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Introduction.

This paper is a continuation of [F4], and we use the same terminology
there. As we saw in [F4], in order to complete the classification of polarized
manifolds $(M, L)$ of $\Delta$-genus two, we should study the following cases:
1) $L^{n}=1$ .
2) $L^{n}\geqq 2$ , dim Bsl $L|=1$ and the fibration given by $|L|$ is not hyperelliptic
(cf. [F4; \S 3]).
3) $L^{n}=2$ or 3 and dim Bsl $L|\leqq 0$ .

The cases 1) and 2) remain to be “mystery” at present. Partial results
about the case 3) are found in [FO]. Here we study the case $L^{n}=3$ . So
$h^{0}(M, L)=n+1$ .

Suppose that dim Bsl $L|\geqq 1$ . Then $n\leqq 3$ by [F4; (1.17)]. Moreover, if $n=3$ ,
then $(M, L)$ is a Segre product of $(P^{1}, O(1))$ and a polarized surface $(S, A)$

with $A^{2}=\Delta(S, A)=1$ . Thus, in this case, the problem is reduced to the study
of such polarized surfaces.

If dim Bsl $L|\leqq 0$ , we have two cases:
a) $|L|$ has no base point.
b) $|L|$ has (finitely many) base points.

In case a), $M$ is a triple covering of $P^{n}$ . Hence the theory in [L], [M]

and [F7] applies. In particular, when $n\geqq 4,$ $M$ is a triple section of an ample
line bundle over $P^{n}$ . However, when $n\leqq 3$ , there are many triple covers not
of triple section type. The classification of them is still unknown.

The main purpose of this paper is the study of the case b). We will show
that $|L|$ has only one base point $p$ , and the blow-up of $M$ at $P$ becomes a
double covering of $P^{n}$ . Double coverings are much easier to study than triple
coverings (cf. [F1]). However, the covering is not a finite morphism here, and
the branch locus may have singularities. By a careful analysis of these trou-
bles we obtain a classification theory and precise structure theorems of such
polarized manifolds. See (1.3), (1.7), (2.17), (3.15), (4.15) for details.
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\S 1. Generalities.

(1.1) Throughout this paper let $(M, L)$ be a polarized manifold with dim M
$=n\geqq 2$ , $L^{n}=3$ and $h^{0}(M, L)=n+1$ . So $\Delta(M, L)=2$ . We furtber assume
dim Bsl $L|\leqq 0$ and $g(M, L)\geqq 2$ , since otherwise the structure of $(M, L)$ is well
understood by [F4].

(1.2) If Bsl $L|=\emptyset,$ $|L|$ gives a finite morphism $\rho$ : $Marrow P^{n}$ of degree three
such that $\rho^{*}O(1)=L$ . So $\mathcal{A}=\rho_{*}O_{M}$ is a locally free sheaf of rank three on
$P=P^{n}$ . Actually $\mathcal{A}$ is a sheaf of $O_{P}$-algebra and we have the trace map
$\tau:\mathcal{A}arrow O_{P}$ and the natural injection $\iota;O_{P}arrow \mathcal{A}$ . Clearly $\tau\cdot\iota$ is 3-times of the
identity. Hence $\mathcal{A}\simeq O_{P}\oplus \mathcal{E}$ for $\mathcal{E}=Ker(\tau)\simeq Coker(\iota)$ . This is called the Tsch-
irnhausen module in [M]. The type of $M$ is determined by this vector bundle $\mathcal{E}$ .

If $n>3$ , then $\mathcal{E}\simeq O(-k)\oplus O(-2k)$ for some $k>0$ and $M$ is a triple section
of the total space of the line bundle $O(k)$ over $P$ (cf. [L] or [F7]). For $n\leqq 3$ ,

we do not have a classification of such vector bundle $\mathcal{E}$ .
(1.3) From now on, throughout this paper, we assume Bsl $L|\neq\emptyset$ . Then

we have the following

THEOREM. 1) Any general member of $|L|$ is non-singular.
2) Bsl $L|con$sists of a srngle point $p$ .
3) Let $\pi:M_{1}arrow M$ be the blow-up at $p$ and let $E$ be the exceptional divisor over
$p$ . Then $Bs|\pi^{*}L-E|=\emptyset$ .

PROOF. 1) is a special case of [F3; (2.5)]. In order to prove 2) and 3)

we use the induction on $n$ . When $n=2$ , let $C$ be a general member of $|L|$ .
Let $F$ be the fixed part of $|L|_{C}$ and write $L_{C}=F+X$ . If deg $(F)>1$ , then
deg $(X)\leqq 3-\deg(F)\leqq 1$ and $h^{0}(C, X)=\dim|L|_{C}+1=h^{0}(M, L)-1=2$ . This implies
$C\simeq P^{1}$ , contradicting $g(C)=g(M, L)\geqq 2$ . Hence deg $(F)=1$ . This implies 2)

and 3).

When $n>2$ , let $D$ be a general member of $|L|$ , let $p$ be the unique base
point of $|L_{D}|$ and let $\pi:M_{1}arrow M$ be the blow-up at $p$ . The proper transform
$D_{1}$ of $D$ in $M_{1}$ is a member of $\Lambda=|\pi^{*}L-E|$ and is isomorphic to the blow-uP
of $D$ at $p$ . The restriction mapping $H^{0}(M, L)arrow H^{0}(D, L_{D})$ is surjective since
$\Delta(D, L)\leqq 1$ would imply $g(D, L)\leqq 1$ . Applying the induction hypothesis to
$(D, L)$ , we infer that Bsl $\Lambda|_{D_{1}}=\emptyset$ . So Bs $\Lambda=\emptyset$ , which implies 2) too. Q.E.D.

(1.4) The linear system $\Lambda$ gives a morphism $\rho:M_{1}arrow P\simeq P^{n}$ of degree two.
We will denote the pull-backs of $O_{P}(1)$ by $H$. For example, $H=\pi^{*}L-E$ on $M_{1}$ .
We have $H_{E}=\mathcal{O}(1)$ on $E\simeq P^{n- 1}$ and hence $S=\rho(E)$ is a hyperplane in $P$. Write
$\rho^{*}S=\epsilon E+E^{*}+D$ , where $E^{*}$ is the sum of components mapped onto $S$ and $D$

is the sum of components mapped onto sets of codimension greater than one.



Polarized manifolds 313

(1.5) LEMMA. Let $x$ be a Point on $P,$ $X=\rho^{-1}(x)$ and $suPPose$ that dim $X>0$ .
Then $X$ is an irreducible curve with $EX=1$ and $x\in S$ . Moreover $X\subset E^{*}or$ $X\subset D$ .

PROOF. For $t\gg O,$ $\pi^{*}tL-E=tH+(t-1)E$ is ample on $M_{1}$ , hence so is the
restriction $E_{X}$ to $X$ , since $H_{X}=0$ . This implies $X\cap E\neq\emptyset$ and $x\in S$ . Since
$E\simeq S,$ $X\cap E$ is a single point. So dim X $=1$ by the ampleness of $E_{X}$ . Let $\Lambda_{x}$

be the linear subsystem of $|O_{P}(1)|$ consisting of hyperplanes passing $x$ and let
$D_{1},$ $\cdots$ , $D_{n-1}$ be general members of $\rho^{*}\Lambda_{x}$ . Then $Z=D_{1}\cap\cdots\cap D_{n-1}$ contains $X$

and dim $Z=1$ . If $X$ is not irreducible, then $EZ\geqq 2$ since each component of $X$

meets $E$ . But $EZ=H^{n-1}E=1$ . Therefore $X$ is irreducible and $EX=1$ . Since
$0=HX=(\epsilon E+E^{*}+D)X$ , we have $E^{*}X<0$ or $DX<0$ . So $X\subset E^{*}$ or $X\subset D$ .

(1.6) COROLLARY. For any comp0nent $Y$ of $D,$ $\rho(Y)=\rho(E\cap Y)\simeq E\cap Y$ is a
divisor on $S$ .

(1.7) PROPOSITION. One of the following conditions is valid:
1) Both $E^{*}$ and $D$ are irreducible and reduced, $\epsilon=1$ and $[E^{*}]_{E}=D_{E}=O_{E}(1)$ .
2) $E^{*}$ is irreducible and reduced, $E\cap E^{*}=\emptyset,$ $\epsilon=1$ and $D_{E}=\mathcal{O}_{E}(2)$ .
3) $E^{*}=0,$ $\epsilon=2$ and $D_{E}=O_{E}(3)$ .

PROOF. Suppose that $E^{*}=0$ . Then $2=H^{n}\{M_{1}\}=H^{n-1}\cdot\rho^{*}S=\epsilon H^{n-1}E=\epsilon$ .
Moreover $O_{E}(1)=[\rho^{*}S]_{E}=[2E+D]_{E}=-2H+D_{E}$ . So $D_{E}=O_{E}(3)$ and we are in
case 3).

Suppose that $E^{*}\neq 0$ . Then $H^{n-1}E^{*}>0$ and $2=H^{n-1}\cdot\rho^{*}S=\epsilon+H^{n-1}E^{*}$ . So
$\epsilon=1=H^{n-1}E^{*}$ . Hence $E^{*}$ is irreducible and reduced. If $E^{*}\cap E=\emptyset$ , then $O_{E}(1)$

$=[\rho^{*}S]_{E}$ implies $D_{E}=O_{E}(2)$ and we are in case 2).

If $E^{*}\cap E\neq\emptyset$ , we have $E_{E}^{*}=\mathcal{O}_{E}(s)$ for some $s>0$ . By (1.6), $Y_{E}\neq 0$ for any
component $Y$ of D. $O_{E}(1)=[\rho^{*}S]_{E}$ implies $D_{E}=\mathcal{O}_{E}(2-s)$ . So $s=1,$ $D$ is prime
and we are in case 1), unless $D=0$ . We will derive a contradiction assuming
$D=0$ . By virtue of (1.3), we reduce the problem to the case $n=2$ by induction
on $n$ . In this case $D=0$ implies that $\rho$ is a finite morphism. Therefore its
branch locus $B$ is a smooth divisor on $P$. We have $\rho^{*}S=E+E^{*}$ and $EE^{*}=2$ .
Hence $SB=4$ and the intersection multiplicity at any point of $S\cap B$ is even.
In particular $B$ is of degree four and the canonical bundle $K_{1}$ of $M_{1}$ is $\rho^{*}K^{P}+2H$

$=-H$. So $KL=K_{1}\cdot\pi^{*}L=K_{1}(E+H)=-H(E+H)=-3$ , while $2g(M, L)-2=$

$(K+L)L=KL+3$ . This contradicts $g(M, L)\geqq 2$ .
Thus we complete the proof of (1.7). The above three cases will be studied

further in the following sections.

\S 2. Type (–).

Throughout this section we assume that the condition (1.7; 3) is satisfied.
We employ the same notation as in \S 1. Thus $\rho^{*}S=2E+D$ and $D_{E}=\mathcal{O}_{E}(3)$ .
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(2.1) For the moment, until (2.9), we study the case $n=2$ . If $D$ is irre-
ducible and $D=\mu X$ for some prime divisor $X$ , we have $EX=1$ by (1.5). So
$\mu=3$ since $DE=3$ . Then $0=HX=(2E+3X)X=2+3X^{2}$ , which is absurd. Thus
this case is ruled out. Hence $D=X_{1}+X_{2}+X_{3}$ or $X_{1}+2X_{2}$ , where $X_{i}’ s$ are curves
as in (1.5) and $x_{i}=\rho(X_{i})$ are different points on $S$ .

(2.2) For the moment, until (2.6), we assume $D=X_{1}+X_{2}+X_{3}$ . Then $0=HX_{i}$

$=(2E+D)X_{i}=2+X_{i}^{2}$ and $(H-X_{i})^{2}=0$ for any $i$ . We claim $Bs|H-X_{t}|=\emptyset$ . To
see this, let $S_{1}$ and $S_{z}$ be general hyperplanes in $P$ passing $x_{i}$ and let $\rho^{*}S_{j}=$

$C_{j}+\mu_{j}X_{i}$ . Then $0\leqq C_{1}C_{2}=(H-\mu_{1}X_{i})(H-\mu_{2}X_{i})=2-2\mu_{1}\mu_{2}$ . So $\mu_{1}=\mu_{2}=1$ and
$C_{1}C_{2}=0$ . Hence $C_{j}\in|H-X_{i}|$ and $C_{1}\cap C_{2}=\emptyset$ . This proves the claim. Thus
the scheme-theoretical fiber $\rho^{*}x_{i}$ is the Cartier divisor $X_{i}$ .

(2.3) Let $P’$ be the blowing-up of $P$ at the three points $x_{i}$ and let $Z_{i}$ be
the exceptional curve over $x_{i}$ . By the observation in (2.2) we infer that $\rho$

factors through $P’$ . Moreover, $f^{*}Z_{t}=X_{i}$ for the morphism $f$ : $M_{1}arrow P’$ . Clearly
$S’=f(E)$ is the proper transform of $S$ on $P’$ and $(S’)^{2}=-2$ . By (1.5), $X_{i}’ s$ are
the only curves contracted to a point by $\rho$ . Since $f(X_{i})=Z_{i},$ $f$ contracts no
curve and is a finite morphism of degree two. So the branch locus $B$ of $f$ is
a smooth divisor on $P’$ and $B\in|2F|$ for some $F\in Pic(P’)$ . Since $\rho^{*}S’=$

$\rho^{*}S-\sum X_{i}=2E,$ $S’$ is a component of $B$ . Therefore $B=S’+B’$ for some smooth
divisor $B’$ with $S’\cap B’=\emptyset$ .

Set $F=\beta H-\gamma_{1}Z_{1}-\gamma_{2}Z_{2}-\gamma_{3}Z_{3}$ for some integers $\beta,$ $\gamma_{i}$ . Then $[B’]=2F-$
$(H-Z_{1}-Z_{2}-Z_{3})=(2\beta-1)H-\Sigma_{i}(2\gamma_{i}-1)Z_{\ell}$ and $0=S’B’=(2\beta-1)-\Sigma_{i}(2\gamma_{i}-1)$ . So
$\beta=\gamma_{1}+\gamma_{2}+\gamma_{3}-1$ . Note also that $0\leqq B’Z_{i}=2\gamma_{i}-1$ and hence $\gamma_{i}\geqq 1$ .

(2.4) Let $K_{1}$ be the canonical bundle of $M_{1}$ . Then $K_{1}=f^{*}(K’+F)$ for the
canonical bundle $K’$ of $P’$ . Since $K’=-3H+Z_{1}+Z_{2}+Z_{3}$ , we have $K_{1}=$

$(\beta-3)H-\Sigma_{i}(\gamma_{i}-1)X_{i}$ . Hence $K_{1}H=2\beta-6,$ $K_{1}E=(\beta-3)-\Sigma_{i}(\gamma_{i}-1)=-1,$ $KL=$

$K_{1}\pi^{*}L=K_{1}(H+E)=2\beta-7$ and $2g(M, L)-2=(K+L)L=2\beta-4$ . So $g(M, L)=\beta-1$

and $\beta=\gamma_{1}+\gamma_{2}+\gamma_{3}-1\geqq 3$ .

(2.5) Conversely, for any three points $x_{i}$ on a line $S$ in $P\simeq P^{2}$ and for any
positive integers $\gamma_{1},$ $\gamma_{2},$ $\gamma_{3}$ with $\gamma_{1}+\gamma_{2}+\gamma_{3}\geqq 4$ , there are polarized surfaces
$(M, L)$ of the above type. Indeed, for $\beta=\gamma_{1}+\gamma_{2}+\gamma_{3}-1$ , we have Bsl $(2\beta-1)H$

$- \sum_{i}(2\gamma_{i}-1)Z_{i}|=\emptyset$ on $P’$ . So any general member $B’$ of this linear system is
smooth. Let $M_{1}$ be the double covering of $P’$ branched along $B=B’+S’$ . Since
$S’$ is a (–2)-curve, its inverse image $E$ on $M_{1}$ is a $(-1)$-curve. Contracting $E$

to a point we get $M$. Moreover $H+E$ is the pull-back of a line bundle $L$ on
$M$. It remains to show the ampleness of $L$ . Since $B$ meets $Z_{i}$ at $Z_{i}\cap S’$

transversally, $X_{i}=f^{-1}(Z_{i})$ is irreducible for each $i$ . Therefore $(H+E)Y>0$ for
any curve $Y$ in $M_{1}$ except $E$ . So Nakai’s criterion applies since $L^{2}=(H+E)^{2}=3$ .
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(2.6) Using the above description of the structure of $(M, L)$ , we can com-
pute various invariants of it.

Since $f_{*}O_{M_{1}}=\mathcal{O}\oplus O[-F]$ on $P’$ , we have $h^{q}(M, O_{M})=h^{q}(P’, -F)$ for $q>0$ .
Note that $F-S’/2=\Sigma_{i}(\gamma_{i}-1/2)(H-Z_{i})$ is nef and big on $P’$ . Hence $h^{q}(P’, -F)$

$=0$ for $q<2$ by Kawamata-Viehweg’s vanishing theorem. So $h^{1}(M, O_{M})=0$ . It
is easy to compute $p_{g}(M)=h^{2}(P’, -F)=h^{0}(P’, K’+F)$ and $\chi(M, O_{M})$ .

In order to calculate $c_{2}(M)$ , note that $[B’]=\Sigma_{i}(2\gamma_{i}-1)(H-Z_{i})$ is nef and
big on $P’$ . So $B’$ is connected and $e(B’)=-(K’+B’)B’=-8(\gamma_{2}\gamma_{3}+\gamma_{3}\gamma_{1}+\gamma_{1}\gamma_{2})+$

$12(\gamma_{1}+\gamma_{2}+\gamma_{3})-12$ . Hence $c_{2}(M)=c_{2}(M_{1})-1=2c_{2}(P’)-e(B’)-e(S’)-1=8(\gamma_{2}\gamma_{3}+\gamma_{3}\gamma_{1}$

$+\gamma_{1}\gamma_{2})-12(\gamma_{1}+\gamma_{2}+\gamma_{3})+21$ . It is easy to compute $c_{1}(M)^{2}=K_{1}^{2}+1$ .
These invariants are related by Noether’s formula, so we can omit one of

the above computations.
The Kodaira dimension $\kappa(M)$ depends on $\gamma_{i}’ s$ . By symmetry we may assume

$\gamma_{1}\leqq\gamma_{2}\leqq\gamma_{3}$ . Since $K_{1}=-H+\Sigma_{i}(\gamma_{i}-1)(H-X_{i})=H+2E+\Sigma_{i}(\gamma_{i}-2)(H-X_{i}),$ $\kappa(M)$

$=2$ if $\gamma_{1}\geqq 2$ . If $\gamma_{1}=\gamma_{2}=1$ , then $K_{1}(H-X_{3})=-2$ and $\kappa(M)<0$ since Bsl $H-X_{3}|=\emptyset$ .
So we assume $1=\gamma_{1}<\gamma_{2}$ . Then $K_{1}=(\gamma_{2}-2)(H-X_{2})+(\gamma_{3}-2)(H-X_{3})+2E+X_{1}$ .
Hence $\kappa(M)=2$ if $\gamma_{2}>2$ . When $\gamma_{2}=2$ , we easily see that $(\gamma_{3}-2)(H-X_{3})$ is the
semipositive part of the Zariski decomposition of $K_{1}$ . Therefore $\kappa(M)=1$ if
$\gamma_{3}>2$ while $\kappa(M)=0$ if $\gamma_{3}=2$ . In the last case $M$ is a blowing-up of a K3-
surface at a point. Thus we have:

$\kappa(M)<0$ if $(\gamma_{1}, \gamma_{2}, \gamma_{3})=(1,1, \gamma_{3})$ ,
$\kappa(M)=0$ if $(\gamma_{1}, \gamma_{2}, \gamma_{3})=(1,2,2)$ ,
$\kappa(M)=1$ if $(\gamma_{1}, \gamma_{2}, \gamma_{3})=(1,2, \gamma_{3})$ with $\gamma_{3}>2$ ,
$\kappa(M)=2$ otherwise.

Finally we show that $M$ is topologically simply connected. To see this,
let $B_{0}$ be a general member of $|3H-Z_{1}-Z_{2}-Z_{3}|$ and let $\tau:Tarrow P’$ be the finite
double covering with branch locus $B_{0}+S’$ . Similarly as in (2.5), $E_{0}=\tau^{-1}(S’)$ is
a $(-1)$-curve on $T$ and we get a smooth surface $\tau-$ by contracting $E_{0}$ to a
point. Moreover $E_{0}+\tau^{*}H$ is the pull-back of an ample line bundle $L^{-}$ on $\tau-$

such that $(L^{-})^{2}=3$ . We easily see that the canonical bundle of $\tau-$ is $-L^{-}$ and
$\tau-$ is a cubic surface. Since $B_{0}$ is general, it intersects $B’$ normally, hence $\tau^{*}B’$

is a smooth divisor on $T$. This is mapped isomorphically onto an ample divisor
$B^{-}$ on $\tau-$ since $\tau^{*}B’\cap E_{0}=\emptyset$ . Now, let $V$ be the normalization of the fiber
product of $T$ and $M_{1}$ over $P’$ . Then $V$ is a double covering of $T$ with branch
locus $\tau^{*}B’$ , hence is birational to the double covering $V^{-}$ of $\tau-$ with branch
locus $B^{-}$ . We have $\pi_{1}(V^{-})\simeq\pi_{1}(T^{-})\simeq\{1\}$ by [F6]. So $V$ is simply connected.
On the other hand, $Varrow M_{1}$ is a ramified double covering. So $\pi_{1}(V)arrow\pi_{1}(M_{1})$ is
surjective and hence $M$ is simply connected.

(2.7) Now we study the case $D=X_{1}+2X_{2}$ until (2.9). We have $X_{1}^{2}=-2$ and
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Bsl $H-X_{1}|=\emptyset$ similarly as in (2.2), while $X_{2}^{2}=-1$ since $0=X_{2}\cdot\rho^{*}S=(2E+D)X_{2}$

$=2+2X_{2}^{2}$ . Let $S_{1}$ and $S_{2}$ be general hyperplanes in $P$ passing $x_{2}$ and let $\rho^{*}S_{j}=$

$S_{j}’+\mu_{j}X_{2}$ . Since $E\cdot\rho^{*}S_{j}=1$ , we have $\mu_{j}=1$ and $S_{j}’\cap E=\emptyset$ . Then $0=X_{2}\cdot\rho^{*}S_{j}$

$=X_{2}S_{j}’-1$ , so $X_{2}\cap S_{j}’=y_{j}$ is a single point. Moreover $y_{1}=y_{2}$ since $S_{1}’S_{2}’=$

$(H-X_{2})^{2}=1$ and $S_{1}’\cap S_{2}’\subset\rho^{-1}(S_{1}\cap S_{2})=X_{2}$ . This point $y=y_{1}=y_{2}$ is the unique

base point of $|H-X_{2}|$ . Note that $y\not\in E$.
(2.8) Let $M_{2}$ be the blowing-up of $M_{1}$ at $y$ and let $Y$ be the exceptional

curve over $y$ . Let $X_{2}’$ be the proper transform of $X_{2}$ , while the proper trans-
form of $E$ is denoted by $E$ by abuse of notation since $y\not\in E$ . The intersection
of $X_{2}$ and $S_{j}’$ at $y$ is transverse since $X_{2}S_{j}’=1$ . In particular $X_{2}$ is smooth at
$y$ . So $X_{2}’’=X_{2}-Y$ on $M_{2}$ and $S_{j}’’=S_{j}’-Y$ for the proper transform $S_{j}’’$ of $S_{j}’$

on $M_{2}$ . Then $S_{1}’’S_{2}’’=(S_{1}’-Y)(S_{2}’-Y)=0$ and hence $S_{1}’’\cap S_{2}’’=\emptyset$ . Since $[S_{j}]_{M_{2}}$

$=S_{J}’’+X_{2}’’+2Y$, the scheme-theoretical fiber of $M_{2}arrow P$ over $x_{2}$ is the Cartier
divisor $X_{2}’’+2Y$.

Let $P’$ be the blowing-up of $P$ at $x_{1},$ $X_{2}$ and let $Z_{i}$ be the (–1)-curve over
$x_{i}$ . Similarly as in (2.3), we have a morphism $\rho_{2}$ : $\Lambda\prime f_{2}arrow P’$ such that $\rho_{2}^{*}Z_{1}=X_{1}$ ,
$\rho_{2}^{*}Z_{2}=X_{2}’’+2Y$ and $\rho_{2}(E)$ is the proper transform $S’$ of $S$ on $P’$ . Since $(X_{2}’’)^{2}$

$=-2$ and $X_{2}’’Y=1$ , we have $Z_{2}X_{2}’=0$ and $Z_{2}Y=-1$ . Hence $x_{3}=\rho_{2}(X_{2}^{\prime/})$ is a
point while $\rho_{2}(Y)=Z_{2}$ . Clearly $x_{3}\in Z_{2}$ and $x_{3}\in S’$ since $X_{2}’\cap E\neq\emptyset$ . So $x_{3}$ is
the point $Z_{2}\cap S’$ . Since $\rho_{2}^{*}Z_{2}=X_{2}’+2Y,$ $\rho_{2}^{*}S’=(2E+D)-\rho_{2}^{*}Z_{1}-\rho_{2}^{*}Z_{2}=$

$2E+X_{2}’$ and $E\cap Y=\emptyset$ , the scheme-theoretical fiber of $\rho_{2}$ over $x_{3}$ is the Cartier
divisor $X_{2}$“.

Let $P’’$ be the blowing-up of $P’$ at $x_{3}$ and let $Z_{3}$ be the (–1)-curve over
$x_{3}$ . Then we have a morphism $f$ : $M_{2}arrow P’$ such that $f^{*}Z_{3}=X_{2}’’$ . We easily
see that $f$ is a finite morphism. The branch locus $B$ of $f$ is a smooth member
of $|2F|$ for some line bundle $F$ on $P’’$ .

Let $S’’$ and $Z_{2}’’$ be the proPer transforms of $S’$ and $Z_{2}$ on $P’’$ respectively.
Then $f^{*}S’’=2E$ and $f^{*}Z_{2}’’=2Y$. Hence $S’$ and $Z_{2}’’$ are components of $B$ . So
$B=S’’+Z_{2}’’+B’’$ for some smooth divisor $B’$ such that $B’\cap S’=B"\cap Z_{2}’’=\emptyset$ .

Set $F=\beta H-\gamma_{1}Z_{1}-\gamma_{2}Z_{2}-\gamma_{3}Z_{3}$ for some integers $\beta,$ $\gamma_{1},$ $\gamma_{2}$ and $\gamma_{3}$ . Then $[B$
“

$]$

$=(2\beta-1)H-(2\gamma_{1}-1)Z_{1}-2\gamma_{2}Z_{2}-(2\gamma_{3}-2)Z_{3},0=B’’Z_{2}’’=2\gamma_{2}-2\gamma_{3}+2$ and $0=B’’S’=$

$(2\beta-1)-2(\gamma_{1}+\gamma_{2}+\gamma_{3})+3$ . So $\gamma_{3}=\gamma_{2}+1$ and $\beta=\gamma_{1}+2\gamma_{2}$ . Moreover $B$“ $Z_{1}\geqq 0$ and
$B’’Z_{3}\geqq 0$ imply $\gamma_{1}\geqq 1$ and $\gamma_{2}\geqq 0$ .

Let $K_{z}$ and $K’’$ be the canonical bundles of $M_{2}$ and $P’’$ respectively. Then
$K_{2}=f^{*}(K’’+F)=(\beta-3)H-(\gamma_{1}-1)X_{1}-(\gamma_{2}-1)(X_{2}’’+2Y)-(\gamma_{3}-1)X_{2}’$ . So $K_{2}H=$

$2\beta-6$ and $K_{2}E=K_{1}E=-1$ . Hence $KL=K_{2}(H+E)=2\beta-7$ and $g(M, L)=\beta-1$ .
Therefore $\beta\geqq 3$ .

Conversely, similarly as in (2.5), for any two points $x_{1},$ $x_{2}$ on a line $S$ in $P$

and for any integers $\gamma_{1},$ $\gamma_{2}$ with $\gamma_{1}\geqq 1,$ $\gamma_{2}\geqq 0$ and $\beta=\gamma_{1}+2\gamma_{2}\geqq 3$ , we can con-
struct examples of polarized surfaces of the above type. Details are left to the
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reader.

(2.9) We can compute numerical invariants of $(M, L)$ similarly as in (2.6).

When $\gamma_{2}>0$ , we have essentially the same formulae as in (2.6). For ex-
ample $c_{2}(M)=2c_{2}(P’)-e(S’)-e(Z_{2}’)-e(B’)-2=16\gamma_{1}\gamma_{2}+8\gamma_{2^{2}}-4\gamma_{1}-16\gamma_{2}+8$ and $M$

is simply connected. To see this, let $B_{0}$ be a general member of $|H-Z_{1}|$ on
$P’$ and let $\tau:Tarrow P’’$ be the finite double covering with branch locus $B_{0}+S’+Z_{2}’$ .
Then $\tau^{-1}(S’)$ and $\tau^{-1}(Z_{2}’)$ are $(-1)$-curves and we get a $P^{1}$ -bundle $\tau-$ over $P^{1}$

by contracting them to smooth points. In fact $\tau-$ is $\Sigma_{1}$ since $\tau^{-1}(Z_{1})$ is a $(-2)-$

curve meeting $\tau^{-1}(S’’)$ . Moreover, $\tau^{*}B’’$ is smooth and is mapped isomorphically
onto an ample divisor $B^{-}$ on $\tau-$ . The double covering $V^{-}$ of $\tau-$ branched
along $B^{-}$ is simply connected by [F6], and is birational to the normalization $V$

of the fiber product of $T$ and $M_{2}$ over $P’’$ . Hence $V$ and $M$ are simply con-
nected since $Varrow M_{2}$ is a ramified double covering.

However, when $\gamma_{2}=0$ , the situation is very different. In fact $B’’\in$

$|(2\beta-1)(H-Z_{1})|$ and $B’$ consists of proper transforms of $(2\beta-1)$ lines in $P$

passing $x_{1}$ . The linear system $|H-X_{1}|$ gives a $P^{1}- fibration$ of $M_{2}$ over a
hyperelliptic curve $C$ of genus $\beta-1$ , having the unique singular fiber $E+X_{2}’’+Y$.
Hence $(M, L)$ is a scroll over $C$ and $h^{1}(M, O_{M})=\beta-1=g(M, L)$ and $c_{2}(M)=$

$8-4\beta$ . It is easy to see that $M$ is obtained from $C\cross P^{1}$ by a so-called ele-
mentary transformation.

As for the Kodaira dimension, we have $\kappa(M)<0$ if $\gamma_{2}=0$ . We have $K_{2}=$

$(\gamma_{1}-1)(H-X_{1})+(2\gamma_{2}-3)(H-X_{2})+2E+X_{1}+Y$, Bsl $H-X_{1}|=\emptyset$ and $H-X_{2}$ is nef
and big. So $\kappa(M)=2$ if $\gamma_{2}>1$ . If $\gamma_{2}=1$ , then $K_{2}=(\gamma_{1}-1)(H-X_{1})-X_{2}’’$ and 2 $K_{2}$

$=(2\gamma_{1}-3)(H-X_{1})+2E+2Y$. So $\kappa(M)<0$ if $\gamma_{1}=1$ and $\kappa(M)=1$ if $\gamma_{1}>1$ .

(2.10) Now we study the case $n\geqq 3$ .
LEMMA. $D\cap E$ is an irreducible hyPersurface of degree three in $E\simeq P^{n- 1}$ .

PROOF. Let $W_{1}$ be a general member of $|H|$ . Then $W=\pi(W_{1})$ is a smooth
member of $|L|$ and $W_{1}$ is the blowing-up of $W$ at the unique base point of
$|L_{W}|$ . Thus, cutting several times successively, we reduce the problem to the
case $n=3$ .

If we cut once more, then we are in the situation (2.1). So we infer that
any general line in $E\simeq P^{2}$ meets $D$ at two or three points. In particular
$Supp(D\cap E)$ is not a line.

Let $D= \sum\mu_{\lambda}D_{\lambda}$ be the prime decomposition of $D$ and let $C_{\lambda}=\rho(D_{\lambda})$ . Then,
by (1.5), $D_{\lambda}\cap E\simeq C_{\lambda}$ and $D_{\lambda}=\rho^{-1}(C_{\lambda})$ . Since $D_{E}=O_{E}(3)$ and $D\cap E$ is not a line,
our assertion is valid unless $\mu_{\lambda}=1$ and $C_{\lambda}$ is a line in $S\simeq P^{2}$ for some $\lambda$ .
Assuming this, we will derive a contradiction.

Let $T$ be a general plane in $P\simeq P^{3}$ such that $T\cap S=C_{\lambda}$ . Since $\rho^{-1}(C_{\lambda})=D_{\lambda}$ ,
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we have $\rho^{*}T=\nu D_{\lambda}+T’$ in Div $(M_{1})$ for some effective divisor $T’$ containing no
component of $D$ . Restricting this relation to $E$ , we infer $\nu=1$ and $T’\cap E=\emptyset$ .
Take another component $D_{\alpha}$ of $D$ . Then $C_{a}\cap T\neq\emptyset$ . So $D_{a}\cap T’\neq\emptyset$ since
$\rho(T’)=T$ and $D_{\alpha}=\rho^{-1}(C_{\alpha})$ . Clearly $\rho(D_{\alpha}\cap T’)\subset C_{a}\cap T$ and $C_{a}\cap T$ is a finite
set. On the other hand dim $(D_{\alpha}\cap T^{f})\geqq 1$ . Hence $D_{\alpha}\cap T’$ contains a curve $X$ of
the type (1.5). So $T’\cap E\supset X\cap E\neq\emptyset$ , contradicting $T’\cap E=\emptyset$ .

(2.11) $C=\rho(D)$ is a hypercubic in $S\simeq P^{n-1}$ and $D\cap E\simeq C$ . Let $T$ be a
general hypercubic in $P$ such that $T\cap S=C$ . Then $\rho^{*}T=\nu D+T’$ for some
effective divisor $T’$ on $M_{1}$ . Restricting to $E$ we infer $\nu=1$ and $T’\cap E=\emptyset$ .
Since $\rho^{*}S=2E+D$ , we have $\rho^{*}C=\rho^{*}T\cap\rho^{*}S=D$ in the scheme theoretical
sense. Hence we get a morphism $f:M_{1}arrow P’$ onto the blowing-up $P’$ of $P$ along
$C$ such that $f^{*}Z=D$ , where $Z$ is the exceptional divisor. Since $DX=-2EX$
$=-2$ for any fiber $X$ of $\rho$ of the type (1.5), $f(X)$ is not a point and hence $f$

is a finite morphism.

(2.12) Let $y$ be a point on the singular locus $\Sigma$ of $P’$ and let $p:P’arrow P$ be
the projection. Clearly $x=p(y)$ is a singular point of $C$ . Take an affine co-
ordinate $(z_{1}, \cdots , z_{n})$ of a neighborhood $U$ of $x$ in $P$ such that $x$ is the origin
$(0, \cdots , 0)$ and $S$ is the divisor $z_{1}=0$ . Then $C$ is defined by $z_{1}=\phi(z_{2}, \cdots , z_{n})=0$

for some polynomial $\phi$ of degree three. So $p^{-1}(U)\simeq\{(z_{1}, \cdots , z_{n}, (\xi_{0} : \xi_{1}))\in U\cross$

$P^{1}|z_{1}$ ; $\phi(z)=\xi_{0}$ : $\xi_{1}$ }. By the Jacobian criterion we see that $y$ must be the point
$(0, \cdots , 0, (1:0))$ . By this observation we infer $\Sigma\simeq P(\Sigma)$ and $p(\Sigma)$ is the singular
locus of $C$ . In particular dim $\Sigma\leqq n-3$ . So $P’$ is normal by Serre’s criterion,
since it has only hypersurface singularities.

(2.13) Now we apply the theory in [Fl; \S 2]. There is a holomorphic in-
volution $\iota$ of $M_{1}$ such that $M_{1}/\iota\simeq P’$ . Any hypersurface singularity of such
quotient $P’$ must be of pure dimension $n-2$ . Hence $P’$ is non-singular by
(2.12). This in turn implies that $C$ is smooth. Furthermore the branch locus
$B$ of $f$ is a smooth member of $|2F|$ for some $F\in Pic(P’)$ .

(2.14) $S’=f(E)$ is the proper transform of $S$ in $P’$ and is a component of
$B$ . Set $B=B’+S’$ and $F=\beta H-\gamma Z$ . Then $[B^{f}]=(2\beta-1)H-(2\gamma-1)Z$ . Since
$B’\cap S’=\emptyset$ , we obtain $2\beta-1=3(2\gamma-1)$ and $\beta=3\gamma-1$ . Unlike the case $n=2,$ $B’$

is always connected since $3H-Z$ is nef and big on $P’$ .

(2.15) Conversely, for any smooth hypercubic $C$ in a hyperplane $S$ of $P\simeq P^{n}$

and for any smooth member $B’$ of $|(2\gamma-1)(3H-Z)|$ on $P’$ , we can construct a
polarized manifold $(M, L)$ of the above type. Details are left to the reader.

(2.16) We can calculate various invariants of $(M, L)$ similarly as in the case
$n=2$ . For example, if $K_{1}$ and $K’$ are the canonical bundles of $M_{1}$ and
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$P’$ , then $K_{1}=f^{*}(K’+F)=(3\gamma-n-2)H-(\gamma-1)D$ . So $(K+(n-1)L)L^{n-1}=$

$(K+(n-1)L)(E+H)^{n-1}=(K_{1}+(n-1)H)H^{n-1}=6\gamma-6$ . Hence $g(M, L)=3\gamma-2$ , so
$\gamma\geqq 2$ . Note also that we get a polarized surface of the type(2.2) if we take
general members of $|L|(n-2)$-times successively. Therefore $M$ is simply con-
nected by Lefschetz theorem.

(2.17) SUMMARY OF RESULTS. Let things be as in \S 1 and suppose further
that $\rho^{*}S=2E+D$ for some effective divisor $D$ such that dim $(\rho(D))<n-1$ .

If $n\geqq 3$ , then $C=\rho(D)$ is a smooth hypercubic in $S$ and $\rho$ gives a finite
double covering $f:M_{1}arrow P’$ onto the blowing-up $P’$ of $P$ along $C$ . Let $Z$ be
the exceptional divisor over $C$ and let $S’$ be the proper transform of $S$ on $P’$ .
Then $S’=f(E)$ and the branch locus $B$ of $f$ is of the form $S’+B’$ , where $B’$

is a smooth connected member of $|(2\gamma-1)(3H-Z)|$ such that $B’\cap S’=\emptyset$ . $\gamma$ is
an integer such that $\gamma\geqq 2$ and $g(M, L)=3\gamma-2$ . The numerical invariants of $M$

are explicitly computable.
If $n=2$ , then $C=\rho(D)$ is two or three points on the line $S$ in $P$. If $C$ is

three points $x_{1},$ $x_{2},$ $x_{3}$ , then $M_{1}$ is a finite double covering of the blowing-up $P’$

of $P$ at these points. Let $Z_{i}$ be the (–1)-curve over $x_{i}$ and let $S’$ be the prop-
er transform of $S$ on $P’$ . Then $f(E)=S’$ and the branch locus $B$ of $f$ is of
the form $S’+B’$ , where $B’$ is a smooth connected member of $|\Sigma_{i}(2\gamma_{i}-1)(H-Z_{i})|$ .
Here $\gamma_{i}’ s$ are positive integers such that $\gamma_{1}+\gamma_{2}+\gamma_{3}>3$ and $g(M, L)=\gamma_{1}+\gamma_{2}+\gamma_{3}-2$ .

The case in which $C$ is two points can be viewed usually as a degeneration
of the above case, where two of the three points $x_{i}$ are infinitely near (for

details, see (2.7) and (2.8)). But there is another exceptional possibility in which
the branch locus of $\rho$ consists of several lines passing a point (see the case
$\gamma_{2}=0$ in (2.9)).

$M$ is simply connected except the final case, in which $(M, L)$ is a scroll
over a hyperelliptic curve.

\S 3. Type $(\infty)$ .
Throughout this section we assume the condition (1.7; 2). Thus $\rho^{*}S=$

$E+E^{*}+D$ and $E\cap E^{*}=\emptyset$ .
(3.1) Since $E\cap E^{*}=\emptyset$ , any fiber Xof the type (1.5) is not contained in $E^{*}$ .

Therefore $E^{*}\simeq S$ by Zariski’s Main Theorem.

(3.2) For the moment, until (3.8), we study the case $n=2$ . Since $DE=2$ ,
we have $D=X_{1}+X_{2}$ or $2X_{1}$ , where $X_{i}’ s$ are curves of the type (1.5).

(3.3) From now on, until (3.7), we assume $D=X_{1}+X_{2}$ and $x_{i}=\rho(X_{i})$ are
different points. Let $S_{\alpha}$ be a general line passing $x_{t}$ and set $\rho^{*}S_{\alpha}=\nu X_{t}+C_{\alpha}$ .
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Then $\nu=1$ and $X_{i}E^{*}=1$ since $1=E^{*}(\nu X_{i}+C_{\alpha})$ . Therefore $0=HX_{i}=$

$(E+E^{*}+X_{1}+X_{2})X_{i}=2+X_{i}^{2}$ . Hence, similarly as in (2.2), $(H-X_{i})^{2}=0$ and
Bsl $H-X_{i}|=\emptyset$ for each $i$ .

(3.4) Let $P’$ be the blowing-up of $P$ at $x_{1}$ and $x_{2}$ and let $Z_{i}$ be the $(-1)-$

curve over $x_{i}$ . Then, similarly as in (2.3), we have a finite double covering
$f$ : $Marrow P’$ such that $f^{*}Z_{i}=X_{p}$ . The branch locus $B$ of $f$ is a smooth member
of $|2F|$ for some $F\in Pic(P’)$ . For the proper transform $S’$ of $S$ , we have
$f(E)=S’,$ $(S’)^{2}=-1$ and $f^{*}S’=E+E^{*}$ . Note that $B\cap S’=\emptyset$ since $E\cap E^{*}=\emptyset$ .
So $E^{*}$ is mapped onto a (–1)-curve on $M$, wbich is sometimes denoted by $E^{*}$

by abuse of notation.

(3.5) Set $F=\beta H-\gamma_{1}Z_{1}-\gamma_{2}Z_{2}$ for some integers $\beta,$ $\gamma_{1},$ $\gamma_{2}$ . Then $\beta=\gamma_{1}+\gamma_{2}$

since $0=BS’=2F(H-Z_{1}-Z_{2})$ . We have $2\gamma_{i}=BZ_{i}>0$ since $X_{i}=f^{*}Z_{i}$ is irre-
ducible. So $F$ is nef and big, and hence $B$ is connected.

Let $K_{1}$ and $K’$ be the canonical bundles of $M_{1}$ and $P’$ respectively. Then
$K_{1}=f^{*}(K’+F)=(\beta-3)H-(\gamma_{1}-1)X_{1}-(\gamma_{2}-1)X_{2}$ . Therefore $(K+L)L=(K+L)H=$
$(K_{1}+H)H=2\beta-4$ . So $g(M, L)=\beta-1=\gamma_{1}+\gamma_{2}-1$ . Thus $\gamma_{i}’ s$ are positive integers
with $\gamma_{1}+\gamma_{2}>2$ .

$S’$ is a (–1)-curve on $P’$ and we get $P^{1}\cross P^{1}$ by contracting $S’$ to a point.
Then $B$ is mapped onto a divisor of bidegree $(2\gamma_{1},2\gamma_{2})$ , which is denoted by $B^{-}$ .
Moreover, $M$ is the blowing-up of the double covering $M^{-}$ of $P^{1}\cross P^{1}$ branched
along $B^{-}$ , and the exceptional divisor is identified with $E^{*}$ .

(3.6) Conversely, for any integers $\gamma_{1},$ $\gamma_{2}$ as above and any smooth member
$B$ of $|2F|$ with $F=\gamma_{1}(H-Z_{1})+\gamma_{2}(H-Z_{2})$ , we can construct a polarized surface
$(M, L)$ of the above type, provided that there exists a point $z_{i}$ on each $Z_{i}$ such
that the intersection multiplicity of $B$ and $Z_{i}$ at $z_{i}$ is odd. This last condition
is necessary in order that $f^{-1}(Z_{i})$ is irreducible. Any general member of $|2F|$

satisfies actually this condition since $Bs|2F|=\emptyset$ .
Alternately, we get $M$ by blowing-up at a point on a double covering $M^{-}$

of $P^{1}\cross P^{1}$ branched along a smooth divisor of bidegree $(2\gamma_{1},2\gamma_{2})$ . In this case
$L=A-E^{*}$ , where $A$ is the pull-back of $O(1,1)$ on $P^{1}\cross P^{1}$ and $E^{*}$ is the excep-
tional curve of the blowing-up $Marrow M^{-}$ .

(3.7) Similarly as in (2.6), we can compute various numerical invariants of
$(M, L)$ . For example $c_{2}(M)=8\gamma_{1}\gamma_{2}-4\gamma_{1}-4\gamma_{2}+9$ . Moreover $M$ is simply con-
nected since it is birational to a double covering of $P^{1}\cross P^{1}$ . As for the Kodaira
dimension, we have:

$\kappa(M)<0$ if $\gamma_{1}=1$ or $\gamma_{2}=1$ ,
$\kappa(M)=0$ if $\gamma_{1}=\gamma_{2}=2$ ,
$\kappa(M)=1$ if $2=\gamma_{1}<\gamma_{2}$ or $2=\gamma_{2}<\gamma_{1}$ ,
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$\kappa(M)=2$ if $\gamma_{1}>2$ and $\gamma_{2}>2$ .

(3.8) We now study the case $D=2X$ for a curve $X$ of the type (1.5). Simi-
larly as in (3.3), we have $XE^{*}=1$ and $X^{2}=-1$ . So, by the method in (2.7), we
infer that $Bs|H-X|$ is a single point $y$ on $X$ $offE$ $andE^{*}$ . Thus we are in
a situation as in (2.8). To be precise, let $M_{2}$ be the blowing-up of $M_{1}$ at $y$ ,

let $Y$ be the $(-1)$-curve over $y$ and let $X’’$ be the proper transform of $X$ on
$M_{2}$ , while the pull-backs of $E$ and $E^{*}$ are denoted by $E$ and $E^{*}$ by abuse of
notation. Let $P’$ be the blowing-up of $P$ at $x$ , let $Z_{1}$ be the $(-1)$-curve over
$x$ and let $S’$ be the proper transform of $S$ . Let $x_{2}$ be the point $Z_{1}\cap S’$ and let
$P’’$ be the blowing-up of $P’$ at $X_{2}$ . Let $Z_{2}$ be the (–1)-curve over $X_{2}$ and let
$S’’$ and $Z_{1}’’$ be the proper transforms of $S’$ and $Z_{1}$ on $P’’$ respectively. Then
$\rho$ gives a finite double covering $f:M_{2}arrow P’$ such that $f^{*}Z_{2}=X’’,$ $f^{*}Z_{1}’’=2Y$

and $f^{*}S"=E+E^{*}$ . The branch locus $B$ of $f$ is a member of $|2F|$ for some
$F\in Pic(P’’)$ and $B=Z_{1}’+B’’$ for some smooth divisor $B’’$ with $B’’\cap Z_{1}"=$

$B’’\cap S’’=\emptyset$ .
Set $F=\beta H-\gamma_{1}Z_{1}-\gamma_{2}Z_{2}=\beta H-\gamma_{1}Z_{1}’-(\gamma_{1}+\gamma_{2})Z_{2}$ . Since $B’’Z_{1}’’=B’’S’’=0$ , we

have $\gamma_{2}=\gamma_{1}+1$ and $\beta=2\gamma_{1}+1$ . Let $K_{2}$ and $K’’$ be the canonical bundles of $M_{2}$

and $P’’$ respectively. Then $K_{2}=f^{*}(K’+F)=(\beta-3)H-(\gamma_{1}-1)(X’+2Y)-(\gamma_{2}-1)X’$ ,
$(K+L)L=(K_{2}+H-Y)H=2(\beta-2)$ and hence $g(M, L)=2\gamma_{1}$ . So $\gamma_{1}$ is a positive
integer. We easily see that $B’$ is connected.

If we contract the $(-1)$-curve $S’’$ on $P’’$ , we get $\Sigma_{2}$ this time. The $(-2)-$

curve on it is $Z_{1}’’$ and we get singular conic $C$ by contraction of it. $B’$ is
mapped isomorphically onto a divisor $B^{-}$ on $C$ . On the other hand, we get a
surface $M^{-}$ by contracting the (–1)-curve on $M$ which is identified with $E^{*}$ .
There exists a naturai morphism $f^{-}:$ $M^{-}arrow C$ , which is a finite morphism of
degree two branched along $B^{-}$ . Thus, for some appropriate polarization, $M^{-}$

is of the type $(^{*}II)$ in [F1]. So $\kappa(M)=2$ and $M$ is simply connected by [F1].

Other numerical invariants are easily calculated.
Conversely, for any $\gamma_{1}>0$ and any smooth member $B’$ of

$|(2\gamma_{1}+1)(2H-Z_{1}"-2Z_{2})|$ , we can construct polarized surface of the above type.
Details are left to the reader.

(3.9) Now we study the case $n\geqq 3$ . We first prove the following

LEMMA. $C=\rho(D)$ is of degree $tuo$ in $S\simeq P^{n-1}$ .

PROOF. Similarly as in (2.10), we reduce the problem to the case $n=3$ .
Since $D\cap E\simeq C$ and $D_{E}=O_{E}(2)$ , it suffices to derive a contradiction assuming
that $C$ is a line in $S\simeq P^{2}$ .

Set $X=\rho^{-1}(C)=D_{red}$ and let $S_{1},$ $S_{2}$ be general planes in $P$ containing $C$ .
Then $\rho^{*}S_{j}=\nu_{f}X+T_{j}$ for some effective divisor $T_{j}$ . Restricting to $E$ we infer
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that $\nu_{j}=1$ , $X_{E}=O_{E}(1)$ and $T_{j}\cap E=\emptyset$ . Similarly we have $T_{j}\cap E^{*}=\emptyset$ . Thus
$l=T_{1}\cap T_{2}$ does not meet $E$ and $l\subset\rho^{-1}(S_{1}\cap S_{2})=X$ . So the restriction $\rho_{l}$ : $larrow C$

is a finite morphism. Moreover this is birational since we are in a situation
(3.8) if we cut by a general member of $|H|$ . Hence $\rho_{l}$ is an isomorphism.

Let $M_{2}$ be the blowing-up of $M_{1}$ along $l$ , let $E_{l}$ be the exceptional divisor
over 1 and let $X’$ , $T_{j}’$ be the proper transforms of $X,$ $T_{f}$ respectively. Let
$\rho_{2}$ : $M_{2}arrow P$ be the induced morphism. Then $\rho_{2}^{*}S=E+E^{*}+2X’’+2E_{l}$ and $\rho_{2}^{*}S_{j}$

$=X’+2E_{l}+T_{j}’’$ . The scheme-theoretical intersection $T_{1}\cap T_{2}$ is locally Macaulay
and is smooth at general points. Hence it is $l$ in the strong sense, which im-
plies $T_{1}’\cap T_{2}’=\emptyset$ . Thus $\rho_{2}^{*}C=X’+2E_{l}$ in the scheme-theoretical sense. So
we get a morphism $\rho’$ : $M_{2}arrow P’$ onto the blowing-up $P’$ of $P$ along $C$ such that
$(\rho’)^{*}Z_{1}=X’+2E_{l}$ for the exceptional divisor $Z_{1}$ over $C$ . Moreover $\rho’(E)$ is the
proper transform $S’$ of $S$ on $P’$ and $(\rho’)^{*}S’=E+E^{*}+X$“. For $C_{2}=Z_{1}\cap S’$ , we
have $(\rho’)^{-1}(C_{2})=X’$ in the scheme-theoretical sense. Hence we have a morphism
$f:M_{2}arrow P’$ onto the blowing-up $P’$ of $P’$ along $C_{2}$ such that $f^{*}Z_{2}=X’$ , where
$Z_{2}$ is the exceptional divisor over $C_{2}$ . In view of (1.5), we infer that $f$ is a
finite double covering.

Since $f^{*}Z_{1}’=2E_{l}$ for the proper transform $Z_{1}^{\parallel}$ of $Z_{1}$ on $P_{2},$ $Z_{1}’’$ is a com-
ponent of the branch locus $B$ of $f$ , which is a smooth member of $|2F|$ for
some $F\in Pic(P’’)$ . We have also $f^{*}S’’=E+E^{*}$ for the proper transform $S’$ of
$S’$ on $P’’$ . So $B=Z_{1}’’+B’’$ and $B’’\cap Z_{1}’’=B’’\cap S’’=\emptyset$ .

Set $B’’=bH-b_{1}Z_{1}-b_{2}Z_{2}=bH-b_{1}Z_{1}’’-(b_{1}+b_{2})Z_{2}$ in Pic $(P’’)$ . Note that $Z_{1}’’\simeq$

$Z_{1}\simeq C\cross P_{\sigma}^{1}$ and $[-Z_{1}]_{Z_{1}}=H_{\sigma}-H$, where H. is the pull-back of $O(1)$ of $P_{\sigma}^{1}$ . So,
in Pic $(Z_{1}’)$ , we have $Z_{2}=H_{\sigma}$ and $Z_{1}"=H-2H_{\sigma}$ . Hence $B’\cap Z_{1}’=\emptyset$ implies
$b=b_{1}=b_{2}$ . On the other hand, $S’\simeq S\simeq P^{2}$ and $Z_{1}’\cap S’=\emptyset,$ $[Z_{2}]_{S’}=O(1)$ . So
$B’\cap S’=\emptyset$ implies $b=b_{1}+b_{2}$ . Combining them we get $b=b_{1}=b_{2}=0$ , which is
clearly absurd. Thus we complete the proof of the lemma.

(3.10) LEMMA. $C$ is irreducible.

Indeed, if $C$ is a union of two hyperplanes, then we can derive a contradic-
tion as in (2.10).

(3.11) Similarly as in (2.11), we get a finite morphism $f$ : $M_{1}arrow P’$ onto the
blowing-up $P’$ of $P$ along $C$ such that $f^{*}Z=D$ for the exceptional divisor $Z$

over $C$ . By the method in (2.12) and (2.13), we infer that $C$ is smooth and
the branch locus $B$ of $f$ is a smooth member of $|2F|$ for some $F\in Pic(P^{f})$ .
For the proper transform $S’$ of $S$ , we have $f^{*}S’=E+E^{*}$ . Hence $S’\cap B=\emptyset$ .

(3.12) By (3.11) we may set $F=\gamma(2H-Z)$ for some integer $\gamma$ . Let $K_{1}$ and
$K’$ be canonical bundles of $M_{1}$ and $P’$ respectively. Then $K_{1}=f^{*}(K’+F)=$

$(2\gamma-n-1)H-(\gamma-1)D,$ $(K+(n-1)L)L^{n- 1}=(K+(n-1)L)H^{n- 1}=(K_{1}+(n-1)H)H^{n-1}$
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$=4\gamma-4$ and $g(M, L)=2\gamma-1$ . Hence $\gamma\geqq 2$ .
The normal bundle of $S^{f}\simeq P^{n-1}$ in $P^{f}$ is $O(-1)$ . Hence it is contracted to

a smooth point on another manifold $Q$ . In fact, it is easy to see and well
known that $Q$ is a hyperquadric and $O_{Q}(1)=2H-Z$ in Pic $(P^{f})$ . The image of
$B$ in $Q$ is a member of $|O_{Q}(2\gamma)|$ . Let $M^{-}arrow Q$ be the double covering branched
along this divisor. Then $M$ is the blowing-up of $M^{-}$ at a point, and the ex-
ceptional divisor is identified with $E^{*}$ on $M_{1}$ . Since $M^{-}$ is of the type (II) in
[F1], we can easily calculate various numerical invariants of $(M, L)$ . For ex-
ample $M$ is simply connected.

(3.13) Since every fiber of $Darrow C$ is irreducible, every fiber of $Zarrow C$ meets
$B$ at some point with odd multiplicity. This implies $n\leqq\gamma+1$ .

To see this, it suffices to derive a contradiction assuming $n=\gamma+2$ . We use
the method in [F2; $(17.6)\sim(17.11)$]. The normal bundle $\mathfrak{N}$ of $C$ in $P$ is
$H_{\alpha}\oplus 2H_{\alpha}$ , where $H_{\alpha}$ is the restriction of $H=O_{P}(1)$ to $C$ . Hence $Z\simeq P_{C}(\mathfrak{N}^{\sim})\simeq$

$P_{C}(\mathcal{E})$ for $\mathcal{E}=H_{\alpha}\oplus O_{C}$ . Let $H_{(}=H(\mathcal{E})$ be the tautological line bundle on $P_{c}(\mathcal{E})$ .
Then the normal bundle of $Z$ is $2H_{a}-H_{(}$ . Therefore the restriction $B_{Z}$ is a
member of $2\gamma H_{\zeta}$ . The corresponding section in $H^{0}(Z, 2\gamma H_{\zeta})\simeq H^{0}(C, S^{2\gamma}\mathcal{E})$ does
not vanish at any point on $C$ . So this gives a trivial subbundle of $S^{2\gamma}\mathcal{E}$ , and a
section $b$ of $V=P(S^{2\gamma}\mathcal{E}^{v})arrow C$ .

Let $\mu:G=P(S^{\gamma}\mathcal{E}^{\vee})arrow V$ be the map defined by square. If $b(x)\in{\rm Im}(\mu)$ for
some $x\in C$ , then the fiber of $Zarrow C$ over $x$ meets $B$ with even multiplicity at
every point. This should be ruled out. So, in order to derive a contradiction,
we will show $I>0$ for the intersection number $I$ of $b(C)$ and $\mu(G)$ in $V$. Note
that the dimensions are right and $I$ is well-defined.

Let $H_{\sigma}$ and $H_{\tau}$ be the tautological line bundles on $V$ and $G$ respectively.
Similarly as in [F2; (17.9)], the class of $b(C)$ in the Chow ring of $V$ is
$\Pi_{j=1}^{2\gamma}(H_{\sigma}+J^{H_{\alpha})}\cdot$ Since $\mu^{*}H_{\sigma}=2H_{\tau}$ , we have $I=\Pi_{J}^{2\gamma}=1(2H_{\tau}+]H_{\alpha})$ in Chow $(G)$ .
Similarly as in [F2; (17.11)], we obtain $I=2^{\gamma+1}\Pi_{\iota=1}^{\gamma}(2t-1)>0$ using elementary
formulas. Thus we conclude $n\leqq\gamma+1$ .

(3.14) Conversely, for any integer $\gamma$ with $\gamma\geqq n-1$ , we can construct exam-
ples of polarized manifolds of the above type by taking a general member $B$ of
$|2\gamma(2H-Z)|$ . Details are left to the reader.

(3.15) SUMMARY OF RESULTS. Let things be as in (1.7; 2). Then $M$ is the
blowing-up at a point of a finite double covering $M^{-}$ of a (possibly singular)

hyperquadric $Q$ . The pull-back of $O_{Q}(1)$ to $M$ is $L+E^{*}$ , where $E^{*}$ is the ex-
ceptional divisor.

If $n\geqq 3$ , then $Q$ is smooth and the branch locus $B$ of $M^{-}arrow Q$ is a smooth
member of $|O_{Q}(2\gamma)|$ for some integer $\gamma$ such that $g(M, L)=2\gamma-1$ and $\gamma\geqq n-1$ .

If $n=2$ and $Q\simeq P^{1}\cross P^{1}$ , then $B$ is a smooth divisor of bidegree $(\gamma_{1}, \gamma_{2})$ and
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$g(M, L)=\gamma_{1}+\gamma_{2}-1$ .
If $Q$ is a singular quadric surface, then $B$ is a member of $|O_{Q}(2\gamma+1)|$ and

$g(M, L)=2\gamma$ for some positive integer $\gamma$ . The point over the singular point of
$Q$ is an isolated fixed point of the sheet-changing involution of $M^{-}$ .

\S 4. Type $(+)$ .
Throughout this section we assume the condition (1.7; 1). Since $D_{E}=O(1)$ ,

$C=\rho(D)$ is a hyperplane in $S$ .

(4.1) When $n=2$ , we have $EE^{*}=DE=DE^{*}=1$ and hence $D^{2}=-2$ . So
Bsl $H-D|=\emptyset$ and we have a morphism $f$ : $M_{1}arrow P’$ onto the blowing-up $P^{f}$ of
$P$ at $C$ such that $f^{*}Z=D$ for the exceptional curve $Z$ over $C$ . Then $M_{1}$ is a
finite double covering of $P^{f}$ and the branch locus $B$ of $f$ is a smooth member
of $|2F|$ for some line bundle $F$ on $P^{f}$ . We have $f^{*}S^{f}=E+E^{*}$ for the proper
transform $S’$ of $S$ . So $B$ meets $S^{f}$ at the point $f(E\cap E^{*})$ with multiplicity 2.
Hence, if we set $F=\beta H-\gamma Z$, we have $1=FS’=\beta-\gamma$ . Let $K_{1}$ and $K’$ be
the canonical bundles of $M_{1}$ and $P^{f}$ respectively. Then $K_{1}=f^{*}(K^{f}+F)=$

$(\gamma-2)H-(\gamma-1)D,$ $(K+L)L=(K_{1}+H)H=2\gamma-2$ and $g(M, L)=\gamma\geqq 2$ . So $F$ is am-
ple and $B$ is connected.

Conversely, for any $\gamma\geqq 2$ , we can construct examples of polarized surfaces
of the above type in the following way. Take a smooth member $B$ of $|2F|$

as above. $P^{f}\simeq\Sigma_{1}$ is a $P^{1}$ -bundle over $P_{\xi}^{1}$ and the map $B(\subset P^{f})arrow P_{\xi}^{1}$ is of de-
gree two. Take a point on the branch locus of this map and let $S^{f}$ be the
fiber of $P^{f}arrow P_{\xi}^{1}$ over this point. The pull-back of $S’$ on the finite double cover-
ing of $P’$ branched along $B$ is a sum of two $(-1)$-curves. Contracting one of
them to a smooth point, we get a polarized surface $(M, L)$ of the desired type.

As for numerical invariants, we first note that $M$ is a rational surface.
Indeed, $|H-D|$ gives the natural mapping $M_{1}arrow P_{\xi}^{1}$ , and any general fiber of it
is a double covering of $P^{1}$ branched at two points. So this is a $P^{1}- fibration$ .
Its fiber is singular exactly where $Barrow P_{\xi}^{1}$ is ramified. Easy computation gives
$g(B)=2\gamma$ and $c_{2}(M)=4\gamma+5$ .

(4.2) From now on, we assume $n\geqq 3$ . Let $S_{\alpha}$ be a general hyperplane in $P$

such that $S\cap S_{\alpha}=C$ and let $\rho^{*}S_{a}=\nu D+T$ for some effective divisor $T$. Re-
stricting to $E$ we infer $\nu=1$ and $T\cap E=\emptyset$ . So $T$ contains no fiber of the type
(1.5). Hence $\rho_{T}$ : $Tarrow S_{\alpha}$ is a finite morphism. On the other hand, $E^{*}arrow S$ is a
birational morphism and $D\cap E^{*}$ is mapped onto $C$ . So, restricting $\rho^{*}S_{\alpha}=D+T$

to $E^{*}$ , we infer that dim $\rho(T\cap E^{*})<n-2$ . Hence dim $(T\cap E^{*})<n-2$ . This im-
plies $T\cap E^{*}=\emptyset$ since $T$ and $E^{*}$ are Cartier divisors. Therefore $\rho^{-1}(C)=$

$\rho^{-1}(S\cap S_{\alpha})=\rho^{*}S\cap\rho^{*}S_{\alpha}=D$ in the ideal-theoretical sense. Thus we obtain a
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morphism $\rho_{1}$ : $M_{1}arrow P^{f}$ onto the blowing-up $P’$ of $P$ along $C$ such that $\rho_{1}^{*}Z_{1}=D$ ,
where $Z_{1}$ is the exceptional divisor over $C$ . However, unlike tbe cases in the
preceding sections, $\rho_{1}$ is not always finite. If there is a fiber $X$ of the type
(1.5) such that $X\subset E^{*}$ and $X\cap D=\emptyset$ , then $\rho_{1}(X)$ is a point. In fact, any fiber
of $\rho_{1}$ of positive dimension must be of this type.

(4.3) For the moment, until (4.13), we study the case $n=3$ .
The scheme theoretical intersection $l=E\cap E^{*}$ is a line in $E\simeq P^{2}$ . So the

intersection is transverse and $E^{*}$ is non-singular along 1. Hence the singular
locus $\Sigma$ of $E^{*}$ does not contain a positive dimensional fiber of $\rho$ . On the other
hand $\rho(\Sigma)$ is finite since $E^{*}arrow S$ is birational. Therefore $\Sigma$ is at most a finite
set. So $E^{*}$ is normal by Serre’s criterion. Note also that 1 is a Cartier divisor
on $E^{*}$ with $l^{2}=-1$ since $[E]_{E}=O_{E}(-1)$ and $El=-1$ .

(4.4) CLAIM. Let $E^{*}$ be the minimal resolution of $E^{*}$ . Then one of the
following conditions is satisfied:
a) $E^{\#}=E^{*}$ and $E^{*}$ is the blowing-up of $S$ at two pOints on $\rho(1)$ .
b) $\Sigma$ consists of a single ordinary double Point. The map $E^{\#}arrow S$ factors through
the blowing-up $S_{1}$ of $S$ at the point $x_{1}=\rho(\Sigma)\in\rho(l)$ . Moreover $E^{*}$ is the blowing-
up of $S_{1}$ at the point $x_{2}=Y\cap l_{1}$ , where $Y$ is the $(-1)$-curve over $x_{1}$ and $l_{1}$ is the
Proper transform of $l_{0}=\rho(l)$ . The prOper transform $Y_{1}$ of $Y$ on $E^{\#}$ is the $(-2)-$

curve lying over $\Sigma$ and the $(-1)-curl)e$ $Y_{2}$ over $x_{2}$ is mapped onto the unique
$positi\iota e$ dimensional fiber of $E^{*}arrow S$ .

PROOF. Suppose that $E^{*}arrow S$ has two positive dimensional fibers $X_{1}$ and $X_{2}$ .
Let $\tilde{X}_{i}$ be the proper transforms of them on $E^{\epsilon}$ . Clearly $x_{i}=\rho(X_{i})$ are points
on $l_{0}=\rho(l)$ and $E^{\#}arrow S$ factors through the blowing-up $S_{2}$ of $S$ at these points.
The proper transform 12 of $l_{0}$ is a (–1)-curve on $S_{2}$ . On the other hand, 1 lifts
to a (–1)-curve $\tilde{1}$ on $E^{\#}$ since $1\cap\Sigma=\emptyset$ . So we infer that $E^{\#}arrow S_{2}$ is \’etale over
12 by $l_{2}^{2}=\overline{l}^{2}$ . This implies that $\tilde{X}_{i}$ is the proper transform of the $(-1)$-curve
on $S_{2}$ over $x_{i}$ . By the minimality of the resolution, the exceptional curve of
the final blowing-up of $E^{\#}arrow S$ over $x_{i}$ is not contracted to a point by $E^{\#}arrow E^{*}$ .
So it must be one of $\tilde{X}_{i}’ s$ . Thus we conclude $S_{2}=E^{\#}=E^{*}$ , which proves a).

Suppose that there is only one positive dimensional fiber $X$ of $E^{*}arrow S$ . Let
$\tilde{X}$ be the proper transform of $X$ on $E^{*}$ . $x_{1}=\rho(X)$ is a point on the line $l_{0}=\rho(l)$

and $\rho^{\#}$ : $E^{\#}arrow S$ factors through the blowing-up $S_{1}$ of $S$ at $x_{1}$ . Then $l_{1}^{2}=0$ for
the proper transform $l_{1}$ of $l_{0}$ on $S_{1}$ . Since $E^{\#}arrow S_{1}$ is \’etale except over the
(–1)-curve $Y_{1}$ , this map factors through the blowing-up $S_{2}$ of $S_{1}$ at $x_{2}=Y_{1}\cap l_{1}$ .
Then the proper transform $l_{2}$ of $l_{1}$ is a $(-1)$-curve on $S_{2}$ . Hence $E^{*}arrow S_{2}$ is
\’etale over 12. This implies that $\tilde{X}$ is the proper transform of the (-l)-curve
$Y_{2}$ on $S_{2}$ over $x_{2}$ . Similarly as in case a), we infer $E^{\#}=S_{2}$ by the minimality
of the resolution. The proper transform $\tilde{Y}_{1}$ of $Y_{1}$ on $S_{2}$ is the $(-2)$-curve con-
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tracted to $\Sigma$ on $E^{*}$ . Thus the condition b) is satisfied.

(4.5) For the moment, until (4.8), we consider the case (4.4; a). The posi-
tive dimensional fibers of $\rho_{1}$ : $M_{1}arrow P^{f}$ are the two exceptional curves $X_{1}$ and $X_{2}$

of $E^{*}arrow S$ . For $x_{i}=\rho_{1}(X_{i})$ , we have $\rho_{1}^{-1}(x_{i})=X_{i}$ in the set-theoretical sense.
In fact this is true in the stronger scheme-theoretical sense.

We will verify this assertion at the point $y_{i}=X_{i}\cap l$ , since it is much easier
to check at other points. Take a local parameter $(u, v, w)$ of $M_{1}$ at $y_{i}$ such
that $E^{*},$ $E$ and $X_{i}$ are defined at $y_{i}$ by $w=0,$ $v=0$ and $u=w=0$ respectively.
Let $S_{a}$ (resp. $S_{\beta}$ ) be general plane in $P$ containing $l_{0}$ (resp. $x_{i}$ ). Then $D_{1}=\rho_{1}^{*}S$ ,
$D_{2}=\rho_{1}^{*}S_{\alpha}$ and $D_{3}=\rho_{1}^{*}S_{\beta}$ are defined by $vw=0,$ $uv+w(\psi_{1}+v\psi_{2})=0$ and $u+w\psi_{3}$

$=0$ at $y_{i}$ respectively, where $\psi_{j}’ s$ are holomorphic functions in a neighborhood
of $y_{i}$ such that $\psi_{1}(y_{i})\neq 0$ , since $D_{1}|_{E}=l,$ $D_{2}|_{E^{5}}=l+X_{\ell}$ and $D_{3}|_{E}.=X_{i}$ . So ele-
mentary computation yields $\rho_{1}^{*}x_{i}=D_{1}\cap D_{2}\cap D_{3}=X_{i}$ in tbe scheme-theoretical
sense.

(4.6) Let $P’$ be the blowing-up of $P’$ at the points $x_{1},$ $X_{2}$ and let $Y_{i}$ be the
exceptional divisor over $x_{i}$ . Let $M_{2}$ be the blowing-up of $M_{1}$ along the two
curves $X_{1},$ $X_{2}$ and let $V_{i}$ be the exceptional divisors over $X_{i}$ . By (4.5) we have
a morphism $f$ : $M_{2}arrow P’’$ such that $f^{*}Y_{i}=V_{i}$ .

Since $0=X_{i}\cdot\rho^{*}S=X_{i}(E+E^{*}+D)$ , we have $E^{*}X_{i}=-1$ . Moreover $X_{i}$ is a
(–1)-curve on $E^{*}$ . So the normal bundle of $X_{i}$ in $M_{1}$ is $O(-1)\oplus O(-1)$ . This
implies $V_{i}\simeq P^{1}\cross P^{1}$ and the normal bundle is of bidegree $(-1, -1)$ . So the
restriction of $f$ to $V_{i}$ is a finite double covering of $Y_{i}\simeq P^{2}$ with branch locus
being a smooth conic. This implies that $f$ itself is a finite double covering.
Its branch locus $B$ is a smooth member of $|2F|$ for some line bundle $F$ on $P’$

whose restriction to $Y_{i}$ is $O(1)$ .

(4.7) Set $F=\beta H-\gamma Z_{1}-Y_{1}-Y_{2}$ , where $Z_{1}$ denotes the total transform of $Z_{1}\in$

Pic $(P^{f})$ by abuse of notation. Recall that $Y_{t}\cap Z_{1}=\emptyset$ . The proper transform
$S’’$ of $S$ is a member of $|H-Z_{1}-Y_{1}-Y_{2}|$ and $f^{*}S’’=E_{2}+E_{2^{*}}$ where $E_{2}$ and
$E_{2}^{*}$ are the proper transforms of $E$ and $E^{*}$ on $M_{2}$ respectively. Clearly $E_{2}^{*}\simeq E^{*}$ ,
$l_{2}=E_{2}^{*}\cap E_{2}\simeq l$ and $E_{2}arrow E$ is the blowing-up at the two points $y_{i}=X_{i}\cap E$ . So
$E_{2}$ and $E_{2}^{*}$ meet along $l_{2}$ transversally. From this we infer that the restric-
tion of $B$ to $S’$ is $2l^{ff}$ where $l^{f\prime}=f(l_{2})$ . Hence $\beta-\gamma=1$ .

Let $K_{2}$ and $K’’$ be the canonical bundles of $M_{2}$ and $P^{\prime f}$ respectively. Then
$K_{2}=f^{*}(K’’+F)=(\gamma-3)H-(\gamma-1)D+V_{1}+V_{2},$ $(K+2L)L^{2}=(K_{1}+2H)H^{2}=(K_{2}+2H)H^{2}$

$=2\gamma-2$ and so $\gamma=g(M, L)\geqq 2$ . If we cut things by a general hyperplane in $P$,

we will be in a situation as in (4.1). In particular $B$ is connected.

REMARK. Let $M_{1}arrow Warrow P’$ be the Stein factorization of $\rho_{1}$ and let $B’$ be
the image of $B$ by the map $P’’arrow P^{f}$ . The above observations imply that $W$ is
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the double covering of $P’$ branched along $B’$ , which has ordinary double points
$x_{1},$ $x_{2}$ . Hence $W$ itself has ordinary double points at them. The map $M_{2}arrow W$

is the blow-up at these points and $V_{i}’ s$ are the exceptional divisors. The de-
singularization $M_{2}arrow M_{1}arrow W$ is of the type which is well-known in three-dimen-
sional geometry.

(4.8) Conversely, for any $\gamma\geqq 2$ , we can find a smooth member $B$ of
$|2H-2\gamma(H-Z_{1})-2Y_{1}-2Y_{2}|$ on $P’$ such that $B\cap Y_{i}$ are smooth conics and the
restriction of $B$ to $S^{f\prime}$ is 21” for the proper transform $l’$ of the line passing $x_{1}$

and $x_{2}$ . Taking the double covering $M_{2}$ of $P’$ branched along $B$ and blowing-
down $M_{2}$ suitably, we get a polarized 3-fold of the desired type. Details will
be left to the reader, but we just make a remark here.

$V_{i}=f^{*}Y_{i}$ is isomorphic to $P^{1}\cross P^{1}$ and its normal bundle in $M_{2}$ is of bide-
gree $(-1, -1)$ . So it can be blown-down to $P^{1}$ along two directions. On the
other hand $f^{*}S’’$ is the sum of two components both of which are isomorphic
to $S^{f\prime}$ . By a contraction $V_{i}arrow P^{1}$ , a $(-1)$-curve on one of these components is
contracted to a point, but the other component remains the same. The con-
traction $V_{l}arrow P^{1}$ along the other direction has the opposite effect. Thus, if we
blow down $V_{1}$ and $V_{2}$ correctly, then we are in a desired situation. But if we
blow down in the wrong way, both components are blown down to $\Sigma_{1}$ .

(4.9) Now we consider the case (4.4; b). Let $X$ be the fiber of $E^{*}arrow S$ over
$x_{1}$ . Then $X$ is the unique fiber of $\rho_{1}$ : $M_{1}arrow P^{f}$ of positive dimension. Note that
$X\simeq P^{1}$ and $-E^{*}X=EX=1$ .

Let $M_{2}$ be the blowing-up of $M_{1}$ along $X$ and let $V$ be the exceptional
divisor over $X$ . The proper transform of $E^{*}$ will be denoted by $E^{g}$ since it is
isomorphic to the minimal resolution of $E^{*}$ . Moreover the restriction of $E^{\#}$ to
$V$ as a divisor is $X_{2}+Y$, where $X_{2}$ (resp. $Y$) is a section (resp. the fiber over
the double point of $E^{*}$ ) of the projection $Varrow X$ . Note that $X_{2}$ and $Y$ are
identified with the curves $Y_{2}$ and $Y_{1}’$ on $E^{\#}$ in (4.4; b). In particular, $X_{2}^{2}=-1$ ,
$X_{2}Y=1$ and $Y^{2}=-2$ on $E^{*}$ . Since the restriction of $V$ to $E^{\#}$ is $X_{2}+Y$, we
have $VX_{2}=0$ and $VY=-1$ . On the other hand, the total transform of $E^{*}$ on
$M_{2}$ is $E^{\#}+V$ and so $(E^{\#}+V)X_{2}=E^{*}X=-1,$ $(E^{\#}+V)Y=0$ . Hence $E^{\#}X_{2}=-1$

and $E^{\#}Y=1$ . So $X_{2}^{2}=-2$ on $V$ since $X_{2}Y=1$ . This implies that $V\simeq\Sigma_{2}=$

$P(O(2)\oplus O)$ and that $X_{2}$ is the unique (–2)-section of it. Since $VX_{2}=0$ and
$VY=-1$ , the conormal bundle of $V$ is the tautological bundle $O(1)=X_{2}+2Y$ .
This implies that the normal bundle of $X\simeq P^{1}$ in $M_{1}$ is $G(-2)\oplus O$ .

(4.10) If $x=\rho_{1}(X)$ , the fiber of $M_{2}arrow P’$ over $x$ is $V$ in the set-theoretical
sense. Furthermore, similarly as in (4.5), we infer that this is true in the
scheme-theoretical sense too. The key point here is to observe $E^{\#}\cap\rho_{1}^{-1}(x)=$

$E^{\#}\cap V$ in the scheme-theoretical sense.
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Thus we have a morphism $\rho_{2}$ : $M_{2}arrow P^{\prime f}$ onto the blowing-up $P’’$ of $P’$ at $x$

such that $\rho_{2}^{*}(Z_{2})=V$, where $Z_{2}$ is the exceptional divisor over $x$ .
(4.11) The restriction of $\rho_{2}$ to $E^{*}$ is isomorphic to the mapping $E^{\#}arrow S_{1}$ in

(4.4; b), which is the contraction of $X_{2}=Y_{2}$ to a smooth point $X_{2}$ . The restric-
tion of $\rho_{2}$ to $V\simeq\Sigma_{2}=\{(\xi_{0} : \xi_{1}), (\zeta_{0} : \zeta_{1} : \zeta_{2})\in P_{\xi}^{1}\cross P_{\zeta}^{2}|\zeta_{1} : \zeta_{2}=\xi_{0^{2}} : \xi_{1}^{2}\}$ is isomorphic
to the mapping $\Sigma_{2}arrow P_{\zeta}^{2}$ of degree two induced by the second projection. So $X_{2}$

is the unique fiber of $\rho_{2}$ of positive dimension. We claim $\rho_{2}^{-1}(x_{2})=X_{2}$ in the
scheme-theoretical sense.

Indeed, this is obvious set-theoretically. The proper transform $E^{f}$ of $E$ on
$M_{2}$ is isomorphic to the blow-up of $E$ at the point $E\cap X$ . So $E^{f}\simeq\rho_{2}(E^{f})=$

$\rho_{2}(E^{\#})\simeq S_{1}$ . Hence $\rho_{2}^{-1}(x_{2})\cap E^{f}$ is a simple point in the scheme-theoretical sense.
So the claim is true at this point. Recall that $\rho_{2}^{*}(\rho_{2}(E^{\#}))=E’+E^{\#}$ . Examining
the mapping $E^{\#}arrow\rho_{2}(E^{\#})$ , we infer $\rho_{2}^{-1}(x_{2})\cap E^{\#}=X_{2}$ in the strong sense. Combining
these observations we prove the claim.

(4.12) Now we get a morphism $f$ : $M_{3}arrow P’’’$ with $f^{*}Z_{3}=E_{3}$ , where $M_{3}$ and
$P$ “’ are the blowing-ups of $M_{2}$ and $P’’along/atX_{2}$ and $X_{2}$ and $E_{3}$ and $Z_{3}$ are
the exceptional divisors over $X_{2}$ and $x_{2}$ respectively. Since $E^{\#}X_{2}=-1$ and
$X_{2}^{2}=-1$ on $E^{\#}$ , the normal bundle of $X_{2}$ in $M_{\epsilon}$ is $O(-1)\oplus O(-1)$ . This implies
$E_{3}\simeq P^{1}\cross P^{1}$ and the conormal bundle of it is of bidegree $(1, 1)$ . So the restric-
tion $E_{3}arrow Z_{3}$ of $f$ is a finite double covering. Hence $f$ itself is a finite double
covering.

The branch locus $B$ of $f$ is a smooth member of $|2F|$ for some line bundle
$F$ on $P’’’$ . The restriction of $B$ to $Z_{3}\simeq P^{2}$ is a smooth conic. The proper
transform $Z_{2}^{f}$ of $Z_{2}$ is the blowing-up $\Sigma_{1}$ of $P^{2}$ at a point, and the restriction
of $B$ to $Z_{2}’$ is the sum of two fibers of $\Sigma_{1}arrow P^{1}$ . Hence we may set $F=$

$\beta H-\gamma Z_{1}-Z_{2}-Z_{3}$ , where $Z_{i}$ denote the total transforms and hence $Z_{2}=Z_{2}’+Z_{3}$ .
Let $S_{3}$ be the proper transform of $S$ on $P$“’. Then $f^{*}S_{3}=\tilde{E}+\tilde{E}^{*}$ and $\tilde{E}\simeq$

$\tilde{E}^{*}\simeq S_{3}$ , where $\tilde{E}$ and $\tilde{E}^{*}$ are the proper transforms of $E$ and $E^{*}$ on $M_{3}$ re-
spectively. So the restriction of the divisor $B$ to $S_{3}$ is $2l_{2}$ , where 12 is the prop-
er transform of the line $p_{1}(E\cap E^{*})$ on $S$ . This implies $\beta=\gamma+1$ . Similarly as
before, we have $\gamma=g(M, L)\geqq 2$ . This implies that $B$ is connected.

Conversely, for any integer $\gamma\geqq 2$ , we can construct examples of polarized
manifolds of the above type. Details are left to the reader.

(4.13) REMARK. The situation (4.4; b) can be viewed as a degeneration of
the case (4.4; a), where the two points $X_{1}$ and $X_{2}$ are infinitely near. Similar
degeneration of double coverings can be constructed locally as follows.

Let $S=S_{0}$ be a plane in $P\cong P^{3}$ , let $l=l_{0}$ be a line in $S$ and let $x_{1}$ be a point
on $l$ . We assume that there is a divisor $B=B_{0}$ on $P$ which is defined by
$u^{k}w+v^{2}+vw=0$ in a neighborhood of $\lambda_{1}$ , where $k$ is a positive integer and
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$(u, v, w)$ is a local parameter system of $P$ at $x_{1}$ such that $S$ and $l$ are defined
by $\{w=0\}$ and $\{v=w=0\}$ at $x_{1}$ respectively. So $B$ has an isolated singularity
at $x_{1}$ and is tangent to $S$ along $l$ .

Let $P_{1}$ be the blowing-up of $P$ at $x_{1}$ and let $Z_{1}$ be the exceptional divisor
over $x_{1}$ . Let $B_{1},$ $S_{1}$ and $l_{1}$ be the proper transforms of $B,$ $S$ and 1 respectively.
Then $B_{1}$ has an isolated singularity at $x_{2}=l_{1}\cap Z_{1}$ if $k>1$ . Moreover, if
$(u_{1}, v_{1}, w_{1})$ is the local parameter system at $x_{2}$ such that $u=u_{1},$ $v=u_{1}v_{1}$ and
$w=u_{1}w_{1}$ , then $B_{1},$ $S_{1}$ and $l_{1}$ are defined by $u_{1}^{k-1}w_{1}+v_{1}^{2}+v_{1}w_{1}=0,$ $w_{1}=0$ and
$v_{1}=w_{1}=0$ respectively.

Next we blow up at $X_{2}$ and repeat this process similarly. Precisely speak-
ing, the center of the i-th blowing-up $P_{t}arrow P_{i-1}$ is the point $x_{i}=l_{i-1}\cap S_{i-1}$ , where
$l_{i-1}$ $andS_{i-1}$ are the proper transforms of 1 $andS$ on $P_{i-1}$ respectively. If we
take the local parameter system $(u_{i}, v_{i}, w_{i})$ at $x_{i+1}$ such that $u_{i-1}=u_{t},$ $v_{\iota-1}=u_{\iota}v_{i}$

and $w_{i-1}=u_{i}w_{i}$ , then the proper transform $B_{t}$ of $B_{0}$ is defined by $u_{i}^{k-i}u_{i}+v_{i^{2}}$

$+v_{t}w_{t}=0$ , provided $i\leqq k$ . In particular $B_{k}$ is non-singular on $P_{k}$ , while $x_{k}$ is
an ordinary double point of $B_{k-1}$ .

Set $P^{f}=P_{k}$ and let $Z_{i}’$ be the proper transform on $P’$ of the exceptional
divisor $Z_{i}$ over $x_{i}$ . Then, for eacb $i<k,$ $Z_{i}’$ is isomorphic to $\Sigma_{1}$ and the re-
striction of $B^{f}=B_{k}$ to $Z_{t}^{f}$ consists of two different fibers of $\Sigma_{1}arrow P^{1}$ . The
restriction of $B^{f}$ to $Z_{k}\simeq P^{2}$ is a smooth conic.

Let $f$ : $M_{k}arrow P’$ be the finite double covering branched along $B’$ and set
$Y_{i}=f^{*}Z_{i}’$ . Then $Y_{k}\simeq P^{1}\cross P^{1}$ and its normal bundle is of bidegree $(-1, -1)$ .
The divisor $Y_{k-1}\cap Y_{k}$ is of bidegree $(1, 1)$ . For each $i<k,$ $Y_{i}$ is isomorphic to
$\Sigma_{2}$ , the $P^{1}$-bundle $P(O(2)\oplus O)$ over $P_{\sigma}^{1}$ . Its normal bundle is 2 $H.-2H_{\tau}$ , where
$H_{\tau}$ is the tautological line bundle and $H_{\sigma}$ is the pull-back of the $O(1)$ of $P_{\sigma}^{1}$ .
Note that the $(-2)$-section is the unique member of $H.-2$H. $|$ and is identified
with $Y_{i+1}\cap Y_{i}$ while $Y_{i-1}\cap Y_{i}$ is another section of $Y_{i}\simeq\Sigma_{2}arrow P_{\sigma}^{1}$ and belongs to
$|H_{\tau}|$ .

Since the restriction of the divisor $B^{f}$ to $S^{f}=S_{k}$ is $2l^{f}$ , we have $f^{*}S’=$

$\tilde{E}+\tilde{E}^{*}$ for some divisors $\tilde{E},\tilde{E}^{*}$ isomorphic to $S’$ . $\tilde{E}\cap Y_{k}$ is a fiber of one of
the two rulings of $Y_{k}\simeq P^{1}\cross P^{1}$ and $\tilde{E}^{*}\cap Y_{k}$ is a fiber of the other ruling.
They are mapped isomorphically to the exceptional curve of the final blowing-
up $S’=S_{k}arrow S_{k-1}$ . For $i<k,\tilde{E}\cap Y_{t}$ is a fiber of $Y_{\iota}\simeq\Sigma_{2}arrow P_{\sigma}^{1}$ and $\tilde{E}^{*}\cap Y_{i}$ is
another fiber. They are (–2)-curves on $\tilde{E}$ and $\tilde{E}^{*}$ .

Since the normal bundle of $Y_{k}$ is of bidegree $(-1, -1)$ , we can contract $Y_{k}$

to $P^{1}$ in two directions. We choose the blow-down $\pi_{k}$ ; $M_{k}arrow M_{k-1}$ such that
$\pi_{k}(\tilde{E}^{*})\simeq\tilde{E}^{*}$ and $\tilde{E}arrow\pi_{k}(\tilde{E})$ is the contraction of the $(-1)$-curve $Y_{k}\cap\tilde{E}$ on $\tilde{E}$ .
The image $\pi_{k}(Y_{k-1})$ is isomorphic to $Y_{k-1}\simeq\Sigma_{2}$ and its normal bundle in $M_{k-1}$

is $-H_{\tau}$ . Hence it can be contracted to $P^{1}$ and let $\pi_{k-1}$ : $M_{k-1}arrow M_{k-2}$ be the
blowing-down. Contracting the images of $Y_{k},$ $Y_{k-1},$ $\cdots$ , $Y_{1}$ successively in this
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way, we get a birational mapping $\pi$ : $M_{k}arrow M_{k-1}arrow\cdotsarrow M_{0}$ . Then $E=\pi(\tilde{E})$ is
isomorphic to $S\simeq P^{2}$ and $E^{*}=\pi(\tilde{E}^{*})$ is obtained by contracting the $(k-1)(-2)-$

curves $Y_{i}\cap\tilde{E}^{*}$ $(i=1, \cdots , k-1)$ to a rational double point of type $A_{k- 1}$ . $f$ yields
a morphism $p:M_{0}arrow P$ of degree two and $X=\rho^{-1}(x_{1})$ is the unique fiber of $\rho$ of
positive dimension.

In case (4.4; a) (resp. (4.4; $b)$ ), we are in a situation as above where $k=1$

(resp. $k=2$).

(4.14) Now we consider the case $n\geqq 4$ . We claim that this cannot happen.
To show this, it suffices to rule out the case $n=4$ since any general mem-

ber of $|L|$ is a polarized manifold of the same type of dimension $n-1$ . So we
consider the case $n=4$ .

Set $W=$ { $x\in P’|$ dim $p_{1}^{-1}(x)>0$ }. Then $W\subset S’$ for the proper transform $S^{f}$

of $S$ on $P’$ . Since any fiber of $Darrow C$ is mapped onto a curve by $p_{1}$ , any fiber
over $W$ does not meet $D$ . Hence the image of $W$ in $S\simeq S^{f}$ does not meet $C$ .
This implies that $W$ is a finite set since $C$ is a hyperplane in $S\simeq P^{3}$ . There-
fore $W\cap T=\emptyset$ for any general member $T$ of $|H|$ on $P^{f}$ .

On the other hand, if $N_{1}=\rho_{1}^{*}(T)$ and if $N$ is its image in $M$, then $(N, L_{N})$

is a polarized 3-fold of the type (4.3). So, by the observation (4.4), the mapp-
ing $N_{1}arrow T$ has one or two positive dimensional fiber(s). Tbis contradicts
$W\cap T=\emptyset$ .

Thus we prove the claim.

(4.15) SUMMARY OF RESULTS. Let things be as in (1.7; 1). Then $n\leqq 3$ and
$C=\rho(D)$ is a hyperplane in $S\simeq P^{n-1}$ . Let $P^{f}$ be the blowing-up of $P$ along $C$ .
When $n=2,$ $M_{1}$ is a finite double covering of $P’$ branched along a smooth con-
nected member $B$ of 2$H+2\gamma(H-Z)|$ , where $Z$ is the exceptional curve over $C$

and $\gamma=g(M, L)\geqq 2$ . $B$ is tangent to the proper transform $S’$ of $S$ on $P’$ at
any point on $B\cap S’$ . $M$ is a rational surface.

When $n=3$ , there is a morphism $\rho_{1}$ : $M_{1}arrow P’$ of degree two. $W=$

$\{x\in P’|\dim p_{1}^{-1}(x)>0\}$ consists of one or two point(s) and $W\cap Z=\emptyset$ . If $W$

has two points, the local structure of $p_{1}$ at each point of $W$ looks like that in
the case $k=1$ in (4.13). If $W$ is one point, $\rho_{1}$ has a local structure as in the
case $k=2$ in (4.13). In any case the branch locus $B^{f}$ of $\rho_{1}$ is a member of
$|2H+2\gamma(H-Z)|$ with $\gamma=g(M, L)\geqq 2$ , is non-singular off $W$ , and is tangent to
$S’$ along the proper transform of the line $\rho(E\cap E^{*})$ .
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