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Introduction.

In the present paper we study the low frequency behavior of resolvents for
perturbed acoustic operators with perturbations decreasing slowly at infinity
and, as an application, we prove the principle of limiting amplitude for such
operators.

We work in the 3-dimensional space R%, x=(x,, X, Xxs), and consider the
following equation: ‘

0.1) @/0tyw = a(x)*o(x)V-(1/p(x)Tw.

As is well known, this equation governs the propagation of acoustic waves in
an inhomogeneous medium with a local speed of sound a(x)>0 and an equili-
brium density p(x)>0 which vary with x€R%. We deal with equation [0.I)
under a Hilbert space formulation. First we assume that:

(a.0) l/ce<alx)<ec,
(p.0) 1/e < p(x)<c

for some ¢>1 and

(p.1) p(x) is of C'-class with bounded derivatives.

We now define the acoustic operator L as
0.2) ‘ L=—a(x)p(x)V-(1/p(x))V.

Under the above assumptions, the operator L is symmetric in the Hilbert space
L*R% ; E(x)dx) with E=a(x)"?p(x)™! and it admits a unique self-adjoint reali-
zation. We denote by the same notation L this realization and by R(z; L) the
resolvent of L; R(z; L)=(L—z)', Imz+0. As is easily seen, L is positive
(zero is not an eigenvalue) and the domain of L is given by D(L)=HZ%R3),
H*R%) being the Sobolev space of order s. We further assume that the
inhomogeneous medium under consideration is homogeneous at infinity. (This
assumption will be made clear below.) Under suitable assumptions on the
behavior as |x|—co of a(x) and p(x), we know that L has no eigenvalues and
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that the boundary values R(A+:0; L), >0, of R(A+ix; L) as x—0 exist in an
appropriate weighted L? space topology (limiting absorption principle). The
aim of the present work is to study the behavior of R(4+:0;L) at low fre-
quencies (4—0) and to prove, as an application, the validity of the limiting
amplitude principle for equation

We shall formulate the obtained result precisely. The formulation requires
several assumptions and notations. To describe these assumptions, we follow
the standard multi-index notations. We make the following assumptions on the
behavior as |[x]|—co of a(x) and p(x):

(a.1) There exists a,>0 for which a(x) is decomposed as
a(x) = aota(x)+ax(x),
where a,=0(]x}~*-?) and
C0%a,=O0(|x|7' %), lal<1, as |x|—c0
for some 6>0.

(0.2) There exists p,>0 for which
95(p(x)—po) = O0(|x|='*'=%),  lal£1, as |x]|—c

for the same @ as above.

Throughout the entire discussion, the constant § is fixed with the meaning
ascribed above and we assume, without loss of generality, that 0<8<1/2.
We require several notations to describe the obtained result. Let L3=
%(R3) be the weighted L? space defined by

= {f(x):<Pf(x)el?}, <Lxd=(1+]x|%"2,
with the norm

1715 = {1 foolear,

the integration with no domain attached being taken over the whole space.
Let A:L%—L% be a bounded operator. We denote by ||All,.s the operator
norm when considered as an operator from L% into L}. If, in particular,
A: L*—>L? is considered as an operator from L? into itself, then its norm is
denoted by the simplified notation [|A].

THEOREM 0. Assume (a.0)~(a.1) and (0.0)~(p.2). Then:

(i) L has no eigenvalues.

(ii) There exist limits R(A+:0; L)f, >0, with fe L%, B>1/2, of R(A+ik; L)f
as k0 in the strong topology of LZg.

It is not the aim here to prove this theorem. The non-existence of eigen-
values embedded in continuous spectrum has been studied by many authors.
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See, for example, [2], [8], and the references there. Statement (i) may

be proved by use of the method developed in these works, but for completeness,

we will give a brief sketch of the proof of (i) in Appendix. The method is

based on the idea of Froese and Herbst [4]. Once (i) is established, statement

(ii) follows from the general theorem (Theorem 30.2.10) of Hérmander [5].
The aim here is to prove the following

THEOREM 1. Assume (a.0)~(a.1) and (p.0)~(p.2). Let a>1 and B>1/2.
Then there exists d, 0<d<1/2, such that

IRA%i0; L) goee = O, 0.
REMARK. We can also prove that
(0.3) IR(A£10; L)l gn-a = O1),  4—0,

for a>1, but we do not do this here. In proving the principle of limiting
amplitude, the formulation as above is convenient and the fact d<1/2 is
important.

The behavior of resolvents at low frequencies or at low energies plays a
basic role in the study on the asymptotic behavior as ¢ (time)—=+co of solutions
to the associated non-stationary problems. Thus, such a behavior has been studied
by many authors. For example, Jensen-Kato studied the Schrodinger
operator —A+V with V(x) having the decaying property V=0(|x|"7), r>2,
as |x|—co. If we make the transformation w—v=p~"*w, then equation
can be put into the form

(1/a(x))*@/0t’v = Av—V v,
where
V(x) = (3/4)p7*|Vp|*—(1/2)p"Ap.

If we assume the additional assumption 92(p(x)—p)=0(|x|"%%) for |a|=2,
then V,=0(|x]-%-%) as |x|—co. Hence, the bound can be proved by
making use of the same argument as in [6], if a(x) satisfies a(x)—a,=0(|x|"7),
7>2, as |x|—oo. It should be noted here that the transformation as above is
not used in the proof and hence the main theorem can be easily extended to
general self-adjoint elliptic operators of the form

P=—a(x)* 3 (3/0x)a(x)0/0xs),

if, for example, the coefficients a;,(x) satisfy 0%(a;,(x)—8,,)=0(] x| '*-9),
la| <1, as |x|—co, 0, being the Kronecker delta. Murata also studied
the low energy behavior of resolvents for general elliptic (not necessarily self-
adjoint) operators, including the n-dimensional case, n=1. The results strongly
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depend on the space dimension. For an operator P of the above form, the
bound [0.3) follows as a special case of the general results obtained by Murata
[10], if, roughly speaking, the coefficients a(x) and a;,(x) have the strong
decaying property with rate y>2. In general, the low energy behavior of
resolvents depends heavily on the fact whether the operator under consideration
has a zero energy resonance or bound state or not. The operator L which we
consider here does not have such a resonance and bound state. This makes it
-possible for us to study the low frequency behavior of resolvents for a class
of perturbations decreasing slowly at infinity.

The proof of is done by a operator theoretical approach based
on the commutator method. This method was first developed by Mourre
to prove the principle of limiting absorption for 3-body Schrédinger operators
and its application has been extended by [4], and [1I], etc. to various
spectral problems of N-body Schrédinger operators. In these works, it has been
used to prove the principle of limiting absorption ([1I]), to prove the non-
existence of positive eigenvalues ([4]) and to study the resolvent smoothness as
a function of energy ([7]). Through the present work, this remarkable method
will be seen to be useful also to the low frequency analysis of resolvents.

As stated above, the resolvent behavior for low frequencies is important to
the study on the time asymptotics of solutions of the associated non-stationary
problems. As an application of the main theorem, we here study the asympto-
tic behavior as t—oo of the solution to the following Cauchy problem:

0/0?w+Lw = exp(—itvw )f, >0,

with initial conditions w=(d/0t)w=0 at t=0. In Section 5 we will prove that
for feL%, B>1/2, the solution w=uw(¢, x) behaves like

w = exp(—itvo )R(w+i0; L)f+o(l), t—oo

in the strong topology of L2,, a>1. This implies the validity of the limiting
amplitude principle for L. This principle has been proved by many authors
for various scattering problems, including the case of exterior boundary value
problems. For related results, see, for example, [1], [3] and references there.
The second aim of the present work is to show that such a principle holds
true for a wide class of perturbations decreasing slowly at infinity.

b

§1. Reduction to main lemmas.

Throughout the entire discussion, all the assumptions (a.0)~(a.1) and (p.0)
~(p.2) are always assumed to be satisfied. It is convenient to work in the L®
space rather than in the original space L*R3; E(x)dx) with E=a(x)"?p(x)"".
We start by rewriting the statement of the main theorem in the form adapted
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to the L? space formalism.

Let a, and p, be as in assumptions (a.1) and (p.2), respectively. For
brevity, these constants are assumed to be normalized as a,= po=1. Set E(x)=
a(x)"?p(x)"! again and define the positive operator H acting on L? by

(1.1) H=—-N-(1/p(x)N.

Then we have R(z; L)=Q(z; H)E, Imz+0, where Q(z; H)=(H—zE)™'. There-
fore, the main theorem is obtained as an immediate consequence of the following

LEMMA 1.1. Let the pair (a, B) be as in Theorem 1. Then
1Q(A+:i0; H)|goa = 024, 20,
for some d, 0<d<1/2.

Let E(x) be as above. By assumption (a.1), we can decompose E(x) as
E=FE(x)+ Vyx) in such a way that:

1.2) Vo= 0%, |xl-eo;
(1.3) LS 1x15(Ee— D] = 0(1x]%;
(1.4) os) |§1<3«:>"“]62(E0—1)[ < 0y, *ER%,

for 0,>0 small enough, J, being fixed throughout.

LEMMA 1.2. Let Qo(z; H)=(H—zE,)™', Imz#0. Then
(1.5) 1Qo(2£10; H)gu-a = O1), 20,
for any a>1.

We shall show that follows from Thus, the proof
of the main theorem is reduced to that of

PROOF OF LEMMA 1.1. We assume[1.5) Let a>1and $>1/2. We assert
that:
(1.6) Qo(A+:0; H)|l goea = O(2713),

(L.7) 1Qo(2£70; H)|| .- = O(27Y).
We first complete the proof of the lemma, accepting these assertions as proved.

Let o, 1/2<0<(146)/2, be fixed arbitrarily. Take a and 8 close enough
to 1 and 1/2, respectively. Then, by interpolation, || Q(A+:0; H)|su-e=0(7)
for any 7, 2—20<y<1. This, togther with[1.2), implies that Id—AV,Q(A+:0; H):
L2— L2 is invertible for A>0 small enough, Id being the identity operator, and

IAd—2VQo(2£i0; H))|lso0 = O1),  4—0.
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By interpolation again, we have
1Qu(Ax205 H)llg--a = O(47)
for any 7, 1—o<y<1/2. Since Q(A+70; H) is represented as
Q(A£i0; H) = Qy(Ax10; H)YAd—2AV,Q4(A£:0; H))™,

the lemma follows immediately. - .
- We now prove the assertions [1.6) and [1.7). We consider the “+” case
only. Let u=QA—ix; H)f with feL? Then u satisfies

1.8) | Hu—2Eu+ickEu = f.
Let <{,> denote the L*? scalar product. Let ¢(x) be a real-valued smooth

function with bounded derivatives. We take the L* scalar product of ¢u with
equation [(1.8). Then we have

(L.9) <g(1/p)Vu, Vud—(1/2XN-((1/p)VN)u, u> = K$E.u, u>+Relf, pu>.

In the argument below, we use this identity with ¢=<{x>"7, y>O0.

We require another identity to prove and Let d(<8), 0<o«]l,
be fixed arbitrarily. Let X(x)={X’},<;<s be a real smooth vector field such that
V=(—|x]"%x,;/|x| for |x|>R, R>1. We write 9,=0/0x; and use the
summation convention. By an easy calculation,

(1.10) Re0,X70,ud;i = Cox>~*%|Vu|?, |x|>R.

We take the L* scalar product of X70,u-+(1/2)(@X/)u with equation [1.8). Then
we have
Re{(1/0)0:X7)0ru, 0ud>—(1/2)XX0;(1/p)0ru, 0su)
(1.11) —(1/4)X(0,((1/ 0)0:0 X Y1, u>+(A/2)XXHO;E0)u, u)
= Re<{f, 270,u+(1/2)@X)u>+&Im {Eou, X0,u).

By elliptic estimate, the second term on the right side is dominated by
Ce{lul3+1fI12}, |15 being the norm of L.

We now set a=1+40 and B=(1440)/2. Assume that fe=L%. Then, by
it follows from (1.9) with ¢=<x>~%* that |Vu|_.,<C|f|.. Since

&CEou, uy =Im{f, u) < | flalul-a
and since B<(1+8)/2 by the choice of §, we have by [(1.10) and [1.11) that
| [Vullg = C{Alu|Zasornt | f1E}
We again use (1.9) with ¢=<x>-?# to obtain

AulZs = C{IVu|Zs+[f15}.




Resolvent estimates at low frequencies 555

ThusIwe have A|u|25<C|f|% This implies that
1Qu(A—ik; H)|au-p = OA71?)
uniformly in £#>0 small enough and hence is proved.
To prove we repeat the same argument as above. Assume that
feLi, B=(+46)/2. Then, by [L.6), it follows from (1.9) with ¢=<(x)2e,
a=1+90, that |Vu|2,<C2A™'|f|% and also we have by that

IVul2s < C{Alu|2asorre+A7" f13).
We use again (1.9) with ¢=<x>"%# to obtain
Alul2s < C{IVu|2s4+271 fl3}).

This, together with the above estimate, proves [(1.7)and the proof of the lemma
is now complete. O '

§2. Bounds at low frequencies.

The proof of is based on the two lemmas below (Lemmas 2.2 and
2.3). In this section we prove accepting these lemmas as proved.

PrROOF OF LEMMA 1.2. We give the proof for the “+” case only. The
proof is divided into several steps.

(1) Let H be defined by We define
(2.1) HQ)=H—AiFE,—-1), A>0,

and denote by R(z;H(A), Imz+#0, the resolvent of H(A); R(z; H(A)=
(H(A)—z)"*. By Theorem 0, 2 is not an eigenvalue of H(4) and hence by the
general theorem (Theorem 30.2.10) due to Hérmander [5], there exist the
boundary values R(A+:0; H(A)) of R(A+ix; H(A)) as £k—0;

R(Axi0; HQA)f = S_l,if{} R(A+ie; HQA)f, felh,
in the strong topology of L%, B>1/2.
LEMMA 2.1. Let Q(A+:0; H) be as in Lemma 1.2. Then
Qo(A+10; H) = R(A4+:0; H(A)).

REMARK. In the proof below, it is also proved that the existence of
boundary values Q,(A+:0; H) follows from that of R(2%:0; H(2)).

Before proving the lemma above, we introduce the new notation. Xjg,
B=0, denotes the multiplication operator by {(x)>~#; '

Xs: @lx) —> {x>~Pg(x).

ProOF OF LEMMA 2.1. Write Q.&) and R(x) for Q,A+ir; H) and
R(A+ik; H(Q), respectively. Then, for §>1/2, we have
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IR(®&) Xl = (26)7' 7] Xs(R(£)— R(£)*) Xp||'/* = O(&~*"%)

as k—0. Similarly

1 XsQu(k) = | XsQo(k) X5[**O(k=11%).
By interpolation, it follows that | X,R(x)X;||=0(") for any 7, 1/2—0<y<1/2.
We now use the resolvent identity

Qo(&)—R(k) = i£Q(e) E,—1)R(x).
Since E,—1=0(]|x|-?) as |x|—c0, we obtain that

| Xs(Qolr)— RN X3l = [| XpQolr) Xl *O (")
for y=1/2—y>0. This implies that | XzQ.(#)Xs|=0(1) as £—0 and hence we
have
| X5(Qo()—R(&) X5l = O(x*),

which completes the proof. O

(2) We again fix 8, sufficiently small and choose ¢, 0<g<#, arbitrarily.
Then, by assumption (p.2), we can decompose p(x) as p=p,(x)+px(x) so that:
p: has compact support and p, satisfies

(2.2) D ey —D| £, xERS.

0| a|s1

We now define
(2.3) H, = =V-(1/p,(x)N
and set
H() = H,—A(E,—1), 1>0.

LEMMA 2.2.
[ XiR(A+:0 ; Hi(A)Xi = 01), 2-0.

LEMMA 2.3. For a>1, there exists y=7(a), 0<y<1, such that
| Xo(R(2+40 ; Hi(2)— R(p+:0 ; H\(g2))) Xe || = O+ 0().

The proof of the above lemmas occupies the main body of the proof of
and hence of We proceed with the argument, accept-
ing these lemmas as proved. The proof of Lemmas and will be given
in Sections 3 and 4, respectively.

(3) LEMMA 2.4. One has the following statements: (i) The inverse H7i*
exists as an operator from L% into L2,;

(i) As A—0, R(A+10; H,(R)) is convergent to H7' in the weak topology of
Lz, :
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PrROOF. (i) The uniqueness of solution u=L?, to Hu=f, feL} follows
from the well known inequality

(2.4) [cry219012dx < 4f 199 1.

Let u,=R(@r; Hy)f, >0, with feL? Then, by [2.4)again, |u,.|-,=0(), £—0,
and hence a subsequence of {u,} is convergent to some u,=L2%, as k—0 in the
weak topology of L2%,. The limit u, satisfies H,u,=f. Thus the uniqueness
of such a solution proves the statement (i).

(i) Let u;=R(A+i0; H(A)f with fe Lz Then, by | -1=
0(1), 2—0. Hence, by the same argument as above, statement (ii) is proved. [J

We now combine Lemmas and to obtain that for a>1
(2.5) | Xo(R(2440 5 Hy(D))—H7TH) X = O(A7)
with some 7>0. Set
U=H—-H,=—V-(1/p(x)—1/p:(x)N.

Since the coefficient 1/p—1/p, is of C'-class and of compact support, we have
by elliptic estimate that |U¢|.<Co{|H:¢|-.+1¢|-o} for ¢ such that {x)>-*d&
H*R2). Therefore, it follows from and that

(2.6) [U(R(A2+10; H(A)—H1Y)]awa = OQ7)
for some 7>0.

(4) LEMMA 2.5. One has the following statements: (i) The inverse H™*
exists as an operator from L2 into L2,
(ii) Let U be as above. Then Id+UH7T': L:2—L%, a=1, is invertible and

(2.7) (Id+UHY) ' =1d—-UH".

PROOF. (i) This is proved in exactly the same way as in the proof of

Lemma 24, (i).
(ii) This follows immediately from the relation Hi'=H(Id4+UH7Y). O

We now write R(4) and R (1) for R(A+:0; H(A)) and R(A+:0; H,()),
respectively. Then, by the resolvent identity,
R\(2) = RA)(Id+UR,(R)).
Making use of relation we calculate
[d+UR,(A) = Ad+UHH[Id+(Id—UH U (R(A)—H7")].

By [2.6), we see that Id+UR,(A): Lt—L%, a>1, is invertible for A>0 small
enough. This, together with Lemmas 2.1 and 2.2, completes the proof of
0
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§3. Commutator method.

In this section we prove Lemma 2.2 by making use of the commutator
method developed by Mourre [9].

PROOF OF LEMMA 2.2. The proof of this lemma is also divided into several
steps. The proof is done for the “+” case only.
(1) Let A be the generator of the dilation unitary group;

A=0/2){x-1/ON+A/iN-x}.
We calculate the commutator
3.1 B\(2) = i[H\(A), A] = 2H\()+D,(2),
where ,
DR = V- (x-V(1/ p )W+ A(x - VEo+ 2 Eo—1)).

Let fi(s)eC%(RY), 0<f,<1, be a function such that f; has support in (4/3, 32)
and f;=1 on [4/2, 22]. We can take §, in and so small that
(3.2) Fa(H(D) B f 2(H(A) = (4/3)f 2(H ()
in the form sense.

Let X=C(R%), 0<X<1, be a smooth cut-off function such that X has
support in {x: |x]<2} and X=1 for |x|<1. For £>0 small enough, we define

P1:(x) = 1+X(ex)(p:(x)—1)
and
Eo(x) = 14+X(ex)(Eo(x)—1).

By definition, p..(x)=p.(x) for |x|<e™! and p;.(x)=1 for |x|=2¢"'; similarly
for E.(x). We further define H(¢; 1) by

(3.3) Hy(e; 2) = —V-(1/01(x)V—A(E(.—1).
LEMMA 3.1. As 2—0, one has:
(i) [H AL HQ)—Hy(e; ), AJH A+ = ¢20(1),
(ii) |(H,+2)2[(d/de)H (e ; X), AJH, 4+ = & 0(1),
(il) N(H,+D[[Hi(e; A), A, AJH A = 71040,

Proor. Estimates (i) and (ii) are proved by a straightforward calculation.
To prove (iii), we note that

3.4 (—A+DH:+D)7 = 0@),  2-0.

Since V(1/p,)=8,0(|x|™") as |x|—>oo, this follows from inequality If we
take account of [(3.4), (iii) can be easily proved. O



Resolvent estimates at low frequencies 559

REMARK. The original commutator method initiated by Mourre [9] requires
the additional assumptions 0%(p.(x)—1)=0(|x|"?) and 0%(E,(x)—1)=0(]x|"?),
|la]=2, as |x|—cc, to guarantee that the double commutator

(Hi+D7'[[H(A), Al, A H+1)7: L —> L?
is bounded. However, we dispense with such assumptions by applying the
commutator method to H,(e; 2) rather than to H,(A) itself (see Tamura [12]).
Let Bi(e; ))=i[H,(e; 1), A] and define
M(e; 2) = fi(Hi(D)By(e ; Df a(Hi(2)).
Then, together with Lemma 3.1, (i), implies that
(3.5) ' ' M(e; ) = (/41 2(H(A))?
for ¢>0 small enough.
(2) It follows from that M(e; 4) is non-negative and hence we can
define G(¢; A): L*—L? by
Ge; D)= H,Q)—2—ik—isM(e; ))!
for £>0, 0<x<1, and ¢=0 small enough.

LEMMA 3.2. There exists &, 0<¢&,&1, independent of A such that for e,
0< 8§80, ) ‘ ‘
[Ge; D =0, 10,
uniformly in k.
PrROOF. The lemma is proved in exactly the same way as in the proof of
Lemma 7.3 of [11], but for later reference, we here give a brief sketch of the
proof, looking at the A-dependence.

Let <, > again denote the L® scalar product. Let g:(s)=1—f1(s), f21 being
as above. We write f; and g; for f,(H,(Q) and gi(H.(R)), respectively. By

(3.5), we have

| f2Gplf < (4/2)(2e)7 K, GH2eM(e ; 1)G> .
Since

G¥2eM(e; )G, < i(G¥—G,)

in the form sense, we obtain
(3.6) [ f2G.ll = e7*| G, 0(2717%).
We use the resolvent identity

Ge; )= G0; Alld+ieM(e; D)Gile; A)].
As is easily seen, [[M(e; A)|=0(2) and hence

182Gl = C{A7 +¢|Gll}.
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Thus, we have
1Gell < C{A" 722712 G| V%}

for £>0 small enough. This proves the lemma. O

LEMMA 3.3. As 20, one has:

(1) llgaGule; Dl = 0@,

(i) 182Gle; DH AV = 077,

i) I(HiA22g:G.(e 3 DH A" = O),

where all the order relations are uniform in £k and s.

REMARK. Similar estimates hold for G.(¢; A)* and, as an immediate con-
sequence, we obtain, for example, ||G.(¢; A)g:]|=0(27"). Such simple conse-
quences of the lemma will be used without further comments throughout the
proof.

PrROOF. (i) This estimate has been already obtained in the proof of
(ii) We denote by m.(e; 2) the norm under consideration. Then we have
me; A)? = | g1G(H,+A)G¥gall.
We calculate
(Hi+2G¥ = ld+A(E+ DG —i(k+eM(e ; D))G¥.
Since
iGk+eM(e; )GF = (1/2XG,—GY),

it follows from (i) that me; 2)*=0(2"'). This yields (ii).

(ili) This estimate is proved in the same way as above. Denote by n.(¢; 2)
the norm under consideration. Since

I(H+ )72 g (H+ 42 = 0,  4-0,
we have
ne; A £ C(l4+ne; A),

which proves (iii) at once. [

(3) Recall the notation Xz We define

3.7) Fe; )= XiG(e; DX,

for k, 0<k<1, and ¢, 0<e<¢,, &, being as in We assert that:
(3.8) I(d/de)F,ll < C{l1+e?| Fe'?+ e Fell}

and -

3.9) IF(eo; A = 01),  1-0,
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uniformly in 5. If the two assertions above are verified, then we have that
|F0; D=0(@1), 2—0, uniformly in & and hence follows immediately.

We again write f; and g; for fi(H,(A) and g,(H,(1)), respectively.
Differentiate F,(¢; ) in . Then we have

(@d/do)F (e D= 3 XY ie; DX,
where
Yi=GgilHi(e; D), AlgaG,
Yi=G.fi[Hie; 2, A1g.G,
Yi=GgilHi(e; 2, Al1f .G,
Yi=—G.[HA)—2A—ik—ieM(e; 1), A1G,,
Y:=ieG[(d/de)M(e; DG,
Yi= G [(H,Q)—~H(e; 1), A1G,,
Yi= —ieG,[M(e; ), AG,.
(4) LEMMA 3.4. As 2—0, one has:

(1) H A+ 2Gde; DXL = 72| Fe; DI20D),
(i) N(H:+2)""8:Ge; HX\ | = O(1).

ProoOF. (i) This estimate is derived in the same way as used to derive

(ii) Since ||(H,+2A)'2X,[|=0Q1), 2—0, by [2.4), (ii) follows from Lemma 3.3,
(iii). O

We now use the above lemma to evaluate the norm of X, YiX, 1<7<6.
First, we have

IX.YiX\| < C{1+e" 2| F]'?}

for 7, 1<7<3. Since || X,AH,+2)"?|=0(), 4—0, it follows that
I X, YiXl = C{1+e | F "%}
and by Lemma 3.1, we have

[X.YiXi] < C{14e[|Fl}
for 7, 5<7<6.

(5) We require the new lemma below to evaluate the norm of X,YIX,.
LEMMA 3.5. [[M(g; 2), Al = £?10(2).
By this lemma, we have

IX.YiXill < C{l+e’*|F|}
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and hence assertion is proved.

The proof of is done in almost the same way as in the proof
of Lemmas 7.4 and 7.5 of [11], although we have to look at the dependence on

¢ and A carefully.

LEMMA 3.6. Let co>sup Ey(x). Let f1(s)=C3(RY) be a real function such
that fia has support in (2/3, 32) and (d/ds)*f,,=0(2%*). Then

ICH WD)+ €)1 f12(HA(4)), ANH(A)+¢od)2] = O(R).
Proor. It is easy to see that
ICH () +cod) " 2Lexp(itHi(R)), ANH (D)+cod) | < Clri.
The Fourier transform f,:(r) of fii(s) satisfies
| fia@)| < C2A+2] ).

Therefore, if we use the relation
[f12(Hi(2), Al = (271-')"”25]? 1(r)lexpitH(2), Aldr,

the lemma follows at once. O
PROOF OF LEMMA 3.5. We can write f,=f(H,(4)) as
fa= (H(A)+cod)™ f1a2(H(D)H () +cod)?
with f;; having the properties as in Since
I(H+ AV [(Hy(D)+cd)H, Al = 0%,
we have by that
(3.10) [CH 422 f 2, ATl = O'7).
We again set B,(¢; )=:i[H,(¢; A1), A] and calculate [M(¢; 2), A] as
faBi(e; DLf 2, AJ+falBi(e; D), A1f2+[f2, AIBi(e; Af 1.
Then, together with [Lemma 3.1, (iii), yields the estimate in the lemma. O
(6) We prove the other assertion
LEMMA 3.7. Let H=—A. Then
1 XiR(A+ik; H) X\l = 0(1), 2-0,
uniformly in k, 0<k<1.

PrROOF. The proof uses the explicit integral kernel of R(A+ik: H,):

(3.11) [R(+ixk; Ho)l(x, y) = dn)" | x—y| ' expiv/A+iK| x—y1).
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Let u(x)=(R(A+ix; H)f)(x) with feL: Then, |u(x)|<(H7'|f])x). By [2.4)
H3': L:— L2, is bounded. This proves the lemma. O

Let f;(s) be as before. Since i[H,, A]=2H,, we have
M) = if :(H)[H,, ALf:(Ho) 2 (24/3)f 2(H,).
This enables us to define G%e; 1): L*—L? by
GXe; A) = (Hy—A—ik—ieMyA))™*
for k, 0<k<1, and ¢, 0<e<e, By
Iei{romlleG,';(s ;X =0Q), -0,

Therefore, the differential inequality [(3.8) applied to G%e; 2) gives

3.12) [ X:G(eo; DXl = OQ), A—0,
and also we have
(3.13) [(Ho4-2)'2G(eo ; DX, ]| = OQ).

We look at the difference
G—Gt = GH{H,—H\(D)—ief(Mo()—Meo ; )} G,
at e=¢, By and we have
1 X:(Geleo; D—Gileo; Xl < C{1+11Feleo; D2}
for C dependent on &,. This implies
I Fe(eo; DIl < C{1+11F(eo; A2}

and hence assertion follows immediately. Thus the proof of Lemma 2.2
is now complete. O

§4. Continuity at low frequencies.

In this section we prove which had a basic role in proving the
main theorem. By [Lemma 2.2, || X,R(A+i0; H\(2)X:|=0(1) as 2—0. Hence,
by interpolation, it sufficies to prove the lemma for some a>1. We do this
for a=1+a, 0, 0<0<0, being fixed in through a series of lemmas.

PrOOF OF LEMMA 2.3. (0) The proof is long. First we shall explain
briefly the strategy to prove the lemma.

We keep the same notations as in Section 3. Let B,(e;A)=:i[Hy(¢;R), A]
again. We introduce the following auxiliary operator

I'(e; 2) = (H()—A—ik—ieB(e; )™

for k, 0<k<1, and ¢, 0<e=<e,. The proof consists of the following three steps:
(a) To show that I,(e; A): L*—L? is well-defined as a bounded operator.



564 H. TaMURA

(b) To show that
| Xy(I(e ; A—R(A+ix ; H(ANXi |l = O(e?), e—0,

uniformly in & and 1>0 small enough.
(¢c) To show that

[ X1400(d/dD (e ; D] Xiioll = e720(271)

for any 7, 0<z<o/2.
If (a)~(c) are verified, then we have that

| Xi4o(R(A4ik ; HW(A)—R(p+ik ; H(p)X140] - O(%)+ e OX)+0(££°)).
Take ¢ as e=(A"+p )%, Then we have
| X140(R(A+10; Hy(2)—R(p 440 ; Hi(g) Xi1oll = OA)+0(")

with y=760/(240). This yields the desired result.
(1) We define

Mi(e; 2) = i{[—V-(1/01)V, A1—=Af2[Eo., Alf2}.
Then B,(¢; A) is represented as B,=M,(e; A)—N.(s; 1), where

4.1) Ny =i2{gi[E, Alg:+fi[Eo, Alga1+S1[E0o., Alga}.
We can choose J, in and so small that
4.2) Mi(e; 2) = (A/3)f 2(H(A))*.

This enables us to define A,(¢; A): L*—L? by
Afe; ) = (H(Q)—2A—ik—ieMy(e; A)™*

for x, 0<x<1, and ¢, 0<e<e,. We can also show that this operator can be
extended to a bounded operator from H-'(R%) into H'(R%). We should note
that it is not necessarily extended to a bounded operator from L? into H%*(R3).

LEMMA 4.1. As A—0 one has:

(i) [f24e; DIl =e*0@A™),

(i) lg2ddle; Dl = 0@,

(i) g2 di(e; DEH AV = 0@,

(iv) I(H,+2)"2g: A (e ; HH, A = O(1).

PROOF. We use the same argument as in the proof of Lemmas 3.2 and 3.3,

By we have

1f 24l = e B AL PO@A?)

and by the resolvent identity, we have

I(H 4272 g2 Al < C{A™2 e (Hi+-2) 2 AL}
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We combine the two estimates above to obtain that [(H,-+A)2A.|=¢'0(1"'/?).
This proves (i) and (ii). Once (ii) is established, (iii) and (iv) are proved in
the same way as in the proof of O

(2) LEMMA 4.2. One can define I'(s; 2): L*—L? by
I'(e; 2) = (H,(A)—A—ik—ieBi(e; A)!
for k, 0<k<1, and ¢, 0<e<e,, and one has
e Al =er0@™).

REMARK. We can also show that I;(e; 1) is extended to a bounded operator
from H-Y(R%) into HYR3).

PrOOF. Let N;=N,(¢;2) be defined by To prove the lemma, it
suffices to show that Id+7eN;A.: L?*—L? is invertible. Then, I,(e;A) is
represented as

(4.3) I'(e; ) = Ae; AAd+ieNi(e; D ALe; )7
By [Lemma 4.1, we have
e[| Ni(e; D Au(e; Dl = (e+06,)0(1),  2—-0.
This proves the lemma. O
By step (a) is completed.

(3) LEMMA 4.3. As A—0, one has:

(1) llgalile; Dl = 0™,

(i) llgalile; DH AV = 04777,

(i) |[(H+DY2g (e ; H(HADVE = O1).

Proor. By [Lemma 4.1, (ii), estimate (i) follows from [4.3), and (ii) and

(iii) follow from (i). The proof is done in the same way as in the proof of

O

LEMMA 4.4.

[f2l(e; DXl < C{e P27 3 X A(e 5 DX|ME+A712)

ProoF. By [4.2), we have
4.9) [ f2 A4 Xl = e 2 X A X0,
We look at the difference

falli—A40)X, = —ief; A Ni(e; DX,

By Lemmas 4.1 and 4.3, it follows that
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1f2(l—A)Xi | < C{A7 P +-e| fal X}
This, together with proves the lemma. O
LEMMA 4.5.
1X:4:(e; DX < CUIXi T (e 5 DX +e}.
PrROOF. We evaluate the norm of the difference
X (I—A)X, = —ie X, A.Ni(e; DI X,.
Making use of and of Lemmas 4.1 and 4.3, we have
IXu(Le—A) Xl < Cle+e 2| X A X2 +e2 2] f2 L X I}
and hence, by Lemma 44,
1Xi(Le—A) Xl £ Cle+e2) XA X072},
from which the lemma follows at once. O
We now combine Lemmas 4.4 and .5 to obtain that
(4.5) 1f2le; DX\ < Cle 2272 X [ (e 5 DX P +A712)

(4) The next task is to evaluate the norm of the difference [,(e;A)—
G.(e;A). Let N(g; A)=Bi(e; )—M(e; 2. This is written as

N=g;Bi(e; g1+ 1Bi(e; Dga+g1Bi(e; Dfa.
We have shown in the proof of Lemma 2.2 that
1£:G:Xill = V2| X, G X, ['?0(2712) = 712 0(4711%).
Therefore, it follows from that
IX((L—GXill £ C{e'? 2| X[ X, M2}
This implies that
1XI(e; DX =0@1), 2-0,
uniformly in & and e. Thus we have
1 XL (e; D—Gule; X = 0(e?), -0,

uniformly in & and A>0 small enough. On the other hand, by the differential
inequality we have

[ Xi(Ge ; A—RQA+ix ; H(A)X\|| = O(?).
(Recall that 0<f#<1/2.) Hence we obtain
(4.6) 1 X:([e ; A—R(A+ix ; HONX || = O(e?),

which completes the step (b).
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For later reference, we summarize the basic estimates for I'(¢; A) obtained
in steps (3) and (4).

LEMMA 4.6. As 2—0, one has: (i) |Ie; Dl =¢'0Q7Y), (i) Ie; DX
= e 0@, (i) 1 X Le; DXl = 0Q1), (iv) |(H 4221 e ; HXi|l = e720(D).

(5) We differentiate I (¢; 2) in A;
(d/dNI = [LE T +el[E,., AlLL.
LEMMA 4.7.
12X (e s A(Eo—DI(e; HXi| = e71+07201+07%),

PROOF. Note that E(x)—1=0(|x|-%) as |x|—co. By interpolation, it
follows from that

1 XL, X g0 = 7112401802112+ 014)
which completes the proof. O
LEMMA 4.8,
1 X, Fe; D[ Eoe, A1l(e; DX, | = e~1+0120(3-1+912)

PrROOF. Since [E,, A1=0(}x]"?%) as |x|—o0, the same argument as in the
proof of [Lemma 4.7 proves the lemma. O

To prove (c), it suffices, by Lemmas [£.7 and 4.8, to show that
4.7) 1 XieeLi(e 5 * Xisall = €720(2717), A—0,
for any 7, 0<r<o/2.

(6) Let H,=—A again. We set By=i[H,, A] and define I'%(¢;2): L*—L?
by
Ii(e; 2) = (Ho—2—ik—ieBy)™"

for k, 0<k<1, and ¢, 0=e<¢, Since B,=2H,, this operator is represented as
I'(e; ) = (1—2ie)'R(z; Hy), z=(A+ix)/(1—2i¢),
and satisfies the same estimates as I.(¢; 2) ((i)~(iv) of Lemma 4.6).
LEMMA 4.9. For any 7, 1—a<y<1, one has
[ Xivol e ; A Xinoll = e770QQ77).
ProoF. First we note that (d/dA)I"?=(I"?)*. Hence, by [3.11), the integral

kernel of I'%e; A)* obeys the estimate [I%e; 2)*](x, y)=0(47*/?). This proves
that for any a>3/2, | X.(I"9)*X,|=0(2"?). On the other hand, we have

IX(P X = IX LRI = 671037,
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Thus, the lemma follows by interpolation. |

(7) We now set
Ue; ) = H(A)—H,—ie(By(e ; A)—B,).

Then, U(e; A) is decomposed as U=U,(e; )+U,), where U,=—A(E,—1)—
iedx-NE,. and U,=—V-a.(x)V with

a.(x) = {(1/p1)—1} —2e{(1/p1)—1} +iex-V(1/pse).

By [2.2), the coefficient a.(x) obeys the estimate
(4.8) lae(x)| = Colx>™7, 0<o<0,
uniformly in e.

We look at the difference

(L~ = ZATYU LA TU ALY}
=

By Lemma 4.9, we have only to show that the above difference satisfies the
estimate as in [4.7).

LEMMA 4.10.

(1) 1 XuoI™DU (e ; DI Xiio| = e72¥0120(271+012),

(1) [ XuoMWi(e; DU Xirol = e7240120(271+012),

PrOOF. We prove (i) only, because (ii) is proved in a similar way.
By definition, U,=20(|x|~?%) as |x|—oo, and also we have by interpolation
that
I Xsl < |28 X, |0 = - *0120(A1+07%),

Thus, the norm under consideration is dominated by
OMIX IR - N X |- | Xl = 720120371 +07%),
This proves (i). O

By the lemma above, we have only to show that (4.7) is satisfied for the
difference operator with U,(e).

LEMMA 4.11.

(1) NXVT Xiwoll £ CUIXua o0 X gl 4672240227140 12)

(i) XV Xioll = 22402027 14012),

PRoor. Let feL?,,. Set u=(,)?f. Then
[H(A)—A—ik—ieBy(e; )]u =)I.f .

We take the L*® scalar product of ¢u, §=<x>~%?, with the fabove equation.
Then we have
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| XoVu|§ < C{| Xivot|§4+A1 Xow |54+ Xoulos | XoL o f o} .
By interpolation, it follows that

”Xo(n)zXHo” = 5'3’2*"0120(2—3/“0/2)
and
]|X°'[:5'X1+o'|l = 5-1/2+0'/20(2_112+0./2).

Combining these estimates proves (i).
(i) By 1 Xi4o(I'D? X146 =€7'0(77) for any 7, 1-0<r<L
Hence, the same argument as above proves (ii). O

We have by (iv), that
IV X 40l = e71720(1), A—0.
Hence, we have, by Lemma 4L11, (ii), and the following

LEMMA 4.12.
| X140 a(TDPU () e Xrao| = £72+7120(271477%).
Thus, it remains to evaluate the norm of I"2U.(I",)* only.
LEMMA 4.13. For any 7, 0<t<¢d/2,
| Xiao( IOV = €71 0(AD+0(1),  2-0.
PROOF. Let f;(s) and g:(s) be as before. We write
XisoT'N = Xgof 2:(H)T N+ X140 82(H)UI' DN

By the argument used in the proof of Lemma 4.9, || X.(H,+2)'|=0(""*) for
any a>3/2. Take a close enough to 3/2. Then, by interpolation, it follows
from that || Xi1o(Ho+A)"12-|=0(27%) for any v>¢/2. Thus, we have

I Xs4o f 2(H XDV = 710(277).

Since || Xi+o21(H)I'OV]|=0() as 2—0, this completes the proof. O

We can also estimate the norm of X,.,(I")V as [|Xy,.(I")V|=¢"20(1) as
A—0. Thus, we have by Lemmas [.11], (i), and 4.13 and by that

[ Xi4 o DU L)L) Xisoll £ C{O0ll Xia oI Xiy ol +67227147}
for any 7, 0<r<a/2. Since J, is small enough, this, together with Lemmas
4.9, and .12, implies that
1 X140 (L0)* X4l = €720A71).

Thus, step (¢) and hence the proof of [Lemma 2.3 are now complete. [
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§5. Principle of limiting amplitude.

In this section we study, as an application of the main theorem, the time
asymptotics of solution to the following Cauchy problem:

(5.1) @/0tw+Lw = exp(—itvo ) f, >0,

with initial conditions w|,-,=(0/0t)w|,-,=0, where L is defined by and f
is assumed to be in L%, >1/2.

THEOREM 5.1 (principle of Ilimiting amplitude). Assume (a.0)~(a.l) and
(0.0)~(p.2). Let w=uw(t, x) be the solution to (5.1) with feL%, B>1/2. Then
w(t, x) behaves like

w = exp(—itv/w )R(w+i0; L)f+o(l), t—oo

b

strongly in L%,, a>1.

We may assume, without loss of generality, that 1/2<B8<(1+6)/2. The
theorem above follows from the general theorem due to Eidus [3], Chapter 1,
if the following two conditions (C.1) (low frequency behavior) and (C.2) (local
Holder continuity) are verified for the resolvent R(A+:0; L), 1>0:

(C.1) There exists d, 0<d<1/2, such that
[R(A+40; L) g.-a = 027 %),  2—0;
(C.2) There exists 7, 0<r<1, such that
|R(A£40; L)~ R(p+i0; L) p--a < C|a—pl"
for 2, p<I, IC(0, ) being a compact interval fixed arbitrarily.

Condition (C.1) has been already verified and we will show in Appendix
that (C.2) is really satisfied under the assumption of the theorem. Accepting
this as proved, we shall give only a sketch of the proof. (For details, see [3].)

PrROOF OF THEOREM 5.1. Let @(1), A>0, be the spectral resolution associ-

ated to L; L:S:id@(l). Then

O'(2) = (d/dA)O) = 2ri) {R(A+i0; L)—R(1—i0; L)}, 2>0.

We extend @'(4) to 4<0as 6/(A)=0. The solution w(t, x) to is represented
as w=w,{, x)—iwy(t, x), where

W, = S[(exp(~itvc? )—exp(—itv/A )/ (A—w)]0’(D)fdA,

Wy = S[(sin V@ )/ AV D) 10" (DfdA.
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By (C.1), the Riemann-Lebesgue theorem shows that

(5.2) w(t, x) = o(1), t—oo

’

strongly in LZ,. By (C.2), R(w+i0; L)f is expressed as
R(@+i0; L)f = iz®"(@)f +p. V.S(Z—w)“@’(l)fdl,

where the integral is taken in the principal value sense. We can also show,
making use of (C.2) again, that as t—oo

p. V.S[exp(—it\/T)/(X—w)]@’(l)fdl = —izexp(—itv/w )O'(w)f +o(1)

strongly in L%, and hence

w; = exp(—itv/w YR(w+i0; L)f+o(l), t—co

s

strongly in L2,. This, together with [5.2), proves the theorem. O

Appendix 1. Absence of eigenvalues.

In this appendix we shall prove the statement (i) of Theorem 0. If this
is verified, then statement (ii) (principle of limiting absorption) follows from
the general theorem (Theorem 30.2.10) due to Hérmander [5] by making use
of the same argument as in the proof of (see also Remark after
Lemma 2.1)).

The proof is based on the idea of Froese and Herbst [4], where the Mourre
commutator method has been efficiently used to prove the absence of positive
eigenvalues for N-body Schrédinger operators.

Assume that ¢g=H*(R3%) is the eigenfunction associated with eigenvalue
21>0; Lg=4¢. The proof consists of the following three steps:

(@) To show that <x>*¢<L? for any a>0;

(b) To show that exp(a{x>)¢<L? for any a>0;

(c) To show that ¢=0.

We prove (c) only. (a) and (b) are proved in the same way as in and (c)
is also proved by a slight modification.

The proof is done by contradiction. Assume that ¢ does not vanish identi-
cally. Let H be defined by and let V(x)=E(x)—1, E=a(x)%p(x)"'. Then
we can rewrite Lg=4¢ as Hp—AVgp=A¢. By the unique continuation theorem

(see, for example, Theorem 6.5.1, [2]), we may assume that ¢ is not of compact
support, so that

) Slxlm|¢<x)|2dx > cp>0
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for R>1 large enough. Let Xx=C=(R%), 0<Xz<1, be such that Xz=0 for |x| <R
and Xz=1 for |x|=2R. Set ¢r=Xrd. Then ¢r obeys the equation

H¢R“1 V¢R = Z¢R+gli’ ,
where

8r = [Ap, VI(1/p)-N$p+V((1/0)[Xr, V)P

The function gz has support in {x:|x]|<2R} and satisfies [gr|,<C for C
independent of K.
Let F,(x)=alx]|, a>1, so that |VF,|*=a’. We further define ¢,z as

Par = eXP(Fo)@r/ |eXp(Fa)@rls,
so that |¢.r|,=1. This satisfies the equation
2) Hpor—a*(1/ 0)par—2AVar+BePar = 2Par+8ar,
where g.r=exp(F.)gr/|exp(Fe)dr|o and
Ba = (1/0)NFo-N+V-((1/0)VF,).
The operator B, satisfies the relation B+ B,=0 and takes the form
@ B, = 2ia|x|"\(1/p)A+ax-N((1/p)| x|™"),

where A is the generator of dilation unitary group. By (1), the function g.z
satisfies the estimate

4 [<x>&arlo = Crexp(—(1/2)aR).

LEMMA A.l. Denote by {, > the L? scalar product. Then:
(0) <Nar, Vdar> < 10a®, 7.>0,
(1) {Hpar, Par> Z 112, 71:>0,
(i) iK[H, Alar, Par> ZToa®,  1:>0,
(iii) Im<{Ba@ar, Adar> = 2al|x|"(1/0)Adar, APar>+R?0(a®),
(iv) Im<a*(1/p)par, Adar> = R~ ?0(a?),
(v) Im<{Vdar, Adar> = R~%0(a),
for a>agp>1, where v;, 0<7<2, are independent of R.

PROOF. Since B,+B%¥=0, (0) and (i) follow from (2) and (4). Note that
¢ar vanishes on {x:|x|<R}. For such a function ¢=H?*R%), we have
KLH, AlY, ¢>=1:<HP, >, 7:>0. Hence, (ii) follows from (i) at once. We
have, by assumption (p.2) and by (0), that

alm{(x-V(1/0)| x| Npar, APar> = R~70(a?).

This, together with (3), implies (iii). Estimate (iv) follows from assumption
(p.2). By assumptions (a.1) and (p.2), we can decompose V(x) as V=V, (x)+
Va(x), so that V,=0(| x|~ *%) and 02V,=0(|x|-¢%+9), 0<|a| L1, as |x]|— oo,
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Hence, (v) can be easily proved. O

We evaluate the quantity i{[H, Aldur, Par>. We write
iK[H, AlQar, Qary = i{{AQar, HPard>—<Hpar, Aar>}.
By use of (2) and (4) and of Lemma A.1l, (iii)~(v), we obtain
iK[H, Alpar, Pary = —4al|x|7'(1/0)Adar, APar>+R?0(a®).
On the other hand, by Lemma A.l, (ii),
iK[H, Aldar, Par> 2 1:0°.

This contradicts the fact that ¢ does not vanish identically and hence the
absence of eigenvalues is now proved.

Appendix 2. Local Hélder continuity.

We begin by recalling the notations: E(x)=a(x)?p(x)™'; E=E\x)+ Vi(x)
with Vo=0(|x|-9*9), |x|—>o; HQ)=H—AE,—1), H being defined by
Under these notations, we have E(L—A)=H(1)—AV,—2 and hence

R(A+:0; L)E-*{Id—AV,R(A+:0; H(A))} = R(A*=:0; H(R)).

Thus, to prove the Holder continuity (C.2), it suffices to show the following
two facts: For B, 1/2<8<(1+8)/2,

(F.1) R(A#:0; H(A)): L3— L% is locally Holder continuous;
(F.2) 1d—2aV,R(4%:0; H(A)): L3— L% is invertible.

(F.2) follows from the principle of limiting absorption for L. In fact, we

have
(Id—AV,R(2+:0; H(A))™* = Id+AV,R(A+i0; L)E-!,

Of course, we can give a direct proof of (F.2) and, as a result, the existence
of the boundary values R(1+:0; L) is obtained. However, we do not do this
here, because it is not the aim here to prove the principle of limiting absorption
for L.

(F.1) is proved in the same way as in the Schrédinger operators case ([11]).
We give only a sketch for the “+” case.

We first note that | XzR(24-:0; H(D)X;l, 8>1/2, is locally bounded in 4>0.
Hence, to prove (F.1l), it suffices, by interpolation, to show the following fact
(F.1):

(F.1') R(A+:0; HQA)): L}—~ L2, is locally Hoélder continuous.

We have only to prove this only for 1 in a small compact interval I,=[1,—9,
Ao+0], 2,>0 being fixed. We define

pe(x) = 1+X(ex)(p(x)—1),  0=e<1,
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in the same way as p,. was defined in Section 3. We further define H(e; 4) as
H(e; D)= —V-(1/p)V—2E,—1).

Let fo(s)eC3(RY), 0<f<1, be a function such that f, has support in
(A,—30, 2,+30)C(0, o) and fo=1 on [4,—28, 4,-+20]. Then f,(H(R)) is continu-
ous in A</, in the L?*—L?® operator norm. By the same argument as in
Appendix 1, we can show that H(1) has no positive eigenvalues and hence, for
any compact operator K: L*—L?

I £ o(HANKS o(HADI = o(1),  §—0,
uniformly in 2<I,. Thus we can take J so small that
M(e; ) = if (HANLH(e 5 D), A1f(HQ) Z 1fo(H)®,  7>0,
in the form sense. This enables us to define G(¢; A): L?*—L? by
G(e; 2) = (HQRA)—2—ix—ieM(e; )™
for £, 0<k=1, and ¢, 0<e<s,. We set F(e)=X,G(¢)X,. By an argument

similar to that in Section 3, we see that F,(¢) obeys the differential inequality
as in and hence it follows that

1 X:(G(e; H—RA+in; HON Xl = O(e?)

uniformly in &£ and A</l,. As is easily seen, [M(e; 2)—M(e; w)l=0(2—pl),
(4, gy, X 1o, uniformly in e. Since || X,G(¢; D)||=0(e""/%), we have

[ Xi(Gle; D—Gile; ) Xill = |2—p| O(e™).
Thus, if we take ¢ as e=|A—pul|*, v=1/(1+8), it then follows that
I Xi(R(A+ix ; HQQ)—R(p+ix ; He))Xill = O(] 2—p]*?)

uniformly in k. This proves (F.1').
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