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1. Introduction.

Let A be an algebra over a commutative ring R and let x, .-, x,€A. We
say A is a polynomial algebra in x,, -+, x, if the set of all monomials x,*! -+ x,°",
a;=N, forms a free base for the R-module A. Note that the concept depends
on the total ordering on generators.

If L is a finite dimensional Lie algebra over a field 2 with a base z,, ---, zy,
the famous Poincaré-Birkhoff-Witt theorem tells that the universal enveloping
algebra U(L) is a polynomial algebra in z,, -+, zy.

Let (a@i;)i<i, j<»n be a symmetrizable generalized Cartan matrix. The corre-
sponding quantum enveloping algebra U was introduced by Drinfeld [2, 3] and
Jimbo [4]. We follow Lusztig’s formulation [6].

Take integers d;+#0 such that d;a;;=d;a;;. Let k be a field with g=&* such
that ¢*%1=1 (1<i<n). U is the k-algebra (associative with 1) with generators
e;, fi, By, k7 (1Z£71<n) and relations

(1.1) Rkt = btk =1, kb, = k;k;,
(1.2) Rie;k7t = qlitiiey, Rif jk3t = g %1%iif;,
kRi—k7?
(1.3) eif ;— 1 e :5”?&1'—_(]72@’
1zaifl—ay; y L.
(1.4 ST e —ey =0 G,
y=0 )] qui
1—ai- ]_-— i ) B . .
(1.5) 5 [ ¢ ] freuvf(—f =0 G#p).
y=0 )2} q2d1}

Here, we use the notations

"], =l g,

nle = [nl[m—nl,
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[(m] = (=t NP —t"2) - ™ —1t")
for integers m=n=0.
It is known that we have

U=U0+QU'QU-

where U+ (resp. U-) is the k-algebra with generators e; (resp. f;) (1=<i=n) and
relation (resp. [L5Y), and U°=k[ky, -+, ka, k1Y, -+, k3'] (cf. Yamane [9]).
It is natural to ask whether U+ and U~ are polynomial algebras over % in our
sense. Recently, Lusztig [10, 11] answers this question affirmatively in case
k is of characteristic zero and ¢ is trancsendental over the prime field @ (see
also Corollary 3.7a). We consider the problem over a general base field (or a
commutative ring). The case of type (A,)
2 -1
—1.
(a;;) = NI

! |
—1 2
is studied by some authors [7], [9]. Our main result (Sections 4, 7) tells that
U+ and U~ are polynomial algebras in cases of type (B,), (C.), and (D.), too:

2 -1
- - .. —1 .
',. .. - (Bn)y '-' ‘. (Dn).
P 1 2 0
—1 0 2

(The matrix of type (C,) is the transpose of the matrix of type (B,).)

Let us be more precise. We concentrate on U+ (not on the whole U).
The defining relation tells that U+ is defined over Z[¢¥, ¢, where M>2,
an integer such that

[l—a”

) ]qzdiEZ[qM,q“M] (i+], 0Sv<l—a,,).

(Forget the condition ¢*¢¢+1.) To avoid this redundancy, we make a substitu-
tion g—¢'¥, or d;—d;/M. In each case of our concern, we take

d1: :dn:]-/z (An)’ (Dn>’
di= - =d,.,=1/2, d,=1/4 (Bn),
dy==dy,1=12, d,=1 (Ca).

Let R be a commutative ring with g=R*. With these data, let A,, B,, Ca,
and 9, be the R-algebra with generators ¢; (1<:<n) and relation corre-
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sponding to (A,), (B,), (C,), and (D,), respectively. We need the g¢-bracket
product to describe the polynomial generators. When x, y are elements of an
R-algebra, we put

[x, yY] =xy—qyx, [x, y].=xy—¢yx.
Basic properties of the g-bracket product are developed in §2. For elements
X1, ***, Xm in an R-algebra, we define inductively

[JC1, ] Xm:] - [[xly Tt xm—l]: xm] .

Similarly, we define [x;, -, Xn]s.

THEOREM 1.6. a) If 1+q¢*€R*, A, is a polynomial algebra in
Lei, €iary -5 0] (Iisi=n).
b) If 1+¢* l4+q+q¢*=R*, B, is a polynomial algebra in
Les, €341, =, €5] (I1=igj=<n),
[les 5 enl, Lo, s enl]l  (I=i=j=n).
c) If 1+¢% 1+¢%, 14¢*+¢*<=R*, C, is a polynomial algebra in
en, [ei, iy, o, 0] (I=izj=n—1),
[Les, s en-id, enle (ISisn—1),
[Le:w, ) en-1l, €n, L€, =+, €na]]e (1=i=n—1),
[[Ces, o5 en-1l, €nle, [ejy o5 en-]] (I=isj=n—1).
d) If 14+¢*=R*, D, is a polynomial algebra in
Lei, eivs, oy €] (1=iZj=n), (@, ))#(n—1, n),
Lew =y enop, ea] (1=i=n—2),
[Lei, s enid, 25 5 Cacsy 1] (ISi<j=n—2),

More precisely, we should specify some total ordering on the generators.
(We cannot use arbitrary orderings (Proposition 5.6).) The description of the
relevant orderings, as well as the proof, will be given in Section 4 (Theorems
4.5 E.15 H.23) for a), b), d), and in Section 7 for c).

CONVENTIONS. We work over a commutative ring R. An algebra means
an associative R-algebra with 1, and & means Qr. We fix an element ¢ in R*,
the group of units in R. When we refer to lexicographical orderings (mostly
for indices (7j)), we always read from left to right.
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2, The g-bracket product.
DEFINITION 2.1. We put
[x, y]=xy—qyx, (x,9)=xy—yx, (%, y)e = xy—ayx

for a=R, and x, y in some algebra.

LEMMA 2.2 (generalized Jacobi identity). we have

(%, M)az+ay(x, 2)+ab(y, 2)ex = 2(p, 2)e+c(x, 20y +bcz(x, Y)a

for a, b, c=R, and x, vy, z in some algebra.

This is easily verified.

COROLLARY 2.3. Let a, b, c=R and let x, y, z be elements in some algebra.

a) If (x, 2),=0, then ((x, V)a, 2pe=(x, (¥, 2)c)as-

b) If (x, )a=0, then (x, (¥, 2)ac)as=a(y, (x, 2)p)e.

c) If (v, 2)=0, then (x, V)ac, 2)oe=c((X, 2)p, V)a-

This corollary will frequently be used throughout the paper.

DEFINITION 2.4. For x, y, z in some algebra, we put

[x, 3, 2] =[x, y], z].

It equals [x, [y, z1] if (x, 2)=0. When [x, y, x]=0, we write

x—y or Y Xx.

Throughout the rest of §2, we assume that
14+¢* € R*.

PROPOSITION 2.5. If y—x, y—z, and (x, 2)=0 in some algebra, then we have
a) (y[x 5 2)=0,
b) ([y, 2], [x, y1) = (g—q¢ ylx, 3, 2].

PROOF. Let U=[x, y], V=[y, z], W=[x, v, z]. Since [y, U]=0, we have
by (2.3b)
(J/; [U9 Z]) 224([], [y’ Z]); or (y; W>qz:Q(U, V)-

Similarly, by (2.3¢), we have

(W> y)q2 = Q(U, V) ’
since [V, y]=0. Hence 0=(y, W)qz—(W, y)q2=(l+q2)(y, W). Since 1+¢*<R~,
the assertion will follow from the above identities. Q.E.D.

PROPOSITION 2.6. Let ceR. If x—vy, x—z, and (y, z).=0 in some algebra,
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then we have _
(Lx, y1, [x, 2D)e = 0= (L, 1, Lz, x]). .
PrROOF. Let U=[x, y] and V=[x, z]. Since (y, z).=0, we have by (2.3a)

((y’ x>q—13 Z)qc - (y; [X, Z])q—lc) or

(U, 2)qct+q(3, V) -1, = 0. (2.6.1)
Since [U, x]=0, we have
(U, V) g, = U, [x, 21) 2, = q(x, (U, 2)qc) (2.6.2)
by (2.3b). Similarly,
U, Ve = (x, (3, V) -1) (2.6.3)

since (x, V), -1=0. It follows from (2.6.1)-(2.6.3) that
0=U, V), +qU, V), o, = A+¢TU, V..
Hence (U, V).=0 by assumption. To see ([y, x], [z, x]).=0, use replacement
qg—q". ' Q.E.D.
PROPOSITION 2.7. Let x, v, z be elements in some algebra. Assume (x, z)=0.
a) If x—y—z, then [x, y]—z and x—[y, z].
b) If x<y«z, then [x, y]J«z and x[yv, z].

PROOF. a) Since (x, z)=0, we have x—[v, z] obviously. Since [[y, z], ¥]
=0, it follows from [Proposition 2.6 that

0=1[[x, Ly, 211, [x, y11=[1x, 3], 2z, [x, ¥17,
i.e., [x, yJ—z. b) is similar. Q.E.D.

DEeFINITION 2.8. For x, y in some algebra, we write
xX=y or yEx

if [x, v, x] commutes with x, or equivalently if x—(x, y).

PROPOSITION 2.9. Let x, y, z be elements in some algebra. Assume x—y&z
and (x, z)=0.

a) We have [x, yl&z.

b) If y—z in addition, we have x&[y, z].

Proor. We put

w=1[z [x, 5], 2] =[x [z 9 2]1].

This commutes with z, since so do x and [z, y, z]. This yields a). If y—z in

addition, [z, y, z] commutes with y by [Proposition 2.5, hence it commutes with
[y, z], too. It follows that

Lw, Ly, 211 =[x, y, 2], [z, 3, 2]].
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This commutes with y, by Proposition 2.5 again. Thus
0=(y [w, [y, 2] =y wl, [y, 2].
The second equality follows from (2.3 a), since (y, [y, z])q_lzo. We have
Ly, wl =1Ly, [z [x, 9, 2111 =1y, 2], %, [, z1]

since [x, v, z] commutes with y. The fact that [y, w] commutes with [y, z]
will mean [y, z]=x, i.e. b). Q.E.D.

3. Algebraic independence of Lie elements.

We introduce the notion of quantized Lie elements in some loose sense. The
algebraic independence theorem (3.7) will play a key role.

Let g be the Kac-Moody algebra over C corresponding to the generalized
Cartan matrix (@;;)i<:.;:n. (We are interested in case when g is finite dimen-
sional simple.) It is the complex Lie algebra with generators &;, 7y, h; (1=<i<n)
and relations

(3.1 (hy, hy) =10,

(3.2 (hi, ;) = ay;e;, (hi, [5)= —au,f;,
(3.3) (@5, F3) = 0u;he,

(3.4) (ade;)~eu(e;) =0 (t#7),

(3.5) (ad f)'eti(f,) =0  (G#]).

It is known we have
g =n*DhPpu”
where §=Ch,P --- PCh, and n* is the Lie algebra with generators &; (resp. f;)
and relation (3.4) (resp. [3.5).
Recall that we take d;=(1/M)Z (1=<:<n) in such a way that d;a;;=d;a
and

[1—%] € Z[g,¢7']  (G#], 0=v=l—ayy.
Y q‘ldi

Let U} be the Z[g, ¢-']-algebra with generators e; (1=<7/<n) and relation [1.4).
We put

U* = RRs10.0-1207% .
It is easy to see

Ue(n) = CQRztq,¢-110%

if we view C as a Z[gq, ¢~ ']-algebra via g—1.

DEFINITION 3.6. Define .LCU7{ to be the smallest Z[g, ¢~']-submodule such
that
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i) e;elL (1AZi<n),
i) if x, yeL and f(g)&Z[q, ¢7'] with f(1)=1, then (x, y);pE-L.

The map e¢;~&; will induce a natural map
L —ut, xX—>Xx

which induces a surjective C-linear map C®zrq, 4-13-L—0".
We use the representation theory of Lusztig to deduce the following
theorem. Let Q(g) be the transcendental extension of @ in one variable.

THEOREM 3.7 (cf. [10], Proposition 1.10). Assume g is finite dimensional
semisimple. Let z,, -+, zy=L. If zy, -+, ZyEn™ are linearly independent over
C, then the monomials

Zlal“"ZNaN, aiEN

are linearly independent over Q(q) in Q(@Q)Rzcq.q-11U%.

ProOF. Construct the algebra U over Q(¢g). Take a simple highest weight
U-module M of highest weight (g“'™, ---, ¢*™"), m;EN. (To be precise, we
should construct U over Q(¢'/™), where d;=(1/M)Z.) There is a lattice M of
M, where A=Q[q, ¢~'], which is stable under the action of e, f;, k% [6, §4].
In particular, M is a Uj-module. Assume there is a non-trivial linear relation

20 Bagay(@z - zy®¥ =0

a;eN
over Q(¢) in U. We can assume that Za,..ay(q) are elements in A having no
non-trival common divisor. Thus gq,,..,a,(1)#0 for some N-tuple (a,, ---, ax).
This means

t= 3 Zapray(DZ% 2y %0
a;EN

in Ug(n*), by the P-B-W theorem. But ¢ acts as zero on CX_M_. The main
theorem [6, Theorem 4.12] tells that CRQ_ M, is a simple g-module with highest
weight (m,, -, m,). Since we can take (m,, ---, m,) arbitrarily, it follows that
t acts as zero on every finite dimensional g-module. This will yield =0, a
contradiction. Q.E.D.

COROLLARY 3.7a (cf. [10], Proposition 1.13 and [11], Proposition 4.2). As-
sume g is finite dimensional semisimple. Q(q)Rztq.q-13UT is a polynomial algebra
over Q(q). More precisely, if we take elements z,, -+, zy in L such that Z,, -+, Zy
form a base for w*, then Q(q)Razceq-1:U% is a polynomial algebra over Q(q) in
z1, =+, 2Zy. (In particular, the total ordering on generaiors can be chosen arbi-
trarily.)

PROOF. The dimension argument of [10], Proposition 1.13 works as it
stands. (See also [8], §3.2.) Q.E.D.
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COROLLARY 3.8. Assume g is finite dimensional semisimple. Leti R,CQ(q)
be a subring containing g, q~'. If there are elements z,, ---, zy =L such that

i) Zzy, -+, ZyEn’ are linearly independent over C,

ii) R0®z[q,q_ul7j s spanned over R, by all monomials z,*' -+ zx°¥, a;=N,

then R0®z[q,q_1]l7t is a polynomial algebra over R, in zy, -+, Zy.

PrROOF. The monomials are linearly independent over R,, since so are over

Qg). Q.E.D.

REMARK 3.9. With the assumption of 3.8, U* is a polynomial algebra in
zy, -, 2y if R is a commutative R,-algebra. When R,=Z[q, ¢, f(g)™'] for
some f(g)=0, this simply means f(g)=R”.

REMARK 3.10. One checks easily condition i) of 3.8 is fulfilled for the ele-
ments described in [Cheorem 1.6l In fact, they correspond bijectively with the
positive roots in each case.

4. The structure of algebras .4,, #,, and 9D,.

Let A,, $,, and 9, be the algebra with generators e¢; (1£7<n) and rela-

tion corresponding to (4,), (B,), and (D,) respectively. Recall that we
take

d;zzdn"—:l/Z (An)y (Dn>
di=-=d,.,=1/2, d,=1/4 (B
in [T.4]. We analyze the structure of these algebras to deduce [Theorem 1.6l

LEmMmA 4.1. For x,y, z in an algebra, we have

a) [x, 9, x]= —qéo [i]qx2‘“y<—x)”,

2 y(—x) .

ql/2

b) [x, (x,y), x]= —qZ[i}

This is easily verified. It follows that the relation can be represented
in the following diagrams:

(4.2 a> € = @y T e : @n (An,)’
(4.2 b) @ & eeve = éen ; €n (B,
Cn-1
) Z
4.2 ¢ 0L e =, £ (D,).
<
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In the above diagrams, we understand e¢; and ¢; commute with each other
unless there is any arrow between them.

Thus A,, B,, and 9, are the algebras with generators e¢; (1=</<n) and
relation (4.2 a), b), and c) respectively.

Recall that the iterated g-bracket product is defined inductively

[x1, o, Xm] = L[[X1, =) Xme1ds Xm]
for x; in some algebra. It is easy to see we have
[Cxy, ooy 2], DXy, o X lT =Ly, 0, X (1=2<im)
if x; commutes with x, for j—k>1.
DEFINITION 4.3. We put in the algebras JA,, $,, and 9,
ei; = Les, egr, v, 0] (IZi<j<n+1).

It follows that we have [e;;, ez 1=¢;r ((<j<k) in A,.

PROPOSITION 4.4. If 1+¢*=R*, the following identities hold in A,.
a) [eij, e;x]= e,

Leir, ei;]=1[ejr, 1] =0 (I=Zi<j<k=Zn+1).
b) (esj, exrr) = (eq, €;:) =0,

(ej1, esr) = (q—q Nege; (1=i<j<k<I=<n+1).

PROOF. We have e¢;;e,, (i<j<k) by iterated application of
2.7. This proves a). We have e¢;;2¢;z2er and (e;;, ¢;)=0 (<j<k<!l) in
addition. Since e;;=[e;;, ¢;x, ¢x:], b) follows from [Proposition 2.5 Q.E.D.

When X is a totally ordered set, an ordered monomial in X will mean a
product, or a word, x;x; - x,, Where x;€X and x, <2< - <x,, 720,

THEOREM 4.5. Let A, be the algebra with generators e;; (1=i<j=n-+1)
and relations a), b) of Proposition 4.4.

a) A, is a polynomial algebra in e;;, arranged in the lexicographical order-
ing.

b) There is a surjective algebra map A,—A,, e—e; 141

c) This is an isomorphism if 1+¢*ER”.

PROOF. D) is easy and left to the reader. c¢) follows from [Proposition 4.4l
a) Let (7)<<(kl) with i<j, k<I. By means of the defining relations a), b) of
4.4, we can write e;e;; as a linear combination of (at most) two ordered
monomials. For instance,

ejrei; =q e e0—q e (1<y<k),

ejie, = epeu+(q—qg NDeye;r ((<j<k<l).
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It follows easily that A, is spanned by all ordered monomials in ¢;;. By c¢)
and we see J, is a polynomial algebra in ¢;; under the assump-
tion 1+q¢*=R*, espzcially when R=Z[q, ¢!, (14+¢*)"']. However, the linear
indepedence over Z[gq, ¢7*, (14+¢*'] will imply the linear independence over
Zlq,q*]. Hence A, is always a polynomial algebra. Q.E.D.

REMARK 4.6. One can also use the diamond lemma of Bergman [1] instead
of Corollary 3.8. In general i, is a strict quotient of A, (cf. Yamane [9]).

Next we turn to 3,.

PROPOSITION 4.7. In the algebra B,, we put

Vi =L[es =, er] (=i ne) (I=i<n).

If 1+q¢*=R*, the following identities hold in B,.

a) o el=0, [, yirdl =3 (1=i<n).

b) (yi;,e) =0 if j<i—1 or i<j<n.

¢) [ y:] commutes with y; and y, (1=i<j<n).

) [ye, [ye, 9,31 =[0ve ¥ed, 951 [ys D 3:01 = [lyss 3:1s 2]

(I=i<j<k=n).

PrOOF. a) We have y,=[e;, y:;,] by definition, and e¢;—y;., by iterated

application of [Proposition 2.7, Hence [ y;, es1=[e:, ¥i+1, ¢;1=0. b) This is obvious

if ].<Z.—‘l. If Z<]< n, we have yi‘——[eij, €;, yj+1] with Cij€e; Vi1 and (eij, yj-H)
=0. Hence (y;, ¢;)=0 by [Proposition 2.5l c¢) We have

—
ei]'(\_: Vi

by iterated application of Proposition 2.9. Hence [ y;, v:1=[v;, ¢:;, ¥;] commutes
with y,, e;;, and in particular with y,=[e;;, y;J. d) We have
[ye, [ye, v,00 = [lewss ¥5d [ye, 9511

= [Leij, [Ye, ¥;11, ;1 (since y; commutes with [y, ;1)

= [[yew, Leij, v;1], ¥5] (since e;; commutes with y,)

=[Lye a1, ¥51.
Similarly we have

Cyi [ye, 1] =[[ys ¥id, 32l

by noting y;=[e;x, v.] and (e;x, y;)=0. Q.E.D.

DEFINITION 4.8. Let ®: be the algebra with generators y,, -+, y, and
relations ¢), d) of Proposition 4.7.
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There is an algebra map A,-,—B,, e;—e;, (1<i<n—1). If 1+¢°=R*, there
is also an algebra map B,—B,, y;—e; 41 (1=<i<n). The following lemma is
easily verified by using a), b) of [Proposition 4.7]

LEMMA 4.9. If 14+¢*=R*, the following R-linear maps are surjective:

“’Jzn‘1®$:‘ B, x®y —xy,
—@;®Jn—l_—9£8n: y@w-»y"f:
where X and ¥ denote the images in B, under the canonical homowmorphisms.
Since we know the structure of .i,_,, we are rednced to the study of 3;.

We use the induction on n. There is a canonical algebra map B; ,—3;,
Vi Vi1 (1<:i<n). Put

zZi=Yy;, zi=[Y, ¥l (1<iZn).

We claim the monomials z,*! --- z,,°", a;N, span the right $°_,-module &;.
The following identities follow from definition.

(4.10 a) ViZi = 2:Ve, Zi = [Y, 2] (1<iZn).
(4.10 b) Cyi zed =25 ¥, (20 (e 3,11 =Lz v,] A<j<R),
(4.10 ¢) z2; = zz, (1<ign).

We also have
(4.10 &) yaz;+qzey;+0%2: [y, ;] = [0 ¥120+qy2:+0%2,5, (1<7<E)
by the Jacobi identity (2.2) among v., v;, z, (a=b=c=q).

LEMMA 4.11. If 14-q¢+q¢*<=R*, the following identities hold in B; for
1<j<k<n.

a) vz =2 Y;+1—g)z;5 e —2:[ Ve, ¥;1),

b) vez;=2;9x+(1—q " Nzry;—2:LY e, ;1)

&) D, das = (@' =1+@z:lye ¥,]+A=q)z;y:+(1—gDzxy;,

d) zez; = gz;z0+(1—902:(q 23 [ Y0, Y5120 —¢7 22 D))

Proor. The three identities (4.10 b), d) can be thought of as a set of
linear equations among 6 variables

ViZrs YiZi (Ve ¥i12u Ze¥i ZiVe, 2L Ye Yil.
By “solving” these equations, we have
(A+g4+)(vze—22y;) = U=°Nz;y . —2:L Ve, ¥51) .

Division by 14+g-+¢® yields a). b) and c¢) follow from a) and (4.10 b). To get
d), apply [—, z;] to a). We have
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ZiZy = Zk2j+(1—(])<2j2k—21[[yk, yj], z1])

since z, commutes with z; and z,. We will get d) from this by using c).
Q.E.D.

LemMA 4.12. If 1+q+@* € R*, the monomials z,** -+~ z,"", a,=N, span the
right B _-module B,.

PROOF. For »=0, put

P, = 2 Zlal'“znanQZ—l-

ayt+tan=T

We claim

yPrC P (I<iZn), zPr CPry (1=i=n).
In fact, this is obvious if »=0, and follows from (4.10 a), c) and a),
b), d) if »=1. The claim follows easily by induction on 7 (and 7). It follows

that the sum >, P, is a left ideal of #; containing 1, whence the assertion.
Q.E.D.

DEFINITION 4.13. In $,, we put
zy=y; (1=i=n),
zi;=[y5 ¥d (A=i<j=n).

Lemma 4.12 means the (ordered) monomials in z,, 2z, -*-, 21, Span the right
B5_-module B (if 1-+g+¢*<=R*). Hence the following proposition follows by
induction.

PrROPOSITION 4.14. [f 14+qg+¢*=R”, the ordered monomials in z;; (1<i<j<n),
relative to the lexicographical ordering, span the R-module B;.

THEOREM 4.15. a) If 14+q¢+¢*SR*, B5 is a polynomial algebra in z;
(1<i<7<n), relative to the lexicographical ordering.

b) If 1+¢*, 1+q+¢*ER*, the R-linear maps of Lemma 4.9 are bijective,
yielding

An DBy = Bn = Br@An-y,

and B, is a polynomial algebra in e;; (1=i<j=n) and z, (1<k<ZIZ<n) if we
arrange them as follows: Let e;;<zu for all (if), (kl) (or reversely z, <e;,).
Give the lexicographical orderings on both subsets {e;;} and {z.;}.

PrROOF. b) The latter part follows from [Corollary 3.8 and [Proposition 4.14],
yielding the first part. a) This follows from b), similarly as a).
Q.E.D.

Finally, we analyze the structure of 9,. This goes parallel to the previous
case.
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DEFINITION 4.16. In 9,, we put
v =1ley, =, n] (=e) (I=isn—D),
P =Les, , Cn-s, €n] (1=i=n—-2),
Y2 = en.
PrROPOSITION 4.17. If 1+¢*&R*, we have
a) [yj®,e1=0, »® =le; yjfi (1=j=n-2),
b) (e;, ¥y§¥) =0 unless j=i, i+1 (1£i€n—2, 1£7/<n—-1),
o) [y, y®]=0 (1=i<j=n—-1), x=1, 2,
d) (P, ¥?)=0 (I=i=n—1),
e) [y, y@1=0[y®, »”] (A=i<jEn-1).
ProoF. Note that the diagram (4.2 ¢) contains two copies of diagram (4.2 a)
of length n—1. a)-c) follow from [Proposition 4.4 d) This is obvious if i=n—1.
If /<n-2, we have ¢; ,.1—e,-, and ¢; ,,—e,. Since (¢,.1, ¢,)=0, V=

[ei n-1, n-1], and y¥=[e; ,_,, ¢,], the claim will follow from |[Proposition 2.6
(¢=1). e) This follows from d), since y{*=[e¢;;, yi*]. Q.E.D.

DEFINITION 4.18. Let 9; bz the algebra with generators y{* (%=1, 2,
1</<n—1) and relations c¢), d), e) of 4.17.

It follows that there is a natural algebra map 9,—9, if 1+¢’=R*. On
the other hand, we have an algebra map A,..—9D,, ¢;—e¢; (1<i<n—2). Just
as Lemma 4.9, we have:

LEMMA 4.19. If 1+¢*=R*, these algebra maps induce surjective R-linear
maps

‘«472—2®‘@;L —> ‘@n ’ Q;\«@u‘qn—z > @n .
DEFINITION 4.20. In the algebra 9;, we put
Wi,io1 = Yi7, Wi = ¢ (1<i=n—-1),

wi =Ly, p21=1", ¥ (A=i<j=n—1).

PROPOSITION 4.21. Assume 1+¢*=R*.

a) The ordered monomials in w;; (—1<j<n—1), relative to an arbitrary
ordering, span a subalgebra S; of D3 (1<i<n—1).

b) We have

k S18s Sne1 = Spa1Sa—e - S1 = Dy

PROOF. There is a natural algebra map 9;_,—9D,, yi¥—y& (1£:1<n--2).
We claim a) for /=1, and that
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Dp = 81 Dy1 = DSy

where we identify 9;_, with its image in 9;. This claim follows from the
next lemma (the latter part from a)-c), and the first part from d), e)). The
assertion follows by induction. (In particular, some other (but not all) orderings
are admissible in b).)

LEMMA 4.22. Assume 1+¢*<R*, and let w;=w,; (0<i<n—1). The follow-
ing identities hold in D,
a) [yi® wol =13, wil=0, [we, 3:°]="[w, y"I=w; (=i=n-1D),
by [yi®, wl=0 (I<i=n—1, »=1,2),
¢ (P w)=0 O w)=@—¢NPw;, (1i<j=n-1),
d) (wy, wy) =0,
e) [w; wi] =0 unless (G)=01) (O=i<j<n—-1).
PrOOF. a) and d) follow from definition. b) [¥{?, w:]=[y{", we, ¥&]=0
by a). Similar for *=2. c¢) Let *=1. We have
(38 w) 2=, [wo, 72D e
= q(w,, [¥{”, 9571 (by (2.3 b), since [y{”, w,]=0)
= q(ws, [¥{”, ¥i°1)
= q([wo, ¥7, ¥5) (by (2.3 a), since [¥§°, wy]=0)
= q(ws, ¥;7).
(wy, ¥iP) gz = (Lwsy, Y107, ¥8) e
= ¢(Lwy, i1, ¥52)  (by (2.3 ¢), since [y;, ¥{P]=0)

= q(w;, J’;('l)) .
Hence
0=(i" w)o—(wy i) e = A+, wy).
The claim will follow from these identities, since 14+¢*<R*. The case *=2 is
similar. e) If 1<7j, then [wj;, w,]=[wi, ¥, w,]=0 by a) and d). Similarly,
Lw;, w,]=0. If 1<i<y, then [w;, w;]=[w;, we, y{¥]=0, since [w;, w,]=0 and
(w;, ¥{)=0. Q.E.D.

As a consequence of Proposition 4.21, we have the following result similarly
as [[heorem 4.15|

THEOREM 4.23. Assume 1+¢°=R*.
a) The subalgebra S;CD; is a polynomial algebra in w;; (—1<j=n—1),
relative to an arbitrary total ordering (1<i<n-—1).
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b) The multiplication of D3 induces an R-linear isomorphism

S1RSER) + @Snoy —> Di.
(Some other orderings are admissible.)
¢) The canonical algebra maps An-—D, and Dp—D, (see 4.19) induce R-
linear isomorphisms
An2QDs = Dy = D @An-2 .

d) D5 is a polynomial algebra in w;; (1=<i<n—1, i—1<7<n—1) if we ar-
range them so that i<k implies w;;<wp for any j, ! (or reversely).

e) D, is a polynomial algebra in e;; (1<:<j<n—1) and wy (1=Zk<n--1,
b—1<i<n—1) if we arange them as follows. Let e ;<wy; for all (if), (k) (or
reversely). Give the lexicographical orderings on both subsets {e;;} and {wgi}.
(Some other orderings are admissible.)

5. Some modification of 43,.

In this section, we give some comments on the algebra $#,. (The algebra
P:, admits a similar observation, too.) Recall (4.8) that ®: is the algebra with
generators y,, ---, ¥, and relations

(5.1) [y, ¥:] commutes with y; and y; (<j),
(5.2) ve, Lye 511 =[Lye, 31, ¥;] (<i<k),
(5.3) Lyi [ye, 211 =102 31, ¥e] G<i<k).
It would be natural to add to one more relation

6.4 (e, Loy 311 =L, ¥51, ¥4] <j<k).

PROPOSITION 5.5 (cf. Theorem 4.5). Let B be the algebra with generators
y: (1<7<n) and relations (5.1)-(5.4).

a) B85 is a polynomial algebra in z;; (1=i<j<n), arranged in the lexico-
graphical ordering (see Definition 4.13 for z;;).

b) If 14+g+¢*=R*, the projection B,—B; is an isomorphism.

PrROOF. b) We claim follows from and if 1+g+g*=R*.
We have
([ye 5], yi>q2'_(y_ky [yj’ yi])qz = q([Yr, ¥il, J’j)

by the Jacobi identity among y,, v;, ¥;. Hence

A+gHCye, 353 ¥i) o= ey [ ¥iD) b

=q[[ye ¥l ¥;1—q0Lys e 311 =qlye, [Ve, ¥;11—alLys ¥i1, Y&l
by [6.2), [5.3) The claim will follow since
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(1+gXu, v) o—qlv, u] = 1+g+¢")u, v]
for u, v in an algebra.

a) We claim the identities a)-d) of Lemma 4.11 hold in @;. The assertion
will follow from this (cf. the proofs of Theorems and 4.15). We have

(I+g+¢° )z =26y ) = 1=¢*Nz;9 e —2: [V, ;1)
(proof of 4.11). Similarly we have
A4+)ze—2z2Y5) = 1=¢*Nz;9 2 —2:[ Ve, 35D
from (5.2)-(5.4). This yields a) of 4.11. b)-d) will follow as before. Q.E.D.
In particular, #; is a polynomial algebra in

Y, [y27 yl]) [y3) 3’1]: Ve, [3’3, yZ]y Ys.

This ordering looks unnatural. One sees a “natural” ordering causes some
“unnatural” restrictions on gq.

PROPOSITION 5.6. 35 s a polynomial algebra in
Y, Yo Vs [ 3il e 3:0, [0 3]
if and only if 1—q+¢*, 1—¢*+¢°ER™.
Proor. “If” part will follow from the following explicit expressions. Let
zg; =Ly 1 (@G<J).
1) yyi=qyyitz; (<)),

.o l N
i) 2Ziy,= I’_:]_!_—qz(qyzzla“*‘(l_(])ylzzs—qa_(])ygzlz) ,
1
2931 = qu*_i_—qz(Qy1223+(1_Q)yazm-qu"i]>y2213>,
1 \
Z12Ys = fm(4y3212—Hl—(]/yzle‘Q(l—q)y1223),
i) 2121 = g2122 +M<yyz —qY1Y22157+G"Y1"224)
2 — e 3/
1321 12713 1—g+q° 13212 1Y 2213 1 Z23)
1—¢*+¢° (1—gq)*
293219 = (]Wzmzzs'”{‘ T_q_iq_—qz(y2J’3212—Qy22213+43y13’2223) )
725215 = G212 *—(l—iwzz —@*Y2YeZ13 G Y1V 5%25)
3213 1322371 1—¢+¢° 3212 2VaZ13 1Y 3%23) -

These identities hold “really” in 35 if 1—¢+¢? 1—¢*+¢*=R”. In general, by
multiplying by the denominators, we obtain identites which hold in &:. If it

is a polynomial algebra in y,, y2, Vi, 212, 215, 228, it follows that 1—g-+¢?, 1—¢*+¢°
should be units, since they divide g. Q.E.D.
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We end this section with the following proposition.

PROPOSITION 5.7. Let K=[v; [v:, ¥y 11=[1LYs Y21, ¥1). Then K is central
i B;, and we have

a) [[ye yod, [ye 311 = A—)y:kK,

D) [Lys ¥el, [¥e 2111 = (1—9)y.K,

¢) LLys 311, [ye, 3,1 = A=)y, K.

Proor. First we claim

a) L[y el [Ds .11 = [y, K] =LK, 3],

D) [[ye Yo, [y 3:01 = Ly K] =LK, 3.1,

¢) [[ys 211, [ ¥:11 =1y, K] =LK, 3.].
Take b)’ for instance. We have

(Lys el [22 2101 = [, [[De, 921, 9111 = [, K]
since [¥,, ¥.] commutes with y,. Similarly, it equals
[Lye [ye, 111, 921 = LK, 3.].

This yields b). Similarly, a) and c) are proved by using and [5.3). It
follows we have (1+¢)(y,;, K)=0 (=1, 2, 3). It is enough to show (y;, K)=0.
To do so, use the identity

([ys 21, y1)q2—(373; (Vs yx:l)qz = Q([yz’ Vil, ¥2)
(proof of 5.5 b)). Application of [y;, —] yields

(33, K)o = (L4+@LLYs, 221, [¥s, 2111 =(1—¢")y:K
where the second equality follows from a). It follows that (v, K)=0. Simi-
larly, application of [—, v,] vyields that (y,, K)=0. Finally apply [v,, —] to
get

A+gX(Ys ¥o), [Ye 11D e = ¢([¥s, [V 3117, 32)

= q([Ly2 Y11, Y3l ¥2) = q([Ye, 11, (Vs ¥2)).

Hence
0= (14+¢+¢[(Ys Vo) [Ve ¥:11 = A+g+¢*) K, ¥s)

since y, commutes with [y,, ¥,]. Since (14+¢)(y,, K)=0, it follows that (y,, K)
=0. Q.E.D.

6. Some calculations of the ¢-bracket product.

To deal with ¢,, the algebra U+ of type (C,), We require some more tech-
nical calculations of the ¢-bracket product. (This is the reason why we separate
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this case.) This section collects the necessary results to be used in the next
section.

For an integer 7, and elements x, y in an algebra, we put
[x, y1e = xy—q*yx.
Thus [,],=[,] and [, ]Jo=(,). We put

l:x: Y, Z]i = [[xy y:lu z]i
as in Definition 2.4

DEFINITION 6.1. x—i+y (or y<—ix, "73’) means [x, v, x];=0. x=i>y means
that [x, ¥, x]; commutes with x, or xi>(x, V).

PROPOSITION 6.2. Assume 1+¢*=R*. If x<—y«£z and (x, z)=0 in an alge-
bra, then we have x<[y, z1;.

PrOOF. We have zi>y and z—i>[x, y]. Since [y, [x, ¥1]=0, it follows from
[Proposition 2.6 that

0 = [[yy Z]ir [[x, y]r Z]z] - [[y) Z]i} X, [y: 2]1] .

Q.E.D.
In the rest of this section, assume that
1+¢?, 1+¢%, 14+¢*+¢* € R*,

and we are given elements e,, ¢,, ¢; in an algebra such that
2
el:ezieé‘y (e1, e3)=0.
2
(This is the defining relation for ¢, (7.1).) We have ¢,2[e,, ¢;], by

6.2. One of the main results, [Corollary 6.7] tells that
2
e, es] i €s.
2

The proof is not so easy as [Proposition 2.9. We put

yi=L[e, ez], Vo=,

zi=[Yi esle,  xi=[z;, 90 (=1, 2).
PROPOSITION 6.3.
a) [yyeal=I[lz,e]=0,
b) [ys yil=1[2:2]1=0,

C) X, commutes with y, and z,.

PROOF. a) and b) follow, since we have
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€12 Y, €1« 23,

with y,=le;, ¥.], z;=[e,, z,]. ¢) This is a special case of [Proposition 4.7 ¢).
Q.E.D.

We list up consequences of [Corollary 2.3 and [Proposition 6.3:

Since [V,, v,]=0, we have

Lye, [ys eadads = [y (e es1e], [0, 221, Y21 = (¥, [22, ¥210).
LLz0 Y21, ¥:ds = q([21, ¥1dss ), [[22 Yooy 102 = qll2e, 311, Y] .
Since [z,, z,]=0, we have
(22, [21, Y2115 = g(zy, [22, D2le),  [22, [20, ¥21sls = glzy, (225 ¥2121e,
(21, [y 2211 = ([21, Y1les 22) -
Since [z, ¢,]1=0, we have
21, Loy, ¥211: = gley, [21, ¥20).
Let us rewrite these identities by setting
u=1[z, ¥.].
LEMMA 6.4,
a) [ye 210 =40y1 2],
D) [e uls = q(y1, xo),
¢) [u, y:ds = q(xy, ¥5),
@) [xe ¥:de = qllzs 311, 521,
e) [zs uls=q(z,, xv),
) [zs [21, ¥21s1s = qlzy, %2l
g) [u, 2] =q(xy, 24),

h) x,=qgle;, uw).

In b), g) we are using a).

PROPOSITION 6.5.
a) [y ul=0,
b) [z, u] =0,
¢) [u, »:1=0,
d) [u,z] =0.

PROOF. a) Start with the Jacobi identity
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Les, [2, 321012 = [Ley, 25, ¥21s+qlzs, Loy, v211, i,
(6.5.1) Les, x2]e = [21, 2latqlze, i].
Apply [—, ¥.] to by noting
[Lew, xo1s, ¥21 = [ley, Y2, x21e = [¥1, X212 (since (xy, ¥5)=0),
[Lz1, ¥2]s 2] = [[21, Y21, ¥ols = [u, ¥o1s,
(9[22 311, ¥21 =[xz, ¥:1e (6.4 d).

We get
[yy, xolo= LU, Yols+L%s Vilo or

(6.5.2) [, ¥2]s = (141, x2).
It follows from b) and that
glu, yols = (1+¢°)Ly2 uls,  or  (14¢"+¢")[y, u] =0
yielding the assertion.
b) Apply [—, z,] to by noting
[[e:, X2l 22] = [Ley, 221, Xole (since x, commutes with z,,
= [z, %:1s = ¢ [2s, [21, 321515 (6.4 1),
[glzs, ¥1], 2] = [20, [¥2, 211s] (6.4 a).
We get
a7 'Lz, L2y, 921515 = [l2, 2ods, 2]+ (25, [02, 2105],  OF
(I4¢")0ze, [21, ¥2]e] = gLz, [V, 2:]5]
This means
0= [z, (14+¢"L21, ¥2lo—qlY2, 22751 = (1+¢*+¢")[2s, u]

yielding the assertion.
¢) Apply (—, ¥,) to (6.4 h) by noting

(21, ¥2) =¢ '[u, y:.1s (6.4 ¢),
(g(es, w), ¥y2) = [Ley, ¥o1, ul=1[y,, ul (by (2.3 ¢), since [y,, u]=0).
It follows that
Lu, i Js=¢qlyy, ul, ie, (1+¢"[u, y,1=0.
d) This is similar as ¢). Apply (—, z,) to (6.4 h), and use (6.4 g). Q.E.D.

COROLLARY 6.6. x, commutes with y, and z,.

Proor. This follows, since x,=¢(e;, u) (6.4 h), [u, y,]=[u, z,]=0, and
[¥1, ei]=[z,, e;]=0 (6.3 a). Q.E.D.

Since x,=[¥,, ¢;, ¥1]s, this means y,=[e,, 92]=2>eg. By looking at the above
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arguments carefully, one sees we have proved:

COROLLARY 6.7. Assume 1+¢%, 1+¢*+q¢*=R*. If elz’ez-—z—;eg and (e, e;)=0

. 2
in an algebra, then we have [ey, e, =e;.

7. The structure of the algebra C,.

We analyze the structure of ¢, to deduce [Theorem 1.6 c¢). Let (a,;) be the
Cartan matrix of type (C,). Since we take
di=--=d,,=1/2, d, =1,

it follows from that the defining realtion corresponding to (a;;)

is expressed in the diagram
2

(7.1) €1 """ e €Cp1 T Cn.

2

Here, as in (4.2), we understand e¢; and ¢; commute with each other unless
there is any arrow between them.

DEFINITION 7.2. Let C, be the algebra with generators ¢; (1</<n) and
relation (7.1).

NoTATION 7.3. In the algebra ¢,, we put
yi=Lley, =, ena] (=€),
zi = [V, enls, x:=1[25, ¥ile (1£i<n—1),
ug; =1z, ¥5] (IZi<yEn—-1).
(The convention 4.3 is valid in ¢,, too.)

PROPOSITION 7.4.  Assume 1+¢*, 1+¢', 14+¢*+¢‘€R*. The following
identities hold in C.,.

a) [y ed=[z,e]1=0, yi="le, yirid, z.=1le;, 200,] (1<iZn—2).
b) [yyende=zi,  [en, z].=0 (1=iZn-—1).

c) (e, y)=1(es, 2;)) =0 wunless j=1, i+1 (1<i<n—2, 1<;<n—1).

d) x; commutes with v; and z; (1<i<n—1).

e) [y, 3l=1[z21=0 (I=i<j=n-1).

) [y zli=qlyi, 2] (1<i<j<n-1).

g [y ul=1[z u;1=0 (1=<i<j<n—1).

h) Ly yil=[wiy, 21=0 (1<i<j<n—1).

D (ue, ¥5) = (Uir, 2) =0 (1£i<j<k=n—1).
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PROOF. a), ¢), e) follow from [Proposition 4.4, since we have two diagrams
of type (A,_.):

€ €n-2 Ya-1,

e, Cn-s Zn-1 (by [Proposition 6.2).

2
We have y,=e, by iterated application of yielding b), d). If
3

1</<j<n—1, we have
2
eij(———.yj;:__eny (eij; en) :0.
By noting y;=[e;;, ¥,1, one sees f), g), h) follow from [Lemma 6.4 a) and Prop-
osition 6.5. Finally, let 1=/<j<k<n—1. We have
[ejk: Usp] = Uij,
since [ejx, [2:, ¥el1=[2;, [€jz, ¥:]] (because e¢;, commutes with z;). We claim

’

a) [yjy Uip)e = q(us;, Vi)

b) [uie, ¥jle = q(uyy, Vi),

7

c) [z Uirle = q(Usj Z2),
d) Lugs, Zj]z = q(Usj, Zp).

It is easy to see i) is a consequence of a)’-d)’ (cf. the proof of Lemma 4.22 c)).
Now, a)-d)’ follow from the following identities which are consequences of

Corollary 2.3:
a)’ [Leje, Yrls uirle = q(lej, winl, ¥2) (since [y, u:x]=0),
b)" [Lzi, ¥+l 51 = q(L2zi, ¥;1, ¥&)  (since [¥4, y;1=0),
o) [Lejws 26l, uinles = q(leju, uirl, z2) (since [z, 1;:1=0),
& [lze, ¥ils 251 = (24, [V0, 25]5) (since [z4, 2;]-1=0),
) [z, v53, z0) = (24, [V, 2&])  (since [z;, z,]-,=0).
To deduce d)’, use d)/, d)¥, and f). Q.E.D.
The above proof shows e) and i) imply
(7.4 ) (Ver Uiz) = (q—q DUy, (Zr, uij) = (q—q Duirz;
(I=i<j<k=n-1).

DEFINITION 7.5. Let C; be the algebra with generators v;, z; (1<i<n—1)
and relations d)-i) of [Proposition 7.4

We interpret x;=[z;, ¥;1. and u;;=[z;, y;] (<) in the defining relations.
[Proposition 7.4 means there is a natural algebra map C,—¢, if 1+¢?%, 1+4*,
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1+¢*+¢*=R*. On the other hand, there are canonical algebra maps
L1471—2 —>Cn, e;—> ey (lélén—2),

Ay > Ch, e1—> €@y .

The following corollary follows easily from a)-c) of [Proposition 7.4l

COROLLARY 7.6. With the assumption of 7.4, the canonical algebra maps
induce a surjective R-linear map

An-QAKCr —> C .

(One can permute the three factors freely in the left side.)

LEMMA 7.7. In the algebra C;, we have

Cuie, Ues) = [y, usx] =0  (A=Si<j<b=n—1).

PROOF. [ui, zi, ¥;1=0 by h), 1), and [z, ¥, u;:]=0 by g), j) of Proposi-
tion 7.4. Q.E.D.

PROPOSITION 7.8. The ordered monomials in

Vi, Zi Xi Uy <jEn-—1),

relative to an arbitrary total ordering, span a subalgebra S; of C; (1=i<n-—1).

This follows easily from [Proposition 7.4 d), h), and Lemma 7.7

PrROPOSITION 7.9. We have
Crn =388z Spet = Spoy o 88y

(Some other orderings are admissible, too.)

PROOF. Similarly as [Proposition 4.21, consider the algebra map

Chrn—>Cop, Vi, Zi—> Vi1, Zi1 (1SiEn—2).
It is enough to show
Cr=38:Ch1=0C 15
Here, note that the subalgebra S, is generated by y, z;, u;; (1<j<n—1), and
Coi by vi, 2z, 1<k<n-—1). The first equality C,=S.C5_, follows from the
following identities : '

YeV1=qViVr,  Z1Z1 = 212k (74 e),

V21 = ¢ 21V —q s,

ZpY1=q 0122 H(q—q0 )21V e H 4 Uss (74 1),
Ui (R<),

YelUhyj = qUs;Ye (=), (7.4 g), 1), ),

uyye+H(@—qg Duwny;  (kR>])
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zpu,; = similar as above.

The second equality ¢,=¢C5_,S; follows similarly. Q.E.D.

Just as in §4, the above arguments give rise to the following structure
thoerem for C3 and C,, yielding ¢). Put

Ui -0 = Vi, Ui i-1 =25, Uy = X4 (1=:=n—1).

THEOREM 7.10. a) The subalgebra S,CC% is a polynomial algebra in u;
(i—2<7<n-1), relative to an arbitrary total ordering (1=i<n—1).
b) The multiplication of C3 induces an R-linear isomorphism

Si® - RSy —> Ch .

(Some other orderings are admissible, too.)

c) 3 is a polynomial algebra in u;; (1<i<n—1, {—2<j<n—1)if we arrange
them so that i<k implies u;;<<u,, for any j, ! (or reversely).

d) Assume 1+¢*, 14¢*, 1+¢*+q*<R*. The canonical algebra maps A, _o—Ca,
A —Cr, and Cp—C, (see 7.6) induce an R-linear isomorphism

An—sQARC, —> C .

(The three factors in the left side can be permuted arbitrarily.)

e) With the assumption of d), C, is a polynomial algebra in e;; (1<i<j<
n—1), e, up A=<k<n—1, b—2<I(<n-—1) if we arrange them as follows: Let
e ;<e,<up for any (77), (kl). Give the lexicographical orderings on both subsets
{ei;} and {un}.

Comparison of this theorem with [Theorem 4,15 plus [Proposition 5.5 suggests
that the algebra ¢; corresponds with 33 in fact. The algebra corresponding
to 35 is obtained by weakening condition (7.4 i) as follows:

(¥ey Uje) = (Uejy Vi), (Zi, Ujr) = (Ugj, Z8) (I=Zi<j<k=En—-1).

These identities hold in ¢;, and imply (7.4 i) if 14+¢*=R*, under the conditions
(7.4 e), 1).
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