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\S 1. Introduction and statement of results.

There are strong relations between the topology and the curvature of a
Riemannian manifold. For example, let $M$ be a compact Riemannian manifold
of negative curvature. Then every abelian subgroup of $\pi_{1}(M)$ must be cyclic,
which is not necessarily true for a manifold of non-positive curvature.

A natural question is under what conditions a metric of non-positive curvature
can be deformed to a metric of negative curvature. For this question, we have
the following results.

THEOREM 1. Let $(M, g)$ be a comPlete Riemannian manifold with $K_{g}\leqq 0_{r}$

where $K_{g}$ denotes the sectional curvature of $(M, g)$ , and $p$ a point in M. Then
there is a Positive number $R$ which is determined by the metric $g$ and its $de-$

rivatives around $p$, such that the following holds; $suPloseK_{g}<0$ on $M\backslash B_{R}(P)$ ,
then there is a metric $\overline{g}$ such that $K_{\overline{9}}<0$ and $g=\overline{g}$ on $M\backslash B_{R}(p)$ , where we put
$B_{R}(p)=\{q\in M;d(p, q)<R\}$ .

In general, the number $R$ in Theorem 1 is much smaller than $i(p)$ , the in-
jectivity radius at $p$ , but for two dimensional manifolds, we have a better result.

THEOREM 2. Let $(M, g)$ be a complete Riemannian manifold of two dimension
with $K_{g}\leqq 0$ . Suppose there is a point $p$ in $M$ such that $K_{g}<0$ on $M\backslash B_{t(p)}(p)$ .
Then there is a complete metric $\overline{g}$ such that $K_{\overline{9}}<0$ and $g=\overline{g}$ on $M\backslash B_{i(p)}(p)$ .

AS a corollary to Theorem 2, we have the following result for $R^{2}$ .
COROLLARY OF THEOREM 2. Let $(R^{2}, g)$ be a comPlete metric on $R^{2}$ with

$K_{g}\leqq 0$ . Suppose there is a compact set $A\subset R^{2}$ with $K_{g}<0$ on $R^{2}\backslash A$ . Then there
is a complete metric $\overline{g}$ on $R^{2}$ with $K_{g}<0$ and $g=\overline{g}$ on $R^{2}\backslash B$ for some comPact
set $B\subset R^{2}$ .

Generally, it is not possible to change a metric of non-positive curvature to
a metric of negative curvature, because there is a topological obstruction be-
tween them as is stated before. But if the set of points at which $K_{g}$ takes the
zero is contained in a topologically trivial ball, then it is likely that we can
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deform the metric to a metric of negative curvature. This consideration leads
us to the following conjecture.

CONJECTURE. Theorem 2 is true for the case of dimension $n\geqq 3$ .

We consider an application of Theorem 1. We recall the well known co-
rollary to Margulis-Heinze theorem; let $M$ be a complete Riemannian manifold
of dimension $n$ with $-1\leqq K<0$ , then $vol(M)\geqq V(n)$ , where $V(n)$ is a positive
number depending only on the dimension $n([1])$ . Using Theorem 1, we can
generalize the curvature condition as follows.

APPLICATION OF THEOREM 1. Let $M$ be a complete Riemannian manifold of
dimension $n$ with $-1\leqq K<0$ except for discrete points in $M$, then $vol(M)\geqq V(n)$ ,

where $V(n)$ is the same number as in the above fact.

AS for the non-negative manifolds, we have the same results as in the non-
positive cases.

THEOREM 3. Let $(M, g)$ be a complete Riemannian manifold with $K_{g}\geqq 0$ and
$p$ a point in M. Then there is a positive number $R$ which is determined by the
metric $g$ and its derivatives around $p$ , such that the following holds; suppose
$K_{g}>0$ on $M\backslash B_{R}(p)$ , then there is a metric $\overline{g}$ such that $K_{\overline{g}}>0$ and $g=\overline{g}$ on
$M\backslash B_{R}(p)$ .

THEOREM 4. Let $(M, g)$ be a complete Riemannian manifold of two dimension
with $K_{g}\geqq 0$ . Suppose there is a point $p$ in $M$ such that $K_{g}>0$ on $M\backslash B_{i(p)}(p)$ .
Then there is a complete metnc $\overline{g}$ such that $K_{\overline{9}}>0$ and $g=\overline{g}$ on $M\backslash B_{t(p)}(p)$ .

About the deformation of a metric with non-negative curvature, there is a
following conjecture. Let $M$ be a compact manifold with non-negative curvature
and suppose there is a point with positive curvature. Then $M$ will admit a
metric of positive curvature. Ehrlicb has pointed out the difficulty of this
problem in [3].

The author would like to thank Prof. Ochiai for his advice and his constant
encouragement, and Dr. Fukaya for his extensive support.

\S 2. Proof of Theorem 1.

We need some definitions; We put $B_{\eta}(p)=\{q\in M;d(p, q)<\eta\}$ and $\psi(q)=$

$(1/2)d_{p}^{2}(q)$ where $d_{p}(q)=d(p, q)$ .
We change the metric

(2.1) $\overline{g}(q)=g(q)r(\psi(q))$ for $q\in B_{\eta}(p)$ ,



Metric deformation of curved manifolds 215

where $r$ is a certain function with $2\geqq r\geqq 1$ and $|r’$ $1.

We denote as follows

(2.2) $\{$

$r(q)=r(\psi(q))$

$r’(q)=r’(\psi(q))$

$r’’(q)=r’(\psi(q))$ .
For the curvature $\overline{K}$ of $\overline{g}$ , we show

LEMMA 1. Let $q\in B_{\eta}(p)$ and $\sigma_{q}$ a 2-plane in $T_{q}M$. Then

(2.3) $|K(\sigma)-\overline{K}(\sigma)-r’(q)|\leqq C\{(1+|r’|)|r-1|+(|r’|+|r’|^{2}+|r’’|)d_{p}^{2}(q)\}$

where $C$ is a certain positive constant which does not depend on $q$ .

PROOF. It is well known how the curvature tensor changes by the con-
formal change of the metric [2]. Let $\xi,$

$\eta$ be a orthonormal base of $\sigma_{q}$ . Then
we have

$K( \sigma)-\overline{K}(\sigma)-r’=K(\sigma)(1-\frac{1}{r})+r’(\frac{1-r^{2}}{2r^{2}})(Hess\psi(\xi, \xi)+Hess\psi(\eta, \eta))$

(2.4) $+ \frac{r’}{2}(Hess\psi(\xi, \xi)+Hess\psi(\eta, \eta)-2)+\frac{r^{\prime 2}}{4r^{3}}d_{p}^{2}$

$+( \frac{r’3r^{J2}}{2r^{2}4r^{3}})(\langle\xi, grad\psi\rangle^{2}+\langle\eta, grad\psi\rangle^{2})$ .

Since $grad\psi=d_{p}gradd_{p}$ and $|gradd_{p}|=1$ , we have

$\langle$2.5) $\langle\xi, grad\psi\rangle^{2}+\langle\eta, grad\psi\rangle^{2}$ $ $d_{p}^{2}$ .
We need the estimation of the Hessian [5];

If $-\delta^{2}\leqq K\leqq\Delta^{2}$ and $d_{p}(q)\leqq\pi/2\Delta$ , then

$\Delta d_{p}(q)\cot(\Delta d_{p}(q))\leqq Hess\psi(q)(\xi, \xi)\leqq\delta d_{p}(q)\coth(\delta d_{p}(q))$ .
Hence

(2.6) $|Hess\psi(\xi, \xi)-1|\leqq C$
‘

$d_{p}^{2}(q)$ ,

(2.7) $|Hess\psi(\xi, \xi)|\leqq C’$ ,

where $C’$ is a constant depending only on $g(B_{p}(\pi/2\Delta))$ . From $(2.4)-(2.7)$ and
$r\geqq 1,$ $|r’$ $1, we have

$|K(\sigma)-\overline{K}(\sigma)-r’|\leqq C\{(1+|r’|)|r-1|+(|r’|+|r’|^{2}+|r’’|)d_{p}^{2}(q)\}$ .
Lemma 1 is shown.

NOW we construct a suitable function $r(t)$ to have $\overline{K}<0$ . Let $f(t)$ be a
function with following properties,
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(2.8) $f(0)=0$

(2.9) $f(t)=0$ $(1<t)$

(2.10) $0$ $ $f(t)\leqq 1$

(2.11) $f’(t)>0$ $(0 \leqq t\leqq\frac{1}{2})$

(2.12) $|f’(t)|$ $ 1
(2.13) $|f’(t)|\leqq 1$ .
Putting $r^{(\alpha\beta)}(t)=\beta f(t/\alpha)+1$ for $0<\alpha<1,0<\beta<\alpha$ , we define a metric $g^{(\alpha\beta>}$

(2.14) $g^{(\alpha\beta)}(q)=g(q)r^{(\alpha\beta)}(q)$ .

We now want to explain the method to make the curvature $K^{(\alpha\beta)}$ of $g^{(\alpha\beta)}$

negative. As the first step, we make $K^{(a\beta)}<0$ near $p$ ; If we take $\alpha$ smaller,
$K^{(\alpha\beta)}$ decreases at $p$ . Therefore, taking a sufficiently small we have $K^{(\alpha\beta)}<C$

in a small neighborhood $N$ of $p$ for any $\beta$ . But at the same time, $K^{(\alpha\beta)}$ in-
creases and may become positive in $M\backslash N$. Thus, as the second step we need
to reduce the increase of $K^{(a\beta)}$ in $M\backslash N$. We can make $|K-K^{(\alpha\beta)}|$ arbitrary
small if we take $\beta$ small. Therefore, we obtain $K^{(\alpha\beta)}<0$ on $M$ by taking $\beta$

small, if we assume $K<0$ in $M\backslash N$ (see the assumption in the Lemma 2 below).

In fact, we have

LEMMA 2. If we assume on the curvature $K_{g}$ the condition (2.16) below, then
there are $\alpha_{1}$ and $\beta_{1}$ such that $K^{(\alpha_{1}\beta_{1})}<0$ .

PROOF. We denote $C\{(1+|r’|)|r-1|+(|r’|+|r’|^{2}+|r’’|)d_{p}^{2}(q)\}$ as $C(r(q))$

for simplicity. We devide the cases for $q$ as follows;

$\langle$Case $1\rangle$ : $0 \leqq\psi(q)\leqq\frac{\alpha^{2}}{2}$

$\langle$Case $2\rangle$ : $\frac{\alpha^{2}}{2}$ $\psi (q)Sa

$\langle$Case $3\rangle$ : $\alpha\leqq\psi(q)$ .
$\langle$ Case $1\rangle$ : In this case, we have

PROPOSITION 1. For a point $q$ of the CaSe 1,

(2.15) $\frac{|C(r^{(a\beta)}(q))|}{|r^{(\alpha\beta)}’(q)|}arrow 0$ $(\alphaarrow 0)$ .

PROOF OF PROPOSITION 1. FrOm $f’(t)>0(0\leqq t\leqq 1/2),$ there iS a COnStant $C$ ‘

such that



Metric deformation of curved manifotds 217

$| \frac{f(\mu q\rangle/\alpha)}{f’(\psi(q)/\alpha)}|\leqq C’$ , $| \frac{f’(\psi(q)/\alpha)}{f’(\psi(q)/\alpha)}|$ $ $C’$, $| \frac{r^{\langle a\beta)}-1}{\gamma^{(\alpha\beta)\prime}}|\leqq C’\alpha$

and
$| \frac{\gamma^{(a\beta)\parallel}}{r^{(\alpha\beta)}’}|\leqq\frac{C’}{\alpha}$ .

Using $|r^{(\alpha\beta)\prime}|<\beta/\alpha<1$ and $d_{p}(q)\leqq\alpha$ we have this proposition.
The estimates (2.3) and (2.15) imply there is a positive constant $\alpha_{0}$ such

that $K^{(a\beta)}(\sigma_{q})<0$ for $\alpha$ with $0<\alpha\leqq\alpha_{0}$ and $q$ witb $\psi(q)\leqq\alpha^{2}/2$ . Therefore the
case 1 is shown for $\alpha$ with $0<\alpha\leqq\alpha_{0}$ .

NOW we assume the following condition on the metric $g$ ;

(2.16) There is a posrtive constant $\alpha_{1}$ with $0<\alpha_{1}\leqq\alpha_{0}$ such that $K(\sigma_{q})<0$ for every
2-plane in $T_{q}M$ with $a_{1}\leqq d_{p}(q)$ .

$\langle$ Case $2\rangle$ : At first we need the following proposition.

PROPOSrTION 2. If $d_{p}(q)$ is bounded, then for any fixed a,

(2.17) $|C(r^{(\alpha\beta)}(q))|arrow 0$ $(\betaarrow 0)$ .
The proof is easy and we omit it.
From (2.3), (2.16), (2.17), we have $K^{(\alpha_{1}\beta_{1})}(\sigma_{q})<0$ for $q$ with $\alpha_{1}^{2}/2\leqq\psi(q)\leqq a_{1}$

for sufficiently smalI $\beta_{1}$ . Therefore the case 2 is shown.

$\langle$ Case $3\rangle$ : For a point $q$ of this case, $g^{(a_{1}\beta_{1})}(q)=g(q)$ . Therefore $K^{(\alpha_{1}\beta_{1})}(\sigma_{q})<0$

follows directly from (2.16). Thus the case 3 is shown for $a_{1}$ and $\beta_{1}$ .

From the above argument for these three cases, there are positive numbers
$\alpha_{1},$ $\beta_{1}$ such that $K^{(a_{1}\beta_{1})}<0$ , if we assume the condition (2.16) on the metric $g$ .
Hence Lemma 2 is shown.

PROOF OF THEOREM 1. We put $R=a_{\iota}$ . Then $K_{g}(\sigma_{q})<0$ On $M\backslash B_{R}(p)$ imply
the condition (2.16). Therefore, using the Lemma 2, we have the Theorem 1.

\S 3. The proof of Theorem 2.

We identify $B_{t(p)}(p)$ and $B_{t(p)}(0)cT_{p}M$ by $\exp_{p}$ and introduce the polar
coordinate $(r, \theta)$ on $B_{iCp)}(p)$ . Then the metric $g$ can be written as follows on
$B_{i(p)}(p)$ .
(3.1) $ds^{2}=dr^{2}+h^{t}(r, \theta)d\theta^{2}$

In order to obtain a metric with $K<0$ , we change the given metric to a new
metric $\overline{g}$ as follows,

(3.2) $d\overline{s}^{a}=f(r)dr^{2}+h^{2}(r, \theta)d\theta^{a}$ ,
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where $h(r, \theta)$ is the same as in (3.1), $f(r)$ is some positive function with $f(O)=$

$1$ and $f^{(n)}(0)=0$ . We shall choose $f(r)$ such that $d\overline{s}^{2}$ has negative sectional
curvature. We denote $f’=df/dr,$ $h’=\partial h/\partial r,$ $h’’=\partial^{2}h/\partial r^{2}$ . Then we have $\overline{R}_{\theta r\theta}^{r}=$

$h(f’h’-fh^{M})/f^{3}$ ,

(3.3) $K_{\overline{g}}= \frac{\overline{R}_{\theta r\theta}^{r}}{h^{2}}=\frac{f’h’-fh’}{f^{3}h}$ and

(3.4) $K_{g}=- \frac{h’}{h}$ .
Thus, the assumption $K_{g}\leqq 0$ implies

(3.5) $h’(r, \theta)\geqq 0$ for $0\leqq r\leqq i(p)$ .

Further, we have

(3.6) $h’(r, \theta)>0$ for $0<r\leqq i(p)$ .
Since the set $\{q\in M;K_{g}(q)=0\}$ is closed, there is a positive number $\epsilon$ such

that $K_{g}(q)<0$ for $M\backslash B_{t(p)-\text{\’{e}}}$ . Then we have the following lemma.

LEMMA 3. There are functions $\{f_{i}(r)\},$ $(i=1, 2, )$ with the following prop-
erties;

(3.7) $f_{t}(r)=1$ for $0 \leqq r\leqq\frac{1}{i}$ , $i(p)-\epsilon\leqq r\leqq i(p)$ .

(3.8) $\frac{f_{i}’(r)}{f_{\ell}(r)}<\frac{h’(r,\theta)}{h’(r,\theta)}$ for $\frac{1}{i}<r\leqq i(p),$ $0\leqq\theta\leqq 2\pi$ .

(3.9) $|f_{t}(r)-1|,$ $|f_{i}’(r)-0|,$ $|f_{i}’’(r)-0|,$ $|f_{i}^{m}(r)-0| \leqq\frac{1}{i}$ , for $0\leqq r\leqq i(p)$ .
PROOF OF LEMMA 3. From (3.4) and (3.6), we have

(3.10) $\frac{h’(r,\theta)}{h’(r,\theta)}$ I $0$ for OSr$i(p),

(3.11) $\frac{h’(r,\theta)}{h’(r,\theta)}>0$ for $i(p)$ –e\leqq r$i(P).

Then from (3.10), (3.11), it is easy to show that there are functions $f_{i}(r)$ with
the properties(3.7), (3.8) and (3.9).

Using functions $f_{i}(r)$ in Lemma 3, we define metrics $g_{i}$ as follows,

$ds_{i}^{2}=f_{i}^{2}(r)dr^{2}+h^{2}(r, \theta)d\theta^{2}$ on $B_{i(p)}(p)$ ,
and

$g_{i}=g$ on $M\backslash B_{i(p)}(p)$ .
Then (3.7) and (3.8) imply

(3.12) $K_{g_{i}}<0$ for $M\backslash B_{1/i}(p)$ .
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NOW we denote the constant $R$ in the Theorem 1 for these metrics $\{g_{i}\}$

by $\{R_{i}\}$ . Looking over the proof of Theorem 1 carefully, it is known from
(3.9) that there is a positive number $\delta$ such that $R_{i}>\delta$ for all $i$ . Then taking
$i$ large, the condition (3.12) implies the assumption in Theorem 1 and hence we
obtain a metric $\overline{g}$ with $K_{\overline{g}}<0$ on $M$.

PROOF OF COROLLARY. It is easy to show from Theorem 2.

PROOF OF APPLICATION. In the proof of Theorem 1, it follows from the
definition of $r^{(a\beta)}(t)$ that $r^{(\alpha\beta)}(t)arrow 1(\betaarrow 0)$ , so that $g^{(\alpha\beta)}(q)arrow g(q)(\betaarrow 0)$ , thus
$vo1_{g^{(\alpha\beta)}}(M)arrow vo1_{g}(M)(\betaarrow 0)$ . From Theorem 1, we may assume $K_{g^{(\alpha\beta)}}<0$ and
then it follows that $vo]_{g}(\alpha\beta)(M)\geqq V(n)$ where $V(n)$ is some constant depending
on the dimention $n$ of $M$. Hence, we have $vo1_{g}(M)\geqq V(n)$ .

PROOF OF THEOREMS 3 AND 4. We can show them in the same ways as
to prove Theorems 1 and 2.
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