $\{p_{t}\}_{i<\mathcal{K}}$ of regular types on
$B$ such that for every set $A$ extending $B$ ,

$t5=acl(A\cup Up_{i}|A^{\mathfrak{C}})<\kappa$

We have a weak converse of Theorem 3.1.

THEOREM 3.2. (i) Let $T$ be a countable stable theory. If the big model of
$T$ has the structure

$\mathfrak{C}=ac1(B\cup\bigcup_{i<\kappa}p_{t^{\mathfrak{C}}})$

for some countable set $B$ and an orthogonal set $\{p_{i}\}_{i<\kappa}(\kappa\leqq\omega)$ of (strongly) regular
types on $B$ of $U$-rank 1, then $T$ can be extended to a strongly $\kappa$-dimensional theory
by adding countably many constants.

(ii) Let $T$ be a stable theory. If the big model of $T$ has the structure

$\mathfrak{C}=ac1(B\cup\bigcup_{i<\kappa}p_{i^{\mathfrak{C}}})$

for some set $B$ and an orthogonal set $\{p_{i}\}_{i\Leftrightarrow}of$ regular types on $B$ of $U$-rank 1,
then $T$ can be extended to a strongly $\kappa$-dimensional theory by adding constants.

PROOF. TO prove (i), we show that the condition (ii) in Theorem 2.6 holds.
The same proof shows that the condition (ii) in Theorem 2.7 holds in the case
of (ii).

Let $A\supset B$ and $tp(a/A)$ a non-algebraic type. Choose $\overline{b}=b_{0}\cdots b_{n}$ such that
each $b_{j}$ realizes some $p_{i}$ and $a\subset ac1(B\overline{b})$ . If $tp(b_{j}/Ab_{0}\cdots b_{j-1})$ forks over $B$ for
some $j$ , then $U(b_{j}/Ab_{0}\cdots b_{j-1})=0$ . Therefore, $b_{j}$ is algebraic over $Ab_{0}\cdots b_{j-1}$ .
So, we can assume that $tp(b_{j}/Ab_{0}\cdots b_{j-1})$ does not fork over $B$ for every $j$ .
Hence, $tp(\overline{b}/A)$ is a product of $p_{i}|A’ s$ . $\square$

Theorem 3.2 is not true in general for regular types $p_{i}$ . For example, con-
sider the structure with only one equivalence relation with infinitely many in-
finite classes. Then the big model has the structure described in Theorem 3.2,
but it is multidimensional. If we consider the countable structure with one
equivalence relation such that it has countably many finite classes but has arbi-
trarily large class, then the big model has the structure described in Theorem
3.2 with the single $p_{t}$ , but also in this case, the theory is multidimensional.
Finally, we give some examples of strongly nonmultidimensional theories.
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EXAMPLE 3.3. Consider the structure $(_{\perp}\mathfrak{h}f, P_{i})_{i<\kappa}$ where $P_{i}$ are unary predi-
cates representing infinite sets which are pairwise disjoint and the union of
them covers $M$. Then its theory is strongly $\kappa$-dimensional.

EXAMPLE 3.4. Consider the structure $(M, P_{i})_{i<\omega}$ where $P_{i}$ are unary pre-
dicates such that for every two finite disjoint sets $\omega,$ $\omega’\subset\omega,$ $M\vdash\exists x(\wedge {}_{i\in\omega}P_{i}\Lambda$

$\bigwedge_{\iota\in\omega’}\neg P_{i})$ . Then its theory is countable and strongly $2^{\omega}$-dimensional.

EXAMPLE 3.5. Consider the abelian group $(Z_{2}^{\omega}, +, H_{i})_{i<\omega}$ with some distin-
guished subgroups $H_{i}$ where $Z_{2}^{\omega}$ is the set of all functions $f$ : $\omegaarrow\{0,1\}$ and
$H_{i}=$ { $f\in Z_{2}^{\omega}|f(j)=0$ for $j<i$ } for $i<\omega$ . Its theory is countable, $non-\omega$-stable
and unidimensional. By adding all the elements of $Z_{2}^{\omega}$ as constants, the theory
becomes strongly unidimensional.

Example 3.5 shows that for a countable theory, even if we could extend it
to a strongly $\omega$-dimensional theory by adding constants, it is not necessarily
true that it can be extended to a strongly $\omega$-dimensional theory by adding only
countably many constants.
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