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\S 0. Introduction.

We denote by 1 an odd prime number. Hartung [2] proved that there exist
infinitely many imaginary quadratic fields whose class numbers are not divisible
by 1. In this paper, we generalize this result to the case of totally imaginary
quadratic extensions over a totally real algebraic number field. Moreover we
generalize the result due to Horie [3] on Iwasawa invariants of basic $Z_{f^{-}}exten-$

sions.
We denote by $F$ a totally real algebraic number field and by $m$ its degree

over the field $Q$ of rational numbers. We denote by $n(p)$ for a prime $P$ the
maximum value of $n$ such that the primitive $P^{n}$-th roots $\zeta_{p^{n}}$ of unity are at
most of degree 2 over $F$. If $F$ is fixed we have $n(p)=0$ for almost all $p$ . So
we put $w_{F}=2^{n_{(}2)+1}\Pi_{p\neq 2}P^{n(p)}$ . We denote by $\zeta_{F}(s)$ the Dedekind zeta function
of $F$. We know by Serre [9] that $w_{F}\zeta_{F}(-1)$ is a rational integer. We denote
by $h_{K}$ the class number of an algebraic number field $K$. The relative class
number $h_{K/F}=h_{K}/h_{F}$ is an integer when $K$ is a totally imaginary quadratic
extension over a totally real algebraic number field $F$. The main result of this
paper is the following:

THEOREM. Let $F$ be a totally real algebraic number field of finite degree. Let
1 be an odd prime which does not divide $w_{F}\zeta_{F}(-1)$ . Then there exist infinitely
many quadratic extensions $K/F$ with the following properties:

(i) $K$ is totally imaginary,
(ii) the relative class number $h_{K/F}$ of $K/F$ is not divisible by 1,
(ili) each prime ideal of $F$ over 1 does not sPlit in $K$.

If $F=Q$ , this is the result due to Hartung [2], since $w_{Q}\zeta_{Q}(-1)=-2$ . In
order to get Theorem, we use trace formulas and $l$-adic representations related
to automorphic forms obtained from division quaternion algebras over $F$.

Let $K/F$ be a totally imaginary quadratic extension. We denote by $\mu_{K}^{-}$
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(resp. $\lambda_{K}^{-}$ ) the minus $\mu$-invariant (resp. $\lambda$-invariant) of the basic $Z_{\ell}$-extension of
$K$. We get:

COROLLARY. Let $F$ be a totally real algebraic number field. Let 1 be an
odd prime which does not divide $w_{F}\zeta_{F}(-1)$ . Then there exist infinitely many
totally imaginary quadratic extensiorts $K/F$ such that $\mu_{K}=\lambda_{K}^{-}=0$ .

In \S 1, we summarize the result of Ohta [4] about the 1-adic representations
of the absolute Galois group of $F$ related to automorphic forms. In \S 2, we
summarize the trace formulas of Hecke operators obtained by Shimizu [6], [7]

and [8]. In \S 3, we prove our Theorem by using the results summarlzed in the
previous sections. Moreover we prove our Corollary by using the criterion in
Friedman [1]. In \S 4, we discuss the case that 1 divides $w_{F}\zeta_{F}(-1)$ for real
quadratic fields $F/Q$ . The author does not know wheather the condition on
$w_{F}\zeta_{F}(-1)$ is indispensable or not. We have never gotten any counterexamples
of the Theorem under the case that $l$ divides $w_{F}\zeta_{F}(-1)$ .

NOTATION. We denote by $C$ (resp. $R,$ $Q_{t}$ ) the field of complex numbers
(resp. real numbers, 1-adic numbers). We denote by $R^{\cross}$ the group of invertible
elements of a ring $R$ with unity. We denote by $\overline{F}$ the algebraic closure of $F$

and $Ga1(\overline{F}/F)$ the absolute Galois group over $F$. We denote by $N_{K/k}$ the norm
map from $K$ to $k$ . We denote by $M_{n}(K)$ the ring of matrices of degree $n$ with
coefficients in $K$. We put $GL_{n}(K)=(M_{n}(K))^{x}$ .

The author wishes to express his heartfelt thanks to Professor M. Ohta
who has read the first draft of this paper and given him valuable comments.
He also wishes to express his thanks to the referee for the valuable advice.

\S 1. 1-adic representations.

Let $B$ be a division quaternion algebra over $F$ such that $B\otimes_{Q}R\cong M_{2}(R)$

X $H^{m-1}$ , where $H$ denotes the Hamilton quaternion algebra over $R$ . We denote
by $f$ an involution of $B$ and by $\nu=\nu_{B’ F}$ the reduced norm of $B/F$. We denote
by $B_{A^{\cross}}$ the idele group of $B$ . Let $S$ be an open subgroup of $B_{A}^{X}$ such that
$S^{f}=S$ and $S=B_{\infty+}^{\cross}\cross S_{0}$ , where $B_{\infty+}^{\cross}=\{(t_{1}, \cdots , t_{m})\in(B\otimes_{Q}R)^{\cross} : \nu(t_{1})>0\}$ and $S_{0}$ is
an open compact subgroup of the finite part $B_{f}^{\cross}$ of $B_{A}^{x}$ . Let $\rho$ be a repre-
sentation of $B^{\cross}$ , which will be constructed later as in Ohta [4]. Let $S(S, \rho)$

be the space of automorphic forms introduced later. We denote by El $(\mathfrak{p})$ and
%(p, $\mathfrak{p}$ ) the Hecke operators acting on $S(S, \rho)$ for a prime ideal $\mathfrak{p}$ of $F$. Ohta
[4] got:

THEOREM. There exists an 1-adic representation

$\psi_{S.\rho}$ : $Ga1(\overline{F}/F)arrow GL_{2\dim_{C}\mathfrak{S}(S.\rho^{)}}(Q_{t})$ ,
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which has the following properties:
(i) If a prime $\mathfrak{p}$ of $F$ divides neither 1 nor the discriminant $D(B/F)$ of $B/F$

and $S$ contains the group of umts in a maximal order of the completion $B_{\mathfrak{p}}$ of $B$

at $\mathfrak{p}$ , then $\psi_{S.\rho}$ is unramified at $\mathfrak{p}$ ,
(ii) $\det(1-\psi_{S.\rho}(\sigma_{\mathfrak{p}})T)=\det(1-Ei\mathfrak{p})T+N_{F/Q}(\mathfrak{p})\mathfrak{T}(\mathfrak{p}, \mathfrak{p})T^{2}|_{\mathfrak{S}(S.\rho^{)}})$ , where $\sigma_{\mathfrak{p}}$ is a

Frobenius element at $\mathfrak{p}$ in $Ga1(\overline{F}/F)$ .

Next we take $S$ and $\rho$ . We put $S_{0}=\Pi_{\mathfrak{p}}0_{\mathfrak{p}}^{\cross}$ , where $0_{\mathfrak{p}}$ is a closure of a
maximal order $\mathfrak{o}$ in $B$ . We Put $n=2$ (resp. $n=4$) for $1\geqq 5$ (resp. $1=3$). We get
the representation $\rho$ as in p. 41 of Ohta [4], putting by $n_{1}=\cdots=n_{m}=n$ and
$w=0$ . Next we define the space $S(S, \rho)$ of automorphic forms. Let $B_{+}^{\cross}$ be a
subgroup of $B^{\cross}$ consisting of elements $x\in B^{\cross}$ whose reduced norm $v(x)$ is totally
positive. We decompose $B_{A+}^{\cross}=B_{\infty+}^{\cross}\cross B_{f}^{\cross}$ into $B_{A+}^{\cross}= \bigcup_{i=1}^{h}Sx_{i}B_{+}^{\cross}$ , where $h=h_{B}$ is
the class number of $B$ . We put $\Gamma_{s_{i}}=x_{i}^{-1}Sx_{i}\cap B_{+}^{\cross}$ . Thus $\Gamma_{s_{i}}$ is a Fuchsian
group of the first kind in $SL_{2}(R)$ . We introduce the representation $\Psi$ of $GL_{2^{+}}(R)$

$\cross(H^{\cross})^{m-1}$ by

$\Psi((t_{1}, \cdots t_{m}))=\prod_{i=2}^{m}\nu(t_{i})^{-n/2}\rho_{n}(t_{2})\otimes\cdots\otimes\rho_{n}(t_{m})$ ,

where $\rho_{n}$ is the symmetric tensor representation of degree $n$ of $GL_{2}(C)$ . We
see that the degree of $\Psi$ is $(n+1)^{m-1}$ . We denote by $P$ the composite of the
natural embedding $B^{x}arrow(B\otimes_{Q}R)^{\cross}=GL_{2}(R)\cross(H^{\cross})^{m-1}$ and the projection to $GL_{2}(R)$ .
For a $C^{(n+1)^{m-1}}$-valued function $f(z)$ on the complex upper half plane $\mathfrak{H}$ , we putll

$f|_{[\gamma]}(z)=\Psi(\gamma)^{-1}j(p(\gamma), z)^{-(n+2)}f(z)$ , where $j(p(\gamma), z)=cz+d$ for $p(\gamma)=(\begin{array}{ll}a bc d\end{array})\in$

$GL_{2}(R)$ . We denote by $S(\Gamma_{s},, \Psi)$ the space of $C^{(n+1)}m-1$-valued holomorphic
functions $f(z)$ on S5 such that $f|_{[\gamma]}(z)=f(z)$ for every $\gamma\in\Gamma_{s_{i}}$ . We put $S(S, \rho)$

$=\oplus_{i=1}^{h}\mathfrak{S}(\Gamma_{s_{i}}, \Psi)$ . The Theorem in this section is valid for $S(S, \rho)$ .

\S 2. Trace formulas.

Many people calculated the traces of Hecke operators. In this section we
compute the traces of Hecke operators referring to Shimizu [6], [7] and [8].

Let $\Gamma$ be a Fuchsian group of the first kind such that $\Gamma\backslash \mathfrak{H}$ is compact. So
far as we use in this paper, we quote the formula, for example, from Shimizu
[7] as follows:

tr. %(\Gamma a\Gamma ) $=v(\Gamma\backslash \mathfrak{H})$ tr. $\Psi(g_{0})(sgng_{0})^{k+2}\frac{k-1}{4\pi}$

$- \sum_{g\in \mathfrak{G}_{1}}\frac{tr.\Psi(g)}{[\Gamma(g):Z(\Gamma)]}\frac{\zeta(g)^{k- 1}-\eta(g)^{k- 1}}{\zeta(g)-\eta(g)}(\det g)^{1-k2}/$

Notations are the same as in Theorem 1 of Shimizu [7]. $\mathfrak{G}_{1}$ is a complete sys-
tem of inequivalent elliptic elements.
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Next we compute traces of Hecke operators acting on $S(\Gamma_{s},, \Psi)$ . We set
$k=n+2$ , where $n$ is as in \S 1. We put $\mathfrak{T}(q, \mathfrak{D}_{\iota})=\Sigma_{(\nu(\alpha))}=q\Gamma_{s_{i}}\alpha\Gamma_{s_{i}}$ for an integral
ideal $q$ of $F$ as in Shimizu [6], where $\mathfrak{O}_{i}=x_{i^{-1}}Sx_{i}\cap B$ . For investigating $\mathfrak{G}_{1}$

we put $\Omega_{0}$ the set of isomorphism classes of orders $\mathfrak{o}$ of totally imaginary quad-
ratic extensions over $F$ in $B$ satisfying the following properties:

(i) no prime factor of $D(B/F)$ splits in $F(0)$ ,
(ii) the conductor of $0$ is prime to $D(B/F)$ .

We put $\mathfrak{o}=F(\alpha)\cap \mathfrak{D}_{i}$ for an elliptic element $\alpha\in \mathfrak{D}_{i}$ such that $(\nu(\alpha))=q$ . It fol-
lows that $\mathfrak{o}$ is in $\Omega_{0}$ . We know that there exists $\gamma\in\Gamma_{s_{i}}$ such that $\alpha’=\pm\gamma^{-1}\alpha\gamma$

if and only if $0=F(\alpha)\cap \mathfrak{D}_{i}$ and $0’=F(\alpha’)\cap \mathfrak{D}_{\ell}$ are $\Gamma_{s_{i}}$-conjugate to each other.
Therefore the number of $\Gamma_{S_{i}}$-equivalence classes of elliptic elements a such
that $F(\alpha)\cap \mathfrak{D}_{i}=\mathfrak{o}$ is equal to the number of $\Gamma_{s_{i}}$-conjugacy classes of $0$ . Let $\Gamma_{0}$

be the group of all units in $\mathfrak{D}_{i}$ . By Shimizu [7] the number of $\Gamma_{0}$-conjugacy
classes of $\mathfrak{o}$ is equal to $(h(0)/2h_{B})\Pi_{\mathfrak{p}1D(B/F)}(1-(0/\mathfrak{p}))$ , where $h(0)$ is the class
number of $0$ and $(0/p)=1$ (resp. $-1,0$ ) when $\mathfrak{p}$ splits completely (resp. remains
prime, is ramified) in $F(0)/F$. We denote by $E$ (resp. $E^{+}$ ) the group of units
(resp. totally positive units) of the ring of integers of $F$. We get by $[\Gamma_{0} : \Gamma_{s_{i}}]$

$=[E:E^{+}]$ that the number of $\Gamma_{s_{i}}$-conjugacy classes of $0$ is equal to

$\frac{h(0)}{h_{B}}\frac{[E:E^{+}]}{2}\prod_{F\mathfrak{p}|D(B/)}(1-(\frac{0}{\mathfrak{p}}))$ .

We see that $\Gamma\alpha\Gamma\cap Z(GL_{2}(R))\neq\emptyset$ if and only if there exists $q_{0}\in F$ such that
$q=(q_{0^{2}})$ . We notice that $\Gamma(\alpha)$ is the group $E(0)$ of units of $0=F(\alpha)\cap \mathfrak{D}_{i}$ and
$Z(\Gamma)=E$ (cf. Shimizu [6]). Thus we get

tr. $\mathfrak{T}(\mathfrak{q}, \mathfrak{D}_{i})=\delta(\mathfrak{q})$ tr. $\Psi(g_{0})v(\Gamma_{s_{i}}\backslash \mathfrak{H})\frac{n+1}{4\pi}$

$- \frac{[E:E^{+}]}{2}\sum_{\mathfrak{o}\in\Omega_{0}}\frac{h(\mathfrak{o})}{h_{B}}\frac{\prod_{\mathfrak{p}1D(B/F)}(1-(\frac{0}{\mathfrak{p}}))}{[E(\mathfrak{o}):E]}\sum_{\alpha\in J(0}$

,

where $J(0)=\{\alpha\in 0:\alpha\not\in F, (\nu(\alpha))=q\},$ $\zeta_{a}$ and $\eta_{\alpha}$ are eigenvalues of $\alpha$ , and $\delta(q)=1$

in the case of $q=(q_{0^{2}})$ for some integer $q_{0}$ of $F$ and otherwise $\delta(q)=0$ .
We know that the Hecke operators %(q) of Ohta [4] act on $S(S, \rho)=$

$\oplus_{i=1}^{h}\mathfrak{S}(\Gamma_{S_{i}}, \Psi)$ . Hence we have tr. %(q) $=\Sigma_{i=1}^{h}$ tr. $\mathfrak{T}(q, \mathfrak{D}_{i})$ . As we see that the
formula of tr. %(q, $\mathfrak{D}_{i}$ ) is independent of $i$ and that $\delta(\mathfrak{q})=0$ for a prime ideal $\mathfrak{q}$

of $F$, we get:

(1) $tr.\mathfrak{T}(q)=$

$- \frac{[E:E^{+}]}{2}\sum_{0\in\Omega_{0}}h(0)\frac{\prod_{\mathfrak{p}\rceil D(B/F)}(1-(\frac{0}{\mathfrak{p}}))}{[E(0):E]}\sum_{a\in J()}$

tr. $\Psi(\alpha)\frac{\zeta_{\alpha}^{n+1}-\eta_{\alpha}^{n+1}}{\zeta_{\alpha}-\eta_{\alpha}}(\det\alpha)^{-n/}2$

We see tr. %((1)) $=\dim_{C}\mathfrak{S}(S, \rho)$ and $\delta((1))=1$ . In this case, we can take
$g_{0}=1$ . By using $v(\Gamma_{s_{i}}\backslash \mathfrak{H})=v(\Gamma_{s_{1}}\backslash \mathfrak{H})$ , we get:
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(2) $\dim_{C}\mathfrak{S}(S, \rho)=h_{B}(n+1)^{m}v(\Gamma_{s_{1}}\backslash \mathfrak{H})/4\pi$

$- \frac{[E:E^{+}]}{2}\sum_{0\in\Omega_{0}}h(0)\frac{\prod_{\mathfrak{p}1D(B/F)}(1-(\frac{0}{\mathfrak{p}}))}{[E(0):E]}$

$\sum_{a\in J(_{0},amod}$

tr. $\Psi(\alpha)\frac{\zeta_{\alpha}^{n+1}-\eta_{\alpha}^{n+1}}{\zeta_{\alpha}-\eta_{\alpha}}(\det\alpha)^{-n/2}$ .

By Shimizu [6] (See also [8].), we have

$v( \Gamma_{0}\backslash \mathfrak{H})=\frac{D_{F}^{3/2}2^{2- m}\zeta_{F}(2)}{\pi^{2m- 1}[E:E^{+}]}\frac{h_{F}}{h_{B}}\prod_{\mathfrak{p}|D(B/F)}(N_{F/Q}\mathfrak{p}-1)$ ,

where $D_{F}$ is the discriminant of $F$. From (2) we get by the functional equa-
tion of $\zeta_{F}(s)$ and the equality $v(\Gamma_{s_{i}}\backslash \mathfrak{H})=[E:E^{+}]v(\Gamma_{0}\backslash \mathfrak{H})$ ,

(3) $\dim_{C}\mathfrak{S}(S, \rho)=(-1)^{m}(n+1)^{m}h_{F}\zeta_{F}(-1)\prod_{\mathfrak{p}1D(B/F)}(N_{F/Q}\mathfrak{p}-1)$

$- \frac{[E:E^{+}]}{2}\sum_{0\in\Omega_{0}}h(\mathfrak{o})\frac{\prod_{\mathfrak{p}1D(B/F)}(1-(\frac{0}{\mathfrak{p}}))}{[E(0):E]}\sum_{\alpha\in J(0}tr$ . $\Psi(\alpha)\frac{\zeta_{a}^{n+1}-\eta_{\alpha}^{n+1}}{\zeta_{\alpha}-\eta_{\alpha}}(\det\alpha)^{-n/2}$ .

\S 3. Proof of Theorem.

Let 1 be an odd prime which does not divide $w_{F}\zeta_{F}(-1)$ .
First we prove that there exists at least one totally imaginary quadratic

extension $K/F$ whose relative class number $h_{K/F}$ is not divisible by 1.
For the case of $n(l)>0$ , we take a prime ideal PL of $F$ as follows. Because

$k_{\iota}=F(\zeta_{\iota})$ is a totally imaginary quadratic extension over $F$, we take a prime
ideal PL of $F$ which is unramified and of degree 1 over $Q$ and splits completely
in $k_{l}/Q$ but not in $k_{t}(\zeta_{\iota^{n(l)+1}})/Q$ . We see $N_{F/Q}\mathfrak{p}_{\iota}\equiv 1mod l^{n(l)}$ and $N_{F/Q}\mathfrak{p}_{\iota}\not\equiv 1$

$mod l^{n(t)+1}$ .
We can determine the quaternion algebra $B/F$ by giving even number of

prime spots which are ramified in $B/F$ ( $e$ . $g$ . Weil [10] Chap. XIII). We take
$B/F$ as follows:

(i) the only one real prime is unramified in $B/F$ and other real primes
are ramified,

(ii) $\mathfrak{p}_{\iota}$ is ramified in $B/F$, if $n(l)>0$ ,

(iii) each prime ideal I over 1 is ramified in $B/F$,

(iv) the other prime ideals $\mathfrak{p}$ which are ramified in $B/F$ satisfy $N_{F/Q}\mathfrak{p}\not\equiv 1$

$mod 1$ .
Then $\Pi_{\mathfrak{p}1D(B/F)}(N_{F/Q}\mathfrak{p}-1)$ is divisible by $l^{n_{(\downarrow)}}$ not by $l^{n_{(\downarrow)+1}}$ . Thus the l-adic
order of $\Pi_{\mathfrak{p}1D(B/F)}(N_{F/Q}\mathfrak{p}-1)$ is equal to that of $w_{F}$ . By the assumption that
1 does not divide $w_{F}\zeta_{F}(-1)$ , we see that the first term of the formula (3) is
divisible by $l^{e}$ but not by $l^{e_{F^{+1}}}$ , where $e_{F}$ stands for the exponent of 1 in $h_{F}$ .
We take $S$ and $\rho$ as in \S 1.

NOW we assume that every totally imaginary quadratic extension $K$ over $F$
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has the relative class number $h_{K/F}$ which is divisible by 1. Because Pt divides
$D(B/F)$ for the case of $n(l)>0,$ $\Omega_{0}$ does not contain any order $0$ containing the
primitive l-th roots of unity. Thus we see that the second term of (2) is divis-
ible by $l^{e_{F^{+1}}}$ , because $h(0)$ is a multiple of $h_{F(0)}=h_{F(0)/F}h_{F}$ and an 1-adic integer
( $e$ . $g$ . Prestel [5] p. 188). Thus we get:

(4) $\dim_{C}\mathfrak{S}(S, \rho)\equiv 0mod l^{e_{F}}$ and $\dim_{C}\mathfrak{S}(S, \rho)\not\equiv 0mod l^{e_{F^{+1}}}$

We put $H_{l}=\{g\in cL_{2\dim_{C}\mathfrak{S}(S.\rho)(Q_{t}):g\equiv 1mod l^{e_{F^{+1}}}}\}$ . Let $M_{l}$ be the fixed field
by $\psi_{\overline{S}^{1}\rho}(H_{\iota})$ , where $\psi_{S.\rho}$ is the $l$-adic representation as in \S 1. Let $q$ be a prime
ideal of $F$ such that $q$ splits completely in $M_{l}/F$ and does not divide $lD(B/F)$ .
Therefore we get $\psi_{S.\rho}(\sigma_{q})\equiv 1mod l^{e_{F^{+1}}}$ , and by (4)

tr. $\psi_{S.\rho}(\sigma_{q})\equiv 2\dim_{C}\mathfrak{S}(S, \rho)\not\equiv 0mod l^{e_{F^{+1}}}$

where $\sigma_{q}$ is a Frobenius element at $q$ in Gal $(\overline{F}/F)$ . By (1), we get:

(5) tr. $\mathfrak{T}(q)=$

$- \frac{[E:E^{+}]}{2}\sum_{0\in\Omega_{0}}h(0)\frac{\prod_{\mathfrak{p}1D(B/F)}(1-(\frac{0}{\mathfrak{p}}))}{[E(0):E]}\sum_{\alpha\in J(\mathfrak{o})}$

tr. $\Psi(\alpha)\frac{\zeta_{\alpha}^{n+1}-\eta_{\alpha}^{n+1}}{\zeta_{\alpha}-\eta_{\alpha}}(\det\alpha)^{-n/2}$ .

We see by $(\nu(\alpha))=q$ that $(\det\alpha)^{-n/2}$ is an 1-adic integer in $\overline{Q}_{\iota}$ . We see that
$[E(0):E]$ is prime to 1, because of the assumption that $\mathfrak{p}_{\iota}$ divides $D(B/F)$ for
the case of $n(l)>0$ . Because $h_{F(0)/F}$ is divisible by 1 and $h(0)$ is a multiple of
$h_{F(_{0})/F}h_{F}$ and an $l$-adic integer, we get tr. $\mathfrak{T}(q)\equiv 0mod l^{e_{F^{+1}}}$ . This contradicts
the equality tr. $\mathfrak{T}(q)=tr.\psi_{S.\rho}(\sigma_{q})$ , which is contained in Theorem of Ohta [4]

cited in \S 1. Thus we see that there exists a totally imaginary quadratic ex-
tension $K$ over $F$ whose relative class number $h_{K/F}$ is not divisible by 1. We
see by (iii) that each prime ideal of $F$ over $l$ does not split in $K$. Moreover we
can take $K$ which contains no primitive l-th root of unity, because PL divides
$D(B/F)$ , if $n(l)>0$ .

Finally we prove that there exist infinitely many totally imaginary quadratic
extensions over $F$ whose relative class numbers are not divisible by 1.

Let $K_{1},$ $\cdots$ , $K_{s}$ be totally imaginary quadratic extensions over $F$ whose rela-
tive class numbers are not divisible by 1. Here we can assume that $K_{i}$ contains
no primitive l-th root of unity. We take a prime ideal $q_{i}$ of $F$ such that $q_{i}$

splits completely in $K_{i}/F$ and $N_{F/Q}q_{i}\not\equiv 1mod 1$ for each $1\leqq i\leqq s$ . We take a
division quaternion algebra $B/F$ as follows:

(i) the only one real prime is unramified in $B/F$ and other real primes
are ramified,

(ii) PL is ramified in $B/F$, if $n(l)>0$ ,
(iii) $q_{1},$ $\cdots$ , $q_{s}$ are ramified in $B/F$,
(iv) each prime ideal I over 1 is ramified in $B/F$,
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(v) the other prime ideals $\mathfrak{p}$ which are ramified in $B/F$ satisfy $N_{F/Q}\mathfrak{p}\not\equiv 1$

$mod 1$ .
We take $S$ and $\rho$ as in \S 1. We get as before $\dim_{C}\mathfrak{S}(S, \rho)\equiv 0mod l^{e_{F}}$ and
$\dim_{C}\mathfrak{S}(S, \rho)\not\equiv 0mod l^{e_{F^{+1}}}$ . NO order of $K_{1}$ , $\cdot$ , $K_{s}$ is contained in $\Omega_{0}$ , because
$\mathfrak{q}_{1},$

$\cdots$ , $q_{s}$ divide $D(B/F)$ . We get a contradiction by a similar argument as be-
fore, if we assume there exists no other totally imaginary quadratic extension
over $F$ other than $K_{1},$ $\cdots$ , $K_{s}$ whose relative class number is not divisible by $l$ .
We see by (iv) that each prime ideal of $F$ over 1 does not split in these totally
imaginary quadratic extensions. The proof of Theorem is complete.

Next we prove Corollary.
We take totally imaginary quadratic extensions $K/F$ such as in Theorem.

We see that the relative class numbers $h_{K/F}$ are not divisible by 1 and each prime
ideal I of $F$ over 1 does not split completely in $K/F$. Therefore we get $\mu_{K}^{-}=$

$\lambda_{K}^{-}=0$ by the criterion in Friedman [1]. By the same discussion in the proof
of Theorem, we also see that there exist infinitely many totally imaginary quad-
ratic extensions $K/F$ such that $\mu_{K}^{-}=\lambda_{K}^{-}=0$ .

\S 4. The case that 1 divides $w_{F}\zeta_{F}(-1)$ .
We now take a prime number $l$ which divides $w_{F}\zeta_{F}(-1)$ . To construct

numerical examples for this case we first prove the following:

PROPOSITION. We assume that there exists at least one totally imaginary
quadratic extension $k/F$ with the following properties:

$( i )$ the roots of unity of $k$ are $\pm 1$ ,
(ii) at least one prime ideal $\mathfrak{p}$ of $F$ which does not divide 21 is ramified in

$k/F$,
(iii) the relative class number $h_{k/F}$ is not divisible by 1.
Then there exist infinitely many totally imaginary quadratic extensions $K/F$

whose relative class numbers $h_{K/F}$ are not divisible by 1.

First we prove that there exists at least one totally imaginary quadratic
extension $K/F$ other than $k$ whose relative class number $h_{K/F}$ is not divisible
by 1.

We denote by $0_{h}$ the ring of integers of $k$ . Let $\alpha$ be an imaginary ele-
$mentof\mathfrak{o}_{k}suchthatN_{k/F}(\alpha)isprimetol$ . $Weput\psi_{n}(\alpha)=(\alpha^{n+1}-(\alpha^{\sigma})^{n+1})/(\alpha-\alpha^{\sigma})$ ,
where $\alpha^{\sigma}$ is the conjugate of $\alpha$ over $F$. We put $T(\alpha)=\alpha+\alpha^{\sigma}$ and $N(\alpha)=\alpha\alpha^{\sigma}$ .
We show that we may assume, by changing $\alpha$ if necessary, $\psi_{n}(\alpha)\not\equiv 0$ mod I and
$N(a)\not\equiv Omod I$ for each prime ideal I of $F$ over 1. For $1\geqq 5$ , we put $n=2$ in \S 1.
If $\psi_{2}(\alpha)\equiv 0$ mod I, we change $\alpha$ to $\alpha+x$ for an integer $x$ of $F$. We get $\psi_{2}(\alpha+x)\equiv$

$3x(x+T(\alpha))$ and $N(\alpha+x)\equiv x^{2}+T(\alpha)x+N(\alpha)$ mod I. We see that there exists $x$
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such that $\psi_{2}(\alpha+x)\not\equiv 0$ and $N(\alpha+x)\not\equiv O$ mod I, because there exist at least 5 re-
sidue classes modulo I. For $l=3$ , we put $n=4$ in \S 1. If $\psi_{4}(\alpha)\equiv 0$ mod I, we get
$\psi_{4}(\alpha+x)’\equiv-x^{4}+T(\alpha)x^{3}+(T(\alpha)^{2}-N(\alpha))x^{2}-T(\alpha)(T(\alpha)^{2}+N(\alpha))x$ and $N(\alpha+x)\equiv$

$x^{2}+T(\alpha)x+N(\alpha)mod I$ for an integer $x$ of $F$. If the degree of I is at least 2,
there exists $x$ such that $\psi_{4}(\alpha-\vdash x)\not\equiv O$ and $N(\alpha+x)\not\equiv O$ mod I, because there exist
at least 9 residue classes modulo I. If the degree of I is 1, we see $N(\alpha)^{2}\equiv 1$

mod I. We get $T(\alpha)^{4}+1\equiv 0$ mod I by $\psi_{4}(\alpha)\equiv T(\alpha)^{4}+N(\alpha)^{2}\equiv 0$ mod I. This is a
contradiction. Moreover we can simultaneously take such $x$ for any 1 over 1.

Moreover we add a congruence condition modulo $\mathfrak{p}$ to $\alpha$ . There exists
$y\in 0_{k}$ such that $y\not\equiv y^{\sigma}mod \mathfrak{B}^{2}$ for the prime ideal $\mathfrak{B}$ of $k$ over $\mathfrak{p}$ and the gen-
erator $\sigma$ of the Galois group of $k/F$, because $\mathfrak{p}$ is tamely ramified in $k/F$. We
take $\alpha$ satisfying $\alpha\equiv ymod \mathfrak{B}^{2}$ . Therefore we get $\alpha-\alpha^{\sigma}\equiv 0mod \mathfrak{V}$ and $\alpha-\alpha^{\sigma}$

$\not\equiv 0mod \mathfrak{B}^{2}$ . Thus we get $(\alpha-\alpha^{\sigma})^{2}\equiv 0mod \mathfrak{p}$ and $(\alpha-\alpha^{\sigma})^{2}\not\equiv 0mod \mathfrak{p}^{2}$ . Consider-
ing Satz 4 and Lemma 10 of Prestel [5] and $(\alpha-\alpha^{\sigma})^{2}=T(\alpha)^{2}-4N(\alpha)$ , we see
that the conductor of an order $0$ in $0_{k}$ containing $\alpha$ is not divisible by $\mathfrak{p}$ . Since
there exist finitely many orders $0$ in $0_{k}$ containing $\alpha$ , we denote by $r_{1},$ $\cdots$ , $\mathfrak{r}_{s}$

the prime divisors of the conductors of these orders. We have $\mathfrak{r}_{i}\neq \mathfrak{p}(1\leqq i\leqq s)$ .
By class field theory we can take $\alpha$ such that $(\alpha)$ is a prime ideal of $k$ which
splits completely in $k/Q$ . We put $N=N_{k/F}(\alpha)$ . There exist finitely many alge-
braic integer $x+y\sqrt{-\delta’}$ with $x,$ $y,$ $\delta’\in F$ such that $x^{2}+\delta’y^{2}=N$ and $\delta’$ is totally
positive. We denote by $\delta,$ $\delta_{1}$ , , $\delta_{t}$ these $\delta’$ . At this time we take $\delta,$ $\delta_{1}$ , $\delta_{t}$

such that $k=F(\sqrt{-\delta}),$ $k_{1}=F(\sqrt{-\delta_{1}}),$
$\cdots,$

$k_{t}=F(\sqrt{-\delta_{t}})$ are different extensions.
Let $\mathfrak{p}_{i}’$ be a prime ideal of $F$ which splits completely in $k_{i}/F$ and remains prime
in $k/F$. We take a division quaternion algebra $B/F$ as follows:

(i) the only one real prime is unramified in $B/F$ and other real primes
are ramified,

(ii) $\mathfrak{p}_{1}’,$ $\cdots$ , $\mathfrak{p}_{t}’$ and $r_{1},$ $\cdots$ , $\mathfrak{r}_{s}$ are ramified in $B/F$,

(iii) $\mathfrak{p}$ is unramified in $B/F$,
(iv) PL is ramified in $B/F$, if $n(l)>0$ ,
(v) the other prime ideals $q$ which are ramified in $B/F$ remain prime in

$k/F$.
We take $S$ and $\rho$ as in \S 1, and consider $S(S, \rho)$ . We consider the trace formula
(1) in \S 2. We see that $k,$ $k_{1},$ $\cdots$ $k_{t}$ are only totally imaginary quadratic ex-
tensions which contain algebraic integers whose norm to $F$ are equal to $N$. But
no order in $k_{1}$ , , $k_{t}$ appears in $\Omega_{0}$ , because $\mathfrak{p}_{1}’$ , $\cdot$ , $\mathfrak{p}_{t}’$ are ramified in $B/F$.
Let $0_{k}$ be the ring of integers of $k$ . Thus it is sufficient to consider the orders
of $k$ for calculating tr. $\mathfrak{T}((N))$ . Let $0_{k}$ be the ring of integers of $k$ . No order of
$k$ other than $0_{k}$ appears in $\Omega_{0}$ because $t_{1},$ $\cdots$ , $r_{s}$ are ramified in $B/F$. By the
assumption (i) and (ii) of Proposition, we get $E_{k}=E$ . Therefore we get $J(0_{k})$

$=\{\alpha, \alpha^{\sigma}\}$ . Thus we get:
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tr. E5 $((N))=- \frac{[E:E^{+}]}{2}h_{k}\prod_{\mathfrak{p}|D(B’ F)}(1-(\frac{0_{k}}{\mathfrak{p}}))_{\beta}\sum_{=\alpha.\alpha^{\sigma}}$ tr. $\Psi(\beta)\frac{\zeta_{\beta}^{n+1}-\eta_{\beta}^{n+1}}{\zeta_{\beta}-\eta_{\beta}}N^{-n/^{z}}$ .

Let $\alpha=\alpha^{(1)},\overline{\alpha^{(1)}},$
$\cdots$ , $\alpha^{(m)},\overline{\alpha^{(m)}}$ be the conjugates of $\alpha$ such that $\overline{\alpha^{(i)}}$ is the

complex conjugation of $\alpha^{(i)}$ over a conjugate field $F^{(i)}$ of $F$. By the definition
of the symmetric tensor representation, we get

tr. $\Psi(\alpha)\frac{\zeta_{\alpha}^{n+1}-\eta_{\alpha}^{n+1}}{\zeta_{\alpha}-\eta_{\alpha}}=\prod_{i=1}^{m}\frac{(\alpha^{(i)})^{n+1}-(\overline{\alpha^{(i)})}^{n+1}}{\alpha^{(i)}-\overline{\alpha^{(i)}}}\cross\prod_{t=2}^{m}(N^{\mathfrak{c}\iota)})^{-n/2}$

because of $\zeta_{a}=\alpha^{(1)}$ and $\eta_{\alpha}=\overline{\alpha^{(1)}}$ . So we see

tr. $\mathfrak{T}((N))=-[E:E^{+}]h_{k}\prod_{F\mathfrak{p}1D(B/)}(1-(\frac{0_{k}}{\mathfrak{p}}))$ tr. $\Psi(\alpha)\frac{\zeta_{\alpha}^{n+1}-\eta_{\alpha}^{n+1}}{\zeta_{\alpha}-\eta_{\alpha}}N^{-n/2}$ .

By the congruence condition modulo I of $\alpha$ , we see that

tr. $\Psi(\alpha)\frac{\zeta_{\alpha}^{n+1}-\eta_{\alpha}^{n+1}}{\zeta_{\alpha}-\eta_{\alpha}}$

is prime to $l$ . By the assumption (iii), we get:

tr. ES $((N))=0mod l^{e_{F}}$ and tr. $\mathfrak{T}((N))\not\equiv Omod l^{e_{F^{+1}}}$

We take $H_{t}$ and $M_{l}$ as in \S 3. We see that $\mathfrak{p}$ is unramified in $M_{l}/F$, because $\mathfrak{p}$

does not divide $lD(B/F)$ . We get $M_{l}\cap k=F$ by the assumption (ii) of Proposi-
tion. We take a prime ideal $\mathfrak{Q}$ of $F$ which decomposes in $M_{l}/F$ in the same
manner as $(N)$ , and remains prime in $k/F$. Thus there is no element $\beta$ of $k$

such that $(N_{k/F}(\beta))=\mathfrak{Q}$ . So there appears no order of $k$ in the formula of
tr. $\mathfrak{T}(\mathfrak{Q})$ . Because of tr. S(D)=tr.%((N))\not\equiv O $mod l^{e_{F^{+1}}}$ , we see that there exists other
totally imaginary quadratic extension $K$ whose relative class number $h_{K/F}$ is
not divisible by $l$ . Moreover $K$ contains no primitive l-th root of unity, because
$\mathfrak{p}_{\iota}$ divides $D(B/F)$ .

Next we prove that there exist infinitely many totally imaginary quadratic
extensions over $F$ whose relative class numbers are not divisible by $l$ . Let $k$ ,
$K_{1},$ $K_{u}$ be such quadratic extensions over $F$ which contain no primitive l-th
root of unity. We take prime ideal $q_{i}$ of $F$ which splits completely in $K_{i}/F$

and remains prime in $k/F$ for each l<i$u. We take a division quaternion
algebra $B/F$ satisfying $(i)\sim(v)$ in which $q_{i}$ is ramified. Then we see by similar
argument that there exist anothor totally imaginary quadratic extension over $F$

whose relative class number is not divisible by $l$ . The proof of Proposition is
complete.

Next we consider the numerical examples. We take $F=Q(\sqrt{p})$ , where $p\equiv 1$

$mod 4$ is a prime. We denote by $h(-q)$ (resp. $h(-pq)$) the class number of
$Q(\sqrt{-q})$ (resp. $Q(\sqrt{-Pq})$), where $q$ is a prime number. For $L=F(\sqrt{-q})=$

$Q(\sqrt{p}, \sqrt{-q})$ , we see $h_{L/F}=h(-q)h(-pq)/2$ . If $h(-q)$ and $h(-Pq)$ are prime
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to 1 and $q$ is not equal to 2, 3, $P$ nor 1, then $L$ satisfies the assumption of Propo-
sition. Using an electric computer we can find $q$ such that $h(-q)$ and $h(-pq)$

are prime to 1 for 3:$ $1\leqq 47$ and $p\leqq 17389$ , even if $w_{F}\zeta_{F}(-1)$ is divisible by $l$ .
There are 986 $p’ s$ . We write the number of $p’ s$ such that $l$ divides
$w_{Q(\sqrt{p})}\zeta_{Q(\sqrt{p})}(-1)$ in the following table.

Table.

References

[1] E. Friedman, Iwasawa invariants, Math. Ann., 271 (1985), 13-30.
[2] P. Hartung, Proof of the existence of infinitely many imaginary quadratic fields

whose class number is not divisible by 3, J. of Number Theory, 6 (1974), 276-278.
[3] K. Horie, A note on basic Iwasawa $\lambda$ -invariants of imaginary quadratic fields,

Invent. Math., 88 (1987), 31-38.
[4] M. Ohta, On $l$-adic representations attached to automorphic forms, Japan. J. Math.,

8 (1982), 1-47.
[5] A. Prestel, Die elliPtischen Fixpunkte der Hilbertschen Modulgruppen, Math. Ann.,

177 (1968), 181-209.
[6] H. Shimizu, On discontinuous groups operating on the product of the upper half

planes, Ann. of Math., 77 (1963), 33-71.
[7] H. Shimizu, On traces of Hecke operators, J. Fac. Sci. Univ. Tokyo, 10 (1963), 1-

19.
[8] H. Shimizu, On zeta functions of quaternion algebras, Ann. of Math., 81 (1965),

166-193.
[9] J.-P. Serre, Cohomologie des groupes discretes, Prospects in Mathematics, Ann.

of Math. Stud., 70 (1971), 77-170.
[10] A. Weil, Basic Number Theory, Springer, 1967.

Hirotada NAITO
Faculty of Education
Kagawa University
Takamatsu 760 Japan


	\S 0. Introduction.
	THEOREM. Let ...

	\S 1. 1-adic representations.
	THEOREM. There ...

	\S 2. Trace formulas.
	\S 3. Proof of Theorem.
	\S 4. The case that 1 ...
	References

