Homogeneity and complete decomposability of torsion free knot modules

Dedicated to Professor Fujitsugu Hosokawa on his 60th birthday

By Katsuyuki Yoshikawa

(Received June 15, 1989)
(Revised Dec. 25, 1989)

Let Λ be the integral group ring of the infinite cyclic group $\langle t:\rangle$. A Λ module A is called a knot module if A is finitely generated over Λ and $t-1$ induces an automorphism of A. The purpose of this paper is to generalize results of E. S. Rapaport [8], R. H. Crowell [2] and D. W. Sumners [9] on knot modules. M. Kervaire [5] showed that the Z-torsion part T of a knot module A is a finite Λ-submodule. It follows from [3, vol. 2, p. 187] that A splits as an abelian group, i. e., $A \cong{ }_{z} F \oplus T$, where $F=A / T$. The Z-torsion part of a knot module has been completely determined. That is, a finite abelian group T is isomorphic to the Z-torsion part of some knot module if and only if the number of factors isomorphic to $Z_{2 i}$ in the 2-primary component of T is not equal to one for any positive integer i (cf. [4], [6]). On the other hand, it still remains open to characterize the Z-structure of a Z-torsion free knot module. In this paper, we investigate two classes of Z-torsion free knot modules; one is homogeneous and the other is completely decomposable. Using our result, we can find an answer to Sumners's question [9, p. 84] for models of Z-torsion free knot modules.

Throughout this paper (unless otherwise specified), all groups will be Z torsion free abelian and all Λ-modules will be Z-torsion free knot modules.

1. Introduction.

A polynomial $f(t)$ of Λ is primitive if all its coefficients are relatively prime. Let A be a Λ-module. Then $A \otimes_{z} Q$ is a finitely generated Γ-module, where $\Gamma=\Lambda \otimes_{z} Q$. Therefore, since Γ is a principal ideal domain, we have

$$
A \otimes_{z} Q \cong_{\Gamma} \Gamma /\left(\lambda_{1}\right) \oplus \cdots \oplus \Gamma /\left(\lambda_{k}\right) .
$$

In the above decomposition, one can take the λ_{i} to be primitive elements of Λ such that $\lambda_{i+1} \mid \lambda_{i}$ in $\Lambda, i=1, \cdots, k-1$. We call $\left\{\lambda_{i}\right\}_{i=1}^{k}$ the (rational) polynomial
invariants of A and $\Delta(A)=\lambda_{1} \cdots \lambda_{k}$ the (rational) polynomial of A.
By the $\operatorname{rank} r(G)$ of an abelian group G, we mean the dimension of the vector space $G \otimes_{z} Q$ over Q. It is well-known that $r(A)=\operatorname{deg} \Delta(A)$ for a Λ module A. An abelian group G is said to be completely decomposable if it is a direct sum of rank one abelian groups. Let G be an abelian group. If S is a subset of G, then S_{*} denotes the smallest pure subgroup of G containing S. (A subgroup H is called a pure subgroup of G if $H \cap n G=n H$ for all $n \in Z$.) An isomorphism class of abelian groups of rank one is called a type. The type determined by an abelian group G_{1} of rank one is denoted by $\boldsymbol{t}\left(G_{1}\right)$. If $x(\neq 0)$ $\in G$, then $\boldsymbol{t}\left(\{x\}_{*}\right)$ is called the type of x and denoted by $\boldsymbol{t}_{G}(x)$. We say that G is homogeneous of type τ if $\boldsymbol{t}_{G}(x)=\tau$ for any non-zero element x of G. (In Section 2, types will be explained in detail.) Let $Z[1 / m], m \in Z-\{0\}$, denote the additive group consisting of all rationals of the form $r=i / m^{j}(i, j \in Z)$.

Let $f(t)=c_{0} t^{i}+c_{1} t^{i+1}+\cdots+c_{d} t^{i+d} \in \Lambda$, where $c_{0} c_{d} \neq 0$. Then let $\mu(f(t))$ denote the integer $c_{0} c_{d}$. Let $\Lambda_{p}=\Lambda \otimes_{z} Z_{p}$, where p is a prime, and $\varepsilon_{p}: \Lambda \rightarrow \Lambda_{p}$ be the homomorphism given by $\varepsilon_{p}(f)=f \otimes 1$. Then the units of Λ_{p} are of the form $t^{i} \otimes \alpha, \alpha(\neq 0) \in Z_{p}$. For a polynomial $f(t)$ of $\Lambda, \varepsilon_{p}(f(t))$ is a unit in Λ_{p} if and only if p divides all the coefficents of $f(t)$ except one.

In [8], E.S. Rapaport showed that a Λ-module A which has a square presentation matrix is finitely generated as an abelian group (i. e., $A \cong \cong_{z} \bigoplus_{i=1}^{d} Z$, where $d=\operatorname{deg} \Delta(A)$) if and only if $\mu(\Delta(A))= \pm 1$. More generally, by [2] and [9], the following holds:

Theorem 1.1 (Crowell [2]; Sumners [9]). A 1 -module A with polynomial $f(t)$ is homogeneous of type $\boldsymbol{t}(Z[1 / \mu(f)])$ and completely decomposable of rank d, i.e., $A \cong{ }_{z} \oplus_{i=1}^{d} Z[1 / \mu(f)]$, where $d=\operatorname{deg} f(t)$, if and only if
(1.1) for each prime p which divides $\mu(f(t)), \varepsilon_{p}(f(t))$ is a unit in Λ_{p}.

In Section 3, we generalize this theorem as follows:
Theorem 1.2. A A-module A is homogeneous of type τ if and only if each irreducible factor of $\Delta(A)$ is of type τ.

We say that a polynomial $f(t)$ of Λ is of type τ if there exist primes p_{1}, \cdots, p_{m} such that $\tau=t\left(Z\left[1 / p_{1} \cdots p_{m}\right]\right)$ and $\varepsilon_{p_{i}}(f(t))$ is a unit in $\Lambda_{p_{i}}, i=1, \cdots$, m, but $\varepsilon_{p}(f(t))$ is not a unit in $\Lambda_{p}, p \neq p_{1}, \cdots, p_{m}$. (If $m=0$, then we set $\boldsymbol{\tau}=\boldsymbol{t}(Z)$.) Let $\boldsymbol{t}(f)$ denote the type of $f(t)$. Note that a polynomial $f(t)$ of Λ satisfies (1.1) if and only if
(1.1)' each irreducible factor of $f(t)$ is of type $\boldsymbol{t}(Z[1 / \mu(f)])$.

In Section 4, we obtain the following result:

Theorem 1.3. If a 1 -module A is completely decomposable, then each irreducible factor of $\Delta(A)$ satisfies (1.1) in Theorem 1.1. Conversely, given a polynomial $f(t)$ of Λ such that (i) $f(1)= \pm 1$ and (ii) each irreducible factor of $f(t)$ satisfies (1.1), there exists a completely decomposable 1-module of rank d with polynomial $f(t)$, where $d=\operatorname{deg} f(t)$.

In Section 5, we consider cyclic Λ-modules and give a criterion for a cyclic Λ-module to be completely decomposable (Theorem 5.1). D. W. Sumners [9] has defined the model of a Λ-module A as follows: Let $\left\{\lambda_{i}\right\}_{i=1}^{k}$ be the polynomial invariants of A. Then we call the Λ-module M defined by

$$
M=\Lambda /\left(\lambda_{1}\right) \oplus \cdots \oplus \Lambda /\left(\lambda_{k}\right)
$$

the model of A. (Note that M is also Z-torsion free because $\lambda_{i}, i=1, \cdots, k$, are primitive.) Sumners [9] proved that if A is a Λ-module, then there exists an exact sequence of Λ-modules

$$
0 \longrightarrow M \xrightarrow{\phi} A \longrightarrow G \longrightarrow 0,
$$

where G is a finite Λ-module. Thus the monomorphic image $\phi(M)$ of the model M has finite index in A. Then, Sumners asks the following question:

Question 1.4 ([9, p. 84]). Is the model M of any 1 -module A Z-isomorphic to A ?

In Section 5, we can answer in the negative as follows:
Theorem 1.5. There exists a 1 -module A whose model is not Z-isomorphic to A.

2. Preliminaries.

Let x be an element of an abelian group G. We say that x is divisible by a positive integer n in G if there exists an element y of G such that $n y=x$. Given a prime p, the largest integer k such that x is divisible by p^{k} in G is called the p-height $h_{p}(x)$ of x; if no such maximal integer k exists, then we set $h_{p}(x)=\infty$. Let $p_{1}, p_{2}, \cdots, p_{n}, \cdots$ be the sequence of all primes of Z in increasing order of magnitude, i.e., $0<p_{1}<p_{2}<\cdots<p_{n}<\cdots$. Then, the sequence of p-heights

$$
\left.\chi_{G}(x) \text { (or simply } \chi(x)\right)=\left(h_{p_{1}}(x), h_{p_{2}}(x), \cdots\right)
$$

is called the characteristic or the height-sequence of x. Let ($k_{1}, \cdots, k_{n}, \cdots$) and $\left(l_{1}, \cdots, l_{n}, \cdots\right)$ be two characteristics. Then by ($\left.k_{1}, \cdots, k_{n}, \cdots\right) \geqq\left(l_{1}, \cdots, l_{n}, \cdots\right)$, we mean that $k_{n} \geqq l_{n}$ for all n.

The following are easily obtained:

Proposition 2.1 ([3, vol. 2, p. 108]). Let G be an abelian group. Then the following hold;
(a) $\chi(-a)=\chi(a)$ for all $a \in G$,
(b) $\chi_{A}(a) \leqq \chi_{G}(a)$ for any element a of a subgroup A of G; and A is pure in G if and only if equality holds for all $a \in A$,
(c) $\chi(a+b) \geqq \chi(a) \cap \chi(b)$ for all $a, b \in G$, where $\chi(a) \cap \chi(b)=\left(\min \left\{h_{p_{1}}(a), h_{p_{1}}(b)\right\}, \cdots\right)$,
(d) if $G=A \oplus B$ and $a \in A, b \in B$, then $\chi(a+b)=\chi(a) \cap \chi(b)$,
(e) for any homomorphism α of G to an abelian group H and for any $a \in G$, $\chi_{G}(a) \leqq \chi_{H}(\alpha(a))$.

We say that two characteristics $\left(k_{1}, \cdots, k_{n}, \cdots\right)$ and ($l_{1}, \cdots, l_{n}, \cdots$) are equivalent if $\sum_{n=1}^{\infty}\left|k_{n}-l_{n}\right|$ is finite. (Set $\infty-\infty=0$.) An equivalence class of characteristics is called a type, Let x be an element of an abelian group G. If $\chi_{G}(x)$ belongs to a type τ, then we say that x is of type τ and write $\boldsymbol{t}_{G}(x)=\tau$ (or simply $\boldsymbol{t}(x)=\tau$). Let τ_{1} and τ_{2} be types. Then by $\tau_{1} \geqq \tau_{2}$, we mean that there are characteristics $\chi_{1} \in \tau_{1}$ and $\chi_{2} \in \tau_{2}$ such that $\chi_{1} \geqq \chi_{2}$. Two types τ_{1} and τ_{2} are comparable if $\tau_{1} \geqq \tau_{2}$ or $\tau_{1} \leqq \tau_{2}$. A type τ of a subset S of the set of types is said to be maximal in S if $\tau \nless \tau_{s}$ for any $\tau_{s} \in S$.

The following are well known results:
Proposition 2.2 ([3, vol. 2, p. 109]). Let G be an abelian group.
(A) If $m a=r b(a, b \in G, m, r \in Z-\{0\})$, then $\boldsymbol{t}(a)=\boldsymbol{t}(b)$,
(B) $\boldsymbol{t}_{A}(a) \leqq \boldsymbol{t}_{G}(a)$ for any element a of a subgroup A of G,
(C) $\boldsymbol{t}(a+b) \geqq \boldsymbol{t}(a) \cap \boldsymbol{t}(b)$ for all $a, b \in G$, where $\boldsymbol{t}(a) \cap \boldsymbol{t}(b)$ is the type represented by $\chi_{1} \cap \chi_{2}\left(\chi_{1} \in t(a), \chi_{2} \in \boldsymbol{t}(b)\right)$,
(D) if $G=A \oplus B$ and $a \in A, b \in B$, then $\boldsymbol{t}(a+b)=\boldsymbol{t}(a) \cap \boldsymbol{t}(b)$ and $\boldsymbol{t}_{A}(a)=\boldsymbol{t}_{G}(a)$,
(E) for any homomorphism α of G to an abelian group H and for any $a \in G, \boldsymbol{t}_{G}(a) \leqq \boldsymbol{t}_{H}(\alpha(a))$.

If all the nonzero elements of an abelian group G are of the same type τ, we say that G is homogeneous of type τ.

Remark 2.3. From Proposition 2.2(A), all the nonzero elements of an abelian group of rank one are of the same type, that is, it is homogeneous. Moreover, it is known that two abelian groups of rank one are isomorphic if and only if they are of the same type [1], [3, vol. 2]. Therefore the above definition of types agrees with that in Section 1 . Concerning completely decomposable abelian groups, it is known that any direct summand of a completely decomposable abelian group is also completely decomposable, and the decomposition of a completely decomposable abelian group A into a direct sum of rank one abelian groups is unique in the sense that, if $A=\bigoplus_{i} B_{i}=\bigoplus_{j} C_{j}$, where $r\left(B_{i}\right)=r\left(C_{j}\right)=1$, then one can find a one-to-one correspondence between the two
sets $\left\{B_{i}\right\}$ and $\left\{C_{j}\right\}$ of components such that corresponding components are isomorphic [1], [3, vol. 2].

Lemma 2.4. Let A be a Λ-module. If $h(t)$ is a factor of $\Delta(A)$ such that g. c. d. $(h(t), \Delta(A) / h(t))=1$, then $h A$ and $\{h A\}_{*}$ are Λ-submodules with polynomial $\Delta(A) / h(t)$.

Proof. The proof is elementary.
Proposition 2.5. If a is a nonzero element of a 1 -module A, then we have $\boldsymbol{t}_{A}(a) \leqq \boldsymbol{t}(Z[1 / \mu(\Delta(A))])$, i.e., there exists a positive integer k such that $\boldsymbol{t}_{A}(a)=$ $\boldsymbol{t}(Z[1 / k])$ and $k \mid \mu(\Delta(A))$.

Proof. By [2] or [9], there exists a monomorphism $\phi: A \rightarrow B$, where $B=$ $\oplus_{i=1}^{d} Z[1 / \mu(\Delta(A))]$ and $d=\operatorname{deg} \Delta(A)$. Therefore, from Proposition 2.2(E), we obtain

$$
\boldsymbol{t}_{A}(a) \leqq \boldsymbol{t}_{B}(\phi(a))=\boldsymbol{t}(Z[1 / \mu(\Delta(A))])
$$

for each $a(\neq 0) \in A$.
LEmmA 2.6. Let A be a Λ-module and $A(\tau)=\left\{x \in A: \boldsymbol{t}_{A}(x) \geqq \tau\right\}$, where τ is a type. Then
(1) $A(\tau)$ is a pure 1 -submodule of A, and $\boldsymbol{t}_{A(\tau)}(a)=\boldsymbol{t}_{A}(a)$ for any element a of $A(\tau)$, and
(2) if A is completely decomposable, then $A(\tau)$ is a completely decomposable direct summand of A as an abelian group.

Proof. By [3, vol. 2, p. 109] or Propositions 2.1(b), 2.2 (A) and (C), $A(\tau)$ is a pure subgroup of A and $\boldsymbol{t}_{A(\tau)}(a)=\boldsymbol{t}_{\boldsymbol{A}}(a)$ for any element a of $A(\boldsymbol{\tau})$. Since $t^{ \pm 1}$ induces an automorphism of A, it follows from Proposition 2.2(E) that $\boldsymbol{t}_{A}\left(t^{ \pm 1} a\right)=\boldsymbol{t}_{A}(a) \geqq \tau$ for any element of $A(\tau)$. Hence $A(\tau)$ is a Λ-submodule, and so (1) holds. Suppose that A is completely decomposable and $A=A_{1} \oplus \cdots \oplus A_{n}$, where $r\left(A_{i}\right)=1, i=1, \cdots, n$. We may assume that $\boldsymbol{t}\left(A_{i}\right) \geqq \tau$ and $\boldsymbol{t}\left(A_{j}\right) \geq \tau$, $0<i \leqq r<j \leqq n$ for some integer r. Then, from Proposition 2.2(D), it is easily seen that $A(\tau)=A_{1} \oplus \cdots \oplus A_{r}$.

3. Homogeneous modules.

In this section, we give the proof of Theorem 1.2. To prove the theorem, we will prove some lemmas.

Lemma 3.1. Let p be a prime. Then a 1 -module A is p-divisible, i.e., $\boldsymbol{t}_{A}(a) \geqq \boldsymbol{t}(Z[1 / p])$ for any $a \in A$, if and only if $\varepsilon_{p}(\Delta(A))$ is a unit in Λ_{p}.

Proof. Suppose that A is p-divisible. Then, for any $a \in A$, there is an
element b of A such that $a=p b$. Therefore we have $a \otimes 1=p b \otimes 1=b \otimes p=0$ in the vector space $A \otimes_{z} Z_{p}$ over Z_{p}. Hence $\operatorname{deg} \varepsilon_{p}(\Delta(A))=\operatorname{dim}_{Z_{p}} A \otimes_{z} Z_{p}=0$, and so $\varepsilon_{p}(\Delta(A))$ is a unit in Λ_{p}. Conversely, suppose that $\varepsilon_{p}(\Delta(A))$ is a unit in Λ_{p}. Then there exists a polynomial $h(t)$ of Λ such that

$$
1=q \cdot t^{i} \Delta(A)+p \cdot h(t), \quad q \in Z .
$$

Therefore, for any element a of A, we have $a=\left(q \cdot t^{i} \Delta(A)+p \cdot h(t)\right) a=p(h(t) a)$. This shows that A is p-divisible.

Lemma 3.2. Let A and B be abelian groups of finite rank with a monomorphism $\phi: A \rightarrow B$ such that $|B / \phi(A)|$ is finite. Then for any element a of A, we have $\boldsymbol{t}_{A}(a)=\boldsymbol{t}_{\boldsymbol{B}}(\boldsymbol{\phi}(a))$.

Proof. Let $n=|B / \phi(A)|$. Since $n B$ is contained in the image $\phi(A)$ and ϕ is one-one, we can define a homomorphism $\psi: B \rightarrow A$ by $\psi(b)=\phi^{-1}(n b)$. Then we see that

$$
\phi(\phi(a))=\phi^{-1}(n(\phi(a)))=n a
$$

for any element a of A. Therefore, by Proposition 2.2,A) and (E), we obtain

$$
\boldsymbol{t}_{\boldsymbol{A}}(a) \leqq \boldsymbol{t}_{\boldsymbol{B}}(\boldsymbol{\phi}(a)) \leqq \boldsymbol{t}_{A}(\psi(\boldsymbol{\phi}(a)))=\boldsymbol{t}_{\boldsymbol{A}}(n a)=\boldsymbol{t}_{\boldsymbol{A}}(a) .
$$

The proof is completed.
Lemma 3.3. Let A be a cyclic 1 -module and $\tau=\boldsymbol{t}\left(Z\left[1 / p_{1} \cdots p_{m}\right]\right)$, where p_{1}, \cdots, p_{m} are primes. Then there exists an element x of A whose type is τ if and only if there exists a factor $g(t)$ of $\Delta(A)$ whose type is τ. (If $m=0$, then we set $\boldsymbol{\tau}=\boldsymbol{t}(Z)$.)

Proof. Suppose that there exists $x \in A$ such that $\boldsymbol{t}_{A}(x)=\tau$. Let $A(\tau)=$ $\left\{b \in A: \boldsymbol{t}_{A}(b) \geqq \tau\right\}$. Then, by Lemma 2.6, $A(\tau)$ is a pure Λ-submodule of A and, for any element b of $A(\tau)$,

$$
\boldsymbol{t}_{A(\tau)}(b)=\boldsymbol{t}_{\boldsymbol{A}}(b) \geqq \boldsymbol{\tau} \geqq \boldsymbol{t}\left(Z\left[1 / p_{i}\right]\right), \quad i=1, \cdots, m .
$$

Hence by Lemma 3.1, $\varepsilon_{p_{i}}(\Delta(A(\tau)))$ is a unit in $\Lambda_{p_{i}}, i=1, \cdots, m$. Moreover, since $\boldsymbol{t}_{\boldsymbol{A}(\tau)}(x)=\boldsymbol{\tau} \not \boldsymbol{t}(Z[1 / p])$ for any prime $p \neq p_{1}, \cdots, p_{m}$, it follows from Lemma 3.1 that $\varepsilon_{p}(\Delta(A(\tau)))$ is not a unit in Λ_{p}. Thus, since $\Delta(A(\tau)) \mid \Delta(A)$, we complete the proof of the sufficiency, i. e., we get a factor $g(t)=\Delta(A(\tau))$.

Conversely, suppose that there exists a factor $g(t)$ of $\Delta(A)$ such that
(3.1) $\varepsilon_{p_{i}}(g(t))$ is a unit in $\Lambda_{p_{i}}, i=1, \cdots, m$, but $\varepsilon_{p}(g(t))$ is not a unit in Λ_{p}, $p \neq p_{1}, \cdots, p_{m}$.

Let $g^{*}(t)=\Delta(A) / g(t)$ and $A^{*}=g^{*} A$. Then A^{*} is a cyclic Λ-submodule of A with $\Delta\left(A^{*}\right)=g(t)$ and is generated by $g^{*} a$, where a is a generator of A as a Λ module. Therefore, from (3.1) and Lemma 3.1, we see that

$$
\begin{array}{ll}
\boldsymbol{t}_{A *}\left(g^{*} a\right) \geqq \boldsymbol{t}\left(Z\left[1 / p_{i}\right]\right), & i=1, \cdots, m, \quad \text { and } \\
\boldsymbol{t}_{A *}(g * a) \nsupseteq \boldsymbol{t}(Z[1 / p]), & p \neq p_{1}, \cdots, p_{m} .
\end{array}
$$

Thus, by Proposition 2.5, we have

$$
\boldsymbol{t}_{A *}\left(g^{*} a\right)=\boldsymbol{\tau}
$$

On the other hand, since $A / A^{*}\left(\cong{ }_{\Lambda} \Lambda /\left(g^{*}(t)\right)\right)$ is Z-torsion free, A^{*} is pure in A. It follows from Proposition 2.1(b) that

$$
\boldsymbol{t}_{\boldsymbol{A}}\left(g^{*} a\right)=\boldsymbol{t}_{\boldsymbol{A} *}\left(g^{*} a\right)=\boldsymbol{\tau}
$$

Thus we complete the proof.
More generally, concerning the type of an element of a Λ-module, we have the following :

Theorem 3.4. Let A be a 1 -module and $\boldsymbol{\tau}=\boldsymbol{t}\left(Z\left[1 / p_{1} \cdots p_{m}\right]\right)$, where p_{1}, \cdots, p_{m} are primes. Then there exists an element x of A whose type is τ if and only if there exists a factor $g(t)$ of $\Delta(A)$ whose type is τ.

Proof. The sufficiency is proved in the same way as in the proof of Lemma 3.3.

We will prove the necessity. Let $M=\Lambda /\left(\lambda_{1}\right) \oplus \cdots \oplus \Lambda /\left(\lambda_{k}\right)$ be the model of A. Since $\lambda_{i+1} \mid \lambda_{i}, i=1, \cdots, k-1$, we may assume that $g(t)$ is a factor of λ_{1}. Therefore, by Lemma 3.3, there exists an element x of $\Lambda /\left(\lambda_{1}\right)$ such that $\boldsymbol{t}_{\Lambda /\left(\lambda_{1}\right)}(x)=\tau$. Since $\Lambda /\left(\lambda_{1}\right)$ is a direct summand of M, it follows from Proposition $2.2(\mathrm{D})$ that $\boldsymbol{t}_{M}(x)=\boldsymbol{t}_{\Lambda /\left(\lambda_{1}\right)}(x)$. Therefore, since $|A / M|$ is finite (see Section 1 or [9]), Lemma 3.2 shows that $\boldsymbol{t}_{A}(x)=\boldsymbol{t}_{M}(x)=\tau$.

Proof of Theorem 1.2. By the definition of homogeneity, A is homogeneous of type τ if and only if $\boldsymbol{t}_{A}(a)=\tau$ for any $a(\neq 0) \in A$. Therefore, from Theorem 3.4, we obtain the theorem.

Corollary 3.5. If a 1 -module A is π-primary, i.e., $\Delta(A)$ is a power of a single irreducible polynomial of Λ, then A is homogeneous.

REMARK 3.6. In [7, p. 32], J. Levine defined 'homogeneity' for Λ-modules. Since his 'homogeneity' implies π-primary, every 'homogeneous' Λ-module in Levine's sense is homogeneous as an abelian group in our sense.

In case of a homogeneous Λ-module A of type $t(Z[1 / \mu(\Delta(A))])$, we obtain the following :

Proposition 3.7. Let A be a Λ-module. Then, the following four statements are equivalent:
(1) A is completely decomposable and homogeneous,
(2) A is homogeneous of type $t(Z[1 / m])$, where $m=\mu(\Delta(A))$,
(3) $\Delta(A)$ satisfies the condition (1.1) in Theorem 1.1,
(4) $A \cong_{z} \oplus_{i=1}^{d} Z[1 / m]$, where $d=r(A)$.

Proof. First we show that (1) implies (2). By Remark 2.3 and Proposition 2.5, we have

$$
A \cong_{z}{\underset{i=1}{d}}^{d}[1 / k],
$$

where k is a positive integer such that $k \mid m$. Let p be any prime such that $p \mid m$. Then, since $\operatorname{dim}_{z_{p}} A \otimes_{z} Z_{p}=\operatorname{deg} \varepsilon_{p}(\Delta(A))<\operatorname{deg} \Delta(A)=d$, it follows that $p \mid k$, otherwise $A \otimes_{z} Z_{p} \cong \oplus_{i=1}^{d} Z[1 / k] \otimes_{z} Z_{p} \cong \oplus_{i=1}^{d} Z_{p}$. Therefore we see that $Z[1 / k]=Z[1 / m]$. Thus A is homogeneous of type $t(Z[1 / m])$. Next, Theorem 1.2 shows that (2) implies (3). Therefore, by Theorem 1.1, we complete the proof.

4. Completely decomposable modules.

In this section, we study completely decomposable Λ-modules. First we prove the following:

Theorem 4.1. Let A be a Λ-module with polynomial $f(t)$. Then, if A is completely decomposable,
(1) $A \cong{ }_{z} Z\left[1 / m_{1}\right] \oplus \cdots \oplus Z\left[1 / m_{d}\right]$, where $d=\operatorname{deg} f(t)$,
(2) there exists a decomposition $f(t)=f_{1}(t) \cdots f_{n}(t)$ into non-unit factors such that each factor $f_{i}(t), i=1, \cdots, n$, satisfies (1.1) in Theorem 1.1, and $\boldsymbol{t}\left(f_{i}\right) \neq \boldsymbol{t}\left(f_{j}\right)$, $i \neq j$, and
(3) $\operatorname{deg} f_{i}(t)$ equals the number of rank one components isomorphic to $Z\left[1 / \mu\left(f_{i}\right)\right], i=1, \cdots, n$.

Proof. Let $A=B_{1} \oplus \cdots \oplus B_{n}$, where each $B_{i}(\neq 0), i=1, \cdots, n$, is completely decomposable and homogeneous, and $\boldsymbol{t}\left(B_{i}\right) \neq \boldsymbol{t}\left(B_{j}\right), i \neq j$. Then, by Proposition 2.5 , there exists a positive integer $m_{i}, i=1, \cdots, n$, such that $\boldsymbol{t}\left(B_{i}\right)=\boldsymbol{t}\left(Z\left[1 / m_{i}\right]\right) \leqq$ $\boldsymbol{t}(Z[1 / \mu(\Delta(A))])$. Therefore, by Remark 2.3 , we see that

$$
B_{i} \cong \cong_{z} \bigoplus_{j=1}^{d_{i}} Z\left[1 / m_{i}\right],
$$

where $d_{i}=r\left(B_{i}\right), i=1, \cdots, n$, and so

To complete the proof, we use induction on the number n of the components B_{i}. When $n=1$, the assertions follow from Proposition 3.7. Suppose that $n>1$. We may assume that $\boldsymbol{\tau}=\boldsymbol{t}\left(B_{1}\right)$ is maximal in $\left\{\boldsymbol{t}\left(B_{1}\right), \cdots, \boldsymbol{t}\left(B_{n}\right)\right\}$. Then, by Lemma 2.6, $B_{1}\left(=\left\{x \in A: \boldsymbol{t}_{A}(x) \geqq \boldsymbol{\tau}\right\}\right)$ is a Λ-submodule of A. Since B_{1} is
completely decomposable and homogeneous of type τ, it follows from Theorem 1.1 that $f_{1}(t)=\Delta\left(B_{1}\right)$ satisfies (1.1) and $\operatorname{deg} f_{1}(t)=r\left(B_{1}\right), \boldsymbol{t}\left(f_{1}\right)=\tau$. On the other hand, $A / B_{1}=B_{2} \oplus \cdots \oplus B_{n}$ is also a completely decomposable Λ-module. Thus, by the inductive hypothesis, we see that there exists a decomposition $\Delta\left(A / B_{1}\right)=$ $f_{2}(t) \cdots f_{n}(t)$ into non-unit factors such that
(2') each factor $f_{i}(t), i=2, \cdots, n$, satisfies (1.1), and $\boldsymbol{t}\left(f_{i}\right) \neq \boldsymbol{t}\left(f_{j}\right), i \neq j$,
(3') $\operatorname{deg} f_{i}(t)$ equals the number of rank one components isomorphic to $Z\left[1 / \mu\left(f_{i}\right)\right], i=2, \cdots, n$.
Therefore, since $\Delta(A)=\Delta\left(A / B_{1}\right) \cdot \Delta\left(B_{1}\right)=f_{1}(t) \cdots f_{n}(t)$, we establish the theorem. (Note that, since τ is maximal, A / B_{1} has no component of type τ, and so $\boldsymbol{t}\left(f_{i}\right) \neq \boldsymbol{\tau}=\boldsymbol{t}\left(f_{1}\right), i=2, \cdots, n$.)

Using Theorem 4.1, we can prove Theorem 1.3.
Proof of Theorem 1.3. The first assertion immediately follows from Theorem 4.1. To prove the second, we give the following example:

$$
A=\Lambda /\left(g_{1}(t)^{k_{1}}\right) \oplus \cdots \oplus \Lambda /\left(g_{r}(t)^{k_{r}}\right)
$$

where $g_{i}(t), i=1, \cdots, r$, are irreducible and $g_{1}(t)^{k_{1}} \cdots g_{r}(t)^{k} r=f(t), k_{i}>0$. Then, by Theorem 1.1, each component $\Lambda /\left(g_{i}(t)^{k i}\right), i=1, \cdots, r$, is completely decomposable. Thus, since $\Delta(A)=f(t)$, this completes the proof.

Remark 4.2. There exists a Λ-module whose polynomial satisfies (i) and (ii), but which is not completely decomposable (see the proof of Theorem 1.5 in Section 5).

COROLLARY 4.3. Let $\left\{\lambda_{i}(t)\right\}_{i=1}^{k}$ be a family of non-unit polynomials of Λ such that (1) $\lambda_{i+1} \mid \lambda_{i}, \lambda_{i}(1)= \pm 1$ and (2) each irreducible factor of λ_{i} satisfies (1.1). Then there exists a completely decomposable 1-module whose polynomial invariants are $\left\{\lambda_{i}(t)\right\}_{i=1}^{k}$.

Corollary 4.4. If Λ-modules A_{1} and A_{2} are completely decomposable and $\Delta\left(A_{1}\right)=\Delta\left(A_{2}\right)$, then $A_{1} \cong{ }_{z} A_{2}$.

Let $\left(g_{1}(t), \cdots, g_{n}(t)\right)$ denote the ideal of Λ generated by polynomials $g_{1}(t), \cdots, g_{n}(t) \in \Lambda$.

Remark 4.5. If $\left(g_{1}(t), \cdots, g_{n}(t)\right)=(1)$, then g.c.d. $\left(g_{1}(t), \cdots, g_{n}(t)\right)=1$ and $\left(g_{1}^{\prime}(t), \cdots, g_{n}^{\prime}(t)\right)=(1)$, where $g_{i}^{\prime}(t)$ is any factor of $g_{i}(t), i=1, \cdots n$. Moreover ($\left.g_{1}(t), \cdots, g_{n}(t)\right)=(1)$ if and only if there exist polynomials $h_{1}(t), \cdots, h_{n}(t)$ of Λ such that $h_{1}(t) g_{1}(t)+\cdots+h_{n}(t) g_{n}(t)=1$.

Though we do not know a necessary and sufficient condition for a Λ-module to be completely decomposable, we can give the following sufficient condition:

Theorem 4.6. Let A be a 1 -module with polynomial $f(t)$. Suppose that
(1) each irreducible factor of $f(t)$ satisfies (1.1) in Theorem 1.1, and
(2) if $h_{1}(t), h_{2}(t)$ are factors of $f(t)$ such that arbitrary irreducible factors $g_{1}(t), g_{2}(t)$ of $h_{1}(t), h_{2}(t)$ are of incomparable types, i.e.,

$$
\begin{equation*}
\boldsymbol{t}\left(g_{1}\right) \nsupseteq \boldsymbol{t}\left(g_{2}\right), \quad \boldsymbol{t}\left(g_{2}\right) \nsupseteq \boldsymbol{t}\left(g_{1}\right), \tag{4.1}
\end{equation*}
$$

then $\left(h_{1}(t), h_{2}(t)\right)=(1)$. Then A is completely decomposable of rank d, where $d=\operatorname{deg} f(t)$.

Before proving the theorem, we will prove some lemmas.
Lemma 4.7. Let A be a completely decomposable 1 -module and $\Delta(A)=$ $f_{1}(t) \cdots f_{m}(t)$ be a decomposition into non-unit factors such that each factor $f_{i}(t)$, $i=1, \cdots, m$, satisfies (1.1) in Theorem 1.1 and $\boldsymbol{t}\left(f_{i}\right) \neq \boldsymbol{t}\left(f_{j}\right), i \neq j$. If $h_{1}(t)=$ $f_{1}(t) \cdots f_{r}(t)$ and $h_{2}(t)=f_{r+1}(t) \cdots f_{m}(t)$ satisfy the condition

$$
\begin{equation*}
\boldsymbol{t}\left(f_{i}\right) \nsupseteq \boldsymbol{t}\left(f_{j}\right), \quad 0<i \leqq r<j \leqq m, \tag{4.2}
\end{equation*}
$$

then the pure A-submodule $\left\{h_{1} A\right\}_{*}$ is a direct summand of A as an abelian group. Moreover, if $A={ }_{Z} A_{1} \oplus \cdots \oplus A_{m}$, where $A_{i} \cong_{Z} \oplus_{j=1}^{d i} Z\left[1 / \mu\left(f_{i}\right)\right]$ and $d_{i}=\operatorname{deg} f_{i}(t)$, is a direct decomposition of A, then we have

$$
\left\{h_{1} A\right\}_{*}={ }_{z} A_{r+1} \oplus \cdots \oplus A_{m}
$$

and so $A={ }_{Z} A_{1} \oplus \cdots \oplus A_{r} \oplus\left\{h_{1} A\right\}_{*}$.
Proof. Let $B=A_{r+1} \oplus \cdots \oplus A_{m}, \quad A^{\prime}=A /\left\{h_{1} A\right\}_{*}$ and $\phi: A \rightarrow A^{\prime}$ be the canonical Λ-homomorphism of A onto A^{\prime}. Then we have $\Delta\left(A^{\prime}\right)=\Delta(A) / \Delta\left(\left\{h_{1} A\right\}_{*}\right)=$ $h_{1}(t)$. Therefore, by Proposition 2.2(E), we see that, for any non-zero element a_{j} of $A_{j}, j=r+1, \cdots, m$,

$$
\begin{equation*}
\boldsymbol{t}\left(f_{j}\right)=\boldsymbol{t}\left(A_{j}\right)=\boldsymbol{t}_{\boldsymbol{A}}\left(a_{j}\right) \leqq \boldsymbol{t}_{\boldsymbol{A}^{\prime}}\left(\boldsymbol{\phi}\left(a_{j}\right)\right) . \tag{4.3}
\end{equation*}
$$

If $\phi\left(a_{j}\right) \neq 0$, it follows from Theorem 3.4 that there exists a non-unit factor $h_{1}^{\prime}(t)$ of $h_{1}(t)$ such that $\boldsymbol{t}_{\boldsymbol{A}^{\prime}}\left(\boldsymbol{\phi}\left(a_{j}\right)\right)=\boldsymbol{t}\left(h_{1}^{\prime}\right)$. Therefore we have

$$
\boldsymbol{t}_{\boldsymbol{A}^{\prime}}\left(\boldsymbol{\phi}\left(a_{j}\right)\right)=\boldsymbol{t}\left(h_{1}^{\prime}\right) \leqq \boldsymbol{t}\left(f_{i}\right)
$$

for some factor $f_{i}(t), 0<i \leqq r$. Thus, from (4.3), we see that

$$
\boldsymbol{t}\left(f_{j}\right) \leqq \boldsymbol{t}\left(f_{i}\right) .
$$

However this contradicts (4.2). Hence we obtain $\boldsymbol{\phi}\left(a_{j}\right)=0$ and so $B \subset\left\{h_{1} A\right\}_{*}$. On the other hand, since B is pure in A, B is also pure in $\left\{h_{1} A\right\}_{*}$. Therefore, the quotient group $\left\{h_{1} A\right\}_{*} / B$ is Z-torsion free. Moreover, since $r\left(\left\{h_{1} A\right\}_{*}\right)=$ $\operatorname{deg} \Delta\left(\left\{h_{1} A\right\}_{*}\right)=\operatorname{deg} h_{2}(t)=\sum_{j=r+1}^{m} \operatorname{deg} f_{j}(t)=r(B)$, we have $r\left(\left\{h_{1} A\right\}_{*} / B\right)=r\left(\left\{h_{1} A\right\}_{*}\right)$ $-r(B)=0$, and so $\left\{h_{1} A\right\}_{*}=B$. This completes the proof.

Lemma 4.8. Let H and B be abelian groups of finite rank and $\psi: H \rightarrow B$ an epimorphism such that $\boldsymbol{t}_{H}(c) \geqq \boldsymbol{t}_{\boldsymbol{B}}(b)$ for any $c \in \operatorname{Ker} \psi$ and for any $b(\neq 0) \in B$. If B is completely decomposable and each component B_{i} of rank 1 is isomorphic to
$Z\left[1 / m_{i}\right]$, then H is isomorphic to $\operatorname{Ker} \psi \oplus B$.
Proof. Let $B=B_{1} \oplus \cdots \oplus B_{n}$, where $B_{i} \cong Z\left[1 / m_{i}\right]$. Let $b_{i}, i=1, \cdots, n$, be a non-zero element of B_{i} such that if the p-height $h_{p}\left(b_{i}\right)$ is finite, then $h_{p}\left(b_{i}\right)=0$. (If the p-height $h_{p}(u)$ of an element u of B_{i} is $k(\neq \infty)$, then there exists $v \in B_{i}$ such that $p^{k} v=u$, and the p-height $h_{p}(v)$ of v is zero. Hence such an element b_{i} of B_{i} exists.) Then, since $B_{i} \cong Z\left[1 / m_{i}\right]$, for each $x \in B_{i}$, there exist integers k and l such that

$$
\begin{equation*}
m_{i}^{k} x=l b_{i}, \quad k \geqq 0 . \tag{4.4}
\end{equation*}
$$

Let a_{i} and y be elements of H such that $\psi\left(a_{i}\right)=b_{i}, \psi(y)=x$, and let $c=l a_{i}-m_{i}^{k} y$. Then we have $c \in \operatorname{Ker} \phi$. Therefore, since $\boldsymbol{t}_{H}(c) \geqq \boldsymbol{t}_{\boldsymbol{B}}\left(b_{i}\right)=\boldsymbol{t}\left(Z\left[1 / m_{i}\right]\right)$, there exists $c^{\prime} \in H$ such that $m_{i}^{k} c^{\prime}=c$. Hence, we have

$$
m_{i}^{k} \bar{x}=l a_{i},
$$

where $\bar{x}=y+c^{\prime}$. Then \bar{x} is uniquely determined by x and does not depend on a choice of k and l in (4.4). (Note that H and B are Z-torsion free.) Therefore we can define a mapping β_{i} of B_{i} to H by $\beta_{i}(x)=\bar{x}$. We will show that β_{i} is a homomorphism. Let $m_{i}^{k_{1}} x_{1}=l_{1} b_{i}$ and $m_{i}^{k 2} x_{2}=l_{2} b_{i}\left(k_{1}, k_{2} \geqq 0\right)$. Then, since $m_{i}^{k_{1}+k_{2}}\left(x_{1}+x_{2}\right)=\left(m_{i}^{k_{2}} l_{1}+m_{i}^{k_{1}} l_{2}\right) b_{i}$, we see that

$$
\begin{aligned}
m_{i}^{k_{1}+k_{2}} \beta_{i}\left(x_{1}+x_{2}\right) & =m_{i}^{k_{1}+k_{2}}\left(\overline{\left.x_{1}+x_{2}\right)}=\left(m_{i}^{k_{2}^{2}} l_{1}+m_{i}^{k_{1}} l_{2}\right) a_{i}=m_{i}^{k_{2} l_{1} a_{i}+m_{i}^{k_{1}} l_{2} a_{i}}\right. \\
& =m_{i}^{k_{2}}\left(m_{i}^{k_{1}} \bar{x}_{1}\right)+m_{i}^{k_{1}}\left(m_{i}^{k_{2}} \bar{x}_{2}\right)=m_{i}^{k_{1}+k_{2}}\left(\bar{x}_{1}+\bar{x}_{2}\right) \\
& =m_{i}^{k_{1}+k_{2}}\left(\beta_{i}\left(x_{1}\right)+\beta_{i}\left(x_{2}\right)\right) .
\end{aligned}
$$

Therefore we have $\beta_{i}\left(x_{1}+x_{2}\right)=\beta_{i}\left(x_{1}\right)+\beta_{i}\left(x_{2}\right)$ and so β_{i} is a homomorphism, $i=1, \cdots, n$.

Since B is the direct sum of B_{1}, \cdots, B_{n}, there is a homomorphism β of B to H such that $\beta \mid B_{i}=\beta_{i}, i=1, \cdots, n$. It is easy to see that $\psi \beta=1_{B}$. Therefore β is one-one. Hence, by [3, vol. 1, Lemma 9.1], $H=\operatorname{Ker} \psi \oplus \beta(B) \cong_{z}$ $\operatorname{Ker} \psi \oplus B$.

Lemma 4.9. Let G, A and B be abelian groups of finite rank and $\phi: G \rightarrow A \oplus B$ an epimorphism such that $\boldsymbol{t}_{G}(c) \geqq \boldsymbol{t}_{B}(b)$ for any $c \in \operatorname{Ker} \phi$ and for any $b(\neq 0) \in B$. Suppose that B is completely decomposable and each component B_{i} of rank 1 is isomorphic to $Z\left[1 / m_{i}\right]$. If there exists a subgroup A^{\prime} of G such that the restriction $\phi \mid A^{\prime}: A^{\prime} \rightarrow A$ is an isomorphism of A^{\prime} onto A, then G is isomorphic to $A \oplus B \oplus \operatorname{Ker} \phi$.

Proof. Let $H=\phi^{-1}(B)$. Then we have

$$
\phi\left(A^{\prime} \cap H\right) \subset \phi\left(A^{\prime}\right) \cap \phi(H)=A \cap B=0
$$

Therefore $A^{\prime} \cap H \subset \operatorname{Ker} \phi \cap A^{\prime}$. Since $\phi \mid A^{\prime}$ is one-one, it follows that $A^{\prime} \cap H=0$. Thus, since $G=A^{\prime}+H$, we get

$$
\begin{equation*}
G=A^{\prime} \oplus H \tag{4.5}
\end{equation*}
$$

Let $\psi: H \rightarrow B$ be the epimorphism of H onto B defined by $\psi(x)=\phi(x), x \in H$. Then, from (4.5) and Proposition 2.2, we see that $\boldsymbol{t}_{\boldsymbol{H}}(x)=\boldsymbol{t}_{G}(x), x \in H$. Therefore, we have

$$
\boldsymbol{t}_{\boldsymbol{H}}(c)=\boldsymbol{t}_{G}(c) \geqq \boldsymbol{t}_{\boldsymbol{B}}(b)
$$

for any $c \in \operatorname{Ker} \psi(\subset \operatorname{Ker} \phi)$ and for any $b(\neq 0) \in B$. Thus, from Lemma 4.8, we obtain

$$
\begin{equation*}
H \cong \operatorname{Ker} \psi \oplus B \tag{4.6}
\end{equation*}
$$

On the other hand, since $\operatorname{Ker} \phi=\operatorname{Ker} \phi \cap H=\operatorname{Ker} \phi$, it follows from (4.5) and (4.6) that

$$
G \cong A^{\prime} \oplus(\operatorname{Ker} \phi \oplus B) \cong A \oplus B \oplus \operatorname{Ker} \phi
$$

Proof of Theorem 4.6. By (1), there exists a decomposition $f(t)=$ $f_{1}(t) \cdots f_{n}(t)$ into non-unit factors such that each factor $f_{i}(t), i=1, \cdots, n$, satisfies (1.1) and $\boldsymbol{t}\left(f_{i}\right) \neq \boldsymbol{t}\left(f_{j}\right), i \neq j$. We may asumme that $\boldsymbol{t}\left(f_{1}\right)$ is maximal in $\left\{\boldsymbol{t}\left(f_{1}\right), \cdots, \boldsymbol{t}\left(f_{n}\right)\right\}$. We use induction on n. If $n=1$, then the assertion follows from Theorem 1.1. Suppose that $n>1$. Without loss of generality, we may assume that, for some integer $r(1 \leqq r \leqq n)$

$$
\begin{equation*}
\boldsymbol{t}\left(f_{i}\right) \leqq \boldsymbol{t}\left(f_{1}\right), \quad \boldsymbol{t}\left(f_{j}\right) \nsubseteq \boldsymbol{t}\left(f_{1}\right) \quad 2 \leqq i \leqq r<j \leqq n . \tag{4.7}
\end{equation*}
$$

(Note that $\boldsymbol{t}\left(f_{j}\right) \nsupseteq \boldsymbol{t}\left(f_{1}\right)$ because $\boldsymbol{t}\left(f_{1}\right)$ is maximal.) Therefore we have

$$
\begin{equation*}
\boldsymbol{t}\left(f_{i}\right) \nsupseteq \boldsymbol{t}\left(f_{j}\right), \quad 2 \leqq i \leqq r<j \leqq n . \tag{4.8}
\end{equation*}
$$

Let $h_{1}(t)=f_{2}(t) \cdots f_{r}(t), h_{2}(t)=f_{r+1}(t) \cdots f_{n}(t), C=\left\{\left(f / f_{1}\right) A\right\}_{*}$ and $H=A / C$. Then C and H are Λ-modules with $\Delta(C)=f_{1}(t)$ and $\Delta(H)=\Delta(A) / \Delta(C)=h_{1}(t) h_{2}(t)$. Therefore, by the inductive hypothesis, C and H are completely decomposable. Furthermore, by (4.8) and Lemma 4.7, we have

$$
\begin{equation*}
H={ }_{z}\left\{h_{1} H\right\}_{*} \oplus B \tag{4.9}
\end{equation*}
$$

where $\left\{h_{1} H\right\}_{*}$ is a completely decomposable Λ-submodule of H with $\Delta\left(\left\{h_{1} H\right\}_{*}\right)=$ $h_{2}(t)$, and B is a completely decomposable subgroup of $H Z$-isomorphic to the quotient Λ-module $H /\left\{h_{1} H\right\}_{*}$ with $\Delta\left(H /\left\{h_{1} H\right\}_{*}\right)=h_{1}(t)$.

Let $\phi: A \rightarrow H$ be the canonical Λ-epimorphism of A onto H, and let $D=\phi^{-1}\left(\left\{h_{1} H\right\}_{*}\right)$. Then, since $A / D \cong{ }_{1} H /\left\{h_{1} H\right\}_{*} \cong_{z} B, D$ is a pure Λ-submodule of A with $\Delta(D)=\Delta(A) / \Delta\left(H /\left\{h_{1} H\right\}_{*}\right)=f / h_{1}=f_{1} h_{2}$. We will show that the restriction $\phi \mid f_{1} D: f_{1} D \rightarrow\left\{h_{1} H\right\}_{*}$ is an isomorphism. Let $x \in\left\{h_{1} H\right\}_{*}$. Then there is $y \in D$ such that $\phi(y)=x$. By (2) and (4.7), there exist polynomials F_{1} and F_{2} of Λ such that

$$
F_{1} f_{1}+F_{2} h_{2}=1
$$

Hence, we see that

$$
\phi\left(F_{1} f_{1} y\right)=\phi\left(\left(1-F_{2} h_{2}\right) y\right)=\phi(y)-F_{2} h_{2} \phi(y)=x-F_{2} h_{2} x .
$$

Thus, since $\Delta\left(\left\{h_{1} H\right\}_{*}\right)=h_{2}$, we have

$$
\phi\left(F_{1} f_{1} y\right)=x .
$$

Therefore the restriction $\phi \mid f_{1} D: f_{1} D \rightarrow\left\{h_{1} H\right\}_{*}$ is onto. Moreover, since $r\left(\operatorname{Ker} \phi \mid f_{1} D\right)=r\left(f_{1} D\right)-r\left(\left\{h_{1} H\right\}_{*}\right)=\operatorname{deg} \Delta\left(f_{1} D\right)-\operatorname{deg} \Delta\left(\left\{h_{1} H\right\}_{*}\right)=\operatorname{deg} h_{2}-\operatorname{deg} h_{2}=0$, it follows that $\phi \mid f_{1} D: f_{1} D \rightarrow\left\{h_{1} H\right\}_{*}$ is an isomorphism of $f_{1} D$ onto $\left\{h_{1} H\right\}_{*}$. (Note that $f_{1} D$ and $\left\{h_{1} H\right\}_{*}$ are Z-torsion free.)

By (4.9), B is Z-isomorphic to the completely decomposable Λ-module $\left\{H / h_{1} H\right\}_{*}$ with polynomial $h_{1}(t)=f_{2}(t) \cdots f_{r}(t)$. On the other hand, since $\Delta(\operatorname{Ker} \phi)=\Delta(A) / \Delta(H)=f_{1}(t)$, it follows from (4.7) and Theorem 3.6 that, for any $c \in \operatorname{Ker} \phi(=C)$ and any $b(\neq 0) \in B$,

$$
\boldsymbol{t}_{\boldsymbol{A}}(c) \geqq \boldsymbol{t}_{C}(c) \geqq \boldsymbol{t}_{\boldsymbol{B}}(b) .
$$

Hence, By Lemma 4.9, we see that

$$
A \cong_{z} f_{1} D \oplus B \oplus C .
$$

This completes the proof.
Corollary 4.10. Let A be a 1 -module. If each irreducible factor of $\Delta(A)$ satisfies (1.1) and any pair of irreducible factors of $\Delta(A)$ are of comparable types, then A is completely decomposable of rank d, where $d=\operatorname{deg} \Delta(A)$.

5. Completely decomposable cyclic modules.

In the previous section, we give a sufficient condition for a Λ-module to be completely decomposable. In this section, we prove that the condition is necessary in case of cyclic Λ-modules.

Theorem 5.1. A cyclic 1 -module A with polynomial $f(t)$ is completely decomposable of rank d if and only if $f(t)$ satisfies (1) and (2) in Theorem 4.6, where $d=\operatorname{deg} f(t)$.

Corollary 5.2. Let A be a cyclic Λ-module with $\Delta(A)=g_{1}(t)^{k_{1}} g_{2}(t)^{k_{2}}$, where $g_{i}(t)$ is irreducible and $k_{i}>0, i=1,2$. Then A is completely decomposable if and only if
(1) $g_{i}(t), i=1,2$, satisfies (1.1) in Theorem 1.1, and
(2) $\boldsymbol{t}\left(g_{1}\right)$ and $\boldsymbol{t}\left(g_{2}\right)$ are comparable, or $\left(g_{1}(t)^{k_{1}}, g_{2}(t)^{k_{2}}\right)=(1)$.

As a corollary to Theorems 4.6 and 5.1, we obtain the following:
Corollary 5.3. If a cyclic 1 -module A is completely decomposable, then so is every 1 -submodule of A.

To prove the theorem, we prove some lemmas.

Lemma 5.4. If a cyclic 1 -module A is decomposed into a direct sum of two cyclic 1 -submodules A_{1} and A_{2} as a 1 -module, then $\left(\Delta\left(A_{1}\right), \Delta\left(A_{2}\right)\right)=(1)$.

Proof. The lemma follows immediately from the fact that the second elementary ideal of A is (1).

Lemma 5.5. Let A be a cyclic 1 -module and $h(t)$ any factor of $\Delta(A)$. Then the Λ-submodule $h(t) A$ is pure in A, i.e., $\{h(t) A\}_{*}=h(t) A$.

Proof. Since A is cyclic, the quotient Λ-module $A / h(t) A$ is Λ-isomorphic to $\Lambda /(h(t))$, which is Z-torsion free. Therefore $h(t) A$ is pure.

Lemma 5.6. Let A be a completely decomposable cyclic 1 -module and $\Delta(A)=$ $f_{1}(t) \cdots f_{m}(t)$ be a decomposition of $\Delta(A)$ into non-unit factors such that each factor $f_{i}(t), i=1, \cdots, m$, satisfies (1.1) in Theorem 1.1, and $\boldsymbol{t}\left(f_{i}\right) \neq \boldsymbol{t}\left(f_{j}\right), i \neq j$. If $h_{1}(t)=$ $f_{1}(t) \cdots f_{r}(t)$ and $h_{2}(t)=f_{r+1}(t) \cdots f_{m}(t)$ satisfy the condition

$$
\begin{equation*}
\boldsymbol{t}\left(f_{i}\right) \nsupseteq \boldsymbol{t}\left(f_{j}\right), \quad \boldsymbol{t}\left(f_{i}\right) \nsupseteq \boldsymbol{t}\left(f_{j}\right), \quad 0<i \leqq r<j \leqq m, \tag{5.1}
\end{equation*}
$$

then $\left(h_{1}(t), h_{2}(t)\right)=(1)$.
Proof. Let $A=\bigoplus_{i=1}^{m} A_{i}$, where $A_{i} \cong_{z} \bigoplus_{j=1}^{d i} Z\left[1 / \mu\left(f_{i}\right)\right]$ and $d_{i}=\operatorname{deg} f_{i}(t), i=$ $1, \cdots, m$. Then, by Lemmas 4.7, 5.5 and (5.1), we have

$$
h_{2} A=A_{1} \oplus \cdots \oplus A_{r}, h_{1} A=A_{r+1} \oplus \cdots \oplus A_{m}, \quad \text { and } \quad A={ }_{z} h_{2} A \oplus h_{1} A .
$$

Therefore, since $h_{1} A$ and $h_{2} A$ are Λ-submodules, A is the direct sum of $h_{2} A$ and $h_{1} A$ as a Λ-module. Thus, by Lemma 5.4, we obtain $\left(h_{1}(t), h_{2}(t)\right)=(1)$.

Proof of Theorem 5.1. The necessity follows from Theorem 46. Therefore suppose that A is completely decomposable. By Theorem 1.3, the first assertion holds. Then we will prove the second. Let $f(t)=f_{1}(t) \cdots f_{n}(t)$ be a decomposition of $f(t)$ into non-unit factors such that each factor $f_{i}(t), i=1, \cdots, n$, satisfies (1.1) and $\boldsymbol{t}\left(f_{i}\right) \neq \boldsymbol{t}\left(f_{j}\right), i \neq j$. We use induction on the number n of the factors $f_{i}(t)$. If $n=1$, then the assertion is trivial. Suppose that $n>1$. Let $h_{1}(t)$ and $h_{2}(t)$ be factors of $f(t)$ satisfying the assumption in (2) of Theorem 4.6. Then we may suppose that $h_{1}(t)$ and $h_{2}(t)$ are factors of $\tilde{h}_{1}(t)=f_{1}(t) \cdots f_{r}(t)$ and $\tilde{h}_{2}(t)=f_{r+1}(t) \cdots f_{m}(t)$ for some integers $r, m(1 \leqq r<m \leqq n)$. Moreover, without loss of generality, we may assume that
(5.2) $\boldsymbol{t}\left(f_{i}\right) \nsupseteq \boldsymbol{t}\left(f_{j}\right), \quad \boldsymbol{t}\left(f_{i}\right) \nsupseteq \boldsymbol{t}\left(f_{j}\right), \quad 1 \leqq i \leqq r<j \leqq m, \quad$ and
(5.3) there is no factor $f_{k}(t), m<k \leqq n$, such that $\boldsymbol{t}\left(f_{i_{1}}\right) \leqq \boldsymbol{t}\left(f_{k}\right) \leqq \boldsymbol{t}\left(f_{i_{2}}\right)$ or

$$
\boldsymbol{t}\left(f_{j_{1}}\right) \leqq \boldsymbol{t}\left(f_{k}\right) \leqq \boldsymbol{t}\left(f_{j_{2}}\right), 1 \leqq i_{1}, i_{2} \leqq r<j_{1}, j_{2} \leqq m
$$

By Remark 4.5, it suffices to show that $\left(\tilde{h}_{1}(t), \tilde{h}_{2}(t)\right)=(1)$.
If there is a factor $f_{k}(t), m<k \leqq n$, such that $t\left(f_{k}\right)$ is maximal in $\left\{\boldsymbol{t}\left(f_{1}\right), \cdots, \boldsymbol{t}\left(f_{n}\right)\right\}$, then, by Lemmas 4.7 and 5.5, the Λ-submodule $\left(f / f_{k}\right) A$ is a
maximal direct summand of type $\boldsymbol{t}\left(f_{k}\right)$ of A. Therefore the quotient Λ-module $A /\left(f / f_{k}\right) A\left(\cong_{A} \Lambda /\left(f / f_{k}\right)\right)$ is also completely decomposable. Since $\Delta\left(A /\left(f / f_{k}\right) A\right)=$ $f / f_{k}=f_{1}(t) \cdots f_{k-1}(t) f_{k+1}(t) \cdots f_{n}(t)$, it follows from the inductive hypothesis that $\left(\tilde{h}_{1}(t), \tilde{h}_{2}(t)\right)=(1)$.

Next suppose that $\boldsymbol{t}\left(f_{k}(t)\right), m<k \leqq n$, are not maximal. We will show that

$$
\begin{equation*}
\boldsymbol{t}\left(f_{i}\right) \nsubseteq \boldsymbol{t}\left(f_{k}\right), \quad 1 \leqq i \leqq m<k \leqq n . \tag{5.4}
\end{equation*}
$$

Suppose that $\boldsymbol{t}\left(f_{i}\right) \leqq \boldsymbol{t}\left(f_{l}\right)$ for some integers i and $l, 1 \leqq i \leqq m<l \leqq n$. Then, since $\boldsymbol{t}\left(f_{k}\right), m<k \leqq n$, are not maximal, there is a factor $f_{j}(t)(1 \leqq j \leqq m)$ such that $\boldsymbol{t}\left(f_{i}\right) \leqq \boldsymbol{t}\left(f_{l}\right) \leqq \boldsymbol{t}\left(f_{j}\right)$. Hence, by (5.2), we see that

$$
\begin{equation*}
\text { either } \quad 1 \leqq i, j \leqq r \quad \text { or } \quad r<i, j \leqq m . \tag{5.5}
\end{equation*}
$$

However this contradicts (5.3). Thus we obtain (5.4). Therefore, by Lemmas 4.7 and 5.5 , the Λ-submodule ($f_{m+1} \cdots f_{n}$) A is a completely decomposable direct summand of A as an abelian group. Since $\left(f_{m+1} \cdots f_{n}\right) A \cong{ }_{\Lambda} \Lambda /\left(f_{1}(t) \cdots f_{m}(t)\right)=$ $\Lambda /\left(\tilde{h}_{1}(t) \tilde{h}_{2}(t)\right.$, it follows from (5.2) and Lemma 5.6 that $\left(\tilde{h}_{1}(t), \tilde{h}_{2}(t)\right)=(1)$. Hence (2) holds. The proof is completed.

Using Corollary 5.2, we can prove Theorem 1.5:
Proof of Theorem 1.5. To prove the theorem, we will give the following examples:

Let $g_{1}(t)=2 t-3, g_{2}(t)=8 t-7 \in \Lambda$ and B_{n}, C_{n} be Λ-modules with $\Delta\left(B_{n}\right)=g_{1}(t)^{n}$, $\Delta\left(C_{n}\right)=g_{2}(t)^{n}$, where $n>0$. Then, since $g_{1}(t)^{n}$ and $g_{2}(t)^{n}$ satisfy (1.1), it follows that

$$
B_{n} \cong_{Z} \bigoplus_{i=1}^{n} Z\left[1 / \mu\left(g_{1}\right)\right]=\bigoplus_{i=1}^{n} Z[1 / 6], \quad C_{n} \cong_{Z} \bigoplus_{i=1}^{n} Z\left[1 / \mu\left(g_{2}\right)\right]=\bigoplus_{i=1}^{n} Z[1 / 14] .
$$

Therefore, a Λ-module $A_{n}=B_{n} \oplus C_{n}$ is Z-isomorphic to

$$
\bigoplus_{i=1}^{n}(Z[1 / 6] \oplus Z[1 / 14])
$$

and A_{n} is completely decomposable. On the other hand, the model M_{n} of A_{n} is given by

$$
M_{n}=\Lambda /\left(g_{1}(t)^{n} g_{2}(t)^{n}\right) .
$$

To prove that A_{n} is not Z-isomorphic to M_{n}, it suffices to show that M_{n} is not completely decomposable. It is obvious that

$$
\boldsymbol{t}\left(g_{1}\right) \not \geq \boldsymbol{t}\left(g_{2}\right) \quad \text { and } \quad \boldsymbol{t}\left(g_{1}\right) \not \equiv \boldsymbol{t}\left(g_{2}\right) .
$$

Moreover, since $g_{1}(-1)^{n}=(-5)^{n}$ and $g_{2}(-1)^{n}=(-15)^{n}$, we see that

$$
\left(g_{1}(t)^{n}, g_{2}(t)^{n}\right) \neq(1)
$$

Therefore, from Corollary 5.2, the cyclic Λ-module M_{n} is not completely decomposable. This completes the proof.

Finally we raise the following more general question :
Question 5.7. For every Λ-module A, does there exist a Λ-module

$$
\Lambda /\left(f_{1}(t)\right) \oplus \cdots \oplus \Lambda /\left(f_{n}(t)\right),
$$

where $f_{1}(t) \cdots f_{n}(t)=\Delta(A)$, that is Z-isomorphic to A ?

References

[1] R. Baer, Abelian groups without elements of finite order, Duke Math. J., 3 (1937), 68-122.
[2] R. H. Crowell, The group $G^{\prime} / G^{\prime \prime}$ of a knot group G, Duke Math. J., 30 (1963), 349-354.
[3] L. Fuchs, Infinite Abelian Groups, vol. 1, 2, Pure Appl. Math., 36, Academic Press, 1970.
[4] J. C. Hausmann and M. Kervaire, Sous-groupes dérivés des groupes de noeuds, Enseign. Math., 24 (1978), 111-123.
[5] M. Kervaire. Les noeuds de dimensions supérieures, Bull. Soc. Math. France, 93 (1965), 225-271.
[6] J. Levine, Some results on higher dimensional knot groups, Lecture Notes in Math., 685, Springer, 1978, 243-273.
[7] J. Levine, Algebraic Structure of Knot Modules, Lecture Notes in Math., 772, Springer, 1980.
[8] E.S. Rapaport, On the commutator subgroup of a knot group, Ann. Math., 71 (1960), 157-162.
[9] D. W. Sumners, Polynomial invariants and the integral homology of coverings of knots and links, Invent. Math., 15 (1972), 78-90.

Katsuyuki Yoshikawa

Faculty of Science
Kwansei Gakuin University
Nishinomiya, Hyogo 662
Japan

