Metric deformation of non-positively curved manifolds

By Koji FUJIWARA

(Received Sept. 29, 1988) (Revised Feb. 14, 1989)

§1. Introduction and statement of results.

There are strong relations between the topology and the curvature of a Riemannian manifold. For example, let M be a compact Riemannian manifold of negative curvature. Then every abelian subgroup of $\pi_1(M)$ must be cyclic, which is not necessarily true for a manifold of non-positive curvature.

A natural question is under what conditions a metric of non-positive curvature can be deformed to a metric of negative curvature. For this question, we have the following results.

THEOREM 1. Let (M, g) be a complete Riemannian manifold with $K_g \leq 0$, where K_g denotes the sectional curvature of (M, g), and p a point in M. Then there is a positive number R which is determined by the metric g and its derivatives around p, such that the following holds; suppose $K_g < 0$ on $M \setminus B_R(p)$, then there is a metric \bar{g} such that $K_{\bar{g}} < 0$ and $g = \bar{g}$ on $M \setminus B_R(p)$, where we put $B_R(p) = \{q \in M; d(p, q) < R\}$.

In general, the number R in Theorem 1 is much smaller than i(p), the injectivity radius at p, but for two dimensional manifolds, we have a better result.

THEOREM 2. Let (M, g) be a complete Riemannian manifold of two dimension with $K_g \leq 0$. Suppose there is a point p in M such that $K_g < 0$ on $M \setminus B_{i(p)}(p)$. Then there is a complete metric \overline{g} such that $K_{\overline{g}} < 0$ and $g = \overline{g}$ on $M \setminus B_{i(p)}(p)$.

As a corollary to Theorem 2, we have the following result for R^2 .

COROLLARY OF THEOREM 2. Let (\mathbf{R}^2, g) be a complete metric on \mathbf{R}^2 with $K_g \leq 0$. Suppose there is a compact set $A \subset \mathbf{R}^2$ with $K_g < 0$ on $\mathbf{R}^2 \setminus A$. Then there is a complete metric \bar{g} on \mathbf{R}^2 with $K_{\bar{g}} < 0$ and $g = \bar{g}$ on $\mathbf{R}^2 \setminus B$ for some compact set $B \subset \mathbf{R}^2$.

Generally, it is not possible to change a metric of non-positive curvature to a metric of negative curvature, because there is a topological obstruction between them as is stated before. But if the set of points at which K_g takes the zero is contained in a topologically trivial ball, then it is likely that we can

K. Fujiwara

deform the metric to a metric of negative curvature. This consideration leads us to the following conjecture.

CONJECTURE. Theorem 2 is true for the case of dimension $n \ge 3$.

We consider an application of Theorem 1. We recall the well known corollary to Margulis-Heinze theorem; let M be a complete Riemannian manifold of dimension n with $-1 \le K < 0$, then $vol(M) \ge V(n)$, where V(n) is a positive number depending only on the dimension n ([1]). Using Theorem 1, we can generalize the curvature condition as follows.

APPLICATION OF THEOREM 1. Let M be a complete Riemannian manifold of dimension n with $-1 \leq K < 0$ except for discrete points in M, then $vol(M) \geq V(n)$, where V(n) is the same number as in the above fact.

As for the non-negative manifolds, we have the same results as in the non-positive cases.

THEOREM 3. Let (M, g) be a complete Riemannian manifold with $K_g \ge 0$ and p a point in M. Then there is a positive number R which is determined by the metric g and its derivatives around p, such that the following holds; suppose $K_g > 0$ on $M \setminus B_R(p)$, then there is a metric \overline{g} such that $K_{\overline{g}} > 0$ and $g = \overline{g}$ on $M \setminus B_R(p)$.

THEOREM 4. Let (M, g) be a complete Riemannian manifold of two dimension with $K_g \ge 0$. Suppose there is a point p in M such that $K_g > 0$ on $M \setminus B_{i(p)}(p)$. Then there is a complete metric \overline{g} such that $K_{\overline{g}} > 0$ and $g = \overline{g}$ on $M \setminus B_{i(p)}(p)$.

About the deformation of a metric with non-negative curvature, there is a following conjecture. Let M be a compact manifold with non-negative curvature and suppose there is a point with positive curvature. Then M will admit a metric of positive curvature. Ehrlich has pointed out the difficulty of this problem in [3].

The author would like to thank Prof. Ochiai for his advice and his constant encouragement, and Dr. Fukaya for his extensive support.

§2. Proof of Theorem 1.

We need some definitions; We put $B_{\eta}(p) = \{q \in M; d(p, q) < \eta\}$ and $\psi(q) = (1/2)d_p^2(q)$ where $d_p(q) = d(p, q)$.

We change the metric

(2.1)
$$\bar{g}(q) = g(q)r(\psi(q)) \quad \text{for } q \in B_{\eta}(p),$$

214

where r is a certain function with $2 \ge r \ge 1$ and $|r'| \le 1$.

We denote as follows

(2.2)
$$\begin{cases} r(q) = r(\phi(q)) \\ r'(q) = r'(\phi(q)) \\ r''(q) = r''(\phi(q)). \end{cases}$$

For the curvature \overline{K} of \overline{g} , we show

LEMMA 1. Let $q \in B_{\eta}(p)$ and σ_q a 2-plane in $T_q M$. Then (2.3) $|K(\sigma) - \overline{K}(\sigma) - r'(q)| \leq C\{(1+|r'|)|r-1|+(|r'|+|r'|^2+|r''|)d_p^2(q)\}$ where C is a certain positive constant which does not depend on q.

PROOF. It is well known how the curvature tensor changes by the conformal change of the metric [2]. Let ξ , η be a orthonormal base of σ_q . Then we have

$$K(\sigma) - \overline{K}(\sigma) - r' = K(\sigma) \left(1 - \frac{1}{r}\right) + r' \left(\frac{1 - r^2}{2r^2}\right) (\text{Hess } \psi(\xi, \xi) + \text{Hess } \psi(\eta, \eta))$$

$$(2.4) \qquad \qquad + \frac{r'}{2} (\text{Hess } \psi(\xi, \xi) + \text{Hess } \psi(\eta, \eta) - 2) + \frac{r'^2}{4r^3} d_p^2$$

$$+ \left(\frac{r''}{2r^2} - \frac{3r'^2}{4r^3}\right) (\langle \xi, \text{ grad } \psi \rangle^2 + \langle \eta, \text{ grad } \psi \rangle^2).$$

Since grad $\psi = d_p \operatorname{grad} d_p$ and $|\operatorname{grad} d_p| = 1$, we have

(2.5)
$$\langle \xi, \operatorname{grad} \psi \rangle^2 + \langle \eta, \operatorname{grad} \psi \rangle^2 \leq d_p^2$$

We need the estimation of the Hessian [5];

If $-\delta^2 \leq K \leq \Delta^2$ and $d_p(q) \leq \pi/2\Delta$, then

$$\Delta d_p(q)\cot(\Delta d_p(q)) \leq \operatorname{Hess}\psi(q)(\xi, \xi) \leq \delta d_p(q)\coth(\delta d_p(q)).$$

Hence

(2.6)
$$|\operatorname{Hess} \psi(\xi, \, \xi) - 1| \leq C' d_p^2(q),$$

(2.7)
$$|\operatorname{Hess} \phi(\xi, \, \xi)| \leq C',$$

where C' is a constant depending only on $g(B_p(\pi/2\Delta))$. From (2.4)-(2.7) and $r \ge 1$, $|r'| \le 1$, we have

$$|K(\sigma) - \overline{K}(\sigma) - r'| \leq C\{(1+|r'|)|r-1| + (|r'|+|r'|^2 + |r''|)d_{p}^{2}(q)\}.$$

Lemma 1 is shown.

Now we construct a suitable function r(t) to have $\overline{K} < 0$. Let f(t) be a function with following properties,

K. FUJIWARA

(2.8)
$$f(0) = 0$$

(2.9)
$$f(t) = 0$$
 (1<*t*)

$$(2.10) 0 \le f(t) \le 1$$

(2.10)
$$0 \leq f(t) \leq 1$$

(2.11)
$$f'(t) > 0 \quad \left(0 \leq t \leq \frac{1}{2}\right)$$

$$|f'(t)| \leq 1$$

$$(2.13) |f''(t)| \le 1$$

Putting $r^{(\alpha\beta)}(t) = \beta f(t/\alpha) + 1$ for $0 < \alpha < 1$, $0 < \beta < \alpha$, we define a metric $g^{(\alpha\beta)}$

(2.14)
$$g^{(\alpha\beta)}(q) = g(q)r^{(\alpha\beta)}(q).$$

We now want to explain the method to make the curvature $K^{(\alpha\beta)}$ of $g^{(\alpha\beta)}$ negative. As the first step, we make $K^{(\alpha\beta)} < 0$ near p; If we take α smaller, $K^{(\alpha\beta)}$ decreases at p. Therefore, taking α sufficiently small we have $K^{(\alpha\beta)} < 0$ in a small neighborhood N of p for any β . But at the same time, $K^{(\alpha\beta)}$ increases and may become positive in $M \ N$. Thus, as the second step we need to reduce the increase of $K^{(\alpha\beta)}$ in $M \setminus N$. We can make $|K - K^{(\alpha\beta)}|$ arbitrary small if we take β small. Therefore, we obtain $K^{(\alpha\beta)} < 0$ on M by taking β small, if we assume K < 0 in $M \setminus N$ (see the assumption in the Lemma 2 below). In fact, we have

LEMMA 2. If we assume on the curvature K_g the condition (2.16) below, then there are α_1 and β_1 such that $K^{(\alpha_1\beta_1)} < 0$.

PROOF. We denote $C\{(1+|r'|)|r-1|+(|r'|+|r'|^2+|r''|)d_p^2(q)\}$ as C(r(q))for simplicity. We devide the cases for q as follows;

 $\langle \text{Case } 1 \rangle : \quad 0 \leq \phi(q) \leq \frac{\alpha^2}{2}$ $\langle \text{Case } 2 \rangle: \quad \frac{\alpha^2}{2} \leq \phi(q) \leq \alpha$ $\langle \text{Case } 3 \rangle$: $\alpha \leq \psi(q)$.

 $\langle Case 1 \rangle$: In this case, we have

PROPOSITION 1. For a point q of the Case 1,

(2.15)
$$\frac{|C(r^{(\alpha\beta)}(q))|}{|r^{(\alpha\beta)'}(q)|} \longrightarrow 0 \qquad (\alpha \longrightarrow 0).$$

PROOF OF PROPOSITION 1. From f'(t) > 0 $(0 \le t \le 1/2)$, there is a constant C' such that

216

$$\left|\frac{f(\psi(q)/\alpha)}{f'(\psi(q)/\alpha)}\right| \leq C', \qquad \left|\frac{f''(\psi(q)/\alpha)}{f'(\psi(q)/\alpha)}\right| \leq C', \qquad \left|\frac{r^{(\alpha\beta)}-1}{r^{(\alpha\beta)\prime\prime}}\right| \leq C'\alpha$$
$$\left|\frac{r^{(\alpha\beta)\prime\prime}}{r^{(\alpha\beta)\prime\prime}}\right| \leq \frac{C'}{\alpha}.$$

and

$$\left|\frac{r^{(\alpha\beta)''}}{r^{(\alpha\beta)'}}\right| \leq \frac{C'}{\alpha}.$$

Using $|r^{(\alpha\beta)'}| < \beta/\alpha < 1$ and $d_p(q) \leq \alpha$ we have this proposition.

The estimates (2.3) and (2.15) imply there is a positive constant α_0 such that $K^{(\alpha\beta)}(\sigma_q) < 0$ for α with $0 < \alpha \leq \alpha_0$ and q with $\psi(q) \leq \alpha^2/2$. Therefore the case 1 is shown for α with $0 < \alpha \leq \alpha_0$.

Now we assume the following condition on the metric g;

(2.16) There is a positive constant α_1 with $0 < \alpha_1 \leq \alpha_0$ such that $K(\sigma_q) < 0$ for every 2-plane in T_qM with $\alpha_1 \leq d_p(q)$.

 $\langle Case 2 \rangle$: At first we need the following proposition.

PROPOSITION 2. If $d_p(q)$ is bounded, then for any fixed α ,

 $|C(r^{(\alpha\beta)}(q))| \longrightarrow 0 \qquad (\beta \longrightarrow 0).$ (2.17)

The proof is easy and we omit it.

From (2.3), (2.16), (2.17), we have $K^{(\alpha_1\beta_1)}(\sigma_q) < 0$ for q with $\alpha_1^2/2 \leq \psi(q) \leq \alpha_1$ for sufficiently small β_1 . Therefore the case 2 is shown.

 $\langle Case 3 \rangle$: For a point q of this case, $g^{(\alpha_1\beta_1)}(q) = g(q)$. Therefore $K^{(\alpha_1\beta_1)}(\sigma_q) < 0$ follows directly from (2.16). Thus the case 3 is shown for α_1 and β_1 .

From the above argument for these three cases, there are positive numbers α_1, β_1 such that $K^{(\alpha_1\beta_1)} < 0$, if we assume the condition (2.16) on the metric g. Hence Lemma 2 is shown.

PROOF OF THEOREM 1. We put $R = \alpha_1$. Then $K_g(\sigma_q) < 0$ on $M \setminus B_R(p)$ imply the condition (2.16). Therefore, using the Lemma 2, we have the Theorem 1.

§3. The proof of Theorem 2.

We identify $B_{i(p)}(p)$ and $B_{i(p)}(0) \subset T_p M$ by \exp_p and introduce the polar coordinate (r, θ) on $B_{i(p)}(p)$. Then the metric g can be written as follows on $B_{i(p)}(p).$

(3.1)
$$ds^2 = dr^2 + h^2(r, \theta)d\theta^2.$$

In order to obtain a metric with K < 0, we change the given metric to a new metric \bar{g} as follows,

(3.2)
$$d\bar{s}^2 = f^2(r)dr^2 + h^2(r,\theta)d\theta^2,$$

K. Fujiwara

where $h(r, \theta)$ is the same as in (3.1), f(r) is some positive function with f(0)=1 and $f^{(n)}(0)=0$. We shall choose f(r) such that $d\bar{s}^2$ has negative sectional curvature. We denote f'=df/dr, $h'=\partial h/\partial r$, $h''=\partial^2 h/\partial r^2$. Then we have $\bar{R}_{\theta r\theta}^r=h(f'h'-fh'')/f^3$,

(3.3)
$$K_{\bar{g}} = \frac{\bar{R}_{\theta r \theta}}{h^2} = \frac{f'h' - fh''}{f^3h} \quad \text{and} \quad$$

$$(3.4) K_g = -\frac{h''}{h}.$$

Thus, the assumption $K_g \leq 0$ implies

(3.5)
$$h''(r, \theta) \ge 0 \quad \text{for} \quad 0 \le r \le i(p).$$

Further, we have

$$(3.6) h'(r, \theta) > 0 for 0 < r \leq i(p).$$

Since the set $\{q \in M; K_g(q)=0\}$ is closed, there is a positive number ε such that $K_g(q) < 0$ for $M \setminus B_{i(p)-\varepsilon}$. Then we have the following lemma.

LEMMA 3. There are functions $\{f_i(r)\}, (i=1, 2, \dots)$ with the following properties;

(3.7)
$$f_i(r) = 1 \quad \text{for} \quad 0 \leq r \leq \frac{1}{i}, \quad i(p) - \varepsilon \leq r \leq i(p).$$

(3.8)
$$\frac{f'_i(r)}{f_i(r)} < \frac{h''(r, \theta)}{h'(r, \theta)} \quad \text{for } \frac{1}{i} < r \le i(p), \quad 0 \le \theta \le 2\pi.$$

$$(3.9) |f_i(r)-1|, |f'_i(r)-0|, |f''_i(r)-0|, |f'''_i(r)-0| \le \frac{1}{i}, \text{ for } 0 \le r \le i(p).$$

PROOF OF LEMMA 3. From (3.4) and (3.6), we have

(3.10)
$$\frac{h''(r, \theta)}{h'(r, \theta)} \ge 0 \quad \text{for} \quad 0 \le r \le i(p),$$

(3.11)
$$\frac{h''(r, \theta)}{h'(r, \theta)} > 0 \quad \text{for} \quad i(p) - \varepsilon \leq r \leq i(p).$$

Then from (3.10), (3.11), it is easy to show that there are functions $f_i(r)$ with the properties (3.7), (3.8) and (3.9).

Using functions $f_i(r)$ in Lemma 3, we define metrics g_i as follows,

$$ds_i^2 = f_i^2(r)dr^2 + h^2(r, \theta)d\theta^2 \quad \text{on} \quad B_{i(p)}(p),$$

and

 $g_i = g$ on $M \setminus B_{i(p)}(p)$.

Then (3.7) and (3.8) imply

(3.12) $K_{g_i} < 0$ for $M \setminus B_{1/i}(p)$.

Now we denote the constant R in the Theorem 1 for these metrics $\{g_i\}$ by $\{R_i\}$. Looking over the proof of Theorem 1 carefully, it is known from (3.9) that there is a positive number δ such that $R_i > \delta$ for all *i*. Then taking *i* large, the condition (3.12) implies the assumption in Theorem 1 and hence we obtain a metric \overline{g} with $K_{\overline{g}} < 0$ on M.

PROOF OF COROLLARY. It is easy to show from Theorem 2.

PROOF OF APPLICATION. In the proof of Theorem 1, it follows from the definition of $r^{(\alpha\beta)}(t)$ that $r^{(\alpha\beta)}(t) \rightarrow 1$ $(\beta \rightarrow 0)$, so that $g^{(\alpha\beta)}(q) \rightarrow g(q)$ $(\beta \rightarrow 0)$, thus $\operatorname{vol}_g(\alpha\beta)(M) \rightarrow \operatorname{vol}_g(M)$ $(\beta \rightarrow 0)$. From Theorem 1, we may assume $K_g(\alpha\beta) < 0$ and then it follows that $\operatorname{vol}_g(\alpha\beta)(M) \ge V(n)$ where V(n) is some constant depending on the dimension n of M. Hence, we have $\operatorname{vol}_g(M) \ge V(n)$.

PROOF OF THEOREMS 3 AND 4. We can show them in the same ways as to prove Theorems 1 and 2.

References

- [1] W. Ballmann, M. Gromov and V. Schroeder, Manifolds of nonpositive curvature, Birkhäuser, 1985.
- [2] A. Basse, Einstein manifolds, Springer, 1987.
- [3] P. E. Ehrlich, Local convex deformations and sectional curvature, Arch. Math., 26 (1975), 432-435.
- [4] L. Z. Gao, The construction of negatively Ricci curved manifold, Math. Ann., 271 (1985), 185-208.
- [5] J. Jost, Nonlinear methods in Riemannian and Kählerian geometry, Birkhäuser, 1988, p. 46.

Koji Fujiwara

Department of Mathematics University of Tokyo Hongo, Bunkyo-ku, Tokyo 113 Japan