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1. Introduction.

Let $G$ be a finite group. The set $A^{+}(G)$ of the $G$ -isomorphism classes of
finite right $G$ -sets makes a commutative semi-ring with respect to disjoint union
$+and$ Cartesian product $\cross$ . Its Grothendieck ring is called the Burnside ring
of $G$ and is denoted by $A(G)$ . A finite (right) $G$ -set is the disjoint union of
its orbits and each orbit is $G$ -isomorphic to a homogeneous $G$ -set $H\backslash G:=$

$\{Hg|g\in G\}$ . TWO $G$ -sets $H\backslash G$ and $K\backslash G$ are isomorphic if and only if $H=_{G}K$,
that is, $H$ is $G$ -conjugate to $K$. Thus this ring is additively a free abelian
group on $\{[H\backslash G]|(H)\in Cl(G)\}$ , where $Cl(G)$ is the conjugacy classes $(H)$ of
subgroups $H$ of $G$ .

A suPer class function is a map of the set of subgroups of $G$ to $Z$ which is
constant on each conjugacy class of subgroups. Let $\tilde{A}(G):=Z^{Cl(G)}$ be the ring
of integral valued super class functions. For any subgroup $S$ of $G$ , the map
$[X]-\Rightarrow|X^{s}|$ , the number of fixed-points, extends to a ring homomorphism $\varphi_{S}$ :
$A(G)arrow Z$, and so we have a ring homomorphism

(1) $\varphi$ $:= \prod_{(S)}\varphi_{S}$ : $A(G)arrow\tilde{A}(G):=Z^{Cl(G)}$ ; $[X]-(|X^{s}|)$ .

It is well-known that this maP is injective. Thus we can identify any element
$x$ of $A(G)$ with the super class function $\varphi(x)$ , and so we simply write

$x(S)$ $:=\varphi(x)(S)=\varphi_{S}(x)$

for a subgroup $S$ of $G$ . Hence we can view the unit group $A(G)^{*}$ as a sub-
group of $\{\pm 1\}^{Cl(G)}$ .

NOW, tom Dieck proved by a geometric method that for any $RG$-module $V$

the function
$u(V)$ : $S\mapsto$ sgn $\dim V^{s}$

belongs to the Burnside ring $A(G)$ , where sgn $m:=(-1)^{m}([Di79$ , Proposition
5.5.9]). The first purpose of this paper is to prove this fact by a purely alge-
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braic method. We shall prove the following somewhat generalized theorem in
Section 2.

THEOREM A. Let $G$ be a finite group and let $V$ be a $CG$ -module with real
valued character. Then the function

$u(V)$ : $S-$ sgn $\dim_{C}V^{S}$

is a member of the Burnside ring $A(G)$ .

Since $u(V)^{2}=1$ by the injectivity of $\varphi$ and $u(U\oplus V)=u(U)\cdot u(V)$ , we have a
group homomorphism into the unit group:

$u_{G}$ : $\overline{R}(G)arrow A(G)^{*}$ ,

where $\overline{R}(G)$ is the ring of real valued virtual characters of $G$ . We call this
map $u_{G}$ a tom Dieck homomorphism.

In Section 3, we shall define various maps between Burnside rings (and

their unit groups), and prove that the assignment $A^{*}:$ $H-A(H)^{*}$ together with
restrictions, multiplicative inductions and conjugations forms a so-called G-functor
( $=a$ Mackey functor from $Set_{f}^{G}$) and furthermore that the tom Dieck homomor-
phisms give a morphism between G-functors.

In Section 4, we prove a transfer theorem about the unit groups. From
the theory of $G$-functors and Burnside rings we can obtain many information
about $A(G)^{*}$ . Since $A^{*}$ is a $G$ -functor, $A(G)^{*}$ is a module over the Burnside
ring $A(G)$ (and also over $A(G)_{(2)}$ , the localization at 2). We denote this action by

$A(G)^{*}\cross A(G)_{(2)}arrow A(G)$ ; $(u, a)-\geq u\uparrow a$ .

Furthermore, $u\uparrow a$ is given as an extention of $U^{A}$ , the set of all maps of $A$ to
$U$ with diagonal $G$ -action. See Section 3. In general, for a prime $P$ there are
primitive idempotents $e_{G.Q}^{p}$ of $A(G)_{Cp)}$ associated with conjugacy classes of P-
perfect subgroups $Q$ of $G$ , where $Q$ is called to be p-perfect provided $Q$ has
no normal subgroup of index $p$ . Thus we obtain a direct product decomposition
of the unit group $A(G)^{*}$ . Applying “the stable element theorem” for G-functors
to each direct factor, the following theorem is obtained:

THEOREM B. (i) There is a direct product decomposition

$A(G)^{*}= \prod_{(G)}A(G)^{*}\uparrow e_{G,Q}^{2}$ .

(ii) Let $Q$ be a 2-perfect subgroup of $G$ and let $P$ be a subgroup of $N:=$

$N_{G}(Q)$ such that $P/Q$ is a Sylow $2$-subgrouP of $N/Q$ . Then there are grouP
isomorphisms:

$A(G)^{*}\uparrow e_{G.Q}^{2}\cong A(N)^{*}\uparrow e_{N,Q}^{2}\cong(A(P)^{*})^{N}\uparrow e_{P.Q}^{2}$ ,
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where $(A(P)^{*})^{N}$ is the subgroup of $A(P)^{*}$ consisting of all elements $x$ such that

$res_{P^{n_{\cap P}}}^{P}con_{P}^{n}(x)=res_{P^{n}\cap P}^{P}(x)$

for any element $n$ of $N$.

In Section 5, we consider another transfer theorem, that is, “the excision
theorem”. In his paper [Ar82], S. Araki proved by a geometric method the
existence of an interesting isomorphism

$e^{p_{N,Q}}A(N)_{(p)}\cong e^{p_{N/Q,1}}A(N/Q)_{\mathfrak{c}p)}$ ,

where $N$ is a finite group with a $p$ -perfect normal subgroup $Q$ . An algebraic
proof was given by T. Yoshida and T. Miyata independently and their proofs
are found in [Yo85]. There is a similar isomorphism for character ring of a
finite group and this result is considered to be a kind of “the excision theorem”.
In case of the unit groups of the Burnside rings, a transfer theorem of this
type holds in a weak form as follows:

THEOREM C. Let $N$ be a finite group with 2-perfect normal subgroup $Q$

and put $W:=N/Q$ . Let $\overline{P}$ be a Sylow $2$-subgrouP of W. Then $A(N)^{*}\uparrow e_{N.Q}^{2}$ is
isomorphic to the subgroup of $(A(\overline{P})^{*})^{W}$ consisting of elements $\overline{v}$ such that $v(S/Q)$

$=1$ if $S$ has a proper normal subgroup of odd index.

AS an easy corollary we obtain the excision theorem:

COROLLARY Cl. Let $N$ be a finite group with $2$-Perfeci normal subgrouP $Q$ .
Let $\Psi(Q)$ be the intersection of all normal subgroups of $Q$ of prime index, and
Put $\tilde{N}:=N/\Psi(Q)$ and $\tilde{Q}:=W/\Psi(Q)$ . Then there is an isomorPhism of grouPs:

$A(N)^{*}\uparrow e_{N,Q}^{2}\cong A(\tilde{N})^{*}\uparrow e_{\tilde{N},Q}^{2}\sim$ .

In Section 6, we add some results on the unit group of the Burnside rings
of finite groups. Many of them are motivated by Matsuda’s papers [Ma82],
[MM83].

Finally we study in Section 7 the unit groups for finite groups with abelian
Sylow 2-subgroups. Let $T$ be an abelian 2-group and let $\overline{T}:=T/\Phi(T)$ , where
$\Phi(T)$ is the Frattini subgroup. Then it is known that the tom Dieck homomor-
phism $u_{T}$ : $\overline{R}(T)arrow A(T)^{*}$ is surjective and it gives an isomorphism

$\overline{u}_{T}$ : $F_{2}[\overline{T}^{\wedge}]arrow A(T)^{*}\cong$

,

where $F_{2}[\overline{T}^{\wedge}]$ is the group ring of the character group of $\overline{T}$ over the field $F_{2}$

of order 2.
When $G$ is a finite group with abelian Sylow 2-subgroup, the problem about

the structure of $A(G)^{*}$ is by Theorems $B$ and $C$ reduced to the case where $G$
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has a normal subgroup $Q$ with $\Psi(Q)=1$ and $G/Q$ has a normal Sylow 2-sub-
group. In this case the following theorem holds:

THEOREM D. Let $G$ be a finite group with an abelian normal subgroup $Q$

of odd order and an abelian Sylow 2-subgroup T. Put $\overline{T}:=T/\Phi(T)$ and $L:=$

$N_{G}(T)$ . Then the following hold:
(i) If $Q=1$ , then $A(G)^{*}Teg,$

$Q$ is isomorPhic to the additive grouP
$(F_{2}[\overline{T}^{\wedge}])^{L}(\cong F_{2}[\overline{T}^{\wedge}/L])$ of L-fixed points.

(ii) If $Q\neq 1$ and $C_{Q}(T)\neq 1$ , then $A(G)^{*}Teg,$
$Q$ is of order 1.

(iii) Assume that $Q\neq 1$ and $C_{Q}(T)=1$ . Define
$\mathscr{M}:=$ { $\Phi(T)C|T/C$ is cyclic and $C_{Q}(C)\neq 1$ } ,

$K:=\cap\{M\in \mathscr{M}\}$ , $\overline{K}:=K/\Phi(T)$ .
Then $A(G)^{*}\uparrow e\S.Q$ is isomorphic to $F_{2}[\overline{K}^{\wedge}]^{L}$ .

Thus if we know enough about subgroups of a finite group with abelian
Sylow 2-subgroup, we can calculate the order of the unit group of the Burnside
ring. We carry out such calculation for the following simple groups:

$L_{2}(2^{n}),$ $L_{2}(q)$ $(q\equiv 3,5(mod 8)),$ $J_{1}$ .
NOTATION AND TERMINOLOGY. We alWayS denOte by $G$ a finine grOup.

The $G$-conjugacy class of a subgroup $H$ of $G$ is denoted by $(H)$ , and the set
of all such classes is denoted by $Cl(H)$ . The notation $H\leqq G$ means that $H$ is
a subgroup of $G$ . We put $WH:=N_{G}(H)/H$. For subgroups $A$ and $B$ of $G$ , we
mean by $A=_{G}B$ (resp. A;$ $GB$ ) that $A$ and $B$ are conjugate in $G$ (resp. $A$ is G-
conjugate to a subgroup of $B$). We put $A^{g}:=g^{-1}Ag$ for $g$ in $G$ . When $G$

acts on a set $X$, we denote by $X^{G}$ the set of elements fixed by $G$ . The ordinary
character ring of $G$ is denoted by $R(G)$ . The inner product of class functions
X and $\theta$ is defined as usual:

$\langle\chi\theta\rangle:=\frac{1}{|G|}\sum_{g\in G}\chi(g)\overline{\theta(g})$ .

Let $p$ be a prime. A $P$ -element (resp. p-group) is an element (resp. group)

whose order is a power of $p$ . A $P’$ -element (resp. $p’$ -group) is an element
(resp. group) whose order is coprime to the prime $p$ . The subgroup generated
by all 2-elements (resp. 2’-elements) of $G$ is denoted by $O^{2’}(G)$ (resP. $O^{2}(G)$).

Then $O^{2^{l}}(G)$ (resp. $O^{2}(G)$ ) is the smallest normal subgroup of $G$ by which factor
group is a 2’-group (resp. 2-group). For subsets $X$ and $Y$ of $G$ , let [X, $Y$ ] be
the subgroup generated by $x^{-1}y^{-1}xy,$ $x\in X,$ $y\in Y$ .

The unit group of a ring $R$ is denoted by $R^{*}$ . The cardinality of a finite
set $X$ is denoted by $|X|$ or $\# X$. We put sgnm: $=(-1)^{m}$ for an integer $m$ .
Other notation and terminology about finite groups are standard. Refer to Gore-
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nstein’s book [Go68]. About category theory refer to $[ML71J$ .

2. Proof of Theorem A.

In thls section we prove Theorem A. As in the introduction, let $G$ be a
finite group and let $Cl(G)$ denote the set of conjugacy classes $(S)$ of subgroups
$S$ of $G$ . We put $WS:=N_{G}(S)/S$ for a subgroup $S$ of $G$ . We begin with the
following fundamental lemma ( $[Yo85$ , Lemma 2.1], [Di79, Section 1.3]):

LEMMA 2.1. There is an exact sequence of abelian groups:

$0 arrow A(G)arrow Z^{Cl(G)}arrow\varphi\psi\prod_{(S)}(Z/|WS|Z)arrow 0$ ,

where $\varphi$ is the injective ring homomorphism defined by

$\varphi([X])(S)$ $:=X^{S}|$

as in the introduction, and for a super class function $x$ , the $S$-component of $\psi(x)$

is defined by
$\psi(x)_{S}$

$:= \sum_{gS\in WS}x(\langle g\rangle S)$ $(mod |WS|)$ .

PROOF. It is well-known that $\varphi$ is an injective ring homomorphism of
which cokernel has the same order as the target group of $\psi$ . See, for example,
[Di79, Propositions 1.2.2 and 1.2.3]. The surjectivity of $\psi$ is clear, and so it
remains only to show that $\psi\varphi=0$ . To prove this, let $X$ be a finite $G$ -set and
$S$ a subgroup of $G$ . Put $W:=WS$ . The fixed point set $X^{S}$ becomes a W-set
by conjugation. Let $\pi$ be the permutation character of $W$ afforded by this W-
set $X^{s}$ , so that

$\pi(gS)=|X^{\langle g\rangle S}|=\varphi([X])(\langle g\rangle S)$ .
Thus we have that

$\psi(\varphi([X]))_{S}\equiv|WS|\langle\pi, 1_{WS}\rangle\equiv 0$ (mod $|WS|$ ),

where $\langle$ , $\rangle$ stands for the inner product of characters, as required. The
lemma is proved.

By this lemma, we often identify $A(G)$ as a subgroup of $\tilde{A}(G):=Z^{Cl(G)}$ .
We now apply this lemma to prove Theorem A.

THEOREM A. Let $V$ be a $CG$ -module with real valued character. Then the
function

$u(V)$ : $S-sgn\dim_{C}V^{s}$

is a member of the Burnside ring $A(G)$ .

PROOF. Let $\chi$ be the real valued character afforded by the $CG$ -module $V$ .
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By Lemma 2.1, in order to prove the theorem, it will suffice to show that for
each subgrouP $S$ of $G$ ,

(1) $\sum_{gS\in WS}u(V)(\langle g\rangle S)\equiv 0$ $(mod |WS|)$ .

Let $\theta$ be the character of $WS$ afforded by the $CWS$-module $V^{s}$ , so that by an
easy representation theory, we have that

$\theta(gS)=\frac{1}{|S|}\sum_{s\in S}\chi(gs)$ , $gS\in WS$ ,

and so $\theta$ is also a real valued character. Thus in order to prove (1), we may
assume that $S=1$ . Set $u_{\chi}(g):=u(V)(\langle g\rangle)$ . Then by the definition of $u(V)$ , it
has the value

(2) $u_{\chi}(g)=sgn\langle\chi_{1\langle g\rangle}1_{\langle g\rangle})$ .

NOW when $S=1,$ (1) becomes

(3) $\sum_{g\in G}u_{\chi}(g)\equiv 0$ (mod $|G|$ ).

TO prove (3), it will suffice to show that $\mathcal{U}\chi$ is a virtual character of $G$ . In
fact, we can show that

(4) $u_{\chi}=(-1)^{\chi(1)}\det\chi$

where $\det\chi$ is the linear character of $G$ defined by the composition

$\det x$ : $Garrow GL(V)arrow C^{*}det$ .

See [Yo78]. In order to prove (4), we may assume that $G$ is cyclic. Since
$u_{x+\varphi}=u_{\chi}\cdot u_{\varphi}$ and $\det(\chi+\varphi)=\det x\cdot\det\varphi$ , we may further assume that either $\chi$ is
a real valued linear character or $x=\lambda+\overline{\lambda}$ for some nonreal linear character R.
In the first case, we have that

$u_{\chi}(g)=sgn\langle\chi_{1\langle g\rangle}1_{\langle g\rangle}\rangle=\{-1+1 if g\in Ker\chi$

otherwise,

and so $u_{\chi}=-\chi$ as required. In the second case, $x=\lambda+\overline{\lambda}$ , and so $\langle\chi_{1\langle g\rangle}1_{\langle g\rangle}\rangle=0$

or 2. Thus $u_{\chi}$ and $\det\chi$ are both equal to the trivial character. Hence (4) holds
in either case. The theorem is proved.

3. The unit groups as G-functors.

In the introduction we defined the Burnside ring $A(G)$ of a finite group $G$

and the ring $\tilde{A}(G)$ of super class functions. In this section, we will study

various maps between Burnside rings and rings of super class functions which
are induced from various functors. We induce some equalities about these maps
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by using elementary properties of adjoint functors.

$a$ . Adjoint functors. For a finite group $G$ , let $Set_{f}^{G}$ denote the category
of finite (right) $G$ -sets and $G$ -maps. We denote by $Map_{G}(X, Y)$ the set of G-
maps of $X$ to $Y$ . The disjoint unions (resp. the Cartesian products) of pairs of
objects gives coproducts $X+Y$ (resp. products $X\cross Y$ ) in this category. The
Burnside ring $A(G)$ is, as an additive group, the Grothendieck group of this
category with respect to $+$ , and it has the multiplication induced by $\cross$ .

For two $G$ -sets $X$ and $Y$ , let $Y^{X}$ denote the $G$ -set consisting of all map-
pings of $X$ to $Y$ with $G$ -action defined by

a $g(x)$ $:=\alpha(xg^{-1})g$ for $\alpha\in Y^{X},$ $g\in G,$ $x\in X$ .

Thus for each finite $G$ -set $A$ we have an exponential functor

$(-)^{A}$ : $Set_{f}^{G}arrow Set_{f}^{G}$ ; $X-X^{A}$ .

This is a right adjoint of the functor $A\cross(-):X-A\cross X$, that is, there exists
a natural bijection

$Map_{G}(A\cross X, Y)\cong Map_{G}(X, Y^{A})$ .

Furthermore there is another functor

$A^{(-)}$ : $(Set_{f}^{G})^{op}arrow Set_{f}^{G}$ ; $X-\geq A^{X}$ ,

where op stands for the dual of the category. This functor also has the right
adjoint $A^{(-)op}$ .

Remember that a functor which has a right (resp. left) adjoint preserves
colimits (resp. limits) and that a right (or left) adjoint functor is unique (up to
natural equivalence) if it exists. These properties are frequently used in this
section from now on. About adjoint functors and (co) limits, refer to MacLane’s
book [ML71]. For example, the functor $A\cross(-)$ has a right adjoint, and so it pre-
serves colimits, particularly coproduct, whence we obtain the distributive law about
coproduct $+and$ product $\cross$ . We can furthermore derive other arithmetical law
for $G$ -sets similar as natural numbers from properties of adjoint functors.

Let $H$ be a subgroup of $G$ and $N$ a normal subgroup of $G$ . Then there
are functors

$\underline{Ind}$ $\underline{Orb}$

$Set_{f}^{H}\frac{-{\rm Res}}{Jnd}$
–Set’

$\frac{arrow Inf-}{Inv}Set_{f}^{G/N}$

which satisfy
$Ind\dashv{\rm Res}\dashv Jnd$ , $Orb\dashv Inf\dashv Inv$ ,

where $E\dashv F$ means that $E$ is a left adjoint functor of $F$. Furthermore for any
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element $g$ of $G$ , there is an equivalence of categories

Con: $Set_{f}^{H}arrow Set_{f}^{H^{g}}$

where $H^{g}$ $:=g^{-1}Hg$ . If we need to indicate subgroups and elements, we put
necessary letters on suitable places, for example, ${\rm Res}_{H}^{G},$ ${\rm Res}_{H},$ $Inf_{N}^{G},$ $Con_{H}^{g},$ $Inv_{N}$ .
These functors have the values on objects as follows:

(a.1) $Ind^{G}$ : $X-Xx_{H}G$ (the induced G-set),

(a.2) ${\rm Res}_{H}$ : $Y\mapsto Y_{H}$ (the restriction of action),

(a.3) $Jnd^{G}$ : $X-Map_{H}(G, X)$ (the multiplicative induction) ,

(a.4) Con $g$ : $X-Xg$ (the conjugation),

(a.5) $Orb_{N}$ : $Y-\geq Y/N$ (the N-orbits),

(a.6) $Inf_{N}$ : $z-\geq Z$ (the inflation),

(a.7) $Inv_{N}$ : $Y-Y^{N}$ (the N-fixed points),

where $X\cross_{H}G$ is the quotient set of $G$ -set $X\cross G(G$ -action is defined by $(x, g)g’$

$:=(x, gg’))$ with respect to $(x, g)\sim(xh, h^{-1}g),$ $h\in H$, and $Map_{H}(G, X)$ is the set
of mappings $\alpha$ of $G$ to $X$ such that $\alpha(gh)=\alpha(g)h$ with action of $G$ defined by
$\alpha^{u}$ : $g-*\alpha(ug)$ .

Up to natural isomorphisms, the following hold:

(a.8) $Ind_{H}^{G}$ : $D\backslash H-\geq D\backslash G$ ,
(a.9) ${\rm Res}_{H}^{G}$ : $E \backslash G-\prod_{g\in E\backslash G/H}(E^{g}\cap H)\backslash H$ ,

(a.10) $Ind_{H^{\circ}}^{G}{\rm Res}_{H}^{G}=(H\backslash G)\cross(-)$ ,
(a.ll) ${\rm Res}_{K}^{G} \circ Ind_{H}^{G}=\prod_{g\in H\backslash G/K}Ind^{K}\circ{\rm Res}_{H^{g}\cap K^{o}}Con_{H}^{g}$ ,

where $g$ in (a.ll) runs over a complete set of representatives of $H\backslash G/K$.
Taking the right adjoints of the both sides of (a.10) and (a.ll), we have the
following:

(a.12) $Jnd_{H}^{G}\circ{\rm Res}_{H}^{G}=(-)^{H\backslash G}$ ,
(a.13) ${\rm Res}_{K}^{G} \circ Jnd_{H}^{G}=\prod_{g\in H\backslash G/K}Jnd^{K}\circ{\rm Res}_{H^{g}\cap K}\circ Con_{H}^{g}$ .

The equalities (a.ll) and (a.13) are both called the Mackey decomposition.

$b$ . Maps between Burnside rings. We next consider the mappings induced
from the functors defined in the subsection a. Let $A^{+}(G)$ denote the monoid
consisting of isomorphism classes of $Set_{f}^{G}$ and $\tilde{A}(G)(:=Z^{Cl(G)})$ the ring of
integral-valued super class functions. Then $A(G)$ is the Grothendieck ring $of_{r}^{\tau b}$

$A^{+}(G)$ . By the fundamental theorem of Burnside rings (Lemma 2.1), $A(G)$ is
isomorphic to a subring of $\tilde{A}(G)$ of finite index through tbe fixed-point-map
$\varphi=\Pi_{(s)}\varphi_{S}$ , where for any subgroup $S$ of $G$ ,

$\varphi_{S}$ : $A(G)arrow Z$ ; $[X]-|X^{s}|(=:[X](S))$ .
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stated as in the introduction.
NOW, let $A^{+}\cong N^{m}$ be a free abelian monoid of rank $m$ and let $A(\cong Z^{m})$ be

the Grothendieck group of $A^{+}$ . (Here $N$ is the set of nonnegative integers.) Let
$B$ be a free abelian group of finite rank. A map

$g$ : $(x_{1}, \cdots x_{m})-(g_{1}(x_{1}, \cdots, x_{m}), )$

of $A^{+}(orA)$ to $B$ is called to be Polynomial or algebraic lf each component
$g_{t}(x_{1}, \cdots , x_{m})$ is presented by a polynomial of $x_{1},$

$\cdots$ , $x_{m}$ . This definition does
not depend on the choice of bases.

(b.O1) Any polynomial map $f^{+}:$ $A^{+}arrow B$ can be uniquely extended to a polynomial
map $f:Aarrow B$ .
(b.02) The composition of two polynomial maps is also a Polynomial map.

(b.03) Let $\tilde{A}$ be a free abelian group containing $A$ as a subgroup of finite index.
Then any polynomial map $f$ from $A$ has at most one extended polynomial map
to $\tilde{A}$ .
(b.04) Let $f$ : $Aarrow B$ be a mapping between finitely generated free abelian groups
and let $\tilde{B}$ be a free abelian group containing $B$ as a subgroup of finite index.
Then $f$ is polynomial if and only if $f$ is polynomial as a map from $A$ to $\tilde{B}$ .

We will apply these facts to construct some operations of Burnside rings.
The detail for polynomial maps is found in [Dr71].

Since the functors Ind, ${\rm Res}$ , Con, Orb and Inf have right adjoint functors,
they preserve coproducts, and so they induce additive homomorphisms ind,
$res$ , con, orb and inf between Burnside rings. Among them, the maps $res$ , inf
and inv are ring homomorphisms; besides con is a ring isomorphism. On the
other hand, the multiPlicative induction Jnd and the exPonential functor $(-)^{A}$

are not additive; but they are polynomial, and so they induce product preserv-
ing polynomial maps jnd and $(-)^{A}$ . Indeed, by the adjointness and the Mackey
formula, we have that for each subgroup $S$ of $G$ ,

$\#(Jnd_{H}^{G}(X))^{s}=\#Map_{G}(S\backslash G, Jnd_{H}^{G}(X)))=\#Map_{H}({\rm Res}_{H}(S\backslash G), X)$

$= \#Map_{H}(\prod_{g\in S\backslash G/H}(S^{g}\cap H)\backslash H, X)=\prod_{g\in S\backslash G/H}|X^{S^{g}\cap H}|$ ,

and so the value of $Jnd_{H}^{G}(X)$ at each subgroup $S$ is a polynomial of $[X](S^{g}\cap H)$ ,
$g\in S\backslash G/H$ ; and thus $[X]-[Jnd_{H}^{G}(X)]$ is a polynomial map from $A^{+}(H)$ to $A(G)$

which preserves multiplication; hence it can be uniquely extended to one from
$A(G)$ . For the details, see [Dr71] and [Di79, 5.13]. These maps, excepting
for orb, can be extended to the rings of super class functions. Hence we
obtained the maps as in the following figure.
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$\underline{ind}$ orb

$A(H) \frac{-res-}{jnd}A(G)\frac{-\inf-}{inv}A(G/N)$

$\downarrow\varphi$ $\downarrow\varphi$
$\downarrow\varphi$

ind

$\tilde{A}(H)-res$ – $\tilde{A}(G)arrow$ inf – $\tilde{A}(G/N)$ ,
$\overline{jnd}$ $\overline{inv}$

con: $A(H)arrow A(H^{g})$ , $\tilde{A}(H)arrow\tilde{A}(H^{g})$ ,

$(-)^{A}$ : $A(G)arrow A(G)$ , $\tilde{A}(G)arrow\tilde{A}(G)$ .

Next we list the values of images of these maps at subgroups. Let $x\in$

$A(H),$ $y\in A(G),$ $z\in A(G/N)$ ; and let $S\leqq G,$ $T\leqq H,$ $R/N\leqq G/N$. Then the follow-
ing hold:

(b.1) $ind_{H}^{G}(x)(S)=\frac{1}{|H|}\sum_{g\in G}x(S^{g})$ ,

where the summation is taken over elements $g$ such that $S^{g}\leqq H$ ;

(b.2) $res_{H}^{G}(y)(T)=y(T)$ ;
(b.3) $ind_{H}^{G}(x)(S)=\prod_{g\in S\backslash G/H}x(S^{g}\cap H)$ ;

(b.4) $\inf_{N}(z)(T)=y(T)$ ;
(b.5) $inv_{N}(y)(R/N)=y(R)$ ;
(b.6) con $g(x)(S^{g})=x(S)$ .

$c$ . Maps between unit groups of Burnside rings. Since $res$ , jnd, inf, inv,
con preserve multiplications in the Burnside rings (and in the rings of super
class functions), we obtain grouP homomorphisms as follows:

$A(H)^{*}jnd\underline{\underline{res}}A(G)^{*}A(G/N)^{*}inv\underline{\underline{\inf}}$

$\downarrow\varphi$
$\downarrow\varphi$ $\downarrow\varphi$

$\tilde{A}(H)^{*}\underline{\underline{res}}jnd\tilde{A}(G)^{*}\underline{\underline{\inf}}inv\tilde{A}(G/N)^{*}$ ,

con: $A(H)^{*}arrow A(H^{g})^{*}$ , $\tilde{A}(H)^{*}arrow\tilde{A}(H^{g})^{*}$ .
Finally the exponential operation (X, $A$ )$-X^{A}$ induces the map

$A(G)^{*}\cross A(G)arrow A(G)^{*};$ $(u, a)-u^{\alpha}$ (or $u\uparrow a$ )
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which makes $A(G)^{*}$ an $A(G)$-module. Similarly $\tilde{A}(G)^{*}=\{\pm\}^{c\iota eG)}$ , the unit group
of the ring of super class functions, is also an $A(G)$-module and the injection

$\varphi$ : $A(G)^{*}arrow\tilde{A}(G)^{*}=\{\pm 1\}^{Cl(G)}$

is an $A(G)$-homomorphism.

LEMMA 3.1. The assignments $H-A(H)^{*}$ and $H->\tilde{A}(H)^{*}$ together with jnd,
$res$ , con form $G$ -functors $A^{*}$ and $\tilde{A}^{*}$ , that is, for subgrouPs $H,$ $K,$ $L\leqq G$ and
elements $g,$ $g’\in G$ , the following hold:

(G.1) $jnd_{K}^{L}\circ jnd_{H}^{K}=jnd_{H}^{L}$ , $jnd_{H}^{H}=id$ if $H\leqq K\leqq L$ ;
(G.2) $res_{H}^{K}\circ res_{K}^{L}=res_{H}^{L}$ , $res_{H}^{H}=id$ if H$K\leqq L;

(G.3) con $g_{\circ con^{g}=con^{gg’}}^{l}$ $con_{H}^{h}=id$ if $h\in H$ ;
(G.4) con $g_{\circ jnd_{H}^{K}=jnd^{K^{g}}\circ con_{H}^{g}}$

con $g_{o}res_{H}^{K}=res_{H^{g}}\circ con_{H}^{g}$ if $H\leqq K$ ;
(G.5) (Mackey decomposition) If $H$, K$L, then

$res_{K}^{L}\circ jnd_{H}^{L}=\prod_{g\in H\backslash L/K}jnd^{K}\circ res_{H^{g}\cap K^{o}}con_{H}^{g}$ ,

where $g$ runs over a complete set of representatives of $H\backslash L/K$.
PROOF. It is well-known that the identities corresponding to (G. $1$ )$-(G.5)$

for functors Ind, ${\rm Res}$ , Con hold (for example, (a.ll) for Mackey decomposition).

Taking their right adjoints, we have ones for Jnd, ${\rm Res}$ , Con. Turning to
Burnside rings, we have (G. $1$ )$-(G.5)$ on unit groups. The identities for super
class function follow from the uniqueness of extensions of the polynomial
maps to super class functions. The lemma is proved.

LEMMA 3.2. The bilinear mappings

$A(H)^{*}\cross A(H)arrow A(H)^{*};$ $(u, a)-\geq u\uparrow a$ , $H\leqq G$ ,

form a Pairing $A^{*}\cross Aarrow A^{*}$ , that is, for H$K\leqq G, $g\in G,$ $u\in A(H)^{*},$ $v\in A(K)^{*}$ ,
$a\in A(H),$ $b\in A(K)$ , the following hold:

(P.1) $res_{H}(v\uparrow b)=res_{H}(v)\uparrow res_{H}(b)j$

(P.2) con $g(u\uparrow a)=con^{g}(u)\uparrow con^{g}(a)$ ;
(P.3) $jnd^{K}(u)\uparrow b=jnd^{K}(u\uparrow res_{H}(b))$ ;
(P.4) $v\uparrow ind^{K}(a)=jnd^{K}(res_{H}(v)\uparrow a)$ .
In Particular, for a fixed element $u$ of $A(G)^{*}$ , the family of homomorPhisms
(from additive grouPs to multiplicative groups)

$(u\uparrow)_{H}$ : $A(H)arrow A(H)^{*};$ $a-\geq(res_{H}u)\uparrow a$ , $H\leqq G$

becomes a morphism of the $G$ -functor $A$ to the $G$ -functor $A^{*}$ .
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PROOF. (P.1) and (P.2) are clear. We shall prove (P.3). We may assume
that $b=[B]$ for a finite $K$-set $B$ . We must show that (P.3) holds for all $u\in$

$A(H)$ . Since the both side of (P.3) are polynomial maps of $u$ which are the
unique extensions of polynomial maps from the semi-ring $A^{+}(H)$ of isomorphisms
of finite $H$-sets to $A(H)^{*}$ , we may further assume that $u=[U]$ for the finite
$H$-set. So it will suffice to show that there is a (natural) K-isomorphism:

$(*)$ $Jnd^{K}(U)\uparrow B\cong Jnd^{K}(U\uparrow{\rm Res}_{H}(B))$ .

But using the definition of adjoint functors and Frobenius reciprocity, we see
that for any $K$-set $Y$ , there is a natural isomorphism:

$Map_{K}(Y, Jnd^{K}(U)\uparrow B)\cong Map_{K}(Y, Jnd^{K}(U\uparrow{\rm Res}_{H}(B))$ .

Thus Yoneda’s lemma (or the injectivity of $\varphi$ in Lemma 2.1) implies the ex-
istence of the required isomorphism $(*)$ .

We add some useful formulas about maps between Burnside rings (and unit
groups). The proofs are omitted because they are easily proved by using prop-
erties of adjoint functors similarly as in Lemma 3.1.

LEMMA 3.3. Let $H$ be a subgroup of $G$ and $Na$ normal subgroup of G. Let
$a\in A(G),$ $b\in A(H),$ $a\in A(G/N),$ $u\in A(G)^{*},$ $v\in A(H)^{*},$ $u\in A(G/N)^{*}$ . Then the
following hold:
(1) $jnd^{G}\circ res_{H}(a)=a^{[H\backslash G]}$ ;
(2) $orb_{N^{Q}}\inf_{N}(a)=inv_{N^{\circ}}\inf_{N}(a)=a$ ;
(3) $\inf_{N}(\overline{u}\uparrow\overline{a})=\inf_{N}(\overline{u})\uparrow\inf_{N}(\overline{a})$ ;
(4) $inv_{N}(u\uparrow\inf_{N}(\overline{a}))=inv_{N}(u)\uparrow\overline{a}$ ;
(5) $inv_{N}(\inf_{N}(\overline{u})\uparrow a)=\overline{u}\uparrow orb_{N}(a)$ .

LEMMA 3.4. Let $N$ be a normal subgroup of $G$ and let $H$ be a subgroup of
$G$ containing N. Then the following hold:

(1) $orb_{N}^{G}\circ ind_{H}^{G}=ind_{H/N}^{G/N}\circ orb_{N}^{H}$ ;
(2) $orb_{N}^{H}\circ res_{H}^{G}=res_{H’ N}^{G/N}\circ orb_{N}^{G}$ ;
(3) $ind_{H}^{G}\circ\inf_{N}^{H}=\inf_{N}^{G}\circ ind_{H/N}^{G/N}$ ;
(4) $res_{H}^{G}\circ\inf_{N}^{G}=\inf_{N}^{H}\circ res_{H/N}^{G,N}$ ;
(5) $jnd_{H}^{G}\circ\inf_{N}^{H}=\inf_{N}^{G}\circ jnd_{H’ N}^{G(N}$ ;
(6) inv$H_{ores_{H}^{c}}N=res_{H’ N}^{G/N}\circ inv_{N}^{G}$ ;
(7) $inv_{N}^{G}\circ jnd_{H}^{G}=jnd_{H’ N}^{G/N}\circ inv_{N}^{H}$ .
(Here orbGN, $infGN,$ $invGN$ are the maps between $A(G)$ and $A(G/N).$ )

$d$ . tom Dieck homomorphisms. Finally we state functorial properties of
the tom Dieck homomorphism. We denote by $\overline{R}(G)$ the ring of real valued
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virtual characters of $G$ as in Section 2. Similarly as the case of Burnside rings,
there exist various maps between the ring of real valued character:

ind orb

$\overline{R}(H)arrow res-\overline{R}(G)arrow\inf-\overline{R}(G/N)$ ,
$\overline{jnd}$ $\overline{inv}$

con: $\overline{R}(H)$ $\overline{R}(H^{g})$ .

(Here, the multiplicative induction jnd is not additive in general. Furthermore,
it follows from Maschke’s theorem that orb $=inv.$ ) Thus we again have a G-
functor $\overline{R}:H-,\overline{R}(H)$ together with ind, $res$ and con.

For a finite $G$ -set $X$, let $CX$ be the permutation $CG$ -module and let $\pi_{X}$ be
the character afforded by $CX$, so that $\pi_{X}(g)=|X^{\langle g\rangle}|$ . The assignment $X-\pi_{X}$

gives a ring homomorphism

$char_{G}$ : $A(G)arrow\overline{R}(G)$ ; $[X]-\geq\pi_{X}$ .

This map is commute with ind, $res$ , con, jnd, inf, orb. In particular, we have
a morphism of $G$ -functors char: $Aarrow\overline{R}$ .

LEMMA 3.5. The tom Dieck homomorphisms form a morphism

$u=(u_{H})$ : $\overline{R}arrow A^{*}$

of $G$ -functors, that is, $u_{H}’ s$ commute with induction, restriction and $con_{J}$ ugation.
They commute also with $\inf$ and inv.

PROOF. We only check that

$u_{G}\circ ind_{H}^{G}=jnd_{H}^{G}\circ u_{H}$ .

The remainder is left for readers. We use the notation
$\theta^{G}$ $:=ind_{H}^{G}(\theta)$ , $\chi_{H}$ $:=res_{H}^{G}(\chi)$ for $\theta\in R(H),$ $x\in R(G)$ .

For a real valued virtual character $\theta$ of $H$ and a subgroup $S$ of $G$ , we have
that

$u_{G}(ind_{H}^{G}(\theta))(S)=sgn\langle\theta_{s}^{G}, 1_{S}\rangle$

$=sgn\langle\theta, 1_{SH}^{G}\rangle$ (Frobenius)

$= sgn\langle\theta,\sum_{g\in S\backslash G/H}1_{s^{g}\cap H}^{H}\rangle$ (Mackey)

$= \prod_{g\in S\backslash G/H}sgn\langle\theta_{S^{\rho}\cap H}, 1_{s^{g}\cap H}\rangle$ (Frobenius)

$=_{g\in}s\backslash G_{/H}^{u_{H}(\theta)(S^{g}\cap H)}$

$=jnd_{H}^{G}(u_{H}(\theta))(S)$ ,
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as required.

LEMMA 3.6. The following equality for maps holds:

$(-1)^{(-)}=u_{G}\circ char_{G}$ : $A(G)arrow\overline{R}(G)arrow A(G)^{*}$ .
PROOF. Let $X$ be a finite $G$ -set and put $\pi:=\pi_{X}$ . Then we have that for

any subgroup $S$ of $G$ ,

$u_{G^{o}}char_{G}([X])(S)=sgn\langle\pi_{S}, 1_{S}\rangle=(-1)^{|X/s_{\mathfrak{l}}}=(-1)^{[X]}(S)$

by Lemma 3.3(5). Thus the result follows from Lemma 2.1.

4. A transfer theorem for the unit groups.

$a$ . Idempotents of Burnside rings. We begin by arguing general theory
about the action of Burnside rings on $G$ -functors ([Yo80], [Yo83]).

Let $P$ be a Prime. We Put

$Z_{(p)}:=\{a/b\in Q| a\in Z, b\in Z-pZ\}$ , $A(G)_{(p)}$ $:=Z_{(p)}\otimes_{Z}A(G)$ .

For a finite group $Q$ , the subgroup generated by all $p’$ -elements of $Q$ is denoted
by $O^{p}(Q)$ . A finite group $Q$ is called p-perfect if $O^{p}(Q)=Q$ , that is, if $Q$ has
no normal subgroup of index $p$ . Let $P_{p}(G)\subseteqq Cl(G)$ denote the classes of all P-
perfect subgroups.

There is a one-to-one correspondence between primitive idempotents of
$A(G)_{(p)}$ and $P_{p}(G)$ (cf. [Di79, 1.4]). Let $e^{p_{G.Q}}$ be the primitive idempotent of
$A(G)_{(p)}$ corresponding to a $P$ -perfect subgroup $Q$ of $G$ . Then as a super class
function, it satisfies the following:

(a.1) $e^{p_{G,Q}}(S)=\{\begin{array}{l}1 ifO^{p}(S)=_{G}Q,0\end{array}$

otherwise.
The presentation of $e^{p_{G.Q}}$ by the standard basis is obtained by the Mobius in-
version formula (cf. [Yo83]). Let $\mu$ be the M\"obius function of the subgroup
lattice of $G$ , that is, for $H,$ $K\leqq G$ ,

$\mu(H, H)=1$ ; $\mu(H, K)=0$ unless H$K;

(a.2) $\sum_{A\leqq K}\mu(H, A)=\sum_{A\geqq H}\mu(A, K)=\{01$
if $H=_{G}K$ ,

otherwise.
Define the function $\delta_{G}$ and $\lambda_{G,Q}$ by

(a.3) $\delta_{G}(H, K)=\{01 ^{if} H=_{G}K$

otherwise;

(a.4) $\lambda_{G,Q}(D)=\frac{1}{|N_{G}(D)|}\sum_{K\leqq G}\mu(D, K)\delta_{G}(O^{p}(K), Q)$ .
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Then we obtain the following idempotent formula:

(a.5) $e^{p_{G.Q}}= \sum_{(D)\in Cl(G)}\lambda_{G,Q}(D)[D\backslash G]$ , $(Q)\in P_{p}(G)$ .

In particular, the coefficient $\lambda_{G.Q}(D)$ is a $P$ -local integer.
For a subgroup $H$ of $G$ , we have that

(a.6) $res_{H}^{G}(e^{p_{G.Q}})=\sum_{(R)\in P_{p^{(H)}}}\delta_{G}(Q, R)e_{H.R}^{p}$ .

Let $P/Q$ be a Sylow $P$ -subgroup of $WQ:=N_{G}(Q)/Q$ . Then the idempotent
formula gives the following:

(a.7) $e^{p_{G,Q}}\in ind_{P}^{G}(A(P)_{(p)})$ .
(a.8) $res_{P}^{G}(e^{p_{G.Q}})=e^{p_{P,Q}}$ .
(a.9) $res_{H}^{G}(e^{p_{G,Q}})=0$ unless $Q\leqq {}_{G}H$ .

NOW, let ($a$ , ind, $res$ , con) be a $G$-functor over $Z_{(p)}$ , so that $a:H->\alpha(H)$

assigns each subgroup $H$ of $G$ to a module $a(H)$ and the families of linear
maps $ind_{H}^{K},$ $res_{H}^{K},$ $con_{H}^{g}$ satisfy the similar identities (G. $1$ )$-(G.5)$ as in Lemma 3.1.
Then the Burnside ring $A(H)_{(p)}$ acts on the component $a(H)$ by

(a.10) $[D\backslash H]\cdot x$ $:=ind_{D}^{H}res_{D}^{H}(x)$ , $x\in a(H)$ , $D\leqq H\leqq G$ .

Furthermore, the $G$ -functor $\alpha$ is an $A$-module”, that is, the following hold:

(a.ll) $res_{H}^{K}(by)=res_{H}^{K}(b)res_{H}^{K}(y)$ ,
(a.12) $con_{H}^{g}(ax)=con_{H}^{g}(a)con_{H}^{g}(x)$ ,

(a.13) $ind_{H}^{K}(a)y=ind_{H}^{K}(ares_{H}^{K}(y))$ ,
(a.14) $bind_{H}^{K}(x)=ind_{H}^{K}(res_{H}^{K}(b)x)$ ,

where $H\leqq K\leqq G,$ $g\in G,$ $a\in A(H)_{(p)},$ $b\in A(K)_{(p)},$ $x\in a(H),$ $y\in\alpha(K)$ . The last
two identities are the Frobenius formulas.

Associated the orthogonal decomposition $1= \sum e^{p_{G.Q}}$ of 1, there is a direct
decomposition

(a.15) $\alpha(G)=\bigoplus_{(Q)}e^{p_{G,Q}}\alpha(G)$ ,

where the summation are taken over $P_{p}(G)$ , the set of conjugacy classes of p-
perfect subgroups. So we are interested in the submodule $e^{p_{G,Q}}\alpha(G)$ which is
the module over the local ring $e^{p_{G.Q}}A(G)_{(p)}$ .

$b$ . Stable element theorem.

LEMMA 4.1 (Stable element theorem). Let ( $a$ , ind, $res$ , con) be a G-functor
over $Z_{(p)}$ . Let $Q$ be a $p$-perfect subgroup of $G$ and let $P$ be a subgroup of $N$

$:=N_{G}(Q)$ such that $P/Q$ is a Sylow $p$-subgroup. Then the map $res_{P}^{G}$ induces an
isomorphism
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$e^{p_{G,Q}}a(G)\cong e^{p_{P.Q}}a(P)^{G}=e^{p_{G.Q}}a(P)\cap\alpha(P)^{G}$ ,

where $a(P)^{G}$ is the set of elements $x$ of $a(P)$ with

$res_{pg_{\cap P}}conl(x)=res_{P^{g}\cap P}(x)$ for all $g\in G$ .
PROOF. Define two maps as follows:

$i$ : $e_{P,Q}^{p}a(P)^{G}arrow e^{p_{G,Q}}\alpha(G)$ ; $x-\geq ind_{P}^{G}(x)$ ,

$r$ : $e^{p_{G,Q}}a(G)arrow e_{P,Q}^{p}a(P)^{G}$ ; $y-\geq res_{P}^{G}(y)$ .
By (a.8) and Frobenius reciprocity, $i$ and $r$ are well-defined and $e_{P,Q}^{p}\in A(P)^{G}$ .
Thus it remains only to show that $i,$ $r$ are isomorphisms. Using Mackey
decomposition and Frobenius reciprocity, we have that

$i\circ r=[P\backslash G]$ id, $r\circ i=res_{P}^{G}([P\backslash G])id$ .
Thus in order to prove that $i$ and $r$ are both isomorphisms, it will suffice to
show that $[P\backslash G]e^{p_{G,Q}}$ has an inverse in $ePG,$ $QA(G)_{(p)}$ . Indeed if this claim is
true, then $res_{P}^{G}([P\backslash G])e^{p_{P.Q}}$ is also a unit of $e^{p_{P.Q}}A(P)_{(p)}$ , and so not only $i\circ r$

but also $r\circ i$ are isomorphism. By Lemma 2.1 and $(a.1)$ , there is a linear map
with finite cokernel:

$\varphi’$ $:=(\varphi_{S})$ : $e^{p_{G,Q}}A(G)_{(p)} arrow\prod_{(S)}\prime Z_{(p)}$ ,

where the product are taken over classes $(S)\in Cl(G)$ with $Q\leqq S\leqq P$. Let $S$ be
such a subgroup. Then

$\varphi’([P\backslash G]e^{p_{G,Q}})=|(P\backslash G)^{S}|=|(P\backslash N)^{s}|=|P\backslash N|$ ii $0$ $(mod p)$ .

Thus the image of $[P\backslash G]e^{p_{G.Q}}$ by $\varphi’$ is invertible. Since $\varphi’$ gives an integral
extension of rings, $[P\backslash G]e^{p_{G,Q}}$ is also invertible. The lemma is proved.

REMARK. Since $e^{p_{G.Q}}$ is contained in the image of $ind_{P}^{G}$ : $A(P)_{(p)}arrow A(G)_{(p)}$

(see $(a.7)$ ), the $G$ -functor $H-res_{H}^{G}(e^{p_{G.Q}})a(H)$ is $P$-projective (cf. Green [Gr71],

[Di79, Section 6.1] $)$ . So this lemma follows also from the general theory of
$G$-functors and Mackey functors. The stable element theorem for cohomological
$G$-functors which is an analogue in group cohomology theory was proved in
[Yo80, Theorem 3.2]. The present lemma can be immediately proved from
[Sa82, Lemma 4.3]. The Mackey functor version of the stable element theorem
is found in [Di79, Proposition 6.1.6].

COROLLARY 4.2. Under the same assumption as in Lemma 4.1, there is an
isomorphism

$e^{p_{G.Q}}a(G)\cong e^{p_{N.Q}}a(N)$ .

PROOF. Take an element $x$ of $e_{P,Q}^{p}\alpha(P)^{N}$ , so that $x=e_{P.Q}^{p}x\in a(P)^{N}$ . Let
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$g$ be any element of $G$ . Then

$(*)$ $res_{P^{g}\cap P}con_{P}^{g}(x)=res_{P^{g}\cap P}^{P}(x)$ .
Indeed, if $g$ is in $N$, then this holds clearly. If $g$ is not in $N$, the $P^{g}\cap P$ con-
tains no $G$ -conjugate of $Q$ because $O^{p}(P)=Q$ . Thus by (a.9) both sides of $(*)$

vanish. Hence $(*)$ holds for any element $g$ of $G$ . This means that

$e^{p_{P,Q}}a(P)^{G}=e^{p_{P.Q}}\alpha(P)^{N}$ .
NOW the statement follows immediately from Lemma 4.1.

REMARK. (1) This useful isomorphism is, as shown in Araki’s paper
[Ar82], given by the composition:

$e^{p_{G.Q}}a(G)arrow a(G)arrow a(N)arrow e^{p_{N.Q}}a(G)inc1resproj$ .
And its inverse is

incl ind proj
$e^{p_{N.Q}}a(N)arrow\alpha(N)arrow\alpha(G)arrow e^{p_{G.Q}}a(G)$ .

(2) In his unpublished work (written in Japanese), T. Yoshida had obtained
an extension of the isomorphism in this corollary to an equivalence of the re-
presentation categories of $G$ -functors. Furthermore, D. Tambara had also written
this isomorphism in his private letter to the author.

$c$ . The proof of Theorem B. Now we return to the unit groups of the
Burnside rings of finite groups. By Lemma 3.1, ( $A^{*}$ , jnd, $res$ , con) is a G-
functor. The $A(G)$-module structure (a.10) on $A(G)^{*}$ induced by this G-functor
is coincident with one defined by the exponential map $(u, a)arrow u\uparrow a$ in Section
3. $c$ because $jnd_{H}^{G}\circ res_{H}^{G}=(-1)^{[H\backslash G]}$ . Since $u^{2}=1$ for any element $u$ of $A(G)^{*}$ , the
action of $A(G)$ on $A(G)^{*}$ can be extended to $A(G)_{(2)}$ , for which the annihilator
contains $2A(G)_{(2)}$ .

THEOREM B. (i) There is a decomPosition into a direct Product
$A(G)^{*}= \prod_{(Q)}A(G)^{*}\uparrow e_{G.Q}^{2}$ ,

where $(Q)$ runs over $P(G)$ , the classes of 2-perfect subgroups.
(ii) Let $Q$ be a 2-perfect subgroup of $G$ and let $P$ be a subgroup of $N:=$

$N_{G}(Q)$ such that $P/Q$ is a Sylow 2-subgroup of $N/Q$ . Then there are group
homomorphisms induced by restriction maps:

$A(G)^{*}\uparrow e_{G,Q}^{2}\cong A(N)^{*}\uparrow e_{N.Q}^{2}\cong A(P)^{*N}\uparrow e_{P.Q}^{2}=A(P)^{*N}\cap(A(P)^{*}\uparrow e_{G,Q}^{2})$ .

PROOF. This follows directly from applying Lemma 4.1 and Corollary 4.2
to the $G$ -functor ( $A^{*}$ , jnd, $res$ , con) over $Z_{(2)}$ .
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5. Another transfer theorem.

In this section, we prove Theorem $C$ which is a unit group version of
Araki’s transfer theorem ([Ar82, Corollary $B]$ ). It is considered as an analogue
of the excision theorem for relative Grothendieck rings of finite grouPs. To
prove this theorem, we need to study further the value of units at subgroups.

$a$ . Value of units.

LEMMA 5.1 ($[MM83$ , Lemma 2.8]). Let $u$ be an element of the unit grouP
$A(G)^{*}$ . Let $T$ be a subgroup of $G$ and $S$ a normal subgroup of $T$ of odd index.
Then $u(S)=u(T)$ .

PROOF. By the Solvability of Groups of Odd Order, we may assume that
$W:=T/S$ is a cyclic group of odd order. Then by Lemma 2.1, we have that

$\sum_{tS\in W}u(\langle t\rangle S)$ a $0$ $(mod |W|)$ .

But since $u(\langle t\rangle S)=\pm 1$ and $|W|$ is an odd number, this congruence derives that
$u(\langle t\rangle S)=u(S)$ for every $tS\in W$. Hence $u(T)=u(S)$ . The lemma is proved.

For a 2-perfect subgroup $Q$ of $G$ and subgroups $S,$ $T$ of $G$ , we define a 2-
local integer $\nu_{Q}(S;T)$ by

$(a.1)$ $[S \backslash G]e_{G,Q}^{2}=\sum_{(T)\in Cl(G)}\nu_{Q}(S ; T)[T\backslash G]$ .

The value of $\nu_{Q}(S;T)$ is explicitly given by

$(a.2)$ $\nu_{Q}(S ; T)=\frac{|T|}{|S|}\sum_{D.K\leqq S}\mu(D, K)\delta_{G}(D, T)\delta_{G}(O^{2}(T), Q)$ ,

where $\mu$ is the M\"obius function of the subgroup lattice of $G$ and $\delta_{G}$ is the
function defined in (a.3) is Section 4. This fact is proved by using the idem-
potent formula or by comparing the value of both sides of (a.1) at each sub-
group. But because we do not need (a.2) in this paper, the detail of its proof
is omitted.

LEMMA 5.2. Let $Q$ be a 2-perfect subgroup of $G$ .
(i) If $u$ is an element of $A(G)^{*}$ , then

$(u \uparrow e\not\in_{Q})(S)=\prod_{(T)\in Cl(G)}u(T)^{\nu_{Q^{(S;T)}}}$ , $S\leqq G$ .

(ii) Let $u$ be an element of $A(G)^{*}\uparrow e_{G,Q}^{2}$ .
(a) If $u(S)=-1$ , then $Q\leqq_{G}S$ ;
(b) If $u\neq 1$ , then $u(S)=-1$ for a subgroup $S$ of $G$ such that $O^{2}(S)=Q$ .

PROOF. Put $e:=e_{G.Q}^{2}$ and $v(S;T):=\nu_{Q}(S;T)$ .
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$( i )$ Note that if $y$ is an element of $A(G)$ , then $y(S)=(y\uparrow[S\backslash G])(G)$ . Thus

$(uTe)(S)=((u\uparrow e)\uparrow[S\backslash G])(G)=(u\uparrow(e[S\backslash G]))(G)$

$= \prod_{c\tau)}(u\uparrow[T\backslash G])(G)^{\nu(S;T)}=\prod_{(T)}u(T)^{\nu(S;T)}$ ,

proving(i).
(ii) We first show the following general results:

$(*)$ $\nu(S;T)=0$ unless $T\leqq_{G}S$ ;

$(**)$ $\nu(S;S)=\{01$
if $O^{2}(S)=_{G}Q$

otherwise.

In general, the product $[S\backslash G]\cdot[R\backslash G]$ is a sum of elements of the form
$[S\cap R^{g}\backslash G]$ . Thus if an element $[T\backslash G]$ appears in $[S\backslash G]\cdot e$ , then $T\leqq_{G}S$ .
Hence $(*)$ holds. Next we consider the value of (a.1) at $S$ . If $T\leqq_{G}S$ , then

$[T\backslash G](S)=|(T\backslash G)^{S}|=\{0|WS|$
if $T=_{G}S$

otherwise.
Thus by (a.1) and $(*)$ , we have that

$[S\backslash G](S)\cdot e(S)=v(S;S)[S\backslash G](S)$ ,

and so by (a.1) in Section 4,

$\nu(S;S)=e^{2},Q(S)=\{01$
if $O^{2}(S)=_{G}Q$

otherwise,

proving $(**)$ . Now, to prove (a) and (b), let $S$ be a minimal subgroup of $G$

such that $u(S)=-1$ . Since $u\uparrow e=u,$ $(i)$ and the minimality of $S$ yield that
$u(S)_{-}u(S)^{\nu(S:S)}=-1$ , and so $\nu(S;S)$ is odd. Thus by $(**)$ , we conclude that
$O^{2}(S)=_{G}Q$ . The lemma is proved.

$b$ . Proof of Theorem C. In this subsection, $N$ denotes a finite group with
2-perfect normal subgroup $Q$ . We put $W:=N/Q$ . We denote by $O^{2’}(S)$ the
smallest subgroup of a finite group $S$ such that $S/O^{2’}(S)$ is a (solvable) group
of odd order.

PROPOSITION 5.3. The homomorphism $urightarrow inv_{Q}(u)$ gives an $isomorphism^{-}" of$

$A(N)^{*}\uparrow e_{N,Q}^{2}$ onto the subgroup

{ $\tilde{v}\in A(W)^{*}\uparrow e_{W.1}^{2}|$ $\tilde{v}(S/Q)=1$ unless Q;;$O’’ $(S)$ }.

The inverse image $v$ of V is given by

$v(S)=\{\tilde{v}(S/Q)1$
if $Q\leqq S$

otherwise.
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PROOF. We put

$e$ $:-e_{N.Q}^{2}\in A(N)_{(2)}$ and $\overline{e}$ $:=e_{W.1}^{2}\in A(W)_{(2)}$ .
Comparing the value at each subgroup, we have that

$inv_{Q}(e)=\overline{e}$ and $e= \inf_{Q}(\overline{e})\cdot e$ .
We put

$B:=$ { $\overline{v}\in A(W)^{*}\uparrow\overline{e}|\overline{v}(S/Q)=1$ unless $Q\leqq 0^{2’}(S)$ }.

We must show that

(1) $i$ : $A(N)^{*}\uparrow earrow B$ ; $u-inv_{Q}(u)$

is an isomorphism. We begin by proving that this map is well-defined. Let
$u=u\uparrow e$ be any element of $A(N)^{*}\uparrow e$ . Then we have that

$inv(u)\uparrow\overline{e}=inv(u\uparrow\inf(\overline{e}))=inv((u\uparrow e)\uparrow\inf(\overline{e}))=inv(u\uparrow(e\cdot\inf(\overline{e})))$

$=inv(u\uparrow e)=inv(u)$ ,

and so $inv(u)\in A(W)^{*}\uparrow\overline{e}$ . In order to prove that $inv(u)$ is in $B$ , let $S$ be a
subgroup of $N$ such that $S$ contains $Q$ but $O^{2’}(S)$ does not contain $Q$ . Then by
Lemma 5.2(ii)(b), $u(O^{2’}(S))=1$ . Thus by Lemma 5. $I$ , we have that

$u(S)=u(O^{2’}(S))=1$ .
This means that $inv(u)$ is contained in $B$ for each $u\in A(N)^{*}\uparrow e$ . Hence the
map $i$ defined in (1) is well-defined.

We will show that $i$ is isomorphism. First, $i$ is injective. In fact, suppose
$i(u)=1$ and $S\leqq N$. Then $u(S)=(u)(S)=1$ if $S$ contains $Q$ ; and by Lemma
5.2(ii)(a), $u(S)=1$ if $S$ does not contain $Q$ . Thus $u=1$ , as required. Now it
remains only to prove the surjectivity. Let $\overline{u}$ be an element of $B$ , so that
ti $\uparrow\overline{e}=\overline{u}$ and $\overline{u}(S/Q)=1$ if $O^{2’}(S)$ does not contain $Q$ . Define a super class
function $u$ of $N$ by

(2) $u(S)=\{\overline{1u}(S/Q) if Q\leqq S$

otherwise.

Since $inv_{Q}(u)=\overline{u}$ , it will suffice to show that $u$ is contained in $A(N)^{*}\uparrow e$ . So
we have to show the following:

(3) $u$ is an element of $A(N)^{*};$

(4) $u\uparrow e=u$ .
We prove (3). Let $H$ be a subgroup of $N$ and put $WH:=N_{N}(H)/H$. To

apply Lemma 2.1, we need to show that
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(5) $\sum_{gH\in WH}u(\langle g\rangle H)\equiv 0$ $(mod |WH|)$ .

When $H$ contains $Q$ , this follows from the definition of $u$ and Lemma 2.1 for
$\overline{u}\in A(W)$ . When $H$ does not contain $Q$ , we have that $O^{2’}(\langle g\rangle H)$ also does not
contain $Q$ for every $gH\in WH$ (because otherwise $Q=O^{2}(Q)\leqq 0^{2}(O^{2}(\langle g\rangle H))\leqq H$,
a contradiction), and so each term of (5) equals 1, whence (5) again holds.
Since the value of $u$ at any subgroup is $\pm 1$ , we conclude that $u$ is in $A(N)^{*}$ ,
proving (3).

Next we prove(4). We have to show the following:

(6) $(u\uparrow e)(S)=u(S)$ for any $S\leqq N$ .
If $S$ does not contain $Q$ , then the both sides of (6) equal to 1 by the definition
of $u$ and Lemma 5.2(ii)(a). So assume that $S$ contains $Q$ . Put $\overline{S}:=S/Q$ . Then
by Lemma 5.2(i), we have that

$(u \uparrow e)(S)=\prod_{(T)\in Cl(H)}u(T)^{\nu(S;T)}=\prod_{(T/Q)\in Cl(W)}\overline{u}(T/Q)^{\nu(S_{i}T)}$ ,

where $v(S;T)$ is, as before, defined by

$e \cdot[S\backslash N]=\sum_{(T)\in Cl(N)}\nu(S;T)[T\backslash N]$ .

On the other hand, since $\overline{u}\uparrow\overline{e}=\overline{u}$ , we have that

$u(S)= \overline{u}(\overline{S})=\prod_{(\overline{T})\in Cl(W)}\overline{u}(\overline{T})^{\overline{v}(\overline{S};T)}-$ ,

where $\overline{\nu}(\overline{S};\overline{T})$ is defined by

$\overline{e}\cdot[\overline{S}\backslash W]=-\sum_{(T)\in Cl(W)}\overline{\nu}(\overline{S};\overline{T})[\overline{T}\backslash W]$ .

Since $\overline{e}=inv_{Q}(e)$ and $inv_{Q}([T\backslash N])=[\overline{T}\backslash W]$ if $Q\leqq N$ and $inv_{Q}([T\backslash N])=0$ other-
wise, we have that

$[ \overline{S}\backslash W]\cdot\overline{e}=inv_{Q}([S\backslash W]\cdot e)=\sum_{(T)}\nu(S;T)inv_{Q}([T\backslash N])$

$= \sum_{(T/Q)}v(S;T)[(T/Q)\backslash W]$ ,

and so $\nu(\overline{S};T/Q)=\nu(S;T)$ . Thus (6) holds. The proof of the proposition is
completed.

THEOREM C. Let $N$ be a normal subgroup with 2-perfect normal subgroup
Q. Put $W:=N/Q$ . Let $\overline{P}=P/Q$ be a Sylow 2-subgroup of W. Then $A(N)^{*}\uparrow$

$e_{N.Q}^{2}$ is isomorphic to the subgroup

{ $\overline{v}\in A(\overline{P})^{*W}|\overline{v}(S/Q)=1$ if $S\neq 0^{2’}(S)$ }.

PROOF. First by Theorem $B$ , we have an isomorphism

$A(N)^{*}\uparrow e_{P,Q}^{2}\cong(A(P)^{*}\uparrow e_{P.Q}^{2})\cap A(P)^{*N}=:C$ .
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Note that $e \frac{2}{P}=1$ and that for a 2-subgroup $S/Q$ of $W$,

$Q\leqq 0^{2’}(S)\Leftrightarrow S=O^{2’}(S)$ .

Thus applying Proposition 5.3 to $P$, we have that

$A(P)^{*}\uparrow e_{P.Q}^{2}\cong$ { $\overline{v}\in A(\overline{P})|\overline{v}(S/Q)=1$ if $O^{2’}(S)\neq S$ } $=:B$

by the map $v \frac{\rangle}{}inv_{Q}(v)$ . So we need to show that $inv_{Q}$ maps $C$ onto $\overline{B}\cap A(\overline{P})^{*W}$ .
Since $inv_{Q}$ commutes with restriction and conjugation, we have that $inv_{Q}(C)$ is
contained in $A(\overline{P})^{*W}$ . Conversely let $\overline{v}$ be any element of $\overline{B}\cap A(\overline{P})^{*W}$ . Then
the inverse image $v$ of $\overline{v}$ in $A(P)^{*}\uparrow e_{P.Q}^{2}$ is given by

$v(S)=\{\overline{v}(S/Q)1$
if $Q\leqq S$ ,

otherwise.

It is easily checked that $v$ is contained in $A(P)^{N}$ . Thus $inv_{Q}$ gives a surjection
of $C$ to $\overline{B}\cap A(\overline{P})^{*W}$ . The theorem is proved.

COROLLARY Cl. Let $N$ be a finite group with 2-perfect normal subgroup $Q$ .
Let $\Psi(Q)$ denote the intersection of all normal subgroups of $Q$ of prime index.
Put $\hat{N}:=N/\Psi(Q)$ and $\tilde{Q}:=Q/\Psi(Q)$ . Then there is an isomorphism:

$A(N)^{*}\uparrow e_{N,Q}^{2}\cong A(\tilde{N})^{*}\uparrow e_{\overline{N}.\overline{Q}}^{2}$ .

PROOF. By Theorem $C$ , we have that the group on the left side of the
statement is isomorphic to

{ $\overline{v}\in A(\overline{P})^{*W}|\overline{v}(S/Q)=1$ if $O^{2’}(S)\neq S$ } ,

where $\overline{P}:=P/Q$ is a Sylow 2-subgroup of $W:=N/Q$ . On the other hand, the
right side is isomorphic to

{ $\overline{v}\in A(\overline{P})^{*W}|\overline{v}(S/Q)=1$ if $O^{2’}(\tilde{S})\neq\tilde{S}$ } ,

where $\tilde{S}:=S/\Psi(Q)$ for $S\leqq P$. Thus in order to finish the proof, we must show
that for any 2-subgroup $S/Q$ ,

$O^{2’}(S)=S$ if and only if $O^{2’}(\tilde{S})=\tilde{S}$ .
But this is clear from the Solvability of Groups of Odd Order.

6. Additional results on unit groups.

In this section, we add some miscellaneous algebraic results which are not
found or not stated clearly in five papers: Dress [Dr71], tom Dieck [Di79],

Matsuda [Ma82], [Ma86] and Matsuda-Miyata [MM83]. Many examples about
unit groups are found in Matsuda’s papers.
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$a$ . Character rings. Let $R_{Q}(G)$ be the subring of the character ring $R(G)$

generated by the characters afforded by $QG$-modules. Of course we sometimes
regard it as the Grothendieck ring of $QG$-modules. For any finite $G$-set $X$, let
$\pi_{X}$ be the permutation character of $G$ given by $X$, so that $\pi_{X}(g)$ is the number
of fixed points by $g$ . Thus we have a ring homomorphism

$char_{G}$ : $A(G)arrow R_{Q}(G)$ ; $[X]-\pi_{X}$ .
See Section 3. $d$ . For an element $x$ of $A(G)$ which we view as a super class
function, we have that

$char_{G}(x)(g)=x(\langle g\rangle)$ , $g\in G$ .
Let $G^{2}$ be the subgroups of $G$ generated by $g^{2}$ for all $g\in G$ , so that $G/G^{2}$ is an
elementary abelian 2-group, and let $\hat{G}_{2}$ be the character group of $G/G^{2}$ .

LEMMA 6.1. The map $char_{G}$ induces a group homomorphism

char: : $A(G)^{*}arrow R_{Q}(G)^{*}=\{\pm 1\}\cross\hat{G}_{2}$ .
In Particular, if $u$ is an element of $A(G)^{*}$ , then $u(1)\cdot char_{G}(u)$ is a linear character
of $G$ .

PROOF. Since $char_{G}$ is a ring homomorphism, it maps units to units. If $\lambda$

is a unit of $R_{Q}(G)$ , then its value is always $\pm 1$ , and so by the orthogonal
relation, $\lambda$ is in $\{\pm 1\}\cross\hat{G}_{2}$ .

COROLLARY 6.2 (cf. [Yo78, Lemma 5.2]). Let $\chi$ be a real valued virtual
character and let $C$ be a cyclic subgroup of $G^{2}$ . Then

$\chi(1)\equiv\langle\chi_{c}1_{c}\rangle$ $(mod 2)$ .
PROOF. Let $u_{G}$ : $\overline{R}(G)arrow A(G)^{*}$ be the tom Dieck homomorphism. Then

$\lambda:=u_{G}(\chi)(1)\cdot u_{G}(\chi)$ is a linear character and for a generator $g$ of $C$, we have that

$1=\lambda(g)=sgn\chi(1)\cdot sgn\langle\chi_{c}1_{c}\rangle$ ,

because $g\in G^{2}\leqq Ker\lambda$ .

Let $H$ be a subgroup of $G$ . The multiplicative (tensor) induction (cf. [CR81,
Section 13]) defines a non-additive but multiplicative and polynomial map

$jnd_{H}^{G}$ : $R(H)arrow R(G)$ .
If $\theta$ is a virtual character of $H$ and $g$ is an element of $G$ , then

$jnd_{H}^{G}(\theta)(g)=\prod_{t\in H\backslash G/\langle g\rangle}\theta(tg^{r(l)}t^{-1})$ ,

where $r(t):=|\langle g\rangle:H^{t}\cap\langle g\rangle|$ . The multiplicative induction $jnd_{H}^{G}$ on the group
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of linear characters of $H$ is the dual of the group-theoretic transfer map

$V_{G.H}$ : $G/[G, G]arrow H/[H, H]$ .

This follows from [Go68, Theorem 7.3.3]. There is an analogue of Mackey
decomposition for multiplicative induction and group theoretic transfer (cf.

[CR81, Section 13, Exercise 1]; [Yo78] $)$ . Furthermore, we have that

$jnd_{H}^{G}(-1_{G})(g)=(-1)^{|H\backslash G/\langle g\rangle|}$ .
The assignments $H-,R(H)^{*},$ $R_{Q}(H)^{*},\hat{H}_{2}$ together with multiplicative induc-

tion, restriction and conjugation form G-functors.

LEMMA 6.3. The maps $char_{H}^{*}$ : $A(H)^{*}arrow R_{Q}(H)^{*}$ commute with jnd, $res$ , con.
Thus they form a morphism between G-functors.

PROOF. Direct verification.

LEMMA 6.4. The composition

$\overline{R}(G)arrow A(G)^{*}u_{G}-\{\pm 1\}\cross\hat{G}_{2}arrow\hat{G}_{2}$ ,
$char_{G}^{*}$ proj

where $u_{G}$ is the tom Dieck homomorphism from the ring of real valued characters,
is equal to the determinant maP $det:x-\det\chi$ .

PROOF. Let $\chi$ be a real valued character of $G$ . Then for any element $g$

of $G$ ,

$proj\circ char5\circ u_{G}(\chi)(g)=sgn\chi(1)\cdot sgn\langle\chi_{\langle g\rangle}1_{\langle g\rangle}\rangle$ .

By the way simllar as in the proof of Theorem $A$ , we can easily prove that
this is equal to $(\det x)(g)$ .

REMARK. If we adopt tom Dieck’s definition of the Burnside ring, we
interpret this lemma as follows. Let $V$ be an orthogonal $RG$-module of di-
mensional $n$ and $SV$ the unit sphere of $V$. Then $u_{G}([V])$ is represented by
$1-[SV]\in A(G)$ . See [Di79, Proposition 5.5.9]. Furthermore $char_{G}$ : $A(G)arrow$

$R_{Q}(G)$ is given by the equivariant Euler characteristic

$char_{G}$ : $[X]-\geq i\geqq 0(-1)^{i}[H^{i}(X;Q)]\in R_{Q}(G)$ .

Thus we have that $char_{G}\circ u_{G}([V])=(-1)^{n}[Qw]$ , where $G$ acts on $Qw$ by $gw:=$

$w$ if the mapping degree of $g$ on $SV$ is +1 and $=-w$ otherwise, and so
$char_{G}\circ u_{G}([V])=(-1)^{n}[\det V]$ , where $\det V$ is the $n$-fold exterior power space.

$b$ . The values of units and the order of $A(G)^{*}$ .
PROPOSITION 6.5. Let $u\in\tilde{A}(G):=\{\pm 1\}^{Cl(G)}$ . Then $u$ is contained in $A(G)^{*}$
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if and only if for each subgroup $S$ of $G$ , the map

$gS-u(\langle g\rangle S)/u(S)$ , $gS\in WS$ ,

is a linear character of $WS:==N_{G}(S)/S$ .

PROOF. Assume first that $u$ is in $A(G)^{*}$ . By Lemma 6.1, we have that
$u(S)^{-1}char_{WS}(inv_{s}(u))$ is a linear character of $WS$ , of which value at $gS$ is
$u(\langle g\rangle S)/u(S)$ , as required. Conversely, let $u$ be a super class function of $G$

such that $gS-u(\langle g\rangle S)/u(S)$ is a linear character of $WS$ for each subgroup $S$

of $G$ . Then for subgroup $S$ ,

$\sum_{gS\in WS}u(\langle g\rangle S)\equiv 0$ (mod $|WS|$ ).

In fact this summation is equal to $0$ or $\pm|WS|$ by the orthogonal relation. Thus
Lemma 2.1 gives that $u$ is an element of $A(G)$ . Since the value of $u$ is $\pm 1$ ,
it is in the unit group.

COROLLARY 6.6. Let $u$ be an element of $A(G)^{*}$ , and let $S$ be a subgroup of
G. Then $u(S)=u(\langle g\rangle S)$ for any element $g$ of $N_{G}(S)^{2}$ $(: =\langle n^{2}|n\in N_{G}(S)\rangle)$ .

PROOF. If $g$ is an element of $N_{G}(S)^{2}$ , then $gS$ is contained in the kernel
of any linear character with values +1.

LEMMA 6.7. (i) The order $A(G)^{*}$ is equal to the number of idemPotents
$e$ of $Q\otimes_{Z}A(G)$ such that $2e\in A(G)$ .

(ii) $\#$ { $(H)\in Cl(G)|H$ is perfect} $\leqq\log_{2}|A(G)^{*}|\leqq\#\{(H)\in Cl(G)|O^{2’}(H)$

$=H\}$ .
(iii) $G$ is of odd order if and only if $A(G)^{*}=\{\pm 1\}$ .
(iv) If $G$ has a Sylow 2-subgroup of order 2, then the second inequality in

(ii) is an equality.

PROOF. (i) is well-known $u-(1-u)/2,$ $e-1-2e$ . (ii) is proved by counting
the number of primitive idempotents of $A(G)$ and $A(G)_{(2’)}=A(G)[1/2]$ . See
[Yo83]. (iii) follows form (i). See also [Dr69]. (iv) is proved by the idem-
potent formula for $A(G)[1/2]$ .

$c$ . Normal subgroups. We collect some generalizations of Matsuda and
Miyata’s results.

PROPOSITION 6.8. Let $H$ be a normal subgroup of $G$ of odd index. Then
$A(G)^{*}$ is isomorphic to $(A(H)^{*})^{G/H}$ , the G/H-fixed point subgroup, via the restric-
tion map.

PROOF. The restriction map and the multiplicative induction map induce
well-defined maps
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$r$ : $A(G)^{*}arrow(A(H)^{*})^{G/H}$ ; $v-res_{H}^{G}(v)$ ,

$j$ : $(A(H)^{*})^{G/H}arrow A(G)^{*};$ $u-jnd_{H}^{G}(u)$ .

Since $H$ is of odd index, by (b.3) in Section 3, we have that

$j(u)(S)= \prod_{g\in S\backslash G/H}u(S^{g}\cap U)=u(S\cap H)^{|G:SH|}=u(S\cap H)$ .

Thus if $S$ is a subgroup of $H$, then $j(u)(S)=u(S)$ , and so $r\circ j=id$ . Next let $v$

be an element of $A(G)^{*}$ . Then by Lemma 5.1, $v(S\cap H)=v(S)$ . Thus we have
that $j\circ r=id$ . The lemma is proved.

PROPOSITION 6.9 (cf. [Ma82, Theorem 4.1]). Let $H_{1},$ $\cdots$ $H_{r}$ be a normal
subgroups of G. For each subset I of $R:=\{1,2, , r\}$ , we Put

$H_{I}:=\langle H_{i}|i\in I\rangle$ ,

${\rm Im}_{I}$ $:={\rm Im}( \inf: A(G/H_{I})^{*}arrow A(G)^{*})$ ,

$Ker_{I}$
$:= \bigcap_{i\in I}Ker(inv: A(G)^{*}arrow A(G/H_{I})^{*})$ ,

$A(G)_{I}^{*}$ $:={\rm Im}_{I}\cap Ker_{I’}$ , where $I’:=R-I$ .
Then $A(G)^{*}$ is the direct Product of subgroups $A(G)f,$ $I\subseteqq R$ .

PROOF. Let $E$ be the set of all endomorphisms of abelian group $A(G)^{*}$ .
We write the action of $E$ on $A(G)^{*}$ by exponential form, that is, we write
$u\uparrow f:=f(u),$ $f\in E,$ $u\in A(G)^{*}$ . Then $E$ becomes a ring by the ordinary way.
TO each normal subgroup $H$ of $G$ , there assigns an element $f_{H}$ of $E$ defined by

inv
$f_{H}$ : $A(G)^{*} arrow A(G/H)^{*}A(G)^{*}\inf_{arrow}$ .

For two normal subgroups $H,$ $K$ of $G$ , we have that $f_{H}\circ f_{K}=f_{K}\circ f_{H}=f_{HK}$ .
Thus $f_{H}’ s$ are pairwise commutative idempotents of $E$ . Now for each $i$ of $R$ ,
let $f_{i}$ be the idempotent of $E$ assigned to $H_{i}$ . Put

$fi$
$:= \prod_{t\in I}f_{i}$

$f’i$
$:= \prod_{i\in I}(1-f_{i})$ ,

$e_{I}$ $:=fif’i$ , (I’ $:=R-I$).

Note that $f_{I}$ is the idempotent corresponding to the normal subgroup $H_{I}$ . Then
we have that

$\sum_{I\subsetneqq R}e_{I}=id$ , $e_{I}e_{I}=e_{I}$ , $e_{I}e_{J^{-}}-0$ $(I\neq J)$ .

This induces the decomposition of $A(G)^{*}$ to the direct product:

$A(G)^{*}= \prod_{1\subseteqq R}A(G)^{*}\uparrow e_{I}$ .

From the fact that $inv_{H}\circ\inf_{H}^{G}$ is an identity on $A(G/H)$ , we can easily prove
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that
$A(G)^{*}\uparrow e_{I}={\rm Im}_{I}\cap Ker_{I’}$ .

Hence the proposition is proved.

COROLLARY 6.10. Let $H$ be a normal subgroup of G. Then

$A(G)^{*}\cong A(G/H)^{*}\cross$ { $u\in A(G)^{*}|u(S)=1$ if $S\geqq H$ }.

PROOF. Use the following easy results:

${\rm Im}( \inf:A(G/H)arrow A(G))=$ { $x\in A(G)|x(S)=x(SH)$ for $S\leqq G$ } ,

$Ker(inv:A(G)^{*}arrow A(G/H)^{*})=$ { $u\in A(G)^{*}$ $u(S)=1$ if $H\leqq S\leqq G$ }.

7. Abelian Sylow 2-subgroups.

In this section, we study the unit group $A(G)^{*}$ for a finite group $G$ with
abelian Sylow 2-subgroups. First we prove the transfer theorem of Burnside
type. Next we decide the order of the unit groups for some simple groups.

$a$ . Proof of Theorem D. We begin with proving Matsuda’s theorem (cf.

[Ma82, Example 4.5] $)$ . Let $T$ be a finite abelian group. Put $\overline{T}:=T/T^{2}$ , where
$T^{2}$ $:=\langle t^{2}|t\in T\rangle$ , and let $\overline{T}^{\wedge}$ be the character group of $\overline{T}$. We regard the character
ring $R(\overline{T})$ as a subgroup of $R_{Q}(T)$ . Then the tom Dieck homomorphism $u_{T}$

induces a map:

(a.1) $\overline{u}_{T}$ : $F_{2}[\overline{T}^{\wedge}]\cong R(\overline{T})/2R(\overline{T})arrow A(T)^{*}$ .
For an element $\lambda$ of $\overline{T}^{\wedge}$ and a subgroup $S$ of $T$ , we have that

(a.2) $\overline{u}_{T}(\lambda)(S)=\{-1+1$

if $S\subseteqq Ker\lambda$

otherwise.

LEMMA 7.1. Let $T$ be a finite abelian group. Then the above $mal\overline{u}_{T}$ :
$F_{2}[\overline{T}^{\wedge}]arrow A(T)^{*}$ is an isomorPhism. In Particular, $A(T)^{*}$ is an elementary abelian
2-group of rank $|\overline{T}|$ .

PROOF. Let $\mathscr{M}$ be the set of subgroups of $T$ of index at most 2, so that
$|\mathscr{M}|=|\overline{T}|$ . Consider the maps

$\overline{u}_{T}$
$\varphi$

$F_{2}[T^{\wedge}]arrow A(T)^{*}arrow\{\pm 1\}^{\mathscr{M}}$ ,

where $\varphi$ maps $u$ to $(u(M))_{M\in \mathscr{M}}$ . Since

$\varphi\overline{u}_{T}(1_{T})=-1$ , $\varphi\overline{u}_{T}(\lambda)(M)=\{+1-1$

if $Ker\lambda=M$

otherwise,
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we have that $\varphi^{o}\overline{u}_{T}$ is an isomorphism. Let $u$ be an element of $Ker\varphi$ . Suppose
$u\neq 1$ and let $M$ be a maximal subgroup of $T$ such that $u(M)=-1$ . Then by
Proposition 6.5, the set

$\{tM\in T/M|u(\langle t\rangle M)=u(M)\}$

is a subgroup of $T/M$ of index at most 2. But this set is a trivial subgroup
of $T/M$ by the maximality of $M$, and so $M\in \mathscr{M}$ . This contradicts to the as-
sumption that $u$ is in $Ker\varphi$ . Thus $\varphi$ is injective. Hence $\varphi$ and $\overline{u}_{T}$ are both
isomorphisms. The lemma is proved.

THEOREM D. Let $G$ be a finite group with an abelian normal subgroup $Q$

of odd order and abelian Sylow $2$-subgrouP T. Put $\overline{T}:=T/\Phi(T)$ and $L:=N_{G}(T)$ .
Then the following hold:

(i) If $Q=1$ , then $A(G)^{*}\uparrow eg_{Q}$ is isomorphic to the additive group $(F_{2}[\overline{T}^{\wedge}])^{L}$

$\cong F_{2}[\overline{T}^{\wedge}/L])$ of L-fixed points.
(ii) If $Q\neq 1$ and $C_{Q}(T)\neq 1$ , then $A(G)^{*}\uparrow eb,$

$Q$ is of order 1.
(iii) Assume that $Q\neq 1$ and $C_{Q}(T)=1$ . Define

$\mathscr{M}:=$ { $\Phi(T)C|T/C$ is cyclic and $C_{Q}(C)\neq 1$ },

$K$
$:= \bigcap_{M\in \mathscr{M}}M$, $\overline{K}$ $:=K/\Phi(T)$ .

Then A(G)*\uparrow e\S , $Q$ is isomorphic to $F_{2}[\overline{K}^{\wedge}]^{L}(\cong F_{2}[\overline{K}^{\wedge}/L])$ .

PROOF. By Theorem $C,$ $A(G)^{*}\uparrow e_{G.Q}^{2}$ is isomorphic to

{ $\overline{v}\in A(TQ/Q)^{*G/Q}|\overline{v}(S/Q)=1$ if $O^{2’}(S)\neq S$ }.

We identify $A(TQ/Q)$ and $A(T)$ . Then by Sylow’s theorem, this group is
isomorphic to

(1) { $v\in A(T)^{*G}|$ $v(S)=1$ if $O^{2’}(SQ)\neq SQ$ }.

We next prove the following transfer theorem of Burnside type:

(2) $A(T)^{*G}=A(T)^{*L}$ , where $L:=N_{G}(T)$ .

TO prove this, let $v$ be an element of $A(T)^{*L}$ , so that $v(S^{h})=v(S)$ if $S,$ $S^{h}\leqq T$

and $h\in L$ . Assume that $S,$ $S^{g}\leqq T$ for an element $g$ of $G$ . Then by Sylow’s
theorem, we have that $g\in N_{G}(S)L$ . (See [Go68, Chapter 7, Theorem 1.1].)

Thus $v(S^{g})=v(S)$ . This proves that $v\in A(T)^{*G}$ . Hence (2) holds. Next we
prove that for a subgroup $S$ of $T$,

(3) $O^{2’}(SQ)\neq SQ$ if and only if $C_{Q}(S)\neq 1$ .

For $S\leqq T$, define
$[Q, S]$ $:=\langle a^{-1}s^{-1}as| a\in Q, s\in S\rangle$ ,



Burnside rings 59

so that $O^{2’}(SQ)=S\cdot[Q, S]$ . Since $Q$ is an abelian group of odd order on which
the 2-group $S$ acts, we have that

$Q=C_{Q}(S)\cross[Q, S]$ .
(See [Go68, Chapter 5, Theorem 2.3].) Thus (3) is proved. Hence the group
given in (1) is equal to

(4) $B$ $:=$ { $v\in A(T)^{*L}|v(S)=1$ if $C_{A}(S)\neq 1$ }.

NOW we consider the group $B$ in (4). Assume first that $Q=1$ . In this case,
we have that $B=A(T)^{*L}$ , and so by Lemma 7.1, it is isomorphic to $F_{2}[\overline{T}^{\wedge}]$ .
The canonical mapping of $\overline{T}^{\wedge}$ to $\overline{T}^{\wedge}/L$ , the set of $L$-orbits in $\overline{T}$ , induces an
isomorphism $F_{2}[\overline{T}]^{L}\cong F_{2}[\overline{T}^{\wedge}/L]$ . Hence (i) is proved. Assume next that
$C_{Q}(T)\neq 1$ . Then clearly the group $B$ is trivial, proving (ii).

Finally we consider the third case where $Q\neq 1$ and $C_{Q}(T)=1$ . Define the
families of subgroups as follows:

$C:=\{C\leqq T|C_{Q}(C)\neq 1\}$ , 9 $:=$ { $D\in C|T/D$ is cyclic} ,

$\mathcal{E}$ $:=\{E\leqq D\Phi(T)|D\in 9\}=\{E\leqq M|M\in \mathscr{M}\}$ .

Since a non-cyclic abelian group can not act regularly on an abelian group (cf.

[Go68, Chapter 3, Theorem 3.3] $)$ , we have that any $C\in C$ is contained in some
$D\in 9$ . By Corollary 6.6 or Lemma 7.1, we have that

$v(S)=v(S\cdot\Phi(T))$ for $S\leqq T$ .

Furthermore, for any $v\in A(T)^{*}$ ,

(5) $v(C)=1$ for all $C\in C$ if and only if $v(E)=1$ for all $E\in \mathcal{E}$ .

Indeed, for any $E\leqq D\Phi(T)$ with $D\in 9$ ,

$v(E)=v(E\cdot\Phi(T))=v((E\cdot\Phi(T)\cap D)\cdot\Phi(T))=v(E\cdot\Phi(T)\cap D)=1$ ,

proving (5). Now we put

$R$ $:=F_{2}[\overline{T}^{\wedge}]=R(\overline{T})/2R(\overline{T})$ .

By Lemma 7.1 and (5), the group $B$ in (4) is isomorphic to $B’\cap T^{L}$ , where

(6) $B’:=$ { $\chi\in R|\langle\chi_{E}1_{E}\rangle\equiv 0$ $(mod 2)$ for $E\in \mathcal{E}$ },

where $\chi_{E}$ is the restriction of $\chi$ to $E$ and $\langle$ $\rangle$ is the reduction of the ordinary
inner product.

We will next show that

(7) $i$ : $F_{2}[\overline{K}^{\wedge}]arrow B’$ ; $\theta-$ ind $TK(\theta)$
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is an isomorphism. Let $\rho_{T/K}$ be the sum of all elements of $\overline{T}^{\wedge}$ of which kernel
contains $K$. Then $i(\theta)=\rho_{T/K}\cdot\tilde{\theta}$ , where $\tilde{\theta}$ is an extension of $\theta$ to $T(sinceT$ is
abelian, such an extension surely exists). This show that $i$ is injective. In
order to prove the surjectivity of $i$ , take an element $\chi$ of $B’$ . Then there is a
subset $\Lambda$ of $\overline{T}^{\wedge}$ such that

$x= \sum_{\lambda\in\Lambda}\lambda$ for some $\Lambda\subseteqq\overline{T}^{\wedge}$ .

We will prove the following:

(8) If $\lambda\in\Lambda,$ $\mu\in\overline{T}^{\wedge}$ and $Ker\mu\in \mathscr{M}$ , then $\lambda\mu\in\Lambda$ .
Put $M:=Ker\mu,$ $N:=Ker\lambda$ . Then $M,$ $M\cap N\in e$ . Since $x\in B’$ , Frobenius reci-
procity yields that

$\langle\chi_{M\cap N}1_{M\cap N}\rangle i\langle\chi 1_{M\cap N}^{T}\rangle\equiv\langle\chi 1_{T}+\lambda+\mu+\lambda\mu\rangle$ $(mod 2)$ ,

$\langle\chi_{M}1_{M}\rangle\equiv\langle\chi 1_{M}^{T}\rangle\equiv\langle\chi 1_{T}+\mu\rangle$ $(mod 2)$ .

Thus $\langle x, \lambda\rangle\equiv\langle x, \lambda\mu\rangle\equiv 1(mod 2)$ , and so $\lambda\mu\in\Lambda$ , proving (8). Now, let Xbe the
subgroup of $\overline{T}^{\wedge}$ generated by all $\mu\overline{T}^{\wedge}$ with $Ker\mu\in \mathscr{M}$ , so that $X=(T/K)^{\wedge}\leqq\overline{T}^{\wedge}$ .
(We identified a linear character of $T/K$ as one of $T$ of which kernel contains
$K$, as usual.) Then the statement (8) says that $\Lambda$ is a union of cosets of $X$ in

$\overline{T}^{\wedge}$ , and so $\chi$ is a summation of characters of the form $\rho_{T/K}\cdot\lambda(=i(\lambda_{K})),$
$\lambda\in\overline{T}^{\wedge}$ .

The surjectivity of (7) is also proved. Hence $i$ in (7) is an isomorphism.
We can now finish the proof. The map $i$ in (7) commutes with conjuga-

tion. Hence we have that

$A(G)^{*}\uparrow e_{G.Q}^{2}\cong B’\cap F_{2}[\overline{T}^{\wedge}]^{L}\cong F_{2}[\overline{K}^{\wedge}]$ .
The theorem is proved.

COROLLARY Dl. Let $G$ be a finite group with elementary abelian Sylow 2-
subgroup. Define

$Q$ $:=\{O^{2}(S)|O^{2’}(S)=S\leqq G\}$ .
Then the following hold:

(i) $A(G)^{*}= \prod_{(Q)}A(G)^{*}\uparrow e_{G.Q}^{2}$ ,

where $(Q)$ runs over $con_{J}ugacy$ classes such that $Q\in Q$ .
(ii) Let $Q\in Q$ and let $\overline{T}$ be a Sylow $2$-subgrouP of $\overline{N}:=N_{G}(Q)/Q$ . Put

$\overline{L}:=N_{\overline{N}}(\overline{T})$ and $\overline{C}:=C_{\overline{T}}(Q/[Q, Q])$ . Then

$A(G)^{*}\uparrow e_{G.Q}^{2}\cong F_{2}[\overline{C}^{\wedge}/\overline{L}]$ .
PROOF. $( i )$ Let $Q$ be a 2-perfect subgroup of $G$ . By Theorem $C$ , if $Q$

does not belong to $Q$ , then $A(G)^{*}\uparrow e_{G.Q}^{2}=1$ . Thus the theorem follows directly



Burnside rings 61

from Theorem B.
(ii) By Theorem $B$ and Corollary Cl, we may assume that $Q$ is an abelian

normal subgroup of $G$ . There is a subgroup $S$ of $G$ such that $S$ has no proper
normal subgroup of odd index and $O^{2}(S)=Q$ . By Sylow’s theorem, we may
assume that $S/Q$ is contained in $\overline{T}$ . Since $Q=C_{Q}(\overline{T})\cross[Q,\overline{T}]$ and $S$ has no
proper normal subgroup of odd order, we have that $C_{Q}(\overline{T})=1$ . In the case
where $Q=1$ , the conclusion holds clearly. As in Theorem $D$ , let

$\mathscr{M}:=$ { $M T$ $|\overline{T}/M$ is of order 2 and $C_{Q}(M)\neq 1$ }, $K$
$:= \bigcap_{M\in\ovalbox{\tt\small REJECT}}M$ .

Then we must show that $K=\overline{C}:=C_{\overline{T}}(Q)$ . Indeed, clearly each $M\in \mathscr{M}$ contains
$\overline{C}$ , and so $K$ contains $\overline{C}$ . The inverse follows form the easy and well-known
fact that $Q$ is generated by subgroups $C_{Q}(M)$ for subgroups $M$ of $\overline{T}$ of index
2. The corollary is proved.

$b$ . Examples. Finally we give some examples about groups with abelian
Sylow 2-subgroups. Define families of subgroups as follows:

$Q$ $:=\{0^{2}(S)|S=O^{2’}(S)\leqq G\}$ ,

$S:=$ { $S\leqq G|S/Q\in Sy1_{2}(WQ)$ for some $Q\in Q$ }.

Clearly $O^{2’}(S)=S$ and $O^{2}(S)\in Q$ for any $S\in S$ , and for any $Q\in Q$ , there is $S\in S$

such that $O^{2}(S)=Q$ .
In this section, we use the following notation:

$Q=O^{2}(S)\in Q$ with $S\in S,$ $L:=N_{G}(S)$ ,
$r(Q)$ $:=\log_{2}|A(G)^{*}\uparrow e_{G.Q}^{2}|$ ,
$d(m):=\#$ { $k\geqq 1|k$ divides $m$ }.
$P$ a prime.
$C_{m}$ a cyclic group of order $m$ .
$E_{p}^{m}$ an elementary abelian $P$ -group of order $p^{m}$ .
$D_{2m}$ a dihedral group of order $2m$ .
$L_{2}(q)(=PSL(2, F_{q}))$ the projective sPecial linear group.
$A_{n},$ $S_{n}$ the symmetric and alternating group of degree $n$ .

Note that $L_{2}(4)\cong L_{2}(5)\cong A_{5},$ $L_{2}(2)\cong S_{3},$ $L_{2}(3)\cong A_{4}$ . For the groups $L_{2}(q)$ and
the Janko group $J_{1}$ , refer [Wa69], [Go68, 15.1].

EXAMPLE 1. Let $G:=L_{2}(q),$ $q=2^{n}\geqq 4$ . Then one of the following holds:
(a) $Q=1$ . $S\cong E_{2}^{n}$ and $L$ is a Frobenius group of order $q(q-1)$ . $r(Q)=2$ .
(b) $Q$ ; $C_{m}$ for $m|(q-1),$ $m\neq 1$ and $L=S\cong D_{2(q-1)}\cdot r(Q)=1$ .
(c) $Q\cong C_{m}$ for $m|(q+1),$ $m\neq 1$ , and $L=S\cong D_{2(q+1)}\cdot r(Q)=1$ .
(d) $Q=S=L\cong L_{2}(2^{m})$ , where $m|n$ and $m\geqq 2$ . $r(Q)=1$ .
(e) $Q=S=L\cong A_{5}$ . $r(Q)=1$ . $Thiscaseoccursonlywhenq\equiv\pm 1(mod 5)$
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and $q>4$ .
In every case, $Q$ up to conjugate is uniquely determined by its order. Hence

we conclude that

$\log_{2}|A(G)^{*}|=2+(d(q-1)-1)+(d(q+1)-1)+(d(n)-1)+\alpha$

$=d(q-1)+d(q+1)+d(n)-1+\alpha$ ,

where $\alpha=1$ if $q\equiv\pm 1(mod 5)$ and $q>4$ , and $=0$ otherwise. (Degenerated case:
$\log_{2}|A(L_{2}(2))^{*}|=3.)$ The value 5 in the case $q=4$ equals to the result in [Di79, 1.7].

EXAMPLE 2. Let $G:=L_{2}(q),$ $q=P^{n}\equiv 3(mod 8),$ $q\geqq 5$ . Then one of the follow-
ing holds:

(a) $Q=1$ . $S\cong E_{2}^{2}$ and $L\cong A_{4}$ . $r(Q)=2$ .
(b) $Q\cong C_{m}$ for $m|(q-1)/2,$ $m\neq 1$ . $S=L\equiv D_{q-1}$ . $r(Q)=1$ .
(c) $Q\cong C_{m}$ for $m|(q+1)/4,$ $m\neq 1$ . $S=L\cong C_{2}\cross D_{q+1}$ . $r(Q)=2$ .
(d) $Q=S=L\cong L_{2}(p^{m})$ where $m|n$ and $P^{m}\geqq 5$ . $r(Q)=1$ .
(e) $Q=S=L\cong A_{5}$ . $r(Q)=1$ . This case occurs when $q\equiv\pm 1(mod 5)$ .
Hence we conclude that

$\log_{2}|A(G)^{*}|=2+(d((q-1)/2)-1)+2(d((q+1)/4)-1)+(d(n)-\delta_{p,3})+\alpha$

$=d((q-1)/2)+2d((q+1)/4)+d(n)-1-\delta_{p,3}+\alpha$ ,

where $\alpha=1$ if $q\equiv\pm 1(mod 5)$ , and $=0$ otherwise.

EXAMPLE 3. Let $G:=L_{2}(q),$ $q=P^{n}\equiv 5(mod 8)$ . Then one of the following
holds:

(a) $Q=1$ . $S\cong E_{2}^{2}$ and $L\cong A_{4}$ . $r(Q)=2$ .
(b) $Q\cong C_{m}$ for $m|(q-1)/4,$ $m\neq 1$ . $S=L\cong C_{2}\cross D_{q-1}$ . $r(Q)=2$ .
(c) $Q\cong C_{m}$ for $m|(q+1)/2,$ $m\neq 1$ . $S=L\cong D_{q+1}$ . $r(Q)=1$ .
(d) $Q\cong E_{p}^{m}$ for l\leqq m;$ $n$ . $S$ is a Frobenius group of order $2p^{m}$ . $r(Q)=1$ .
(e) $Q=S=L\cong L_{2}(p^{m})$ where $m|n$ . $r(Q)=1$ .
(f) $Q=S=L\cong A_{\overline{o}}$ . $r(Q)=1$ . This case occurs when $q\equiv\pm 1(mod 5)$ .
Hence we conclude that

$\log_{2}|A(G)^{*}|=2+2(d((q-1)/4)-1)+(d((q+1)/2)-1)+\beta_{p}+d(n)+\alpha$

$=2d((q-1)/4)+d((q+1)/2)+d(n)-1+\beta_{p}+\alpha$ ,

where $\beta_{p}$ is the number of $G$ -conjugacy classes of nontrivial $P$ -subgroups of $G$

and $\alpha$ is defined as in Example 1. Again we have that $\log_{2}|A(L_{2}(5))^{*}|=5$ .
EXAMPLE 4. Let $G=J_{1}$ (the Janko group of order $2^{3}\cdot 3\cdot 5\cdot 7\cdot 11\cdot 19$). Then

one of the following holds:
(a) $Q=1$ . $S\cong E_{2}^{3}$ and $L$ is a Frobenius group of order 168. $r(Q)=2$ .
(b) $Q\cong C_{m},$ $m=3,5,15$ . $N_{G}(Q)\cong D_{6}\cross D_{10}$ . $r(Q)=2,2,1$ , respectively.
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(c) $Q\cong C_{m},$ $m=7,11,19$ . $S\cong D_{2m}$ . $r(Q)=1$ .
(d) $Q\cong A_{5}$ . $S=L\cong C_{2}\cross A_{5}$ . $r(Q)=2$ .
(e) $Q=S=L\cong L_{2}(11)$ . $r(Q)=1$ . Thus we have that

$\log_{2}|A(G)^{*}|=13$ .
Simple groups with abelian Sylow 2-subgroups are isomorphic to one of

$L_{2}(q)$ , where $q=2^{n}$ or $q\cong\pm 3(mod 8),$ $J_{1}$ and $2G_{2}(q)$ (Ree group, where $q=3^{2n+1}>3$

([Be70], [Wa69]) $)$ . It is not so easy to determine the order of the unit group
for a Ree group because of the complexity of the structure of Sylow 3-subgroups.
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