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\S 0. Introduction.

The purpose of this paper is to investigate the phenomena that a sequence
of Riemannian manifolds $M_{i}$ converges to ones with lower dimension, $N$, with
respect to the Hausdorff distance, which is introduced in [11]. We have studied
this phenomena in [7] and proved there that $M_{i}$ is a fibre bundle over $N$ with
infranilmanifold fibre. In this paper, we study which fibre bundle it is, and
give a necessary and sufficient condition. We will describe it in Theorem 0-1
and 0-7.

THEOREM 0-1. Let $M_{i}$ be a sequence of $n+m$-dimensional compact Rieman-
nian manifolds and $N$ be an n-dimensional compact Riemannian manifold. Assume

(0-2-1) $M_{i}$ converges to $N$ with respect to the Hausdorff distance,

(0-2-2) sectional curvature of $M_{i}|\leqq 1$ .
Then, for $suJficiently$ large $i$ , there exists a map $\pi_{i}$ : $M_{i}arrow N$ such that the follow-
ing hold.

(0-3-1) $\pi_{i}$ is a fibre bundle.

(0-3-2) $\pi_{i}^{-1}(p)=G/\Gamma$ , where $G$ is a nilpotent Lie group and $\Gamma$ is a discrete group
of affine transformations of $G$ satisfying $[\Gamma:G\cap\Gamma]<\infty$ . Here we put the
(unique) connection on $G$ which makes all right invariant vector field parallel,
and $G$ is regarded to be a group of $aJfine$ transformations on $G$ by right
multiplication.

(0-3-3) The structure group of $\pi_{i}$ is contained in the skew product of
$C(G)/(C(G)\cap\Gamma)$ and Aut $\Gamma$ , where $C(G)$ denotes the center of $G$ .

REMARK 0-4. Statements (0-3-1) and (0-3-2) were proved in [7].

REMARK 0-5. [7, 0-1-3] also holds. Namely $\pi_{i}$ is an almost Riemannian
submersion in the sense stated there.
$\overline{This}$research was partially supported by Grant-in-Aid for Scientific Research (No.
63740014), Ministry of Education, Science and Culture.
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REMARK 0-6. It is well known that the group $\pi_{k}$ (Diff $(G/\Gamma)$ ) is not finitely
generated in general, but $\pi_{k}(C(G)/(C(G)\cap\Gamma)\cross Aut\Gamma)\sim$ is always finitely gener-
ated. Therefore, there exist a lot of fibre bundles which satisfy (0-3-1) and
(0-3-2) but do not satisfy (0-3-3).

THEOREM 0-7. Let $M$ be an $n+m-\ men\Omega onal$ manifold, $N$ an n-dimenstonal
complete Riemannian manifold with bounded sectional curvature, and $\pi;Marrow N$ be
a smooth map. Supp0se that $\pi$ satisfies (0-3-1), (0-3-2) and (0-3-3). Then, there
exists a family of Riemannian metrics $g_{\epsilon}$ on $M$ such that the following hold.

(0-8-1) The sequence of Riemannian manifolds $(M, g_{e})$ converges to the Rieman-
nian manifold $N$, with respect to the Hausdorff distance.

(0-8-2) There exzsts a constant $C$ independent of $\epsilon$ such that

$|sectional$ curvature of $(M, g_{\epsilon})|\leqq C$ .

Theorems 0-1 and 0-7, combined with [9, Theorem 0-6], imply the following:

THEOREM 0-9. For each $m$ and $D$ , there exists a positive constant $\epsilon(n, D)$

such that the following holds. Supp0se an m-dimensional Riemannian manifold $M$

satisfies
(0-10-1) volume of $M\leqq\epsilon(m, D)$ ,

(0-10-2) diameter of $M\leqq D$ ,

(0-10-3) sectional curvature of $M|\leqq 1$ ,

(0-10-4) $\pi_{k}(M)=1$ , for $k\geqq 2$ .
Then, MinvolM$=0$ , where MinvolM is defined in [10].

Theorem 0-9 is a partial answer to the following

PROBLEM 0-11. Does there exist $\epsilon_{m}$ such that Minvol $M\leqq\epsilon_{m}$ implies Minvol $M$

$=0\rho$

If we can remove the conditions (0-10-2) and (0-10-4), we will have the
affirmative answer.

The organization of this paper is as follows. Sections 1 to 5 are devoted
to the proof of Theorem 0-1. The outline of these sections is in \S 1. In the
course of the proof, we shall prove some results on eigenfunctions of Laplace
operator, which improve one of [6]. These results may have an independent
interest. In \S 6, we shall prove Theorem 0-7. In \S 7, we shall give an orbifold
version of Theorem 0-1. The proof of Theorem 0-9 is in \S 7. In \S 8, we add
some remarks concerning the case when the limit space is not a manifold.

The author would like to thank ${\rm Max}- Planck$-Institut f\"ur Mathematik where
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this work is done. He would also like to thank Prof. T. Yamaguchi and the
refree who pointed out that the orbifold case is not completely analogous to the
manifold case.

NOTATION. For a Riemannian manifold $M$, Vol $M$ denotes the volume of
$M$, Diam $M$ denotes the diameter of $M$. For a metric space $X$ and $x\in X$ we
put

$B_{D}(x, X)=\{y\in X|d(x, y)<D\}$ .
$B(C)$ stands for $B_{C}(0, R^{n})$ . For two metric spaces $X,$ $Y,$ $d_{H}(X, Y)$ denotes the
Hausdorff distance between them which is defined in [11], $\lim_{iarrow\infty}X=X$ means
$\lim_{iarrow\infty}iarrow\infty d_{H}(X, X_{\ell})=0$ .

\S 1. Outline of the proof.

Our main Theorem 0-1 is a consequence of the following:

THEOREM 1-1. Let $M_{i}$ and $N$ be as in Theorem 0-1. Then, for each suffici-
en tly large $i$ , there exists a fibration $\pi_{i}$ ; $M_{i}arrow N$ such that the following hold.

(1-2-1) For each $p\in N$, there exists a flat connection on $\pi_{i}^{-1}(p)$ , which depends
smoothly on $p$ .

(1-2-2) There exists a nilpOtent Lie group $G$ and a group of affine transforma-
tions $\Gamma$ of $G$ such that $\pi_{l}^{-1}(p)$ is affinely diffeomorphic to $G/\Gamma$ and that
$[\Gamma:\Gamma\cap G]<\infty$ .
Theorem 1-1 is a generalization of Ruh’s result [14], which corresponds

to the case when $N$ is a point.
Theorem 0-1 is a corollary of Theorem 1-1. In fact, let $\pi_{i}$ : $M_{t}arrow N$ be as

in Theorem 1-1. Then, by (1-2-1) and (1-2-2), we can find $(U_{j}, \psi_{i,j})$ such that

(1-3-1) $U_{j},$ $j=1,2,$ $\cdots$ is an open covering of $N$,

(1-3-2) $\psi_{i.j}$ is a diffeomorphism between $\pi_{i}^{-1}(U_{j})$ and $U_{i}\cross G/\Gamma$ ,

(1-3-3) the restriction of $\psi_{i.j}$ to each fibre gives an affine diffeomorphism be-
tween $\pi_{i}^{-1}(p)$ and $\{p\}\cross G/\Gamma$ .

By (1-3-3), the transition function of $\pi_{i}$ with respect to the chart $(U_{j}, \psi_{\iota.j})$ is
contained Aff $(G/\Gamma)$ , the group of affine diffeomorphism of $G/\Gamma$ . We may
assume that $G$ is simply connected. Then, we have the following:

LEMMA 1-4. There exists a sPlit exact sequence

$1arrow G/\Gamma\cap C(G)arrow Aff(G/\Gamma)arrow Aut\Gammaarrow 1$ .

Here $C(G)$ denotes the center of $G$ .
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We omit the proof, which is straightforward. Let Aff $’(G/\Gamma)$ be the sub-
group of Aff $(G/\Gamma)$ generated by $C(G)/\Gamma\cap C(G)$ and Aut $\Gamma$ . Then we have
Aff $(G/\Gamma)/Aff’(G/\Gamma)\cong R^{k}$ . Therefore the structure group of the Aff $(G/\Gamma)$

bundle $\pi_{i}$ ; $M_{i}arrow N$ can be reduced to $Aff’(G/\Gamma)$ . And $Aff’(G/\Gamma)$ is a skew
product of $C(G)/\Gamma\cap C(G)$ and Aut $(\Gamma)$ . This implies Theorem 0-1.

The proof of Theorem 1-1 occupies Sections 2 to 5. Since it is long, we
shall give an outline first. The proof uses a parametrized version of Ruh’s
argument in [14]. To apply it, we have to improve the result of [7] and to
prove that the fibres of the fibre bundles $f_{i}$ : $M_{i}arrow N$ obtained there are almost
flat. ([7, 0-1-2] implies that fibres are diffeomorphic to almost flat manifolds.
But, in [7], we did not obtain the estimate of the curvatures of the fibres.)

Namely we shall prove Lemma 1-6 below. As will be remarked at the begin-
ning of \S 5, we can assume, without loss of generality, that

(1-5) $|\nabla^{k}R(M_{i})|<C_{k}$ .

Here $R(M_{i})$ is tbe curvature tensor, $|$ $|$ the $C^{0}$-norm, and $C_{k}$ a constant inde-
pendent of $i$ . For $x\in M_{i}$ , we let $\exp_{x,r}$ : $B(r)arrow M_{i}$ denote the exponential map
at $x$ . We fix a coordinate system $(U_{j}, \psi_{J}):U_{j}\subseteqq R^{n},$ $\psi_{j}$ : $U_{j}arrow N$.

LEMMA 1-6. Let $M_{i}$ and $N$ be as in Theorem 0-1. Assume that $M_{i}$ satisfies
(1-5). Then, for sufficiently large $i$ , there exists a fibration $\pi_{i}$ ; $M_{i}arrow N$ such that
$\pi_{i}$ is an almost Riemannian submersion in the sense of [7, 0-1-3], and that

(1-7) $|_{\partial}^{\underline{\partial^{|\alpha|}}(} \frac{\psi_{j}\circ\pi_{i}.\circ\exp_{x.r})}{x_{1}^{\alpha_{1}}\cdot\cdot\partial x_{n^{n}}^{\alpha}}|\leqq C_{\alpha}$

holds for each multiindex $\alpha$ . Here $C_{\alpha}$ denotes a constant indePendent of $i$ .

(1-7) and the fact that $\pi_{i}$ is a Riemannian submersion imply that the sec-
tional curvatures of the fibres of $\pi_{\ell}$ are uniformly bounded. Hence, the fibres
are almost flat for sufficiently large $i$ . Therefore, [14] shows that there exists
a flat connection on each fibre satisfying (1-2-2). A little more argument is
required to obtain a connection on $\pi_{i}^{-1}(p)$ depending smoothly on $p$ . This is
done in \S 5.

The proof of Lemma 1-6 is performed in Sections 2 to 4. Recall that in
[7] we used embeddings $M_{i},$ $Nc_{>}R^{Z}$ in order to construct the fibration $M_{i}arrow N$.
The embeddings there were constructed by making use of the distance function
from a point. To obtain an embedding satisfying (1-7), we have to approximate
this embedding by one with bounded higher derivatives. The approximation
we used in [7] is not sufficient for this purpose, because it is not of $C^{2}$-class.
In this paper, we use another embedding constructed by making use of eigen-
functions of Laplace operator. This embedding is appropriate for our purpose
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since eigenfunctions enjoy uniform estimate of higher derivatives. In order to
apply the argument of [7, \S \S 1, 2] to our embedding, we need to study the
convergence of eigenfunctions. In [6], we introduce a notion, measured Haus-
dorff topology and proved that the k-th eigenvalue of the Laplace operator on
$M_{\mathfrak{t}}$ converges to that of the operator $P_{(N.\mu)}$ defined in [6, \S 0], if $M_{i}$ converges
to $(N, \mu)$ with respect to the measured Hausdorff topology. We also proved an
” $L^{2}$-convergence” of eigenfunctions there. But, for our purpose, $L^{2}$-convergence
is not sufficient. We have to prove a “

$C^{1}$-convergence“. (Precise statement will
be given as Theorem 3-1.) For this purpose, we shall begin with proving that
eigenfunctions of $P_{(N,\mu)}$ are smooth. [6, Theorem 0.6] implies that the measure
$\mu$ is a multiPle of the volume element $\Omega_{N}$ by a continuous function $\chi_{N}$ . If $\chi_{N}$

is of $C^{1}$ -class, our operator $P_{(N,\mu)}$ is written as

(1-8) $P_{(N,\mu)}\varphi=\Delta_{N}\varphi-\langle d\varphi, d\chi_{N}\rangle/\chi_{N}$ .
Therefore, to prove that the eigenfunctions of $P_{(N,\mu)}$ are smooth, it suffices to
show that $\chi_{N}$ is smooth. This is done in \S 2. In \S 3, we shall prove the “ $C^{1}-$

convergence”. The proof of Lemma 1-6 is completed in \S 4.

REMARK. In 1984, S. Gallot proposed to embed Riemannian manifolds using
heat kernels, in order to study Hausdorff convergence. The embedding we use
in this paper is essentially the same as Gallot’s.

\S 2. Smoothing density functions.

LEMMA 2-1. Let $M_{i}$ be a sequence of $n+m$-dimensional $co?npact$ Riemannian
manifolds satisfying (0-2-2) and (1-5), and $X$ be a metric space, $\mu$ a pr0bability
measure on it. Supp0se $M_{i}$ converges to (X, $\mu$ ) with respect to the measured
Hausdorff top0l0gy defined in $[$6, 0.2 $B]$ . Then there exists a function $\chi_{X}$ on $X$

such that

(2-2-1) $\mu=\chi_{X}\cross$ ( $the$ volume element of $X$ ),

(2-2-2) $\chi_{X}$ is of $C^{\infty}$-class,

(2-2-3) $\chi_{X}$ satisfies [6, 0.7.1 and 0.7.3].

PROOF. In [6, 0.6], we have already proved (2-2-1) and (2-2-3). By the
argument in [6, \S 3], it suffices to show (2-2-2) in the case when $X$ is a com-
pact Riemannian manifold $N$. Put $V_{i}=VolM_{i},$ $\mu_{M_{i}}=\Omega_{M_{i}}/V_{i}$ , where $\Omega_{M_{i}}$ denotes
the volume element of $M_{i}$ . By the definition of measured Hausdorff topology,
we can take $\epsilon_{i}$-Hausdorff approximation $f_{i}$ : $M_{i}arrow N$ such that $(f_{i})_{*}(\mu_{M_{i}})$ con-
verges to $\mu$ with respect to the weak* topology. (Here $\epsilon_{i}arrow 0$ . The definition
of the Hausdorff approximation is in [8, 1.6].) In view of [7], we may assume
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that $f_{i}$ is a fibration. Then, by [6, \S 3], the functions $p-Vol(f_{i}^{-1}(p))/V_{i},$ $i=$

$1,2,$ $\cdots$ on $N$ converge, with respect to the $C^{0}$-norm, to a continuous function
$\chi_{N}$ satisfying (2-2-1) and (2-2-3). We shall prove that $\chi_{N}$ is of $C^{\infty}$-class.
Choose (not necessary continuous) section $\psi_{i}$ : $Narrow M_{i}$ to $f_{i}$ . Take an arbitrary
point $p_{0}$ of $N$ and put $p_{i}=\psi_{i}(p_{0})$ . We shall prove that $\chi_{N}$ is of $C^{\infty}$-class at $p_{0}$ .
Put $B=B(1)$ . Let $Exp_{i}$ : $Barrow M_{i}$ be the composition of a linear isometry $Barrow$

$T_{p_{i}}(M_{i})$ and the exponential map $T_{p_{i}}(M_{i})arrow M_{i}$ . Let $g_{i}$ denote the Riemannian
metric on $B$ induced by $Exp_{i}$ from the metric on $M_{i}$ . In view of (1-5), we
may assume, by taking a subsequence if necessary, that $g_{i}$ converges to a
metric $g_{0}$ with respect to the $C^{\infty}$-topology. Now, recall the argument in [8,

\S 3], where we constructed a sequence of local groups $G_{i}$ converging to a Lie
group germ $G$ , such that

(2-3-1) $G_{i}$ acts by isometry on the pointed metric space (( $B$ , go), $0$),

(2-3-2) $((B, g_{i}),$ $0$ ) $/G_{i}$ is isometric to a neighborhood of $p_{i}$ in $M_{i}$ ,

(2-3-3) $G$ acts by isometry on (( $B$ , go), $0$ ),

(2-3-4) $((B, g_{0}),$ $O$ ) $/G$ is isometric to a neighborhood of $p_{0}$ in $N$.

Let $P_{i}$ : $(B, g_{i})arrow M_{i},$ $P:(B, g_{0})arrow N$ denote natural projections. (In fact, $P_{i}=Exp_{i}.$ )

In our case, since $N$ is a manifold, the action of $G$ on $B$ is free. Let $\mathfrak{g}$ denote
the Lie algebra of $G$ . Choose a basis $X_{1},$ $\cdots$ , $X_{m}$ of $\mathfrak{g}$ . We can regard $X_{i}$ as
a Killing vector field on $(B, g_{0})$ . For $x\in B$ , we put

(2-4) $\tilde{\chi}(x)=|X_{1}(x)\Lambda\cdots\wedge X_{m}(x)|$ .

Since the nilpotent Lie algebra $\mathfrak{g}$ is unimodular, it follows that $\tilde{\chi}$ is G-invariant.
Therefore, there exists a function $\chi$ on a neighborhood of $p_{0}$ such that $x\circ p=\tilde{x}$ .
Clearly $\chi$ is of $C^{\infty}$-class. Hence, to prove Lemma 2-1, it suffices to show the
following:

LEMMA 2-5. $\chi_{N}/\chi$ is a constant function on a neighborhood of $p_{0}$ .

PROOF. Put

(2-6-1) $G_{i}’= \{\gamma\in G_{i}|d_{(B,g_{i})}(\gamma(0), 0)<\frac{1}{2}\}$

(2-6-2) $G’= \{\gamma\in G|d_{(B,g_{0})}(\gamma(0), 0)<\frac{1}{2}\}$ .

There exist a neighborhood $U$ of $p_{0}$ in $N$ and a $C^{\infty}$-map $s:Uarrow B$ such that

(2-7-1) $s(p_{0})=0$ ,

(2-7-2) $P\circ s=identity$ ,

(2-7-3) $d_{(B,g_{0})}(s(q), 0)=d_{N}(q, p_{0})$ holds for $q\in N$.
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Put

(2-8-1) $E_{i}(q, \delta)=$ { $x\in B|$ there exists $\gamma\in G_{i}’$ such that $d_{(B,g_{i})}(x,$ $\gamma s(q))<\delta$ },

(2-8-2) $E_{0}(q, \delta)=$ { $x\in B|$ there exists $\gamma\in G’$ such that $d_{(G.g_{0})}(x,$ $\gamma s(q))<\delta$ }.

SUBLEMMA 2-9. There exists a $po\alpha tive$ number $C$ independent of $q$ such that

$\lim_{\deltaarrow 0}\lim_{iarrow\infty}|\frac{V.o1(E_{i}(q,\delta))}{\# G_{i}’\delta^{n}\cdot Vo1(f_{i}^{-1}(q))}-C|=0$ .

The proof of the sublemma will be given at the end of this section. Next
we see that

(2-10) $\lim_{iarrow\infty}su_{P}q\in|\frac{Vo1(E_{i}(q,\delta))}{Vo1(E_{0}(q,\delta))}-1|=0$

holds for each $\delta>0$ . Thirdly, we put

$G’(q)=\{\gamma s(q)|\gamma\in G’\}$ .
Then, clearly we have

(2-11) $\lim_{\deltaarrow 0}$ Vol $((E_{0}(q, \delta))/\delta^{n})=W_{n}$ Vol $(G’(q))$ ,

(2-12) $\frac{Vo1(G’(q))}{\chi(q)}=\frac{Vo1(G’(q’))}{\chi(q’)}$ ,

for $q,$ $q’\in U$ . Here $n=\dim N,$ $W_{n}=VolB^{n}(1)$ . (2-11) and (2-12) imply

(2-13) $\lim_{\deltaarrow 0}\frac{Vo1(E_{0}(q,\delta))\cdot\chi(q’)}{Vo1(E_{0}(q’,\delta))\cdot\chi(q)}=1$ .

From Sublemma 2-9, Formulas (2-10) and (2-13), we conclude

$\lim_{iarrow\infty}\frac{Vo1(f_{i}^{-1}(q))\chi(q’)}{Vo1(f_{i}^{-1}(q’))\chi(q)}=1$ .
On the other hand, we have

$\lim_{iarrow\infty}\sup_{q,q’eN}|\frac{Vo1(f_{i}^{-1}(q)\cdot\chi_{N}(q’))}{Vo1(f_{i}^{-1}(q’))\chi_{N}(q)}1|=0$ .
Therefore,

$\frac{\chi_{N}(q)\chi(q’)}{\chi_{N}(q’)\chi(q)}=1$ .

This implies Lemma 2-5.

PROOF OF SUBLEMMA 2-9. Put $s_{i}=P_{i^{\circ}}s:Uarrow M_{i}$ . Choose an open subset
$V_{i}(\delta)$ of $B$ such that the following hold.

(2-14-1) If $\gamma\in G_{i}’,$ $\gamma\neq 1$ , then $\gamma V_{i}(\delta)\cap V_{i}(\delta)=\emptyset$ .
(2-14-2) $P_{i}(V_{i}(\delta))$ is a dense subset of $B_{\delta}(s_{i}(q), M_{i})$ .
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(2-14-3) $V_{i}(\delta)\subset B_{\delta}(s(q), (B, g_{i}))$ and if $x\in V_{i}(\delta),$ $\gamma\in G_{i}’$ , then

$d(\gamma(x), s(q))\geqq d(x, s(q))$ .
Put $E_{i}’(q, \delta)=\{\gamma(x)|\gamma\in G_{i}’, x\in V_{i}(\delta)\}$ . Then, by the definition of $V_{t}(\delta)$ and
$E_{i}(q, \delta)$ , we have $\overline{E_{i}’(q,\delta)}=\overline{E_{t}(q,\delta)}$ . Hence, by (2-14-1), we have

(2-16) Vol $(V_{i}( \delta))=\frac{Vo1(E_{l}(q,\delta))}{\# G_{i}}$ .

On the other hand, put

$c_{i}= \sup_{p\in U}d(s_{i}(p), p_{i})$ , $d_{i}= \sup_{p\in}$ Diam $f_{i}^{-1}(p)$ .

Then, $\lim_{iarrow\infty}c_{\iota}=\lim_{iarrow\infty}d_{i}=0$ . It is easy to see

(2-17) $f_{i}^{-1}(B_{\delta-d_{i}-c_{i}}(q, N))\subset B_{\delta}(s_{i}(q), M_{i})\subset f_{i}^{-1}(B_{\delta+d_{i}+c_{i}}(q, N))$ ,

(2-15), (2-16), and (2-17) imply

(2-18)
$iimiarrow\infty V^{\frac{(q,N)Vo1(f_{i}^{-1}(p))\cdot\Omega_{N}}{o1(E_{i}(q,\delta))}}\underline{\# G_{i}’\cdot\int_{p\in B_{\delta}}}=1$

where $\Omega_{N}$ is the volume element of $N$. Since the family of functions $p\mapsto$

log $(Vol(f_{i}^{-1}(p))),$ $i=1,2,$ $\cdots$ , is equicontinuous ([6, Lemma 3.2]), it follows that

(2-19)
$\lim_{\deltaarrow 0i}\sup_{=1,2}\ldots|\frac{\int_{\frac}p\in B_{\delta}(q.N)Vo1(f_{i}^{-1}(p))\cdot\Omega_{N}}{\delta^{n}W_{n}Vo1(f_{i}^{-1}(q))}1|=0$ .

The sublemma follows immediately from (2-18) and (2-19). Q. E. D.

\S 3. $C^{1}$-convergence of eigenfunctions.

THEOREM 3-1. Let $M_{i}$ and (X, $\mu$ ) be as in Lemma 2-1. Then, there exist
smooth maps $f_{i}$ : $M_{t}arrow X$ such that the following hold.
(3-2-1) $f_{i}$ satisfies [7, (0-1-1), (0-1-2), (0-1-3)], if $X$ is a Riemannian manifold.
(3-2-2) $(f_{i})_{*}(\mu_{M_{i}})$ converges to $\mu$ with respect to the weak* topology, where

$\mu_{M_{i}}=\Omega_{M_{i}}/Vol(M_{i})$ .
(3-2-3) Let $\varphi_{i,k}$ be a k-th eigenfunction of the Laplace operat0r on $M_{i}$ satisfying

$\sup_{x\in M_{i}}|\varphi_{i,k}(x)|=1$ . Then there exist functions $\varphi_{i.k}’$ on $X$ such that

(a) $\varphi_{i.k}’$ is a k-th eigenfunction of $P_{(X,\mu)}$ ,
(b) for each $p_{i}\in M_{i}$ , we have

$|\varphi_{i,k}(p_{i})-\varphi_{i,k}’(f_{i}(p_{i}))|<\epsilon_{i}(k)$ ,

(c) for each vector $V_{i}\in T(M_{i})$ , we have
$|V_{i}(\varphi_{i.k})-(f_{i})_{*}(V_{i})(\varphi_{l,k}’)|<\epsilon_{i}(k)\cdot|V_{t}|$ ,
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where $\epsilon_{i}(k)$ denotes Positive numbers depending only on $i$ and $k$ and
satisfying $\lim_{iarrow\infty}\epsilon_{i}(k)=0$ .

REMARK. In the case when $X$ is a manifold, (3-2-1) means that $f_{i}$ is a
fibration with infranilmanifold fibre.

First, we shall prove $C^{0}$-convergence, (b). We begin with the following
Ascoli-Arzel\‘a type lemma.

LEMMA 3-3. Let $X_{l}$ and $X$ be compact metric spaces, $\psi_{i}$ : $Xarrow X_{i}\epsilon_{i}$-Hausdorff
aPprommation, lim $\epsilon_{i}=0$ , and $\varphi_{i}$ be continuous functions on $X_{i}$ . Assume

(3-4-1) $\varphi_{i},$ $i=1,2,3,$ $\cdots$ , are uniformly bounded,

(3-4-2) $\varphi_{i},$ $i=1,2,3,$ $\cdots$ , are equi-uniformly continuous. $Naf?\iota ely$ for each $\epsilon>0$ ,

there exists $\delta>0$ indePendent of $i,$ $x$ and $y$ such that $d(x, y)<\delta,$ $x,$ $y\in X_{\iota}$

implies $|\varphi_{i}(x)-\varphi_{i}(y)|<\epsilon$ .
Then, there exist a subsequence $i_{j}$ and a continuous function $\varphi$ on $X$ such that

$\lim_{jarrow\infty}\sup_{x\in X}|\varphi(x)-\varphi_{i_{j}}\circ\psi_{i_{j}}(x)|=0$ .

The proof is an obvious analogue of that of Ascoli-Arzel\‘a’s theorem, and
hence is omitted. Next we need the following:

LEMMA 3-5. $\varphi_{i.k},$ $i=1,2,3\cdots$ , are equi-uniformly continuous for each $k$ .

PROOF. By [6, 4.3], we have

$|V(\varphi_{i.\ovalbox{\tt\small REJECT}})|<k\cdot|V|\Vert\varphi_{i,k}\Vert_{L^{2}}/Vol(M_{i})^{1/2}$

for each $V\in T(M_{i})$ . The lemma follows immediately. Q. E. D.

Now we shall prove (3-2-1), (3-2-2) and (3-2-3) (a) and (b). We constructed,
in [7, Theorem 0-1], the map $f_{\iota}$ satisfying (3-2-1) and (3-2-2). Suppose that
we can not find $f_{i}$ satisfying (3-2-3) (a) and (b). Then, there exist $\theta>0$ and
a subsequence $i_{j}$ such that

(3-6)
$\sup_{x\in M_{i_{j}}}|\varphi_{i_{j}.k}(x)-\varphi^{\circ}f_{i_{f}}(x)|>\theta$

holds for each $j$ and each k-th eigenfunction $\varphi$ of $P_{(X,\mu)}$ . On the other hand,
Lemmas 3-3 and 3-5 imply that we may assume, by taking a subsequence if
necessary, the existence of a continuous function $\varphi_{\infty}$ on $X$ such that

(3-7) lim $\sup|\varphi_{i_{j},k}(x)-\varphi_{\infty}\circ f_{i_{j}}(x)|=0$ .
$jarrow\infty x\in M_{t_{j}}$

Moreover, [6, Theorem 0.4] implies that the $L^{2}$-distance between $\varphi_{\iota_{j}}\circ\psi_{j}$ and the
k-th eigenspace of $P_{(X,\mu)}$ converges to $0$ , where $\psi_{f}$ : $Xarrow M_{i_{j}}$ is a measurable
map satisfying $f_{i_{j}}\circ\psi_{j}=identity$ . Therefore, (3-7) implies that $\varphi_{\infty}$ is a k-th eigen-



342 K. FUKAYA

function of $P_{(X.\mu)}$ . This contradicts (3-6).

REMARK. We have not yet used Assumption 1-5.

To prove (3-2-3) (c), we first remark the following elementary inequality

LEMMA 3-8. Let $\varphi:(a-\epsilon, b+\epsilon)arrow R$ be a $C^{2}$-function satisfying

$\sup_{t\in[a,b]}|\frac{d^{2}\varphi}{di^{2}}|\leqq C$ .
Then we $hal$) $e$

$| \frac{d\varphi}{dt}(a)-\frac{\varphi(b)-\varphi(a)}{b-a}|\leqq C\cdot(b-a)$ .

Secondly, [6, 4.3.2] implies the following.

LEMMA 3-9. There exists a constant $C_{k}$ indePendent $i$ such that the following
holds. Let 1: $[0,1]arrow M_{i}$ be a geodesic with unit speed. Then

$\sup_{t\in[0,1]}|\frac{d^{2}(\varphi_{i.k}\circ l)}{dt^{2}}|<C_{k}$ .

By a method similar to [6, \S 7], we may assume that $X$ is a manifold, $N$.
Then, since the k-th eigenspace of $P_{(N,\mu)}$ is finite dimensional and consists of
smooth functions, it follows that

(3-10) $\sup_{t\in[0,1]}|\frac{d^{2}(\varphi_{i.k}’\circ l)}{dt^{2}}|<C_{k}’$

holds for each geodesic 1: $[0,1]arrow N$ with unit speed.
Now let $V_{i}\in T(M_{i})$ be a unit vector. We put $l_{i}(t)=\exp(t\cdot V_{i}),$ $l_{i}’(t)=$

exp $(t\cdot(f_{i})_{*}(V_{i})/|(f_{i})_{*}(V_{i})|)$ . Then, by [7, \S 4], we have

(3-11) $\lim_{iarrow\infty t}\sup_{\in[0,1]}d(f_{i}l_{i}(t), l_{i}’(t))=0$ ,

(3-12) $\lim_{iarrow}\sup_{\infty}|(f_{i})_{*}(V_{i})|\leqq 1$ .

Let $\delta$ be an arbitrary small positive number. Lemmas 3-8 and 3-9 imply

(3-13) $|V_{i}( \varphi_{i,k})-\frac{\varphi_{i,k}\circ l_{i}(\delta)-\varphi_{i,k}\circ l_{\ell}(0)}{\delta}|\leqq C_{k}\cdot\delta$ .

On the other hand, by Lemma 3-8, Formulae (3-10), (3-12), we have

(3-14) $\lim_{iarrow}\sup_{\infty}|(f_{i})_{*}(V_{i})(\varphi_{i,k}’)-\frac{\varphi_{i,k}’\circ l_{i}’(\delta)-\varphi_{i.k}’\circ l_{\ell}’(0)}{\delta}|\leqq C_{k}’\cdot\delta$ .

Furthermore (3-2-3) (b) and (3-11) imply

(3-15) $\lim_{iarrow\infty}\sup_{t\in[0,1]}|\varphi_{i.k}\circ l_{i}(t)-\varphi_{i.k}’\circ l_{i}’(t)|=0$ .
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From Formulae (3-13), (3-14), (3-15), we conclude

$\lim_{iarrow\infty}|V_{i}(\varphi_{i.k})-(f_{t})_{*}(V_{i})(\varphi_{i.k})|\leqq(C_{k}+C_{k}’)\delta$ .

Q. E. D.

\S 4. Estimating derivatives of the fibration.

In this section we shall prove Lemma 1-6. Let $M_{i}$ and $N$ be as in Theorem
0-1. By [1], we obtain, for each $\delta>0$ , metrics $g_{i,\delta}$ on $M_{i}$ such that

(4-1-1) $|g_{i.\delta}-g_{i}|<\tau(\delta)$ ,

(4-1-2) $|\nabla^{k}R(M_{i}, g_{i.\delta})|<C(k, \delta)$ .
Here $g_{i}$ denotes the original Riemannian metric on $M_{i}$ , and $\tau(\delta),$ $C(k, \delta)$ are
positive numbers indePendent of $i$ and satisfying $\lim_{\deltaarrow 0}\tau(\delta)=0$ . By taking a sub-
sequence if necessary, we may assume $(M_{i}, g_{i.\delta})$ , $i=1,2,$ $\cdots$ , converge to a
metric space $N_{\delta}$ with respect to the Hausdorff distance. Then, [8, Lemma 2-3]
implies that $N_{\delta}$ is diffeomorphic to $N$ and

(4-2) $\lim_{\deltaarrow 0}d_{L}(N, N_{\delta})=0$ ,

where $d_{L}$ denotes the Lipschitz distance dePned in [11]. Therefore, it suffices
to show Lemma 1-6 for $M_{i.\delta}$ and $N_{\delta}$ . Hereafter we shall write $M_{i}$ and $N$ in
place of $M_{i.\delta}$ and $N_{\delta}$ . Thus, we verified that we can assume (1-5) while prov-
ing Lemma 1-6.

By [6, Corollary 2-11], we may assume, by taking a subsequence if neces-
sary, that $M_{i}$ converges to $(N, \chi_{N}\Omega_{N})$ with respect to the measured Hausdorff
topology. Then, Lemma 2-1 implies that $\chi_{N}$ is smooth. Hence the operator
$P_{(N.\chi_{N}\Omega_{N})}$ is elliptic with smooth coefficients. It follows the following:

LEMMA 4-3. There exists $J$ such that the maP $I_{0}$ : $Narrow R^{J}$ defined by $I_{0}(P)=$

$(\varphi_{1}(P), \cdots , \varphi_{J}(P))$ is a smooth embedding. Here $\varphi_{k}$ denotes a k-th eigenfunction
of $P_{(N.\chi_{N}\Omega_{N})}$ .

Next, we apply Theorem 3-1 to obtain eigenfunctions $\varphi_{i.k}$ and $\varphi_{i.k}’$ satisfy-
ing (3-2-3). Put

$I_{i}’(x)=(\varphi_{i.1}(x), \varphi_{i.J}(x))$ .
Then, there exists a sequence of isometries $L_{i}$ of $R^{J}$ such that $L_{i}\circ I_{i}’$ converges
to $I_{0}$ with respect to the $C^{1}$-topology. We have the following:

LEMMA 4-4. There exist smooth maps $I_{i}$ : $M_{i}arrow R^{J},$ $I_{0}$ : $Narrow R^{J}$ such that

(4-5-1) $I_{0}$ is an evebedding,

(4-5-2) $\lim_{iarrow\infty}\sup_{x\in M_{i}}|I_{i}(x)-I_{0}\circ f_{i}(x)|=0$ ,
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(4-5-3) $\lim_{iarrow\infty}\sup_{V\in T(M_{i})}|(I_{i})_{*}(V)-(I_{0}\circ f_{i})_{*}(V)|=0$ ,

(4-5-4) $|\Delta^{k}I_{i}|\leqq C^{k}|I_{i}|$ .

Here $f_{i}$ : $M_{i}arrow N$ is a fibration of \S 3, and $C$ is a constant independent of $i$ and $k$ .

PROOF. Put $I_{i}=L_{t}\circ I_{t}’$ . We have already proved (4-5-1), $\cdots$ , (4-5-3).

Formula (4-5-4) follows from the definition of $I_{i}$ and the estimate of the eigen-
functions of Laplace operators (see [6]). Q. E. D.

Now, put

$B_{\delta}N(N)=$ { $(p,$ $u)\in R^{J}||u|<\delta,$ $u$ is perpendicular to $(I_{0})_{*}(T_{p}(N))$ }.

Let $E:B_{\delta}N(N)arrow R^{J}$ denote the map $E(p, u)=I_{0}(p)+u$ . Then, by (4-5-1), we
can choose $\delta$ such that $E:B_{\delta}N(N)arrow R^{J}$ is a diffeomorphism to its image. Then,
by (4-5-2), we see that, for sufficiently large $i$ , we have $I_{i}(M_{i})\subset E(B_{\delta}N(N))$ .
Thus, the map $\pi_{i}=P\circ E^{-1}\circ I_{i}$ is well defined, ( $P:E(B_{\delta}N(N))arrow N$ is defined by
$P(P, u)=p)$ . As in [7, \S 2], the fact (4-5-3) implies that $\pi_{i}$ is a fibration.
Facts (4-5-4) and (4-1-2) imply that $\pi_{\iota}$ satisfies (1-7). The proof of Lemma 1-6
is now complete.

\S 5. The construction of a smooth family of connections.

In this section, we shall complete the proof of Theorem 1-1. Then, Lemma
1-6 implies the following:

LEMMA 5-1. Let $\pi_{i}$ : $M_{i}arrow N$ be as in Lemma 1-6. Then, there exists a con-
stant $C$ independent of $i$ , such that

$|the$ second fundamental form of $\pi_{i}^{-1}(p)|<C$ .
On the other hand, we have

(5-2)
$\lim_{iarrow\infty p}\sup_{\in N}$ Diam $(\pi_{i}^{-1}(p))=0$ .

Hence, by [14], we can construct, for each $i$ and $p\in N$, a flat connection on
$\pi_{i}^{-1}(p)$ such that $\pi_{i}^{-1}(p)$ is affinely diffeomorphic to $G/\Gamma$ , where $G$ and $\Gamma$ are
as in Theorem 1-1. Hence it suffices to modify these connections so that they
depend smoothly on $p$ . If the flat connection constructed in [14] were canonical,
then there would be nothing to show. But, unfortunately, the connection there
depends on the choice of the base point on an almost flat manifold. Therefore,
we should check carefully the construction there. In [14], the construction of
the connection is divided into three steps. In the first step, a flat connection
$\nabla’$ with small torsion tensor is constructed. The connection $\nabla’$ is used, in the
second step, to construct a flat connection with parallel torsion tensor. In the



Collapsing Riemannian manifolds 345

third step, it is shown that almost flat manifolds equipped with a flat connection
with parallel torsion tensor are affinely diffeomorphic to $G/\Gamma$ . Roughly speak-
ing, we do not have to modify the arguments in the second and the third steps,
because connections constructed there depend smoothly on the data given in the
first step.

Now, we shall present the parametrized version of the first step. First we
change the normalization of the metric of the fibres. (Our normalization so
far was $|curvature|\leqq 1,$ $Diameterarrow 0$ . The normalization in [14] was Diameter
$=1,$ $|curvature|arrow 0.$ )

LEMMA 5-3. Let $\pi_{t}$ : $M_{t}arrow N$ be as in Lemma 1-6. Then, there exists $c$

smooth family of Riemannian metrics $g_{i}(p)$ on $\pi_{i}^{-1}(p)$ such that

(5-4-1) Diam $(\pi_{i}^{-1}(p), g_{i}(p))=1$ ,

(5-4-2) $|\nabla^{k}R(g_{i}(p))|\leqq\epsilon_{i,k}$ ,

where $\lim_{iarrow\infty}\epsilon_{\iota.k}=0$ .

Secondly, we introduce the $C^{k}$ -norm on $\pi_{i}^{-1}(p)$ as follows. Take $x\in\pi_{i}^{-1}(p)$

and let $Exp_{x}$ : $B(100)arrow\pi_{i}^{-1}(p)$ be the exponential map. Let $A$ be a tensor on
$f_{i}^{-1}(p)$ . We define $|A|_{C^{k}}$ to be the $C^{k}$ -norm of the coefficients of $E^{*}(A)$ . This
definition is independent of $x$ modulo constant multiple. Then (5-4-2) implies

(5-4-3) $|R(g_{i}(p))|_{C^{k}}\leqq\epsilon_{i.k}$ .
Thirdly we put $p_{j}\in N,$ $V_{j}=B_{\mu}(p_{j}, N),$ $U_{j}=B_{2\mu}(p_{j}, N)$ , where $\mu$ is the one third
of the injectivity radius of $N$. Assume $\cup V_{j}=N$. Let $s_{i,j}$ : $U_{j}arrow M_{i}$ be smooth
sections to $\pi_{i}$ . Then, using st. $j(p)$ as a base point of $\pi_{i}^{-1}(p)$ , we can follow
the argument of [14, p. 5, p. 6] and obtain the following:

LEMMA 5-5. For each $i$ and $j$ , there exists a smooth family of connections
$\nabla^{(i}j)(p)$ on $\pi_{i}^{-1}(p)(p\in U_{j})$ such that

(5-6-1) $\nabla^{(i,j)}(p)$ is flat,

(5-6-2) $|T^{(i,j)}(p)|_{C^{k}}<\epsilon_{i.k}$ , where $T^{(i}j$ ) $(p)$ is the torsion tensor of $\nabla^{(i}j$ ) $(p)$ ,

(5-6-3) $\nabla^{(i.f)}(p)$ is a metric connection with respect to the metric $g_{i}(p)$ .

Fourthly, we shall estimate the tensor $\nabla^{(i,j)}(p)-\nabla^{(i,j’)}(p)$ , and prove

(5-6-4) $|\nabla^{(i,j)}(p)-\nabla^{(ij’)}(p)|_{C^{k}}<\epsilon_{i,k}$ .

By the construction of $\nabla^{(i,j)}(p)$ (which is presented in [14, p. 5, p. 6]), it suffices
to estimate the parallel transform (Sublemma 5-7). Let $\tilde{g}_{i,j}(p)$ be the metric
on $B(100)$ induced by the exponential map $Exp_{s_{iJ^{(P)}}},$ : $T_{s_{i,j}(p)}(\pi_{i}^{-1}(p))arrow\pi_{i}^{-1}(p)$ .
For $x\in B(100)$ , we identify $R^{n}$ and $T_{x}(B(100))$ in an obvious way. Then, for
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$x,$ $y\in B(100)$ , the parallel translation along the shortest geodesic $p_{x}^{i}:$ : $T(B(100))$
$arrow T_{y}(B(100))$ with respect to the metric $\tilde{g}_{i.j}(p)$ , can be regarded as an element
of $GL(n, R)$ . Put

$Q_{i^{j,p}}^{i}xy(Z)=P_{x.z}^{\ell,j,p}-P_{y}^{i};_{z}^{f,p}$ .
$Q_{x}^{c_{i}j.p}y$ is a matrix valued function. Now, (5-6-4) follows from the following:

SUBLEMMA 5-7. There exists $\epsilon_{k}(\delta)$ indePendent of $i,$ $j,$ $p$ such that if $|x-y|$

$<\delta$ then $|Q_{x.y}^{;,j.p}(Z)|_{C^{k}}<\epsilon_{k}(\delta)$ . Here $\lim_{\deltaarrow 0}\epsilon_{k}(\delta)=0$ .

PROOF. If Sublemma does not hold, there exist $x_{l},$ $y_{l},$ $z_{(l)}^{(0)}\in B(100),$ $i_{l},$ $j_{l}$ ,
$\theta>0$ and a multiindex $\alpha$ such that

(5-8-1) $| \frac{\partial^{|\alpha\rceil}(.P_{i^{j_{1}}}^{i_{1}}x_{1}z)}{\partial z_{1}^{\alpha_{1}}\cdot\cdot\partial z_{n^{n}}^{\alpha}}-\frac{\partial^{|\alpha\rceil}(.P_{y_{1}^{1}.z}^{i,j_{1}})}{\partial z_{1}^{\alpha_{1}}\cdot\cdot\partial z_{n^{n}}^{a}}|_{z=z_{(l)}^{(0)}}>\theta$ ,

(5-8-2) $\lim_{larrow\infty}d(x_{l}, y_{l})=0$ .
By taking a subsequence, we may assume that lim $x_{l}= \lim y_{l}=W$ , lim $z_{(l)}^{(0)}=z^{(0)}$

and $\tilde{g}_{i_{l}.j_{l}}(p)$ converges to $g_{\infty}$ with respect to the $C^{\infty}$-topology. Then we have

(5-9) $\lim_{larrow\infty}(\frac{\partial^{\rceil\alpha\rceil}.P_{x_{l}^{l}.z}^{ij_{l}}}{\partial z_{1}^{a_{1}}\cdot\cdot\partial z_{n}^{a_{n}}}|_{z=z_{(l)}^{(0)}})=\frac{\partial^{|a|}.P_{w}^{\infty}}{\partial z_{1}^{\alpha_{1}}}\partial\frac{z}{z_{n}^{\alpha_{n}}}|_{z=z^{(0)}}=\lim_{larrow\infty}(\frac{\partial^{|\alpha|}.P_{y_{l}^{ll}}^{ij}z}{\partial z_{1}^{a_{1}}\cdot\cdot\partial z_{n}^{\alpha_{n}}}|_{z=z_{(l)}^{(0)}})$ ,

where $P^{\infty}$ denotes the parallel translation with respect to $g_{\infty}$ . (5-9) contradicts
(5-8-1). Q. E. D.

Thus, we have verified (5-6-4). Finally we shall prove the following:

LEMMA 5.10. There exists a smooth family of connections $\nabla_{i}’(p)$ on $\pi_{i}^{-1}(p)$

$(p\in N)$ such that

(5-11-1) $\nabla_{i}’(p)$ is flat,

(5-11-2) $|T_{i}’(p)|_{C^{k}}\leqq\epsilon_{i.k}$ , where $T_{i}’(p)$ is the torsion tensor of $\nabla_{i}’(p)$ ,

(5-11-3) $\nabla_{i}’(p)$ is a metric connection with respect to the meiric $g_{i}(p)$ .

PROOF. For simplicity, we assume $V_{1}\cup V_{2}=N$. First we shall find a gauge
transformation $O_{p.i}$ such that $\nabla^{(i,1)}(p)=O_{p.i}^{-1}\circ\nabla^{(i,2)}(p)\circ O_{p.i}$ holds for $p\in U_{1}\cap U_{2}$ .
Here $O_{p,i}$ is a section of the fibre bundle Aut $(F(\pi_{i}^{-1}(p)))=F(\pi_{i}^{-1}(p))\cross_{Ad}O(m)$ ,

where $F(\pi_{i}^{-1}(p))$ is the frame and $m=\dim\pi_{i}^{-1}(p)$ . We have two monodromy
representations $\tilde{\rho}_{1}^{(p,i)},\tilde{\rho}_{2}^{(p,i)}$ : $\Gammaarrow 0(T_{s_{i,1}(p)}(\pi_{i}^{-1}(p)))$ with respect to the flat con-
nections $\nabla^{(i,1)}(p)$ and $\nabla^{(i,2)}(p)$ , respectively. (Here we recall $\pi_{i}^{-1}(p)=G/\Gamma$ . And
$O(T_{s_{i,1}(p)}(\pi_{i}^{-1}(p)))$ denotes the set of linear isometries of $T_{s_{i,1}(p)}(\pi_{i}^{-1}(p)).)$ By the
construction of $\nabla^{(i,j)}(p)$ presented in $[$ 14, $P$ . 5, $P$ . 6 $]$ we see $\tilde{\rho}_{1}^{(p,i)}(\Gamma\cap G)=$

$1\tilde{o}_{2}^{(p,i)}(\Gamma\cap G)=1$ . Hence there exist a projection $P:\Gammaarrow\Lambda$ to a finite group $\Lambda$

and representations $\rho_{1}^{(p,i)},$ $\rho_{2}^{(p,i)}$ : $\Lambdaarrow O(T_{s_{i,1}(p)}(\pi_{i}^{-1}(p)))$ such that $\rho_{1}^{(p,i)}\circ P=$
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$\tilde{\rho}_{1}^{(p,i)},$ $\rho_{2}^{(p,i)}\circ P=\tilde{\rho}_{2}^{(p.i)}$ . Then, since $\#\Lambda<\infty$ and $\rho_{1}^{(p,i)}$ and $\rho_{2}^{(p,i)}$ are close to
each other, there exists $\alpha_{i}(p)\in O(T_{s_{i}}1^{(p)(\pi_{i}^{-1}(p)))}$ depending smoothly on $P$ such
that $\rho_{2}^{(p,i)}(\gamma)=\alpha_{i}(p)^{-1}\rho_{1}^{(p,i)}(\gamma)\cdot\alpha_{i}(p)$ , and $\alpha_{i}(p)$ converges to identity with respect
to the $C^{\infty}$-topology when $i$ tends to $\infty$ . Now we define $O_{p,i}(x):T_{x}(\pi_{i}^{-1}(p))arrow$

$T_{x}(\pi_{i}^{-1}(p))$ , for $x\in\pi_{i}^{-1}(p)$ , as follows. Let $l:[0,1]arrow\pi_{i}^{-1}(p)$ be an arbitrary curve
connecting $x$ to $s_{i,1}(p)$ , and $P_{1},$ $P_{2}$ : $T_{x}(\pi_{i}^{-1}(p))arrow T_{s_{i,1}(p)}(\pi_{i}^{-1}(p))$ denote the parallel
translations along 1 with respect to the connections $\nabla^{(i}1$ ) $(p)$ and $\nabla^{(i2)}(p)$ , re-
spectively. We put

(5-12) $O_{p.i}(x)(V)=P_{2}^{-1}(\alpha_{i}(p)^{-1}\cdot P_{1}(V))$ .

Using $\alpha_{i}(p)^{-1}\cdot\tilde{\rho}_{1}^{(p,i)}\cdot\alpha_{i}(p)=\tilde{\rho}_{2}^{(p,i)}$ , it is easy to verify that $O_{p,i}(x)$ does not de-
pend on the choice of $l$ . The equality $\nabla^{(i}1$ )

$(p)=O_{p.i}^{-1}\circ\nabla^{(i.2)}(p)\circ O_{p,i}$ is also
obvious from the definition. By construction, $O_{p,i}$ converges to the identity
with respect to the $C^{\infty}$-topology. Therefore, the section log $O_{p,i}$ to $F(\pi_{\iota}^{-1}(p))$

$\cross_{ad}\circ(m)$ is well defined, (where $o(m)$ is the Lie algebra of $O(m)$ and $m=$

dim $\pi_{i}^{-1}(p))$ , and log $O_{p,i}$ satisfies

(5-13) log $O_{p,i}|_{C^{k}}\leqq\epsilon_{i}(k)$ .

Take a smooth function $\psi:Narrow[0,1]$ such that $\psi\equiv 1$ on a neighborhood of
$\overline{V_{1}\backslash U_{2}}$ and that $\psi\equiv 0$ on a neighborhood of $\overline{V_{2}\backslash U_{1}}$ . Put $O_{p.i}’=\exp$ ( $\psi(p)$ log $O_{p,i}$ ),

for $p\in U_{1}\cap U_{2}$ . We define $\nabla_{l}’(p)$ by

$\nabla_{(i)}’(p)\{\begin{array}{ll}=O_{p,i}^{\prime-1}\circ\nabla^{(i}2)(p)\circ O_{p,i}’ p\in U_{1}\cap U_{2}=\nabla^{(i}2)(p) p\in V_{2}-U_{1}=\nabla^{(i}1)(p) p\in V_{1}-U_{2}.\end{array}$

(5-12) implies that $\nabla_{i}’(p)$ depends smoothly on p. (5-13) implies (5-11-2). Facts
(5-11-1) and (5-11-3) are obvious from the construction. Q. E. D.

Thus we have proved the parametrized version of the first step in [14].

The rest of the argument is completely parallel to [14]. We use Newton’s
method to obtain a sequence of flat connections $\nabla_{i,k}’(p)$ and a connection $\nabla_{i}(p)$

such that

(5-14-1) $\nabla_{t.0}’(p)=\nabla_{i}’(p)$ ,

(5-14-2) $\lim_{karrow\infty}|\nabla_{i,k}’(p)-\nabla_{i}(p)|_{C^{2}}=0$ ,

(5-14-3) $\nabla_{i}(p)(T_{i}(p))=0$ , where $T_{i}(p)$ is the torsion tensor of $\nabla_{i}(p)$ .

(In [14] the convergence of $\nabla_{i,k}’(p)$ to $\nabla_{i}$ is the $C^{0}$-convergence. But, in our
case, we can prove the $C^{k}$ -convergence for an arbitrary $k$ , thanks to (5-11-2).)

By (5-14-2) $\nabla_{i}(p)$ is a $C^{2}$-family of connections. It is easy to modify it to a
$C^{\infty}$-family. Then (5-14-3) implies, as in [14, p. 13], that $\nabla_{i}(p)$ is the connec-
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tion we have been looking for. The proof of Theorem 1-1 is now completed.

\S 6. The construction of a collapsing family of metrics.

In this section, we shall prove Theorem 0-7. Let $\pi$ : $Marrow N$ be a fibre
bundle satisfying (0-3-1), (0-3-2), (0-3-3). $T$ denotes the structure group of the
fibration $\pi$ . Then $T$ is an extension of a torus $T_{0}$ by a discrete group $\Lambda$ con-
tained in Aut $\Gamma$ , where $\Gamma$ and $G$ are as in (0-3-2). Choose a $T$ connection of
$\pi$ . It gives a decomposition of $T_{x}(M)$ to its horizontal subspace $H_{x}(M)$ and
vertical subspace $V_{x}(M)=T_{x}(\pi^{-1}\pi(x))$ . We put

(6-1-1) $g_{\epsilon}(V, W)=g_{N}(\pi_{*}(V), \pi_{*}(W))$ , if $V,$ $W\in H_{x}(M)$ ,

(6-1-2) $g_{\epsilon}(V, W)=0$ , if $V\in H_{x}(M),$ $W\in V_{x}(M)$ .

Here $g_{N}$ denotes the Riemannian metric of $N$. We shall define $g_{\epsilon}(V, W)$ for
$V,$ $W\in V_{x}(M)$ .

Let $\pi_{1}$ : $P_{1}arrow N$ be the principal T-bundle associated to $\pi$ , and $\pi_{2}$ ; $P_{2}arrow N$ be
the principal $\Lambda$ -bundle induced from $\pi_{1}$ . (Namely $P_{2}=P_{1}/T_{0}.$ ) Let $\mathfrak{g}$ be the Lie
algebra of $G$ . Put $\mathfrak{g}_{0}’=\mathfrak{g},$ $\mathfrak{g}_{k+1}’=[\mathfrak{g}_{k}’, \mathfrak{g}]$ , and $\mathfrak{g}_{k}=\mathfrak{g}_{k}’+$ (center of g) if $\mathfrak{g}_{k}’\neq 0,$ $\mathfrak{g}_{k}=0$

if $\mathfrak{g}_{k}’=0$ . We have $[\mathfrak{g}, \mathfrak{g}_{k}]\subset \mathfrak{g}_{k+1}$ . If $\mathfrak{g}_{K}=0,$ $\mathfrak{g}_{K- 1}\neq 0$ , then $\mathfrak{g}_{K-1}=center$ of $\mathfrak{g}$ .
Since $\Lambda\subset Aut\Gamma$ , Malcev’s rigidity theorem (see [13, p. 34]) implies $\Lambda\subset AutG$ .
Hence $\Lambda$ acts on $\mathfrak{g}$ by isomorphism. It follows that $\Lambda$ preserves the filtration
$\mathfrak{g}=\mathfrak{g}_{0}\supset \mathfrak{g}_{1}\supset\cdots\supset \mathfrak{g}_{K}=0$ . Put $E=P_{2}\cross\Lambda \mathfrak{g},$ $\cdots$ , $E_{K}=P_{2}\cross_{\Lambda}\mathfrak{g}_{K}$ . Then $\pi_{0}$ ; $Earrow N$,
$\pi_{k}$ ; $E_{k}arrow N$ are vector bundles. Fix a metric $h_{1}$ on $E$ and let $F_{k}$ be the inter-
section of $E_{k-1}$ and the orthogonal complement of $E_{k}$ . Then, $F_{k},$ $k=1,2,$ $\cdots$

are orthogonal to each other and $\oplus F_{k}=E$ . We define $h_{\epsilon}$ by

(6-2) $h_{\epsilon}(V, W)=\delta_{k.k’}(\epsilon^{2^{k}})^{2}h_{1}(V, W)$

for $V\in F_{k},$ $W\in F_{k’}$ . Let $U_{\ell}\subset N,$ $\psi_{i}$ : $\pi^{-1}(U_{1})arrow U_{i}\cross G/\Gamma$ be a coordinate chart
and $s_{i,j}(p)\in T(p\in U_{i}\cap U_{j})$ be the transition function. Namely, if $\psi_{i}(p)=(p, g)$

then $\psi_{j}(p)=(p, s_{j.\ell}(P)\cdot g)$ . Let $\psi_{i}’$ : $\pi_{0}^{-1}(U_{i})arrow U_{i}\cross \mathfrak{g}$ be a coordinate chart. By
definition we can take $\psi_{i}^{f}$ so that the transition function of this chart is $P(s_{i.j})$ ,
where $P:Tarrow\Lambda=T/T_{0}$ is the natural projection. Namely

(6-3) $\psi_{i}’(u)=(p, P(s_{i.f}(p))\cdot a)$ if $\psi_{f}’(u)=(p, a)$ .

For $V,$ $W\in \mathfrak{g},$ $p\in U_{i}$ , we put

$h_{\epsilon,i}(P)(V, W)=h_{\epsilon}(\psi_{\iota^{-1}}’(p, V),$ $\psi_{i^{-1}}’(p, W))$ .

The quadratic form $h_{\epsilon,i}(p)$ gives a right invariant metric $\tilde{g}_{\epsilon,i}(p)$ on $G$ . Hence
it induces a Riemannian metric on $G/(G\cap\Gamma)$ . By Lemma 1-4, $\Gamma/(G\cap\Gamma)$ is a
finite subgroup of Aut $(G)$ . Therefore, we can choose $h_{1}$ so that $h_{\epsilon,i}(p)$ is pre-
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served by $\Gamma/(G\cap\Gamma)\subset Aut(\mathfrak{g})$ . Then, $\tilde{g}_{\epsilon,i}(p)$ induces a Riemannian metric on
$\{p\}\cross G/\Gamma$ . This metric, together with (6-1-1) and (6-1-2), determines a Rie-
mannian metric $g_{\epsilon.i}$ on $U_{\ell}\cross G/\Gamma$ . Then, using (6-3) and the fact that $T_{0}$ is
contained in the center of $G$ , we can easily verify that $g_{\epsilon.i}$ can be patched
together and gives a Riemannian metric $g_{\epsilon}$ on $M$. The equality $\lim_{\epsilonarrow 0}H(M, g_{\epsilon})=N$

is obvious. Thus, we are only to show that the sectional curvatures of $g_{\epsilon}$ have
an upper and a lower bound independent of $\epsilon$ . Since the problem is local, we
have only to study $U_{i}\cross G/\Gamma$ . Hence it suffices to obtain an estimate of sec-
tional curvatures of $(U_{i}\cross G,\tilde{g}_{\epsilon,t})$ . (Hereafter we omit the index $i.$ ) Now, let
$e_{1}’,$ $\cdots$ , $e_{n}’$ be an orthonormal frame of vector fields on $U$ , and $e_{1},$

$\cdots$ , $e_{n}$ denote
their horizontal lifts to $U\cross G$ . Choose an orthonormal basis $x_{1}(p),$ $\cdots$ , $X_{m}(p)$

of $(\mathfrak{g}, h_{1}(p))$ , such that there exists a nondecreasing map $0:\{1, \cdots , m\}arrow Z^{+}$

satisfying $X_{i}(p)\in F_{O(i)}(p)$ , where $F_{k}(p)$ denotes the orthogonal complement of
$\mathfrak{g}_{k}$ in $(\mathfrak{g}_{k-1}, h_{1}(p))$ . We may assume that $X_{i}(p)$ depends smoothly on $p$ . These
elements $X_{i}(p)$ determine, through the right action of $G$ , a vector field on
$\{p\}\cross G$ . Thus, we obtain a vector field $f_{i}$ on $U\cross G$ . Then, $(e_{1}, \cdots, e_{n}, f_{1}, \cdots, f_{m})$

is an orthonormal frame of vector fields on $(U\cross G,\tilde{g}_{1})$ and $(e_{1},$ $\cdots$ , $e_{n},$
$\epsilon^{-2^{0(t)}}f_{1}$ ,

.. , $\epsilon^{-2^{0(m)}}f_{m}$ ) is one on $(U\cross G,\tilde{g}_{\epsilon})$ . We shall calculate commutators of those
vector fields. First, since our connection of $\pi$ is a T-connection, it follows that

(6-4-1) $[e_{i}, e_{j}]= \sum_{k=1}^{n}a_{i,j}^{k}e_{k}+$
$\sum_{0(k)=O(m)}$

$b_{i.j}^{k}f_{k}$ ,

where $a_{i,j}^{k}$ and $b_{i,j}^{k}$ are functions on $U$ . Secondly, since $[\mathfrak{g}_{k}, \mathfrak{g}]\subset \mathfrak{g}_{k+1}$ , we have

(6-4-2) $[f_{i}, f_{j}]=$
$\sum_{0(k)>0(i)}$

$C_{i,j}^{k}\cdot f_{k}$ ,
$0(k)>0(j)$

where $C|,j$ are functions on $U$ . Next we shall calculate $[f_{i}, e_{j}]$ . Let $Y_{1},$
$\cdots,$

$Y_{m}$

be a basis of $\mathfrak{g}$ . We may assume that $Y_{i}$ is contained in $\mathfrak{g}_{o(t)-1}=\oplus_{k\in 0(i)}F_{k}(p)$ .
The element $Y_{i}$ of $\mathfrak{g}$ , through the right action of $G$ , induces a vector field $f_{i}^{*}$

on $U\cross G$ . Since our connection of $\pi$ is a T-connection and in particular is a
G-connection, it follows that the horizontal lift is invariant by the right action
of $G$ . Therefore

(6-5) $[e_{i}, ff]=0$ .

On the other hand there exist functions $\alpha_{i,j}$ on $U$ such that

(6-6) $f_{i}(p, g)= \sum_{0(j)\geq 0(i)}\alpha_{i.j}(p)\cdot f_{j}^{*}(p, g)$ .

We regard $U$ as an open subset of $R^{n}$ , and put

(6-7) $e_{i}’(p)= \sum_{j=1}^{n}\beta_{i,j}(p)\frac{\partial}{\hat{o}p^{j}}$ .
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Then, (6-5), (6-6) and (6-7) imply

$[e_{i}, f_{j}](p, g)=$
$\sum_{1\leqq k\leqq n}$

$\beta_{j,k}(p)\frac{\alpha_{i,l}}{p^{j}}f_{k}^{*}(p\underline{\partial}\partial g)$ .
$0(l)\geqq 0(i)$

Therefore, we have

(6-4-3) $[e_{i}, f_{j}]=$
$\sum_{0(k)\geqq 0(i)}$

$d_{ij}^{k}f_{k}$ ,

where $d_{i.j}^{k}$ are functions on $U$ .
Now, let $e^{1},$ $\cdots$ , $e^{n},$ $f_{\epsilon}^{1},$ $\cdots$ , $f_{\epsilon}^{m}\in\Lambda^{1}(U\cross G)$ be the dual base of $(e_{1},$ $\cdots$ , $e_{n}$ ,

$\epsilon^{-2^{O(1)}}f_{1},$ $\cdots$ , $\epsilon^{-2^{O(m)}}f_{m}$ ). Then, by (6-4-1), (6-4-2), (6-4-3), we have

(6-8-1) $de^{i}= \sum_{j,k}a_{jk}^{i}e^{j}\Lambda e^{k}$

(6-8-2) if $0(i)\neq O(m)$ , then

$df^{i}\epsilon_{8_{(i}^{(i}\}}=\geq 8_{(k)}^{C_{jk}^{i}\cdot\epsilon^{2-2-2}\cdot f_{\epsilon}^{j}\Lambda f_{\epsilon}^{k}+}(f)0(i)0(j)0(k)$ $\sum_{0(i)\geqq 0(k)}$
$d_{fk}^{i}\cdot\epsilon^{2^{0(i)}-2^{0(k)}}e^{j}$ A $f_{\epsilon}^{k}$ ,

(6-8-3) if $O(i)=O(m)$ , then

$df_{\epsilon}^{i}= \sum_{(@t)\geq\int_{(k)}^{(j)}}\epsilon^{2^{0(i)_{-2}0(j)_{-2}0(k)}}\cdot$

$+$
$\sum_{0(i)\geqq 0(k)}$

$d_{jk}^{i}\cdot\epsilon^{2-2}e^{j}\Lambda f_{\epsilon}^{k}+\Sigma b_{J^{k}}^{i}\cdot\epsilon^{2^{O(t)}}e^{j}\wedge e^{k}0(i)0(k)$

We see that the coefficients $a_{jk}^{i},$ $c_{jk}^{\ell}\cdot\epsilon^{2^{0(i)_{-2}0(j)_{-2}0(k)}},$ $d_{J^{k}}^{i}\cdot\epsilon^{2-2}0(i)O(j)$ $b_{jk}^{i}\epsilon^{2^{0(i)}}$ are
bounded, with respect to the $C^{k}$ -norm, while $\epsilon$ tends to $0$ . Therefore, we can
prove that the sectional curvatures of $g_{\epsilon}$ are uniformly bounded thanks to the
well known formula which expresses the curvature tensor in terms of these
coefficients. The proof of Theorem 0-7 is now complete.

\S 7. The orbifold version of the main theorem.

For our application in \S 8, we use a little more general result than Theorem
0-1. In other words we need to treat the case when $M_{i}$ converges to a Rie-
mannian orbifold.

DEFINITION 7-1. Let $X$ be a metric space. We say that $X$ is a Riemannian
orbifold and $\{(U_{i}, \varphi_{i}, \Gamma_{i})\}$ its chart if the following hold.

(7-2-1) $U_{i}$ is an open subset of $R^{n}$ equipped with a Riemannian metric.

(7-2-2) $\Gamma_{i}$ is a finite group of isometries of $U_{\iota}$ .

(7-2-3) $\varphi_{i}$ is a map: $U_{i}arrow X$ which induces an isometry: $U_{i}/\Gamma_{\ell}arrow\varphi_{i}(U_{i})$ .
(7-2-4) $\{\varphi_{i}(U_{i})\}$ is an open covering of $X$ .

REMARK. The definition of the Riemannian orbifold here is not equivalent
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to one in [4]. The definition in [4] is a little more restrictive.

Next we shall define fibre bundles and their structure group in the category
of orbifolds. We remark that if $X$ is a Riemannian orbifold, we can modify
its chart so that the following hold in addition.
(7-2-5) Suppose $\varphi_{i}(U_{i})\cap\varphi_{j}(U_{j}),$ $i<j$ . Then there exist a map

$\varphi_{i.j}$ : $\varphi_{i}^{-1}(\varphi_{i}(U_{i})\cap\varphi_{j}(U_{j}))arrow\varphi_{j}^{-1}(\varphi_{i}(U_{i})\cap\varphi_{j}(U_{j}))$ , a homomorphism
$\pi_{i.j}$ ; $\Gamma_{i}arrow\Gamma_{j}$ , and a subgroup $\Lambda_{i.j}\subset\Gamma_{i}$ such that:

(7-2-5-1) $\varphi_{i.j}(\gamma x)=\pi_{i,j}(\gamma)\varphi_{i.j}(x)$ .
(7-2-5-2) $\varphi_{i,j}$ induces an isometry between $\varphi_{i}^{-1}(\varphi_{t}(U_{i})\cap\varphi_{j}(U_{j}))/\Lambda_{i.j}$ and

$\varphi_{j}^{-1}((0,(U_{i})\cap\varphi_{j}(U_{j}))$ .
(7-2-5-3) $\pi_{i.j}$ induces an isomorphism between $\Gamma_{i}/\Lambda_{i.j}$ and $\Gamma_{j}$ .
(7-2-5-4) $\varphi_{i}(\varphi_{i.j}(x))=\varphi_{i}(x)$ , for $x\in\varphi_{i}^{-1}(\varphi_{i}(U_{i})\cap\varphi_{f}(U_{j}))$ .

DEFINITION 7-3. Let $M,$ $F$ be manifolds, $X$ a Riemannian orbifold, and $G$

a Lie group action on $G$ . A map $f$ : $Marrow X$ is said to be a fibre bundle, $F$ its
fibre, $G$ its structure group, if there exist a chart $\{(U_{i}, \varphi_{i}, \Gamma)\}$ of $X$ satisfying
(7-2-5), and $\{(g_{i.j}, \psi_{i}, \theta_{i})\}$ such that:

(7-4-1) $\psi_{i}$ is a map: $U_{i}\cross Farrow f^{-1}\varphi_{i}(U_{i})$ .
(7-4-2) $g_{i,j}$ is a continuous map from $\varphi_{i}^{-1}(\varphi_{i}(U_{i})\cap\varphi_{j}(U_{j}))$ to $G$ .
(7-4-3) $\theta_{i}$ is a homomorphism from $\Gamma_{t}$ to $G$ . We let $\Gamma_{i}$ act on $U_{i}\cross F$

by $\gamma(x, y)=(\gamma x, \theta_{i}(\gamma)y)$ .
(7-4-4) $\psi_{i}(\gamma(x, y))=\gamma\psi_{i}(x, y)$ for $\gamma\in I_{i}^{7}$ .
(7-4-5) $\psi_{i}$ induces a fibre preserving diffeomorphism between

$(U_{i}\cross F)/\Gamma_{i}$ and $f^{-1}\varphi_{i}(U_{i})$ .
(7-4-6) For $i<j<k,$ $x\in\varphi_{i}^{-1}(\varphi_{i}(U_{i})\cup\varphi_{j}(U_{j})\cap\varphi_{k}(U_{k}))$ , we have

$g_{j.k}(\varphi_{i.j}(x))\cdot g_{i,j}(x)=g_{i.k}(x)$ ,

where $\varphi_{i.f}$ is an in (7-2-5).

(7-4-7) For $i<j,$ $x\in\varphi_{i}^{-1}(\varphi_{i}(U_{i})\cap\varphi_{j}(U_{j})),$ $\gamma\in\Gamma_{i},$
$\pi_{i.j}$ ; $\Gamma_{i}arrow\Gamma_{j}$ , we have

$\theta_{j}(\pi_{i.j}(\gamma))\cdot g_{i.j}(x)=g_{i.j}(\gamma x)\cdot\theta_{i}(\gamma)$ .
(7-4-8) We define

$\hat{\varphi}_{i.j}$ : $\varphi_{i}^{-1}(\varphi_{i}(U_{i})\cap\varphi_{j}(U_{j}))\cross Farrow\varphi_{j}^{-1}(\varphi_{i}(U_{i})\cap\varphi_{j}(U_{j}))\cross F$

by $\hat{\varphi}_{i.j}(x, y)=(\varphi_{i,j}(x), g_{i.j}(x)y)$ . Then, we have

$\psi_{j}\hat{\varphi}_{i.j}(x, y)=\psi_{i}(x, y)$ , for each $(x, y)\in\varphi_{i}^{-1}(\varphi_{i}(U_{i})\cap\varphi_{j}(U_{j}))$ .
REMARK 7-5. In the case when $F=S^{1},$ $G=O(2)$ . Definition 7-3 is equi-
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valent to that of Seifert fibred space.

Now we have:

THEOREM 7-6. Theorem 0-1 holds also in the case when the limit $N$ there
is replaced by a Riemannian orbifold $X$ .

SKETCH OF THE PROOF. Let $FM_{t}$ be the frame bundles of $M_{i}$ . $FM_{i}$ con-
verges to a Riemannian manifold $Y$ on which $O(n)$ acts by isometry so that
$Y/O(n)$ is isometric to $X$ (see [8], \S 10). By an argument in \S \S 2, 3, 4, we
obtain $O(n)$ equivariant fibrations: $FM_{i}arrow Y$ with bounded higher derivatives. It
induces a smooth map $f$ : $M_{i}arrow X$ with bounded higher derivatives. By an argu-
ment similar to one in \S 1, we see that it suffices to construct a smooth family
of flat connection on fibres such that their torsion tensors are parallel. There
exists a natural stratification $\Sigma_{t}\subset X$ such that $\Sigma_{i}-\Sigma_{i-1}$ are Riemannian mani-
folds. By the argument of \S 5, we can construct smooth family of connections
with parallel torsion tensor over each $\Sigma_{i}-\Sigma_{i-1}$ . We can extend this family to
one over $B_{\epsilon_{i}}(\Sigma_{i})-B_{\epsilon_{i-1}}(\Sigma_{i-1})$ , where $\epsilon_{i}$ and $\epsilon_{i-1}/\epsilon_{i}$ are very small. By construc-
tion, those connections are close to Levi-Civita connection with respect to the
$C^{\infty}$ norm. Therefore, we can use the arguments of \S 5 again to construct a
desired family of connections over $X$ . The conclusion holds.

THEOREM 7-7. Theorem 0-7 holds also in the case when $N$ is replaced by a
Riemannian orbifold $X$ .

We omit the proof.

\S 8. A gap theorem for minimal volumes.

In this section we shall prove Theorem 0-9, by contradiction. We assume
that there exists a sequence of n-dimensional Riemannian manifolds $M_{i}$ such that

(8-1-1) Diam $M_{i}\leqq D$ ,

(8-1-2) Vol $M_{i}\leqq 1/i$ ,

(8-1-3) sectional curvature of $M_{i}|\leqq 1$ ,

(8-1-4) Minvol $M_{i}\geqq\epsilon>0$ ,

where $\epsilon$ is independent of $i$ . Using [9, Theorem 0-6], we can find a subsequence
$M_{\iota_{i}}$ , and an aspherical Riemannian orbifold $X/\Gamma$ such that

(8-1-5) $\lim_{iarrow\infty}HM_{k_{i}}=X/\Gamma$,

where an aspherical Riemannian orbifold stands for the quotient $X/\Gamma$ of a con-
tractible Riemannian manifold $X$ by a properly discontinuous action of a group
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$\Gamma$ consisting of isometries of $X$ . By a modification of the argument in \S \S $1\cdots 5$ ,

we can generalize Theorem 0-1 to the case when the limit space is an orbifold.
Hence we obtain a fibration $\pi_{p_{i}}$ : $M_{k_{i}}arrow X/\Gamma$ whose fibre is $G/\Gamma$ and whose
structure group is the extension of $C(G)/(C(G)\cap\Gamma)$ by Aut $\Gamma$ , where $G$ and $\Gamma$

are as in (0-3-2). Hence, Theorem 0-7 (more precisely its generalization to
orbifold case) implies that there exist metrics $g_{\epsilon}$ on $M_{\iota_{i}}$ such that

(8-2-1) $\lim_{\text{\’{e}}arrow 0}H(M_{k_{i}}, g_{\epsilon})=X/\Gamma$ ,

(8-2-2) sectional curvature of $g_{\epsilon}|\leqq C$ ,

where $C$ is a number independent of $\epsilon$ . On the other hand, (8-1-2) and [11,

8.30] imply dim $X/\Gamma\leqq\dim M_{k_{i}}$ . Hence, by (8-2-1) we have

(8-2-3) $\lim_{\epsilonarrow 0}$ Vol $(M_{k_{i}}, g_{\epsilon})=0$ ,

(8-2-2) and (8-2-3) contradict (8-1-4). Q. E. D.

\S 9. The case when the limit space is not a manifold.

So far, we have studied sequences of Riemannian manifolds converging to
a manifold. In [8] we have studied more general situation. The method of
this paper can be joined with one in [8] to prove the following:

THEOREM 9-1. Let $M_{t}$ be a sequence of $n+’ n$-dimensional Riemannian mani-
fold satisfying (0-2-2) which converges to a metric space $X$ with respect to the

Hausdorff distance. Then, there exist a $C^{1}a$-manifold $Y$ and $\pi_{i}$ : $FM_{i}arrow Y$ , such
that the following hold. (Here $F_{1}M_{i}$ denotes the frame bundle.)

(9-2-1) $O(n+m)$ acts by isometry to Y. We have $X=Y/O(n+m)$ .
(9-2-2) $\tilde{\pi}_{i}$ satisfies (0-3-1), (1-2-1), (1-2-2).

(9-2-3) $\tilde{\pi}_{i}$ is an $O(m+n)$-map, and the diagram

$FM_{i}\downarrow\underline{\tilde{\pi}_{i}}\pi_{\iota}\downarrow Y$

$f\backslash /I_{t}-X$

commutes.

(9-2-4) Let $g\in O(n+m),$ $p\in\}’$ . Then the map $g:\tilde{\tau}_{i}^{-1}(p)arrow\tilde{\pi}_{i}^{-1}(g(p))$ preserves
affine structures.

We omit the proof.

Unfortunately, our method in \S 6 does not give the converse to Theorem
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9-1. In other words, it seems that (9-2-1), $\cdots$ , (9-2-4) is not a sufficient condi-
tion for the existence of a family of metrics $g_{\epsilon}$ on $M_{i}$ and that $\lim_{arrow 0}H(M_{i}, g_{\epsilon})=X$

and that sectional curvatures of $g_{\epsilon}|\leqq C$ .
In [2] and [3], Cheeger and Gromov developed another approach to study

collapsing. They introduced the notion, F-structure there. Our Theorem 8-1
implies the following:

COROLLARY 9-3. There exists a Positive number $\epsilon(n, D)$ such that the follow-
ing holds. Suppose an $n- di_{\overline{l}}nensional$ Riemannian manifold $M$ satisfies
(9-4-1) Vol $(M)\leqq\epsilon(n, D)$ ,

(9-4-2) Diam $(M)\leqq D$ ,

(9-4-3) sectional curvature of $M|\leqq 1$ .

Then $M$ admits a pure F-structure of $po\alpha tive$ dimension.

REMARK 9-5. The assumption of Cheeger and Gromov in [3] is less re-
strictive than ours in the point that they do not assume the uniform bound of
the diameter. Our conclusion is a little stronger. (In [3], the existence of F-
structure is proved.)

REMARK 9-6. The converse to Corollary 9-3 is false. A counter example

is given in [2, Example 1.9].

PROOF OF COROLLARY 9-3. We prove by contradiction. Assume $\Lambda I_{i}$ satisfies
(9-4-2), (9-4-3) and $\lim_{iarrow 0}$ Vol $(M_{i})=0$ , but $M_{i}$ does not admit pure F-structure
of positive dimension. By taking a subsequence if necessary, we may assume
that $M_{i}$ converges to a metric space $X$ with respect to the Hausdorff distance.
Therefore, by Theorem 9-1, we have $Y,\tilde{\pi}_{i},$ $\pi_{i}$ satisfying (9-2-1), $\cdots$ , (9-2-4).

Let $G/\Gamma=\tilde{\pi}_{i}(P)$ . Then $C(G)/(\Gamma\cap C(G))$ acts on each fibre. In view of (0-3-3),

this action determines a pure (polarized) F-structure on $FM_{i}$ . Then, (9-2-4)

implies that tbis F-structure induces a pure F-structure on $tII_{\iota}$ . We shall prove
that this F-structure is of positive dimension. Remark that we can assume
(1-5). Let $x\in X,$ $p_{i}\in\pi_{i}^{-1}(x)\subseteqq M_{i}$ . We recall the argument in [8, \S 3]. We
have metrics $g_{t},$ $g_{\infty}$ on $B=B(1)$ , local groups $H_{i}$ , and a Lie group germ $H$ such
that

(9-7-1) $H_{\iota}$ acts by isometry on the pointed metric space $((B, g_{\iota}),$ $0$),

(9-7-2) $(B, g_{i})/H_{i}$ is isometric to a neighborhood of $p_{i}$ on $M_{i}$ ,

(9-7-3) $H$ acts by isometry on the pointed metric space $((B, g_{\infty}),$ $0$),

(9-7-4) $(B, g_{\infty})/H$ is isometric to a neighborhood of $x$ in $X$ ,

(9-7-5) $g_{i}$ converges to $g_{\infty}$ with respect to the $C^{\infty}$-topology.
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Let $C(H_{i})$ and $C(H)$ denote the centers of $H_{i}$ and $H$, respectively. By con-
struction, the dimension of the orbit through $p_{i}$ of our F-structure on $M_{i}$ is
equal to the dimension of the orbit $C(H)(O)$ . We shall prove dim $C(H)(O)\neq 0$ .
If $0$ is not a fixed point of $C(H)$ , there is nothing to show. We assume that
there exists $\gamma\in C(H)\backslash \{1\}$ such that $\gamma(0)=0$ . Take $\gamma_{i}\in C(H_{i})$ such that lim $\gamma_{i}=\gamma$ .
We have

(9-8) $\lim_{arrow\infty}d(\gamma_{i}(0), 0)=0$ .

Let $\delta$ be an arbitrary small positive number. Then (9-8) and the fact that
the action of $H_{i}$ is free imply the existence of $n_{i}$ such that

(9-9) $\delta\geqq\lim_{iarrow\infty}d(\gamma_{i}^{n_{i}}(0), 0)\neq 0$ .
We can take a subsequence $k(i)$ such that $\lim_{iarrow\infty}\gamma_{k(i)}^{n_{k(i)}}$ converges to an element
$\gamma’$ of $C(H)$ . Then by (9-9) we have

(9-10) $\delta\geqq d(\gamma’(O), 0)\neq 0$ .
Since $\delta$ is arbitrary small, (9-10) implies dim $(C(H)(O))\neq 0$ .

Thus we have constructed a pure F-structure on $M_{i}$ for a sufficiently large
$i$ . Tbis contradicts our choice of $M_{i}$ . Q. E. D.
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