Metric deformation of non-positively curved manifolds

By Koji FuJIwara
(Received Sept. 29, 1988)
(Revised Feb. 14, 1989)

§ 1. Introduction and statement of results.

There are strong relations between the topology and the curvature of a Riemannian manifold. For example, let M be a compact Riemannian manifold of negative curvature. Then every abelian subgroup of $\pi_{1}(M)$ must be cyclic, which is not necessarily true for a manifold of non-positive curvature.

A natural question is under what conditions a metric of non-positive curvature can be deformed to a metric of negative curvature. For this question, we have the following results.

Theorem 1. Let (M, g) be a complete Riemannian manifold with $K_{g} \leqq 0$, where K_{g} denotes the sectional curvature of (M, g), and p a point in M. Then there is a positive number R which is determined by the metric g and its derivatives around p, such that the following holds; suppose $K_{g}<0$ on $M \backslash B_{R}(p)$, then there is a metric \bar{g} such that $K_{\bar{g}}<0$ and $g=\bar{g}$ on $M \backslash B_{R}(p)$, where we put $B_{R}(p)=\{q \in M ; d(p, q)<R\}$.

In general, the number R in Theorem 1 is much smaller than $i(p)$, the injectivity radius at p, but for two dimensional manifolds, we have a better result.

Theorem 2. Let (M, g) be a complete Riemannian manifold of two dimension with $K_{g} \leqq 0$. Suppose there is a point p in M such that $K_{g}<0$ on $M \backslash B_{i(p)}(p)$. Then there is a complete metric \bar{g} such that $K_{\bar{g}}<0$ and $g=\bar{g}$ on $M \backslash B_{i(p)}(p)$.

As a corollary to Theorem 2, we have the following result for \boldsymbol{R}^{2}.
Corollary of Theorem 2. Let $\left(\boldsymbol{R}^{2}, g\right)$ be a complete metric on \boldsymbol{R}^{2} with $K_{g} \leqq 0$. Suppose there is a compact set $A \subset \boldsymbol{R}^{2}$ with $K_{g}<0$ on $\boldsymbol{R}^{2} \backslash A$. Then there is a complete metric \bar{g} on \boldsymbol{R}^{2} with $K_{\bar{g}}<0$ and $g=\bar{g}$ on $\boldsymbol{R}^{2} \backslash B$ for some compact set $B \subset \boldsymbol{R}^{2}$.

Generally, it is not possible to change a metric of non-positive curvature to a metric of negative curvature, because there is a topological obstruction between them as is stated before. But if the set of points at which K_{g} takes the zero is contained in a topologically trivial ball, then it is likely that we can
deform the metric to a metric of negative curvature. This consideration leads us to the following conjecture.

Conjecture. Theorem 2 is true for the case of dimension $n \geqq 3$.
We consider an application of Theorem 1. We recall the well known corollary to Margulis-Heinze theorem; let M be a complete Riemannian manifold of dimension n with $-1 \leqq K<0$, then $\operatorname{vol}(M) \geqq V(n)$, where $V(n)$ is a positive number depending only on the dimension n ([1]). Using Theorem 1, we can generalize the curvature condition as follows.

Application of Theorem 1. Let M be a complete Riemannian manifold of dimension n with $-1 \leqq K<0$ except for discrete points in M, then $\operatorname{vol}(M) \geqq V(n)$, where $V(n)$ is the same number as in the above fact.

As for the non-negative manifolds, we have the same results as in the nonpositive cases.

Theorem 3. Let (M, g) be a complete Riemannian manifold with $K_{g} \geqq 0$ and p a point in M. Then there is a positive number R which is determined by the metric g and its derivatives around p, such that the following holds; suppose $K_{g}>0$ on $M \backslash B_{R}(p)$, then there is a metric \bar{g} such that $K_{\bar{g}}>0$ and $g=\bar{g}$ on $M \backslash B_{R}(p)$.

Theorem 4. Let (M, g) be a complete Riemannian manifold of two dimension with $K_{g} \geqq 0$. Suppose there is a point p in M such that $K_{g}>0$ on $M \backslash B_{i(p)}(p)$. Then there is a complete metric \bar{g} such that $K_{\bar{g}}>0$ and $g=\bar{g}$ on $M \backslash B_{i(p)}(p)$.

About the deformation of a metric with non-negative curvature, there is a following conjecture. Let M be a compact manifold with non-negative curvature and suppose there is a point with positive curvature. Then M will admit a metric of positive curvature. Ehrlich has pointed out the difficulty of this problem in [3].

The author would like to thank Prof. Ochiai for his advice and his constant encouragement, and Dr. Fukaya for his extensive support.

§ 2. Proof of Theorem 1.

We need some definitions; We put $B_{\eta}(p)=\{q \in M ; d(p, q)<\eta\}$ and $\psi(q)=$ $(1 / 2) d_{p}^{2}(q)$ where $d_{p}(q)=d(p, q)$.

We change the metric

$$
\begin{equation*}
\bar{g}(q)=g(q) r(\psi(q)) \quad \text { for } q \in B_{\eta}(p), \tag{2.1}
\end{equation*}
$$

where r is a certain function with $2 \geqq r \geqq 1$ and $\left|r^{\prime}\right| \leqq 1$.
We denote as follows

$$
\left\{\begin{array}{l}
r(q)=r(\psi(q)) \tag{2.2}\\
r^{\prime}(q)=r^{\prime}(\psi(q)) \\
r^{\prime \prime}(q)=r^{\prime \prime}(\psi(q)) .
\end{array}\right.
$$

For the curvature \bar{K} of \bar{g}, we show
Lemma 1. Let $q \in B_{\eta}(p)$ and σ_{q} a 2-plane in $T_{q} M$. Then (2.3) $\quad\left|K(\sigma)-\bar{K}(\sigma)-r^{\prime}(q)\right| \leqq C\left\{\left(1+\left|r^{\prime}\right|\right)|r-1|+\left(\left|r^{\prime}\right|+\left|r^{\prime}\right|^{2}+\left|r^{\prime \prime}\right|\right) d_{p}^{2}(q)\right\}$
where C is a certain positive constant which does not depend on q.
Proof. It is well known how the curvature tensor changes by the conformal change of the metric [2]. Let ξ, η be a orthonormal base of σ_{q}. Then we have

$$
\begin{align*}
K(\sigma)-\bar{K}(\sigma)-r^{\prime}= & K(\sigma)\left(1-\frac{1}{r}\right)+r^{\prime}\left(\frac{1-r^{2}}{2 r^{2}}\right)(\operatorname{Hess} \psi(\xi, \xi)+\operatorname{Hess} \psi(\eta, \eta)) \\
& +\frac{r^{\prime}}{2}(\operatorname{Hess} \psi(\xi, \xi)+\operatorname{Hess} \psi(\eta, \eta)-2)+\frac{r^{\prime 2}}{4 r^{3}} d_{p}^{2} \tag{2.4}\\
& +\left(\frac{r^{\prime \prime}}{2 r^{2}}-\frac{3 r^{\prime 2}}{4 r^{3}}\right)\left(\langle\xi, \operatorname{grad} \psi\rangle^{2}+\langle\eta, \operatorname{grad} \psi\rangle^{2}\right)
\end{align*}
$$

Since $\operatorname{grad} \psi=d_{p} \operatorname{grad} d_{p}$ and $\left|\operatorname{grad} d_{p}\right|=1$, we have

$$
\begin{equation*}
\langle\xi, \operatorname{grad} \psi\rangle^{2}+\langle\eta, \operatorname{grad} \psi\rangle^{2} \leqq d_{p}^{2} \tag{2.5}
\end{equation*}
$$

We need the estimation of the Hessian [5];
If $-\delta^{2} \leqq K \leqq \Delta^{2}$ and $d_{p}(q) \leqq \pi / 2 \Delta$, then

$$
\Delta d_{p}(q) \cot \left(\Delta d_{p}(q)\right) \leqq \operatorname{Hess} \psi(q)(\xi, \xi) \leqq \delta d_{p}(q) \operatorname{coth}\left(\delta d_{p}(q)\right)
$$

Hence

$$
\begin{align*}
& |\operatorname{Hess} \psi(\xi, \xi)-1| \leqq C^{\prime} d_{p}^{2}(q) \tag{2.6}\\
& |\operatorname{Hess} \psi(\xi, \xi)| \leqq C^{\prime} \tag{2.7}
\end{align*}
$$

where C^{\prime} is a constant depending only on $g\left(B_{p}(\pi / 2 \Delta)\right)$. From (2.4)-(2.7) and $r \geqq 1,\left|r^{\prime}\right| \leqq 1$, we have

$$
\left|K(\sigma)-\bar{K}(\sigma)-r^{\prime}\right| \leqq C\left\{\left(1+\left|r^{\prime}\right|\right)|r-1|+\left(\left|r^{\prime}\right|+\left|r^{\prime}\right|^{2}+\left|r^{\prime \prime}\right|\right) d_{p}^{2}(q)\right\} .
$$

Lemma 1 is shown.

Now we construct a suitable function $r(t)$ to have $\bar{K}<0$. Let $f(t)$ be a function with following properties,

$$
\begin{align*}
& f(0)=0 \tag{2.8}\\
& f(t)=0 \quad(1<t) \tag{2.9}\\
& 0 \leqq f(t) \leqq 1 \tag{2.10}\\
& f^{\prime}(t)>0 \quad\left(0 \leqq t \leqq \frac{1}{2}\right) \tag{2.11}\\
& \left|f^{\prime}(t)\right| \leqq 1 \tag{2.12}\\
& \left|f^{\prime \prime}(t)\right| \leqq 1 \tag{2.13}
\end{align*}
$$

Putting $r^{(\alpha \beta)}(t)=\beta f(t / \alpha)+1$ for $0<\alpha<1,0<\beta<\alpha$, we define a metric $g^{(\alpha \beta)}$

$$
\begin{equation*}
g^{(\alpha \beta)}(q)=g(q) r^{(\alpha \beta)}(q) . \tag{2.14}
\end{equation*}
$$

We now want to explain the method to make the curvature $K^{(\alpha \beta)}$ of $g^{(\alpha \beta)}$ negative. As the first step, we make $K^{(\alpha \beta)}<0$ near p; If we take α smaller, $K^{(\alpha \beta)}$ decreases at p. Therefore, taking α sufficiently small we have $K^{(\alpha \beta)}<0$ in a small neighborhood N of p for any β. But at the same time, $K^{(\alpha \beta)}$ increases and may become positive in $M \backslash N$. Thus, as the second step we need to reduce the increase of $K^{(\alpha \beta)}$ in $M \backslash N$. We can make $\left|K-K^{(\alpha \beta)}\right|$ arbitrary small if we take β small. Therefore, we obtain $K^{(\alpha \beta)}<0$ on M by taking β small, if we assume $K<0$ in $M \backslash N$ (see the assumption in the Lemma 2 below). In fact, we have

Lemma 2. If we assume on the curvature K_{g} the condition (2.16) below, then there are α_{1} and β_{1} such that $K^{\left(\alpha_{1} \beta_{1}\right)}<0$.

Proof. We denote $C\left\{\left(1+\left|r^{\prime}\right|\right)|r-1|+\left(\left|r^{\prime}\right|+\left|r^{\prime}\right|^{2}+\left|r^{\prime \prime}\right|\right) d_{p}^{2}(q)\right\}$ as $C(r(q))$ for simplicity. We devide the cases for q as follows;
\langle Case 1$\rangle: \quad 0 \leqq \psi(q) \leqq \frac{\alpha^{2}}{2}$
$\left\langle\right.$ Case 2>: $\frac{\alpha^{2}}{2} \leqq \psi(q) \leqq \alpha$
\langle Case 3\rangle : $\alpha \leqq \phi(q)$.
〈Case 1〉: In this case, we have
Proposition 1. For a point q of the Case 1,

$$
\begin{equation*}
\frac{\left|C\left(r^{(\alpha \beta)}(q)\right)\right|}{\left|r^{(\alpha \beta)^{\prime}}(q)\right|} \longrightarrow 0 \quad(\alpha \longrightarrow 0) \tag{2.15}
\end{equation*}
$$

Proof of Proposition 1. From $f^{\prime}(t)>0(0 \leqq t \leqq 1 / 2)$, there is a constant C^{\prime} such that

$$
\left|\frac{f(\psi(q) / \alpha)}{f^{\prime}(\psi(q) / \alpha)}\right| \leqq C^{\prime}, \quad\left|\frac{f^{\prime \prime}(\psi(q) / \alpha)}{f^{\prime}(\psi(q) / \alpha)}\right| \leqq C^{\prime}, \quad\left|\frac{r^{(\alpha \beta)}-1}{r^{(\alpha \beta) \prime}}\right| \leqq C^{\prime} \alpha
$$

and

$$
\left|\frac{r^{(\alpha \beta) \prime \prime}}{r^{(\alpha \beta) \prime}}\right| \leqq \frac{C^{\prime}}{\alpha} .
$$

Using $\left|r^{(\alpha \beta)^{\prime}}\right|<\beta / \alpha<1$ and $d_{p}(q) \leqq \alpha$ we have this proposition.
The estimates (2.3) and (2.15) imply there is a positive constant α_{0} such that $K^{(\alpha \beta)}\left(\boldsymbol{\sigma}_{q}\right)<0$ for α with $0<\alpha \leqq \alpha_{0}$ and q with $\psi(q) \leqq \alpha^{2} / 2$. Therefore the case 1 is shown for α with $0<\alpha \leqq \alpha_{0}$.

Now we assume the following condition on the metric g;
(2.16) There is a positive constant α_{1} with $0<\alpha_{1} \leqq \alpha_{0}$ such that $K\left(\sigma_{q}\right)<0$ for every 2-plane in $T_{q} M$ with $\alpha_{1} \leqq d_{p}(q)$.

〈Case 2〉: At first we need the following proposition.
Proposition 2. If $d_{p}(q)$ is bounded, then for any fixed $\boldsymbol{\alpha}$,

$$
\begin{equation*}
\left|C\left(r^{(\alpha \beta)}(q)\right)\right| \longrightarrow 0 \quad(\beta \longrightarrow 0) \tag{2.17}
\end{equation*}
$$

The proof is easy and we omit it.
From (2.3), (2.16), (2.17), we have $K^{\left(\alpha_{1} \beta_{1}\right)}\left(\sigma_{q}\right)<0$ for q with $\alpha_{1}^{2} / 2 \leqq \psi(q) \leqq \alpha_{1}$ for sufficiently small β_{1}. Therefore the case 2 is shown.
\langle Case 3\rangle : For a point q of this case, $g^{\left(\alpha_{1} \beta_{1}\right)}(q)=g(q)$. Therefore $K^{\left(\alpha_{1} \beta_{1}\right)}\left(\sigma_{q}\right)<0$ follows directly from (2.16). Thus the case 3 is shown for α_{1} and β_{1}.

From the above argument for these three cases, there are positive numbers α_{1}, β_{1} such that $K^{\left(\alpha_{1} \beta_{1}\right)}<0$, if we assume the condition (2.16) on the metric g. Hence Lemma 2 is shown.

Proof of Theorem 1. We put $R=\alpha_{1}$. Then $K_{g}\left(\sigma_{q}\right)<0$ on $M \backslash B_{R}(p)$ imply the condition (2.16). Therefore, using the Lemma 2, we have the Theorem 1.

§ 3. The proof of Theorem 2.

We identify $B_{i(p)}(p)$ and $B_{i(p)}(0) \subset T_{p} M$ by $\exp _{p}$ and introduce the polar coordinate (r, θ) on $B_{i(p)}(p)$. Then the metric g can be written as follows on $B_{i(p)}(p)$.

$$
\begin{equation*}
d s^{2}=d r^{2}+h^{2}(r, \theta) d \theta^{2} \tag{3.1}
\end{equation*}
$$

In order to obtain a metric with $K<0$, we change the given metric to a new metric \bar{g} as follows,

$$
\begin{equation*}
d \bar{s}^{2}=f^{2}(r) d r^{2}+h^{2}(r, \boldsymbol{\theta}) d \theta^{2} \tag{3.2}
\end{equation*}
$$

where $h(r, \theta)$ is the same as in (3.1), $f(r)$ is some positive function with $f(0)=$ 1 and $f^{(n)}(0)=0$. We shall choose $f(r)$ such that $d \bar{s}^{2}$ has negative sectional curvature. We denote $f^{\prime}=d f / d r, h^{\prime}=\partial h / \partial r, h^{\prime \prime}=\partial^{2} h / \partial r^{2}$. Then we have $\bar{R}_{\theta r \theta}^{r}=$ $h\left(f^{\prime} h^{\prime}-f h^{\prime \prime}\right) / f^{3}$,

$$
\begin{align*}
& K_{\bar{s}}=\frac{\bar{R}_{\theta r \theta}^{r}}{h^{2}}=\frac{f^{\prime} h^{\prime}-f h^{\prime \prime}}{f^{3} h} \text { and } \tag{3.3}\\
& K_{g}=-\frac{h^{\prime \prime}}{h} . \tag{3.4}
\end{align*}
$$

Thus, the assumption $K_{g} \leqq 0$ implies

$$
\begin{equation*}
h^{\prime \prime}(r, \theta) \geqq 0 \quad \text { for } \quad 0 \leqq r \leqq i(p) \tag{3.5}
\end{equation*}
$$

Further, we have

$$
\begin{equation*}
h^{\prime}(r, \theta)>0 \quad \text { for } \quad 0<r \leqq i(p) . \tag{3.6}
\end{equation*}
$$

Since the set $\left\{q \in M ; K_{g}(q)=0\right\}$ is closed, there is a positive number ε such that $K_{g}(q)<0$ for $M \backslash B_{i(p)-\varepsilon}$. Then we have the following lemma.

Lemma 3. There are functions $\left\{f_{i}(r)\right\},(i=1,2, \cdots)$ with the following properties;

$$
\begin{gather*}
f_{i}(r)=1 \quad \text { for } \quad 0 \leqq r \leqq \frac{1}{i}, \quad i(p)-\varepsilon \leqq r \leqq i(p) . \tag{3.7}\\
\frac{f_{i}^{\prime}(r)}{f_{i}(r)}<\frac{h^{\prime \prime}(r, \theta)}{h^{\prime}(r, \theta)} \quad \text { for } \quad \frac{1}{i}<r \leqq i(p), \quad 0 \leqq \theta \leqq 2 \pi . \tag{3.8}\\
\left|f_{i}(r)-1\right|,\left|f_{i}^{\prime}(r)-0\right|,\left|f_{i}^{\prime \prime}(r)-0\right|,\left|f_{i}^{\prime \prime \prime}(r)-0\right| \leqq \frac{1}{i}, \quad \text { for } 0 \leqq r \leqq i(p) . \tag{3.9}
\end{gather*}
$$

Proof of Lemma 3. From (3.4) and (3.6), we have

$$
\begin{align*}
& \frac{h^{\prime \prime}(r, \theta)}{h^{\prime}(r, \theta)} \geqq 0 \quad \text { for } \quad 0 \leqq r \leqq i(p), \tag{3.10}\\
& \frac{h^{\prime \prime}(r, \theta)}{h^{\prime}(r, \theta)}>0 \quad \text { for } \quad i(p)-\varepsilon \leqq r \leqq i(p) . \tag{3.11}
\end{align*}
$$

Then from (3.10), (3.11), it is easy to show that there are functions $f_{i}(r)$ with the properties (3.7), (3.8) and (3.9).

Using functions $f_{i}(r)$ in Lemma 3, we define metrics g_{i} as follows,
and

$$
d s_{i}^{2}=f_{i}^{2}(r) d r^{2}+h^{2}(r, \theta) d \theta^{2} \quad \text { on } \quad B_{i(p)}(p),
$$

$g_{i}=g$ on $M \backslash B_{i(p)}(p)$.
Then (3.7) and (3.8) imply

$$
\begin{equation*}
K_{g_{i}}<0 \quad \text { for } \quad M \backslash B_{1 / i}(p) . \tag{3.12}
\end{equation*}
$$

Now we denote the constant R in the Theorem 1 for these metrics $\left\{g_{i}\right\}$ by $\left\{R_{i}\right\}$. Looking over the proof of Theorem 1 carefully, it is known from (3.9) that there is a positive number δ such that $R_{i}>\delta$ for all i. Then taking i large, the condition (3.12) implies the assumption in Theorem 1 and hence we obtain a metric \bar{g} with $K_{\bar{g}}<0$ on M.

Proof of Corollary. It is easy to show from Theorem 2.
Proof of Application. In the proof of Theorem 1, it follows from the definition of $r^{(\alpha \beta)}(t)$ that $r^{(\alpha \beta)}(t) \rightarrow 1(\beta \rightarrow 0)$, so that $g^{(\alpha \beta)}(q) \rightarrow g(q)(\beta \rightarrow 0)$, thus $\operatorname{vol}_{g}(\alpha \beta)(M) \rightarrow \operatorname{vol}_{g}(M)(\beta \rightarrow 0)$. From Theorem 1, we may assume $K_{g}(\alpha \beta)<0$ and then it follows that $\operatorname{vol}_{g}(\alpha \beta)(M) \geqq V(n)$ where $V(n)$ is some constant depending on the dimention n of M. Hence, we have $\operatorname{vol}_{g}(M) \geqq V(n)$.

Proof of Theorems 3 and 4. We can show them in the same ways as to prove Theorems 1 and 2.

References

[1] W. Ballmann, M. Gromov and V. Schroeder, Manifolds of nonpositive curvature, Birkhäuser, 1985.
[2] A. Basse, Einstein manifolds, Springer, 1987.
[3] P. E. Ehrlich, Local convex deformations and sectional curvature, Arch. Math., 26 (1975), 432-435.
[4] L. Z. Gao, The construction of negatively Ricci curved manifold, Math. Ann., 271 (1985), 185-208.
[5] J. Jost, Nonlinear methods in Riemannian and Kählerian geometry, Birkhäuser, 1988, p. 46.

Koji Fujiwara
Department of Mathematics
University of Tokyo
Hongo, Bunkyo-ku, Tokyo 113
Japan

