Polarized manifolds of degree three and Δ-genus two

By Takao FUJITA

(Received Dec. 22, 1987)

Introduction.

This paper is a continuation of [F4], and we use the same terminology there. As we saw in [F4], in order to complete the classification of polarized manifolds (M, L) of 4 -genus two, we should study the following cases:

1) $L^{n}=1$.
2) $L^{n} \geqq 2$, $\operatorname{dim} \mathrm{Bs}|L|=1$ and the fibration given by $|L|$ is not hyperelliptic (cf. [F4; §3]).
3) $L^{n}=2$ or 3 and $\operatorname{dim} \mathrm{Bs}|L| \leqq 0$.

The cases 1) and 2) remain to be "mystery" at present. Partial results about the case 3) are found in $\left[\mathbf{F 0} 0\right.$. Here we study the case $L^{n}=3$. So $h^{0}(M, L)=n+1$.

Suppose that $\operatorname{dim} \operatorname{Bs}|L| \geqq 1$. Then $n \leqq 3$ by [F4; (1.17)]. Moreover, if $n=3$, then (M, L) is a Segre product of $\left(\boldsymbol{P}^{1}, \mathcal{O}(1)\right.$) and a polarized surface (S, A) with $A^{2}=\Delta(S, A)=1$. Thus, in this case, the problem is reduced to the study of such polarized surfaces.

If $\operatorname{dim} \operatorname{Bs}|L| \leqq 0$, we have two cases:
a) $|L|$ has no base point.
b) $|L|$ has (finitely many) base points.

In case a), M is a triple covering of \boldsymbol{P}^{n}. Hence the theory in [L], [M] and [F7] applies. In particular, when $n \geqq 4, M$ is a triple section of an ample line bundle over \boldsymbol{P}^{n}. However, when $n \leqq 3$, there are many triple covers not of triple section type. The classification of them is still unknown.

The main purpose of this paper is the study of the case b). We will show that $|L|$ has only one base point p, and the blow-up of M at p becomes a double covering of \boldsymbol{P}^{n}. Double coverings are much easier to study than triple coverings (cf. [F1]). However, the covering is not a finite morphism here, and the branch locus may have singularities. By a careful analysis of these troubles we obtain a classification theory and precise structure theorems of such polarized manifolds. See (1.3), (1.7), (2.17), (3.15), (4.15) for details.

§ 1. Generalities.

(1.1) Throughout this paper let (M, L) be a polarized manifold with $\operatorname{dim} M$ $=n \geqq 2, \quad L^{n}=3$ and $h^{0}(M, L)=n+1$. So $\quad \Delta(M, L)=2$. We further assume $\operatorname{dim} \mathrm{Bs}|L| \leqq 0$ and $g(M, L) \geqq 2$, since otherwise the structure of (M, L) is well understood by [F4].
(1.2) If $\mathrm{Bs}|L|=\varnothing,|L|$ gives a finite morphism $\rho: M \rightarrow \boldsymbol{P}^{n}$ of degree three such that $\rho^{*} \mathcal{O}(1)=L$. So $\mathcal{A}=\rho_{*} \Theta_{M}$ is a locally free sheaf of rank three on $P=\boldsymbol{P}^{n}$. Actually \mathcal{A} is a sheaf of \mathcal{O}_{P}-algebra and we have the trace map $\tau: \mathcal{A} \rightarrow \mathcal{O}_{P}$ and the natural injection $\iota: \mathcal{O}_{P} \rightarrow \mathcal{A}$. Clearly $\tau \cdot \iota$ is 3 -times of the identity. Hence $\mathcal{A} \simeq \mathcal{O}_{P} \oplus \mathcal{E}$ for $\mathcal{E}=\operatorname{Ker}(\tau) \simeq \operatorname{Coker}(\iota)$. This is called the Tschirnhausen module in [M]. The type of M is determined by this vector bundle \mathcal{E}.

If $n>3$, then $\mathcal{E} \simeq \mathcal{O}(-k) \oplus \mathcal{O}(-2 k)$ for some $k>0$ and M is a triple section of the total space of the line bundle $\mathcal{O}(k)$ over P (cf. [L] or [F7]). For $n \leqq 3$, we do not have a classification of such vector bundle \mathcal{E}.
(1.3) From now on, throughout this paper, we assume Bs $|L| \neq \varnothing$. Then we have the following

Theorem. 1) Any general member of $|L|$ is non-singular.
2) $\mathrm{Bs}|L|$ consists of a single point p.
3) Let $\pi: M_{1} \rightarrow M$ be the blow-up at p and let E be the exceptional divisor over p. Then $\mathrm{Bs}\left|\pi^{*} L-E\right|=\varnothing$.

Proof. 1) is a special case of $[\mathbf{F 3} ;(2.5)]$. In order to prove 2) and 3) we use the induction on n. When $n=2$, let C be a general member of $|L|$. Let F be the fixed part of $|L|_{C}$ and write $L_{C}=F+X$. If $\operatorname{deg}(F)>1$, then $\operatorname{deg}(X) \leqq 3-\operatorname{deg}(F) \leqq 1$ and $h^{\circ}(C, X)=\operatorname{dim}|L|_{C}+1=h^{0}(M, L)-1=2$. This implies $C \simeq \boldsymbol{P}^{1}$, contradicting $g(C)=g(M, L) \geqq 2$. Hence $\operatorname{deg}(F)=1$. This implies 2) and 3).

When $n>2$, let D be a general member of $|L|$, let p be the unique base point of $\left|L_{D}\right|$ and let $\pi: M_{1} \rightarrow M$ be the blow-up at p. The proper transform D_{1} of D in M_{1} is a member of $\Lambda=\left|\pi^{*} L-E\right|$ and is isomorphic to the blow-up of D at p. The restriction mapping $H^{\circ}(M, L) \rightarrow H^{\circ}\left(D, L_{D}\right)$ is surjective since $\Delta(D, L) \leqq 1$ would imply $g(D, L) \leqq 1$. Applying the induction hypothesis to (D, L), we infer that $\mathrm{Bs}|\Lambda|_{D_{1}}=\varnothing$. So $\mathrm{Bs} \Lambda=\varnothing$, which implies 2) too. Q.E.D.
(1.4) The linear system Λ gives a morphism $\rho: M_{1} \rightarrow P \simeq \boldsymbol{P}^{n}$ of degree two. We will denote the pull-backs of $\mathcal{O}_{P}(1)$ by H. For example, $H=\pi^{*} L-E$ on M_{1}. We have $H_{E}=\mathcal{O}(1)$ on $E \simeq \boldsymbol{P}^{n-1}$ and hence $S=\boldsymbol{\rho}(E)$ is a hyperplane in P. Write $\rho^{*} S=\varepsilon E+E^{*}+D$, where E^{*} is the sum of components mapped onto S and D is the sum of components mapped onto sets of codimension greater than one.
(1.5) Lemma. Let x be a point on $P, X=\rho^{-1}(x)$ and suppose that $\operatorname{dim} X>0$. Tinen X is an irreducible curve with $E X=1$ and $x \in S$. Moreover $X \subset E^{*}$ or $X \subset D$.

Proof. For $t \gg 0, \pi^{*} t L-E=t H+(t-1) E$ is ample on M_{1}, hence so is the restriction E_{X} to X, since $H_{X}=0$. This implies $X \cap E \neq \varnothing$ and $x \in S$. Since $E \simeq S, X \cap E$ is a single point. So $\operatorname{dim} X=1$ by the ampleness of E_{X}. Let Λ_{x} be the linear subsystem of $\left|\mathcal{O}_{P}(1)\right|$ consisting of hyperplanes passing x and let D_{1}, \cdots, D_{n-1} be general members of $\rho^{*} \Lambda_{x}$. Then $Z=D_{1} \cap \cdots \cap D_{n-1}$ contains X and $\operatorname{dim} Z=1$. If X is not irreducible, then $E Z \geqq 2$ since each component of X meets E. But $E Z=H^{n-1} E=1$. Therefore X is irreducible and $E X=1$. Since $0=H X=\left(\varepsilon E+E^{*}+D\right) X$, we have $E^{*} X<0$ or $D X<0$. So $X \subset E^{*}$ or $X \subset D$.
(1.6) Corollary. For any component Y of $D, \rho(Y)=\rho(E \cap Y) \simeq E \cap Y$ is a divisor on S.
(1.7) Proposition. One of the following conditions is valid:

1) Both E^{*} and D are irreducible and reduced, $\varepsilon=1$ and $\left[E^{*}\right]_{E}=D_{E}=\mathcal{O}_{E}(1)$.
2) E^{*} is irreducible and reduced, $E \cap E^{*}=\varnothing, \varepsilon=1$ and $D_{E}=\mathcal{O}_{E}(2)$.
3) $E^{*}=0, \varepsilon=2$ and $D_{E}=\mathcal{O}_{E}(3)$.

Proof. Suppose that $E^{*}=0$. Then $2=H^{n}\left\{M_{1}\right\}=H^{n-1} \cdot \rho^{*} S=\varepsilon H^{n-1} E=\varepsilon$. Moreover $\mathcal{O}_{E}(1)=\left[\rho^{*} S\right]_{E}=[2 E+D]_{E}=-2 H+D_{E}$. So $D_{E}=\mathcal{O}_{E}(3)$ and we are in case 3).

Suppose that $E^{*} \neq 0$. Then $H^{n-1} E^{*}>0$ and $2=H^{n-1} \cdot \rho^{*} S=\varepsilon+H^{n-1} E^{*}$. So $\varepsilon=1=H^{n-1} E^{*}$. Hence E^{*} is irreducible and reduced. If $E^{*} \cap E=\varnothing$, then $\mathcal{O}_{E}(1)$ $=\left[\rho^{*} S\right]_{E}$ implies $D_{E}=\mathcal{O}_{E}(2)$ and we are in case 2$)$.

If $E^{*} \cap E \neq \varnothing$, we have $E_{E}^{*}=\mathcal{O}_{E}(s)$ for some $s>0$. By (1.6), $Y_{E} \neq 0$ for any component Y of D. $\mathcal{O}_{E}(1)=\left[\rho^{*} S\right]_{E}$ implies $D_{E}=\mathcal{O}_{E}(2-s)$. So $s=1, D$ is prime and we are in case 1), unless $D=0$. We will derive a contradiction assuming $D=0$. By virtue of (1.3), we reduce the problem to the case $n=2$ by induction on n. In this case $D=0$ implies that ρ is a finite morphism. Therefore its branch locus B is a smooth divisor on P. We have $\rho^{*} S=E+E^{*}$ and $E E^{*}=2$. Hence $S B=4$ and the intersection multiplicity at any point of $S \cap B$ is even. In particular B is of degree four and the canonical bundle K_{1} of M_{1} is $\rho^{*} K^{P}+2 H$ $=-H$. So $K L=K_{1} \cdot \pi^{*} L=K_{1}(E+H)=-H(E+H)=-3$, while $2 g(M, L)-2=$ $(K+L) L=K L+3$. This contradicts $g(M, L) \geqq 2$.

Thus we complete the proof of (1.7). The above three cases will be studied further in the following sections.

§2. Type (一).

Throughout this section we assume that the condition $(1.7 ; 3)$ is satisfied. We employ the same notation as in §1. Thus $\rho^{*} S=2 E+D$ and $D_{E}=\mathcal{O}_{E}(3)$.
(2.1) For the moment, until (2.9), we study the case $n=2$. If D is irreducible and $D=\mu X$ for some prime divisor X, we have $E X=1$ by (1.5). So $\mu=3$ since $D E=3$. Then $0=H X=(2 E+3 X) X=2+3 X^{2}$, which is absurd. Thus this case is ruled out. Hence $D=X_{1}+X_{2}+X_{3}$ or $X_{1}+2 X_{2}$, where X_{i} 's are curves as in (1.5) and $x_{i}=\rho\left(X_{i}\right)$ are different points on S.
(2.2) For the moment, until (2.6), we assume $D=X_{1}+X_{2}+X_{3}$. Then $0=H X_{i}$ $=(2 E+D) X_{i}=2+X_{i}^{2}$ and $\left(H-X_{i}\right)^{2}=0$ for any i. We claim Bs $\left|H-X_{i}\right|=\varnothing$. To see this, let S_{1} and S_{2} be general hyperplanes in P passing x_{i} and let $\rho^{*} S_{j}=$ $C_{j}+\mu_{j} X_{i}$. Then $0 \leqq C_{1} C_{2}=\left(H-\mu_{1} X_{i}\right)\left(H-\mu_{2} X_{i}\right)=2-2 \mu_{1} \mu_{2}$. So $\mu_{1}=\mu_{2}=1$ and $C_{1} C_{2}=0$. Hence $C_{j} \in\left|H-X_{i}\right|$ and $C_{1} \cap C_{2}=\varnothing$. This proves the claim. Thus the scheme-theoretical fiber $\rho^{*} x_{i}$ is the Cartier divisor X_{i}.
(2.3) Let P^{\prime} be the blowing-up of P at the three points x_{i} and let Z_{i} be the exceptional curve over x_{i}. By the observation in (2.2) we infer that ρ factors through P^{\prime}. Moreover, $f^{*} Z_{i}=X_{i}$ for the morphism $f: M_{1} \rightarrow P^{\prime}$. Clearly $S^{\prime}=f(E)$ is the proper transform of S on P^{\prime} and $\left(S^{\prime}\right)^{2}=-2$. By (1.5), X_{i} 's are the only curves contracted to a point by ρ. Since $f\left(X_{i}\right)=Z_{i}, f$ contracts no curve and is a finite morphism of degree two. So the branch locus B of f is a smooth divisor on P^{\prime} and $B \in|2 F|$ for some $F \in \operatorname{Pic}\left(P^{\prime}\right)$. Since $\rho^{*} S^{\prime}=$ $\rho^{*} S-\Sigma X_{i}=2 E, S^{\prime}$ is a component of B. Therefore $B=S^{\prime}+B^{\prime}$ for some smooth divisor B^{\prime} with $S^{\prime} \cap B^{\prime}=\varnothing$.

Set $F=\beta H-\gamma_{1} Z_{1}-\gamma_{2} Z_{2}-\gamma_{3} Z_{3}$ for some integers β, γ_{i}. Then $\left[B^{\prime}\right]=2 F-$ $\left(H-Z_{1}-Z_{2}-Z_{3}\right)=(2 \beta-1) H-\Sigma_{i}\left(2 \gamma_{i}-1\right) Z_{i}$ and $0=S^{\prime} B^{\prime}=(2 \beta-1)-\sum_{i}\left(2 \gamma_{i}-1\right)$. So $\beta=\gamma_{1}+\gamma_{2}+\gamma_{3}-1$. Note also that $0 \leqq B^{\prime} Z_{i}=2 \gamma_{i}-1$ and hence $\gamma_{i} \geqq 1$.
(2.4) Let K_{1} be the canonical bundle of M_{1}. Then $K_{1}=f^{*}\left(K^{\prime}+F\right)$ for the canonical bundle K^{\prime} of P^{\prime}. Since $K^{\prime}=-3 H+Z_{1}+Z_{2}+Z_{3}$, we have $K_{1}=$ $(\beta-3) H-\sum_{i}\left(\gamma_{i}-1\right) X_{i}$. Hence $K_{1} H=2 \beta-6, K_{1} E=(\beta-3)-\sum_{i}\left(\gamma_{i}-1\right)=-1, K L=$ $K_{1} \pi^{*} L=K_{1}(H+E)=2 \beta-7$ and $2 g(M, L)-2=(K+L) L=2 \beta-4$. So $g(M, L)=\beta-1$ and $\beta=\gamma_{1}+\gamma_{2}+\gamma_{3}-1 \geqq 3$.
(2.5) Conversely, for any three points x_{i} on a line S in $P \simeq \boldsymbol{P}^{2}$ and for any positive integers $\gamma_{1}, \gamma_{2}, \gamma_{3}$ with $\gamma_{1}+\gamma_{2}+\gamma_{3} \geqq 4$, there are polarized surfaces (M, L) of the above type. Indeed, for $\beta=\gamma_{1}+\gamma_{2}+\gamma_{3}-1$, we have $\mathrm{Bs} \mid(2 \beta-1) H$ $-\sum_{i}\left(2 \gamma_{i}-1\right) Z_{i} \mid=\varnothing$ on P^{\prime}. So any general member B^{\prime} of this linear system is smooth. Let M_{1} be the double covering of P^{\prime} branched along $B=B^{\prime}+S^{\prime}$. Since S^{\prime} is a (-2)-curve, its inverse image E on M_{1} is a (-1)-curve. Contracting E to a point we get M. Moreover $H+E$ is the pull-back of a line bundle L on M. It remains to show the ampleness of L. Since B meets Z_{i} at $Z_{i} \cap S^{\prime}$ transversally, $X_{i}=f^{-1}\left(Z_{i}\right)$ is irreducible for each i. Therefore $(H+E) Y>0$ for any curve Y in M_{1} except E. So Nakai's criterion applies since $L^{2}=(H+E)^{2}=3$.
(2.6) Using the above description of the structure of (M, L), we can compute various invariants of it.

Since $f_{*} \mathcal{O}_{M_{1}}=\mathcal{O} \oplus \mathcal{O}[-F]$ on P^{\prime}, we have $h^{q}\left(M, \mathcal{O}_{M}\right)=h^{q}\left(P^{\prime},-F\right)$ for $q>0$. Note that $F-S^{\prime} / 2=\Sigma_{i}\left(\gamma_{i}-1 / 2\right)\left(H-Z_{i}\right)$ is nef and big on P^{\prime}. Hence $h^{q}\left(P^{\prime},-F\right)$ $=0$ for $q<2$ by Kawamata-Viehweg's vanishing theorem. So $h^{1}\left(M, \mathcal{O}_{M}\right)=0$. It is easy to compute $p_{g}(M)=h^{2}\left(P^{\prime},-F\right)=h^{0}\left(P^{\prime}, K^{\prime}+F\right)$ and $\chi\left(M, \mathcal{O}_{M}\right)$.

In order to calculate $c_{2}(M)$, note that $\left[B^{\prime}\right]=\sum_{i}\left(2 \gamma_{i}-1\right)\left(H-Z_{i}\right)$ is nef and big on P^{\prime}. So B^{\prime} is connected and $e\left(B^{\prime}\right)=-\left(K^{\prime}+B^{\prime}\right) B^{\prime}=-8\left(\gamma_{2} \gamma_{3}+\gamma_{3} \gamma_{1}+\gamma_{1} \gamma_{2}\right)+$ $12\left(\gamma_{1}+\gamma_{2}+\gamma_{3}\right)-12$. Hence $c_{2}(M)=c_{2}\left(M_{1}\right)-1=2 c_{2}\left(P^{\prime}\right)-e\left(B^{\prime}\right)-e\left(S^{\prime}\right)-1=8\left(\gamma_{2} \gamma_{3}+\gamma_{3} \gamma_{1}\right.$ $\left.+\gamma_{1} \gamma_{2}\right)-12\left(\gamma_{1}+\gamma_{2}+\gamma_{3}\right)+21$. It is easy to compute $c_{1}(M)^{2}=K_{1}{ }^{2}+1$.

These invariants are related by Noether's formula, so we can omit one of the above computations.

The Kodaira dimension $\kappa(M)$ depends on γ_{i} 's. By symmetry we may assume $\gamma_{1} \leqq \gamma_{2} \leqq \gamma_{3}$. Since $K_{1}=-H+\sum_{i}\left(\gamma_{i}-1\right)\left(H-X_{i}\right)=H+2 E+\sum_{i}\left(\gamma_{i}-2\right)\left(H-X_{i}\right), \kappa(M)$ $=2$ if $\gamma_{1} \geqq 2$. If $\gamma_{1}=\gamma_{2}=1$, then $K_{1}\left(H-X_{3}\right)=-2$ and $\kappa(M)<0$ since $\mathrm{Bs}\left|H-X_{3}\right|=\varnothing$. So we assume $1=\gamma_{1}<\gamma_{2}$. Then $K_{1}=\left(\gamma_{2}-2\right)\left(H-X_{2}\right)+\left(\gamma_{3}-2\right)\left(H-X_{3}\right)+2 E+X_{1}$. Hence $\kappa(M)=2$ if $\gamma_{2}>2$. When $\gamma_{2}=2$, we easily see that $\left(\gamma_{3}-2\right)\left(H-X_{3}\right)$ is the semipositive part of the Zariski decomposition of K_{1}. Therefore $\kappa(M)=1$ if $\gamma_{3}>2$ while $\kappa(M)=0$ if $\gamma_{3}=2$. In the last case M is a blowing-up of a $K 3$ surface at a point. Thus we have:
$\kappa(M)<0 \quad$ if $\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=\left(1,1, \gamma_{3}\right)$,
$\kappa(M)=0 \quad$ if $\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=(1,2,2)$,
$\kappa(M)=1 \quad$ if $\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=\left(1,2, \gamma_{3}\right)$ with $\gamma_{3}>2$,
$\kappa(M)=2 \quad$ otherwise.
Finally we show that M is topologically simply connected. To see this, let B_{0} be a general member of $\left|3 H-Z_{1}-Z_{2}-Z_{3}\right|$ and let $\tau: T \rightarrow P^{\prime}$ be the finite double covering with branch locus $B_{0}+S^{\prime}$. Similarly as in (2.5), $E_{0}=\tau^{-1}\left(S^{\prime}\right)$ is a (-1)-curve on T and we get a smooth surface T^{-}by contracting E_{0} to a point. Moreover $E_{0}+\tau^{*} H$ is the pull-back of an ample line bundle L^{-}on T^{-} such that $\left(L^{-}\right)^{2}=3$. We easily see that the canonical bundle of T^{-}is $-L^{-}$and T^{-}is a cubic surface. Since B_{0} is general, it intersects B^{\prime} normally, hence $\tau^{*} B^{\prime}$ is a smooth divisor on T. This is mapped isomorphically onto an ample divisor B^{-}on T^{-}since $\tau^{*} B^{\prime} \cap E_{0}=\varnothing$. Now, let V be the normalization of the fiber product of T and M_{1} over P^{\prime}. Then V is a double covering of T with branch locus $\tau^{*} B^{\prime}$, hence is birational to the double covering V^{-}of T^{-}with branch locus B^{-}. We have $\pi_{1}\left(V^{-}\right) \simeq \pi_{1}\left(T^{-}\right) \simeq\{1\}$ by [F6]. So V is simply connected. On the other hand, $V \rightarrow M_{1}$ is a ramified double covering. So $\pi_{1}(V) \rightarrow \pi_{1}\left(M_{1}\right)$ is surjective and hence M is simply connected.
(2.7) Now we study the case $D=X_{1}+2 X_{2}$ until (2.9). We have $X_{1}{ }^{2}=-2$ and

Bs $\left|H-X_{1}\right|=\varnothing$ similarly as in (2.2), while $X_{2}{ }^{2}=-1$ since $0=X_{2} \cdot \rho^{*} S=(2 E+D) X_{2}$ $=2+2 X_{2}{ }^{2}$. Let S_{1} and S_{2} be general hyperplanes in P passing x_{2} and let $\rho^{*} S_{j}=$ $S_{j}{ }^{\prime}+\mu_{j} X_{2}$. Since $E \cdot \rho^{*} S_{j}=1$, we have $\mu_{j}=1$ and $S_{j}{ }^{\prime} \cap E=\varnothing$. Then $0=X_{2} \cdot \rho^{*} S_{j}$ $=X_{2} S_{j}{ }^{\prime}-1$, so $X_{2} \cap S_{j}{ }^{\prime}=y_{j}$ is a single point. Moreover $y_{1}=y_{2}$ since $S_{1}{ }^{\prime} S_{2}{ }^{\prime}=$ $\left(H-X_{2}\right)^{2}=1$ and $S_{1}{ }^{\prime} \cap S_{2}{ }^{\prime} \subset \rho^{-1}\left(S_{1} \cap S_{2}\right)=X_{2}$. This point $y=y_{1}=y_{2}$ is the unique base point of $\left|H-X_{2}\right|$. Note that $y \notin E$.
(2.8) Let M_{2} be the blowing-up of M_{1} at y and let Y be the exceptional curve over y. Let $X_{2}{ }^{\prime \prime}$ be the proper transform of X_{2}, while the proper transform of E is denoted by E by abuse of notation since $y \notin E$. The intersection of X_{2} and $S_{j}{ }^{\prime}$ at y is transverse since $X_{2} S_{j}{ }^{\prime}=1$. In particular X_{2} is smooth at y. So $X_{2}{ }^{\prime \prime}=X_{2}-Y$ on M_{2} and $S_{j}{ }^{\prime \prime}=S_{j}{ }^{\prime}-Y$ for the proper transform $S_{j}{ }^{\prime \prime}$ of $S_{j}{ }^{\prime}$ on M_{2}. Then $S_{1}{ }^{\prime \prime} S_{2}{ }^{\prime \prime}=\left(S_{1}{ }^{\prime}-Y\right)\left(S_{2}{ }^{\prime}-Y\right)=0$ and hence $S_{1}{ }^{\prime \prime} \cap S_{2}{ }^{\prime \prime}=\varnothing$. Since $\left[S_{j}\right]_{M_{2}}$ $=S_{j}{ }^{\prime \prime}+X_{2}{ }^{\prime \prime}+2 Y$, the scheme-theoretical fiber of $M_{2} \rightarrow P$ over x_{2} is the Cartier divisor $X_{2}{ }^{\prime \prime}+2 Y$.

Let P^{\prime} be the blowing-up of P at x_{1}, x_{2} and let Z_{i} be the (-1)-curve over x_{i}. Similarly as in (2.3), we have a morphism $\rho_{2}: M_{2} \rightarrow P^{\prime}$ such that $\rho_{2}{ }^{*} Z_{1}=X_{1}$, $\rho_{2}{ }^{*} Z_{2}=X_{2}{ }^{\prime \prime}+2 Y$ and $\rho_{2}(E)$ is the proper transform S^{\prime} of S on P^{\prime}. Since $\left(X_{2}{ }^{\prime \prime}\right)^{2}$ $=-2$ and $X_{2}{ }^{\prime \prime} Y=1$, we have $Z_{2} X_{2}{ }^{\prime \prime}=0$ and $Z_{2} Y=-1$. Hence $x_{3}=\rho_{2}\left(X_{2}{ }^{\prime \prime}\right)$ is a point while $\rho_{2}(Y)=Z_{2}$. Clearly $x_{3} \in Z_{2}$ and $x_{3} \in S^{\prime}$ since $X_{2}^{\prime \prime} \cap E \neq \varnothing$. So x_{3} is the point $Z_{2} \cap S^{\prime}$. Since $\rho_{2}{ }^{*} Z_{2}=X_{2}{ }^{\prime \prime}+2 Y, \rho_{2}{ }^{*} S^{\prime}=(2 E+D)-\rho_{2}{ }^{*} Z_{1}-\rho_{2}{ }^{*} Z_{2}=$ $2 E+X_{2}{ }^{\prime \prime}$ and $E \cap Y=\varnothing$, the scheme-theoretical fiber of ρ_{2} over x_{3} is the Cartier divisor $X_{2}{ }^{\prime \prime}$.

Let $P^{\prime \prime}$ be the blowing-up of P^{\prime} at x_{3} and let Z_{3} be the (-1)-curve over x_{3}. Then we have a morphism $f: M_{2} \rightarrow P^{\prime \prime}$ such that $f^{*} Z_{3}=X_{2}{ }^{\prime \prime}$. We easily see that f is a finite morphism. The branch locus B of f is a smooth member of $|2 F|$ for some line bundle F on $P^{\prime \prime}$.

Let $S^{\prime \prime}$ and $Z_{2}{ }^{\prime \prime}$ be the proper transforms of S^{\prime} and Z_{2} on $P^{\prime \prime}$ respectively. Then $f^{*} S^{\prime \prime}=2 E$ and $f^{*} Z_{2}{ }^{\prime \prime}=2 Y$. Hence $S^{\prime \prime}$ and $Z_{2}{ }^{\prime \prime}$ are components of B. So $B=S^{\prime \prime}+Z_{2}{ }^{\prime \prime}+B^{\prime \prime}$ for some smooth divisor $B^{\prime \prime}$ such that $B^{\prime \prime} \cap S^{\prime \prime}=B^{\prime \prime} \cap Z_{2}{ }^{\prime \prime}=\varnothing$.

Set $F=\beta H-\gamma_{1} Z_{1}-\gamma_{2} Z_{2}-\gamma_{3} Z_{3}$ for some integers $\beta, \gamma_{1}, \gamma_{2}$ and γ_{3}. Then [$\left.B^{\prime \prime}\right]$ $=(2 \beta-1) H-\left(2 \gamma_{1}-1\right) Z_{1}-2 \gamma_{2} Z_{2}-\left(2 \gamma_{3}-2\right) Z_{3}, 0=B^{\prime \prime} Z_{2}{ }^{\prime \prime}=2 \gamma_{2}-2 \gamma_{3}+2$ and $0=B^{\prime \prime} S^{\prime \prime}=$ $(2 \beta-1)-2\left(\gamma_{1}+\gamma_{2}+\gamma_{3}\right)+3$. So $\gamma_{3}=\gamma_{2}+1$ and $\beta=\gamma_{1}+2 \gamma_{2}$. Moreover $B^{\prime \prime} Z_{1} \geqq 0$ and $B^{\prime \prime} Z_{3} \geqq 0$ imply $\gamma_{1} \geqq 1$ and $\gamma_{2} \geqq 0$.

Let K_{2} and $K^{\prime \prime}$ be the canonical bundles of M_{2} and $P^{\prime \prime}$ respectively. Then $K_{2}=f^{*}\left(K^{\prime \prime}+F\right)=(\beta-3) H-\left(\gamma_{1}-1\right) X_{1}-\left(\gamma_{2}-1\right)\left(X_{2}^{\prime \prime}+2 Y\right)-\left(\gamma_{3}-1\right) X_{2}{ }^{\prime \prime}$. So $K_{2} H=$ $2 \beta-6$ and $K_{2} E=K_{1} E=-1$. Hence $K L=K_{2}(H+E)=2 \beta-7$ and $g(M, L)=\beta-1$. Therefore $\beta \geqq 3$.

Conversely, similarly as in (2.5), for any two points x_{1}, x_{2} on a line S in P and for any integers γ_{1}, γ_{2} with $\gamma_{1} \geqq 1, \gamma_{2} \geqq 0$ and $\beta=\gamma_{1}+2 \gamma_{2} \geqq 3$, we can construct examples of polarized surfaces of the above type. Details are left to the
reader.
(2.9) We can compute numerical invariants of (M, L) similarly as in (2.6).

When $\gamma_{2}>0$, we have essentially the same formulae as in (2.6). For example $c_{2}(M)=2 c_{2}\left(P^{\prime \prime}\right)-e\left(S^{\prime \prime}\right)-e\left(Z_{2}{ }^{\prime \prime}\right)-e\left(B^{\prime \prime}\right)-2=16 \gamma_{1} \gamma_{2}+8 \gamma_{2}{ }^{2}-4 \gamma_{1}-16 \gamma_{2}+8$ and M is simply connected. To see this, let B_{0} be a general member of $\left|H-Z_{1}\right|$ on $P^{\prime \prime}$ and let $\tau: T \rightarrow P^{\prime \prime}$ be the finite double covering with branch locus $B_{0}+S^{\prime \prime}+Z_{2}^{\prime \prime}$. Then $\tau^{-1}\left(S^{\prime \prime}\right)$ and $\tau^{-1}\left(Z_{2}^{\prime \prime}\right)$ are (-1)-curves and we get a \boldsymbol{P}^{1}-bundle T^{-}over \boldsymbol{P}^{1} by contracting them to smooth points. In fact T^{-}is Σ_{1} since $\tau^{-1}\left(Z_{1}\right)$ is a (-2)curve meeting $\tau^{-1}\left(S^{\prime \prime}\right)$. Moreover, $\tau^{*} B^{\prime \prime}$ is smooth and is mapped isomorphically onto an ample divisor B^{-}on T^{-}. The double covering V^{-}of T^{-}branched along B^{-}is simply connected by [F6], and is birational to the normalization V of the fiber product of T and M_{2} over $P^{\prime \prime}$. Hence V and M are simply connected since $V \rightarrow M_{2}$ is a ramified double covering.

However, when $\gamma_{2}=0$, the situation is very different. In fact $B^{\prime \prime} \in$ $\left|(2 \beta-1)\left(H-Z_{1}\right)\right|$ and $B^{\prime \prime}$ consists of proper transforms of $(2 \beta-1)$ lines in P passing x_{1}. The linear system $\left|H-X_{1}\right|$ gives a \boldsymbol{P}^{1}-fibration of M_{2} over a hyperelliptic curve C of genus $\beta-1$, having the unique singular fiber $E+X_{2}{ }^{\prime \prime}+Y$. Hence (M, L) is a scroll over C and $h^{1}\left(M, \mathcal{O}_{M}\right)=\beta-1=g(M, L)$ and $c_{2}(M)=$ $8-4 \beta$. It is easy to see that M is obtained from $C \times \boldsymbol{P}^{1}$ by a so-called elementary transformation.

As for the Kodaira dimension, we have $\kappa(M)<0$ if $\gamma_{2}=0$. We have $K_{2}=$ $\left(\gamma_{1}-1\right)\left(H-X_{1}\right)+\left(2 \gamma_{2}-3\right)\left(H-X_{2}\right)+2 E+X_{1}+Y$, Bs $\left|H-X_{1}\right|=\varnothing$ and $H-X_{2}$ is nef and big. So $\kappa(M)=2$ if $\gamma_{2}>1$. If $\gamma_{2}=1$, then $K_{2}=\left(\gamma_{1}-1\right)\left(H-X_{1}\right)-X_{2}^{\prime \prime}$ and $2 K_{2}$ $=\left(2 \gamma_{1}-3\right)\left(H-X_{1}\right)+2 E+2 Y$. So $\kappa(M)<0$ if $\gamma_{1}=1$ and $\kappa(M)=1$ if $\gamma_{1}>1$.
(2.10) Now we study the case $n \geqq 3$.

Lemma. $D \cap E$ is an irreducible hypersurface of degree three in $E \simeq \boldsymbol{P}^{n-1}$.
Proof. Let W_{1} be a general member of $|H|$. Then $W=\pi\left(W_{1}\right)$ is a smooth member of $|L|$ and W_{1} is the blowing-up of W at the unique base point of $\left|L_{W}\right|$. Thus, cutting several times successively, we reduce the problem to the case $n=3$.

If we cut once more, then we are in the situation (2.1). So we infer that any general line in $E \simeq \boldsymbol{P}^{2}$ meets D at two or three points. In particular $\operatorname{Supp}(D \cap E)$ is not a line.

Let $D=\Sigma \mu_{\lambda} D_{\lambda}$ be the prime decomposition of D and let $C_{\lambda}=\rho\left(D_{\lambda}\right)$. Then, by (1.5), $D_{\lambda} \cap E \simeq C_{\lambda}$ and $D_{\lambda}=\rho^{-1}\left(C_{\lambda}\right)$. Since $D_{E}=\mathcal{O}_{E}(3)$ and $D \cap E$ is not a line, our assertion is valid unless $\mu_{\lambda}=1$ and C_{λ} is a line in $S \simeq \boldsymbol{P}^{2}$ for some λ. Assuming this, we will derive a contradiction.

Let T be a general plane in $P \simeq \boldsymbol{P}^{3}$ such that $T \cap S=C_{\lambda}$. Since $\rho^{-1}\left(C_{\lambda}\right)=D_{\lambda}$,
we have $\rho^{*} T=\nu D_{\lambda}+T^{\prime}$ in $\operatorname{Div}\left(M_{1}\right)$ for some effective divisor T^{\prime} containing no component of D. Restricting this relation to E, we infer $\nu=1$ and $T^{\prime} \cap E=\varnothing$. Take another component D_{α} of D. Then $C_{\alpha} \cap T \neq \varnothing$. So $D_{\alpha} \cap T^{\prime} \neq \varnothing$ since $\rho\left(T^{\prime}\right)=T$ and $D_{\alpha}=\rho^{-1}\left(C_{\alpha}\right)$. Clearly $\rho\left(D_{\alpha} \cap T^{\prime}\right) \subset C_{\alpha} \cap T$ and $C_{\alpha} \cap T$ is a finite set. On the other hand $\operatorname{dim}\left(D_{\alpha} \cap T^{\prime}\right) \geqq 1$. Hence $D_{\alpha} \cap T^{\prime}$ contains a curve X of the type (1.5). So $T^{\prime} \cap E \supset X \cap E \neq \varnothing$, contradicting $T^{\prime} \cap E=\varnothing$.
(2.11) $C=\rho(D)$ is a hypercubic in $S \simeq P^{n-1}$ and $D \cap E \simeq C$. Let T be a general hypercubic in P such that $T \cap S=C$. Then $\rho^{*} T=\nu D+T^{\prime}$ for some effective divisor T^{\prime} on M_{1}. Restricting to E we infer $\nu=1$ and $T^{\prime} \cap E=\varnothing$. Since $\rho^{*} S=2 E+D$, we have $\rho^{*} C=\rho^{*} T \cap \rho^{*} S=D$ in the scheme theoretical sense. Hence we get a morphism $f: M_{1} \rightarrow P^{\prime}$ onto the blowing-up P^{\prime} of P along C such that $f^{*} Z=D$, where Z is the exceptional divisor. Since $D X=-2 E X$ $=-2$ for any fiber X of ρ of the type (1.5), $f(X)$ is not a point and hence f is a finite morphism.
(2.12) Let y be a point on the singular locus Σ of P^{\prime} and let $p: P^{\prime} \rightarrow P$ be the projection. Clearly $x=p(y)$ is a singular point of C. Take an affine coordinate $\left(z_{1}, \cdots, z_{n}\right)$ of a neighborhood U of x in P such that x is the origin $(0, \cdots, 0)$ and S is the divisor $z_{1}=0$. Then C is defined by $z_{1}=\phi\left(z_{2}, \cdots, z_{n}\right)=0$ for some polynomial ϕ of degree three. So $p^{-1}(U) \simeq\left\{\left(z_{1}, \cdots, z_{n},\left(\xi_{0}: \xi_{1}\right)\right) \in U \times\right.$ $\left.\boldsymbol{P}^{1} \mid z_{1}: \phi(z)=\xi_{0}: \xi_{1}\right\}$. By the Jacobian criterion we see that y must be the point $(0, \cdots, 0,(1: 0))$. By this observation we infer $\Sigma \simeq p(\Sigma)$ and $p(\Sigma)$ is the singular locus of C. In particular $\operatorname{dim} \Sigma \leqq n-3$. So P^{\prime} is normal by Serre's criterion, since it has only hypersurface singularities.
(2.13) Now we apply the theory in [F1; §2]. There is a holomorphic involution c of M_{1} such that $M_{1} / \iota \simeq P^{\prime}$. Any hypersurface singularity of such quotient P^{\prime} must be of pure dimension $n-2$. Hence P^{\prime} is non-singular by (2.12). This in turn implies that C is smooth. Furthermore the branch locus B of f is a smooth member of $|2 F|$ for some $F \in \operatorname{Pic}\left(P^{\prime}\right)$.
(2.14) $S^{\prime}=f(E)$ is the proper transform of S in P^{\prime} and is a component of B. Set $B=B^{\prime}+S^{\prime}$ and $F=\beta H-\gamma Z$. Then $\left[B^{\prime}\right]=(2 \beta-1) H-(2 \gamma-1) Z$. Since $B^{\prime} \cap S^{\prime}=\varnothing$, we obtain $2 \beta-1=3(2 \gamma-1)$ and $\beta=3 \gamma-1$. Unlike the case $n=2, B^{\prime}$ is always connected since $3 H-Z$ is nef and big on P^{\prime}.
(2.15) Conversely, for any smooth hypercubic C in a hyperplane S of $P \simeq \boldsymbol{P}^{n}$ and for any smooth member B^{\prime} of $|(2 \gamma-1)(3 H-Z)|$ on P^{\prime}, we can construct a polarized manifold (M, L) of the above type. Details are left to the reader.
(2.16) We can calculate various invariants of (M, L) similarly as in the case $n=2$. For example, if K_{1} and K^{\prime} are the canonical bundles of M_{1} and
P^{\prime}, then $K_{1}=f^{*}\left(K^{\prime}+F\right)=(3 \gamma-n-2) H-(\gamma-1) D$. So $(K+(n-1) L) L^{n-1}=$ $(K+(n-1) L)(E+H)^{n-1}=\left(K_{1}+(n-1) H\right) H^{n-1}=6 \gamma-6$. Hence $g(M, L)=3 \gamma-2$, so $\gamma \geqq 2$. Note also that we get a polarized surface of the type (2.2) if we take general members of $|L|(n-2)$-times successively. Therefore M is simply connected by Lefschetz theorem.
(2.17) Summary of results. Let things be as in $\S 1$ and suppose further that $\rho^{*} S=2 E+D$ for some effective divisor D such that $\operatorname{dim}(\rho(D))<n-1$.

If $n \geqq 3$, then $C=\rho(D)$ is a smooth hypercubic in S and ρ gives a finite double covering $f: M_{1} \rightarrow P^{\prime}$ onto the blowing-up P^{\prime} of P along C. Let Z be the exceptional divisor over C and let S^{\prime} be the proper transform of S on P^{\prime}. Then $S^{\prime}=f(E)$ and the branch locus B of f is of the form $S^{\prime}+B^{\prime}$, where B^{\prime} is a smooth connected member of $|(2 \gamma-1)(3 H-Z)|$ such that $B^{\prime} \cap S^{\prime}=\varnothing . \gamma$ is an integer such that $\gamma \geqq 2$ and $g(M, L)=3 \gamma-2$. The numerical invariants of M are explicitly computable.

If $n=2$, then $C=\rho(D)$ is two or three points on the line S in P. If C is three points x_{1}, x_{2}, x_{3}, then M_{1} is a finite double covering of the blowing-up P^{\prime} of P at these points. Let Z_{i} be the (-1)-curve over x_{i} and let S^{\prime} be the proper transform of S on P^{\prime}. Then $f(E)=S^{\prime}$ and the branch locus B of f is of the form $S^{\prime}+B^{\prime}$, where B^{\prime} is a smooth connected member of $\left|\Sigma_{i}\left(2 \gamma_{i}-1\right)\left(H-Z_{i}\right)\right|$. Here γ_{i} 's are positive integers such that $\gamma_{1}+\gamma_{2}+\gamma_{3}>3$ and $g(M, L)=\gamma_{1}+\gamma_{2}+\gamma_{3}-2$.

The case in which C is two points can be viewed usually as a degeneration of the above case, where two of the three points x_{i} are infinitely near (for details, see (2.7) and (2.8)). But there is another exceptional possibility in which the branch locus of ρ consists of several lines passing a point (see the case $\gamma_{2}=0$ in (2.9)).
M is simply connected except the final case, in which (M, L) is a scroll over a hyperelliptic curve.
§3. Type (∞).
Throughout this section we assume the condition (1.7;2). Thus $\rho^{*} S=$ $E+E^{*}+D$ and $E \cap E^{*}=\varnothing$.
(3.1) Since $E \cap E^{*}=\varnothing$, any fiber X of the type (1.5) is not contained in E^{*}. Therefore $E^{*} \simeq S$ by Zariski's Main Theorem.
(3.2) For the moment, until (3.8), we study the case $n=2$. Since $D E=2$, we have $D=X_{1}+X_{2}$ or $2 X_{1}$, where X_{i} 's are curves of the type (1.5).
(3.3) From now on, until (3.7), we assume $D=X_{1}+X_{2}$ and $x_{i}=\rho\left(X_{i}\right)$ are different points. Let S_{α} be a general line passing x_{i} and set $\rho^{*} S_{\alpha}=\nu X_{i}+C_{\alpha}$.

Then $\nu=1$ and $X_{i} E^{*}=1$ since $1=E^{*}\left(\nu X_{i}+C_{\alpha}\right)$. Therefore $0=H X_{i}=$ $\left(E+E^{*}+X_{1}+X_{2}\right) X_{i}=2+X_{i}{ }^{2}$. Hence, similarly as in (2.2), $\left(H-X_{i}\right)^{2}=0$ and $\mathrm{Bs}\left|H-X_{i}\right|=\varnothing$ for each i.
(3.4) Let P^{\prime} be the blowing-up of P at x_{1} and x_{2} and let Z_{i} be the (-1)curve over x_{i}. Then, similarly as in (2.3), we have a finite double covering $f: M \rightarrow P^{\prime}$ such that $f^{*} Z_{i}=X_{i}$. The branch locus B of f is a smooth member of $|2 F|$ for some $F \in \operatorname{Pic}\left(P^{\prime}\right)$. For the proper transform S^{\prime} of S, we have $f(E)=S^{\prime},\left(S^{\prime}\right)^{2}=-1$ and $f^{*} S^{\prime}=E+E^{*}$. Note that $B \cap S^{\prime}=\varnothing$ since $E \cap E^{*}=\varnothing$. So E^{*} is mapped onto a (-1)-curve on M, which is sometimes denoted by E^{*} by abuse of notation.
(3.5) Set $F=\beta H-\gamma_{1} Z_{1}-\gamma_{2} Z_{2}$ for some integers $\beta, \gamma_{1}, \gamma_{2}$. Then $\beta=\gamma_{1}+\gamma_{2}$ since $0=B S^{\prime}=2 F\left(H-Z_{1}-Z_{2}\right)$. We have $2 \gamma_{i}=B Z_{i}>0$ since $X_{i}=f * Z_{i}$ is irreducible. So F is nef and big, and hence B is connected.

Let K_{1} and K^{\prime} be the canonical bundles of M_{1} and P^{\prime} respectively. Then $K_{1}=f^{*}\left(K^{\prime}+F\right)=(\beta-3) H-\left(\gamma_{1}-1\right) X_{1}-\left(\gamma_{2}-1\right) X_{2}$. Therefore $(K+L) L=(K+L) H=$ $\left(K_{1}+H\right) H=2 \beta-4$. So $g(M, L)=\beta-1=\gamma_{1}+\gamma_{2}-1$. Thus γ_{i} 's are positive integers with $\gamma_{1}+\gamma_{2}>2$.
S^{\prime} is a (-1)-curve on P^{\prime} and we get $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ by contracting S^{\prime} to a point. Then B is mapped onto a divisor of bidegree ($2 \gamma_{1}, 2 \gamma_{2}$), which is denoted by B^{-}. Moreover, M is the blowing-up of the double covering M^{-}of $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ branched along B^{-}, and the exceptional divisor is identified with E^{*}.
(3.6) Conversely, for any integers γ_{1}, γ_{2} as above and any smooth member B of $|2 F|$ with $F=\gamma_{1}\left(H-Z_{1}\right)+\gamma_{2}\left(H-Z_{2}\right)$, we can construct a polarized surface (M, L) of the above type, provided that there exists a point z_{i} on each Z_{i} such that the intersection multiplicity of B and Z_{i} at z_{i} is odd. This last condition is necessary in order that $f^{-1}\left(Z_{i}\right)$ is irreducible. Any general member of $|2 F|$ satisfies actually this condition since $\mathrm{Bs}|2 F|=\varnothing$.

Alternately, we get M by blowing-up at a point on a double covering M^{-} of $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ branched along a smooth divisor of bidegree ($2 \gamma_{1}, 2 \gamma_{2}$). In this case $L=A-E^{*}$, where A is the pull-back of $\mathcal{O}(1,1)$ on $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ and E^{*} is the exceptional curve of the blowing-up $M \rightarrow M^{-}$.
(3.7) Similarly as in (2.6), we can compute various numerical invariants of (M, L). For example $c_{2}(M)=8 \gamma_{1} \gamma_{2}-4 \gamma_{1}-4 \gamma_{2}+9$. Moreover M is simply connected since it is birational to a double covering of $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$. As for the Kodaira dimension, we have:

$$
\begin{array}{ll}
\boldsymbol{\kappa}(M)<0 & \text { if } \gamma_{1}=1 \text { or } \gamma_{2}=1, \\
\boldsymbol{\kappa}(M)=0 & \text { if } \gamma_{1}=\gamma_{2}=2, \\
\boldsymbol{\kappa}(M)=1 & \text { if } 2=\gamma_{1}<\gamma_{2} \text { or } 2=\gamma_{2}<\gamma_{1},
\end{array}
$$

$\kappa(M)=2 \quad$ if $\gamma_{1}>2$ and $\gamma_{2}>2$.
(3.8) We now study the case $D=2 X$ for a curve X of the type (1.5). Similarly as in (3.3), we have $X E^{*}=1$ and $X^{2}=-1$. So, by the method in (2.7), we infer that $\mathrm{Bs}|H-X|$ is a single point y on X off E and E^{*}. Thus we are in a situation as in (2.8). To be precise, let M_{2} be the blowing-up of M_{1} at y, let Y be the (-1)-curve over y and let $X^{\prime \prime}$ be the proper transform of X on M_{2}, while the pull-backs of E and E^{*} are denoted by E and E^{*} by abuse of notation. Let P^{\prime} be the blowing-up of P at x, let Z_{1} be the (-1)-curve over x and let S^{\prime} be the proper transform of S. Let x_{2} be the point $Z_{1} \cap S^{\prime}$ and let $P^{\prime \prime}$ be the blowing-up of P^{\prime} at x_{2}. Let Z_{2} be the (-1)-curve over x_{2} and let $S^{\prime \prime}$ and $Z_{1}{ }^{\prime \prime}$ be the proper transforms of S^{\prime} and Z_{1} on $P^{\prime \prime}$ respectively. Then ρ gives a finite double covering $f: M_{2} \rightarrow P^{\prime \prime}$ such that $f^{*} Z_{2}=X^{\prime \prime}, f^{*} Z_{1}^{\prime \prime}=2 Y$ and $f^{*} S^{\prime \prime}=E+E^{*}$. The branch locus B of f is a member of $|2 F|$ for some $F \in \operatorname{Pic}\left(P^{\prime \prime}\right)$ and $B=Z_{1}^{\prime \prime}+B^{\prime \prime}$ for some smooth divisor $B^{\prime \prime}$ with $B^{\prime \prime} \cap Z_{1}^{\prime \prime}=$ $B^{\prime \prime} \cap S^{\prime \prime}=\varnothing$.

Set $F=\beta H-\gamma_{1} Z_{1}-\gamma_{2} Z_{2}=\beta H-\gamma_{1} Z_{1}{ }^{\prime \prime}-\left(\gamma_{1}+\gamma_{2}\right) Z_{2}$. Since $B^{\prime \prime} Z_{1}{ }^{\prime \prime}=B^{\prime \prime} S^{\prime \prime}=0$, we have $\gamma_{2}=\gamma_{1}+1$ and $\beta=2 \gamma_{1}+1$. Let K_{2} and $K^{\prime \prime}$ be the canonical bundles of M_{2} and $P^{\prime \prime}$ respectively. Then $K_{2}=f^{*}\left(K^{\prime \prime}+F\right)=(\beta-3) H-\left(\gamma_{1}-1\right)\left(X^{\prime \prime}+2 Y\right)-\left(\gamma_{2}-1\right) X^{\prime \prime}$, $(K+L) L=\left(K_{2}+H-Y\right) H=2(\beta-2)$ and hence $g(M, L)=2 \gamma_{1}$. So γ_{1} is a positive integer. We easily see that $B^{\prime \prime}$ is connected.

If we contract the (-1)-curve $S^{\prime \prime}$ on $P^{\prime \prime}$, we get Σ_{2} this time. The (-2)curve on it is $Z_{1}^{\prime \prime}$ and we get singular conic C by contraction of it. $B^{\prime \prime}$ is mapped isomorphically onto a divisor B^{-}on C. On the other hand, we get a surface M^{-}by contracting the (-1)-curve on M which is identified with E^{*}. There exists a natural morphism $f^{-}: M^{-} \rightarrow C$, which is a finite morphism of degree two branched along B^{-}. Thus, for some appropriate polarization, M^{-} is of the type (*II) in [F1]. So $\kappa(M)=2$ and M is simply connected by [F1]. Other numerical invariants are easily calculated.

Conversely, for any $\gamma_{1}>0$ and any smooth member $B^{\prime \prime}$ of $\left|\left(2 \gamma_{1}+1\right)\left(2 H-Z_{1}^{\prime \prime}-2 Z_{2}\right)\right|$, we can construct polarized surface of the above type. Details are left to the reader.
(3.9) Now we study the case $n \geqq 3$. We first prove the following

Lemma. $\quad C=\rho(D)$ is of degree two in $S \simeq \boldsymbol{P}^{n-1}$.
Proof. Similarly as in (2.10), we reduce the problem to the case $n=3$. Since $D \cap E \simeq C$ and $D_{E}=\mathcal{O}_{E}(2)$, it suffices to derive a contradiction assuming that C is a line in $S \simeq P^{2}$.

Set $X=\rho^{-1}(C)=D_{\text {red }}$ and let S_{1}, S_{2} be general planes in P containing C. Then $\rho^{*} S_{j}=\nu_{j} X+T_{j}$ for some effective divisor T_{j}. Restricting to E we infer
that $\nu_{j}=1, X_{E}=\mathcal{O}_{E}(1)$ and $T_{j} \cap E=\varnothing$. Similarly we have $T_{j} \cap E^{*}=\varnothing$. Thus $l=T_{1} \cap T_{2}$ does not meet E and $l \subset \rho^{-1}\left(S_{1} \cap S_{2}\right)=X$. So the restriction $\rho_{l}: l \rightarrow C$ is a finite morphism. Moreover this is birational since we are in a situation (3.8) if we cut by a general member of $|H|$. Hence ρ_{l} is an isomorphism.

Let M_{2} be the blowing-up of M_{1} along l, let E_{l} be the exceptional divisor over l and let $X^{\prime \prime}, T_{j}^{\prime \prime}$ be the proper transforms of X, T_{j} respectively. Let $\rho_{2}: M_{2} \rightarrow P$ be the induced morphism. Then $\rho_{2}{ }^{*} S=E+E^{*}+2 X^{\prime \prime}+2 E_{l}$ and $\rho_{2}{ }^{*} S_{j}$ $=X^{\prime \prime}+2 E_{l}+T_{j}{ }^{\prime \prime}$. The scheme-theoretical intersection $T_{1} \cap T_{2}$ is locally Macaulay and is smooth at general points. Hence it is l in the strong sense, which implies $T_{1}{ }^{\prime \prime} \cap T_{2}{ }^{\prime \prime}=\varnothing$. Thus $\rho_{2}{ }^{*} C=X^{\prime \prime}+2 E_{l}$ in the scheme-theoretical sense. So we get a morphism $\rho^{\prime}: M_{2} \rightarrow P^{\prime}$ onto the blowing-up P^{\prime} of P along C such that $\left(\rho^{\prime}\right)^{*} Z_{1}=X^{\prime \prime}+2 E_{l}$ for the exceptional divisor Z_{1} over C. Moreover $\rho^{\prime}(E)$ is the proper transform S^{\prime} of S on P^{\prime} and $\left(\rho^{\prime}\right)^{*} S^{\prime}=E+E^{*}+X^{\prime \prime}$. For $C_{2}=Z_{1} \cap S^{\prime}$, we have $\left(\rho^{\prime}\right)^{-1}\left(C_{2}\right)=X^{\prime \prime}$ in the scheme-theoretical sense. Hence we have a morphism $f: M_{2} \rightarrow P^{\prime \prime}$ onto the blowing-up $P^{\prime \prime}$ of P^{\prime} along C_{2} such that $f^{*} Z_{2}=X^{\prime \prime}$, where Z_{2} is the exceptional divisor over C_{2}. In view of (1.5), we infer that f is a finite double covering.

Since $f^{*} Z_{1}{ }^{\prime \prime}=2 E_{l}$ for the proper transform $Z_{1}{ }^{\prime \prime}$ of Z_{1} on $P_{2}, Z_{1}{ }^{\prime \prime}$ is a component of the branch locus B of f, which is a smooth member of $|2 F|$ for some $F \in \operatorname{Pic}\left(P^{\prime \prime}\right)$. We have also $f^{*} S^{\prime \prime}=E+E^{*}$ for the proper transform $S^{\prime \prime}$ of S^{\prime} on $P^{\prime \prime}$. So $B=Z_{1}{ }^{\prime \prime}+B^{\prime \prime}$ and $B^{\prime \prime} \cap Z_{1}{ }^{\prime \prime}=B^{\prime \prime} \cap S^{\prime \prime}=\varnothing$.

Set $B^{\prime \prime}=b H-b_{1} Z_{1}-b_{2} Z_{2}=b H-b_{1} Z_{1}^{\prime \prime}-\left(b_{1}+b_{2}\right) Z_{2}$ in Pic $\left(P^{\prime \prime}\right)$. Note that $Z_{1}^{\prime \prime} \simeq$ $Z_{1} \simeq C \times \boldsymbol{P}_{\sigma}^{1}$ and $\left[-Z_{1}\right]_{Z_{1}}=H_{\sigma}-H$, where H_{σ} is the pull-back of $\mathcal{O}(1)$ of $\boldsymbol{P}_{\sigma}^{1}$. So, in $\operatorname{Pic}\left(Z_{1}{ }^{\prime \prime}\right)$, we have $Z_{2}=H_{\sigma}$ and $Z_{1}{ }^{\prime \prime}=H-2 H_{\sigma}$. Hence $B^{\prime \prime} \cap Z_{1}{ }^{\prime \prime}=\varnothing$ implies $b=b_{1}=b_{2}$. On the other hand, $S^{\prime \prime} \simeq S \simeq \boldsymbol{P}^{2}$ and $Z_{1}^{\prime \prime} \cap S^{\prime \prime}=\varnothing,\left[Z_{2}\right]_{s^{\prime \prime}}=\mathcal{O}(1)$. So $B^{\prime \prime} \cap S^{\prime \prime}=\varnothing$ implies $b=b_{1}+b_{2}$. Combining them we get $b=b_{1}=b_{2}=0$, which is clearly absurd. Thus we complete the proof of the lemma.

(3.10) Lemma. C is irreducible.

Indeed, if C is a union of two hyperplanes, then we can derive a contradiction as in (2.10).
(3.11) Similarly as in (2.11), we get a finite morphism $f: M_{1} \rightarrow P^{\prime}$ onto the blowing-up P^{\prime} of P along C such that $f^{*} Z=D$ for the exceptional divisor Z over C. By the method in (2.12) and (2.13), we infer that C is smooth and the branch locus B of f is a smooth member of $|2 F|$ for some $F \in \operatorname{Pic}\left(P^{\prime}\right)$. For the proper transform S^{\prime} of S, we have $f^{*} S^{\prime}=E+E^{*}$. Hence $S^{\prime} \cap B=\varnothing$.
(3.12) By (3.11) we may set $F=\gamma(2 H-Z)$ for some integer γ. Let K_{1} and K^{\prime} be canonical bundles of M_{1} and P^{\prime} respectively. Then $K_{1}=f^{*}\left(K^{\prime}+F\right)=$ $(2 \gamma-n-1) H-(\gamma-1) D,(K+(n-1) L) L^{n-1}=(K+(n-1) L) H^{n-1}=\left(K_{1}+(n-1) H\right) H^{n-1}$
$=4 \gamma-4$ and $g(M, L)=2 \gamma-1$. Hence $\gamma \geqq 2$.
The normal bundle of $S^{\prime} \simeq \boldsymbol{P}^{n-1}$ in P^{\prime} is $\mathcal{O}(-1)$. Hence it is contracted to a smooth point on another manifold Q. In fact, it is easy to see and well known that Q is a hyperquadric and $\mathcal{O}_{Q}(1)=2 H-Z$ in $\operatorname{Pic}\left(P^{\prime}\right)$. The image of B in Q is a member of $\left|\mathcal{O}_{Q}(2 \gamma)\right|$. Let $M^{-} \rightarrow Q$ be the double covering branched along this divisor. Then M is the blowing-up of M^{-}at a point, and the exceptional divisor is identified with E^{*} on M_{1}. Since M^{-}is of the type (II) in [F1], we can easily calculate various numerical invariants of (M, L). For example M is simply connected.
(3.13) Since every fiber of $D \rightarrow C$ is irreducible, every fiber of $Z \rightarrow C$ meets B at some point with odd multiplicity. This implies $n \leqq \gamma+1$.

To see this, it suffices to derive a contradiction assuming $n=\gamma+2$. We use the method in [F2; (17.6)~(17.11)]. The normal bundle Ω of C in P is $H_{\alpha} \oplus 2 H_{\alpha}$, where H_{α} is the restriction of $H=\mathcal{O}_{P}(1)$ to C. Hence $Z \simeq \boldsymbol{P}_{C}\left(\Re^{\curlyvee}\right) \simeq$ $\boldsymbol{P}_{C}(\mathcal{E})$ for $\mathcal{E}=H_{a} \oplus \mathcal{O}_{C}$. Let $H_{\zeta}=H(\mathcal{E})$ be the tautological line bundle on $\boldsymbol{P}_{C}(\mathcal{E})$. Then the normal bundle of Z is $2 H_{\alpha}-H_{\zeta}$. Therefore the restriction B_{Z} is a member of $2 \gamma H_{\zeta}$. The corresponding section in $H^{0}\left(Z, 2 \gamma H_{\zeta}\right) \simeq H^{0}\left(C, \mathrm{~S}^{2 \gamma} \mathcal{E}\right)$ does not vanish at any point on C. So this gives a trivial subbundle of $\mathrm{S}^{2 \gamma} \mathcal{E}$, and a section b of $V=\boldsymbol{P}\left(\mathrm{S}^{2 \gamma} \mathcal{E}^{\vee}\right) \rightarrow C$.

Let $\mu: G=\boldsymbol{P}\left(\mathrm{S}^{\gamma} \mathcal{E}^{\vee}\right) \rightarrow V$ be the map defined by square. If $b(x) \in \operatorname{Im}(\mu)$ for some $x \in C$, then the fiber of $Z \rightarrow C$ over x meets B with even multiplicity at every point. This should be ruled out. So, in order to derive a contradiction, we will show $I>0$ for the intersection number I of $b(C)$ and $\mu(G)$ in V. Note that the dimensions are right and I is well-defined.

Let H_{σ} and H_{τ} be the tautological line bundles on V and G respectively. Similarly as in [F2; (17.9)], the class of $b(C)$ in the Chow ring of V is $\Pi_{j=1}^{2 \gamma}\left(H_{\sigma}+j H_{\alpha}\right)$. Since $\mu^{*} H_{\sigma}=2 H_{\tau}$, we have $I=\prod_{j=1}^{2 \gamma}\left(2 H_{\tau}+j H_{\alpha}\right)$ in Chow (G). Similarly as in [F2; (17.11)], we obtain $I=2^{\gamma+1} \Pi_{t=1}^{\gamma}(2 t-1)>0$ using elementary formulas. Thus we conclude $n \leqq \gamma+1$.
(3.14) Conversely, for any integer γ with $\gamma \geqq n-1$, we can construct examples of polarized manifolds of the above type by taking a general member B of $|2 \gamma(2 H-Z)|$. Details are left to the reader.
(3.15) Summary of results. Let things be as in $(1.7 ; 2)$. Then M is the blowing-up at a point of a finite double covering M^{-}of a (possibly singular) hyperquadric Q. The pull-back of $\mathcal{O}_{Q}(1)$ to M is $L+E^{*}$, where E^{*} is the exceptional divisor.

If $n \geqq 3$, then Q is smooth and the branch locus B of $M^{-} \rightarrow Q$ is a smooth member of $\left|\mathcal{O}_{Q}(2 \gamma)\right|$ for some integer γ such that $g(M, L)=2 \gamma-1$ and $\gamma \geqq n-1$.

If $n=2$ and $Q \simeq \boldsymbol{P}^{\mathbf{1}} \times \boldsymbol{P}^{1}$, then B is a smooth divisor of bidegree $\left(\gamma_{1}, \gamma_{2}\right)$ and
$g(M, L)=\gamma_{1}+\gamma_{2}-1$.
If Q is a singular quadric surface, then B is a member of $\left|\mathcal{O}_{Q}(2 \gamma+1)\right|$ and $g(M, L)=2 \gamma$ for some positive integer γ. The point over the singular point of Q is an isolated fixed point of the sheet-changing involution of M^{-}.

§4. Type (+).

Throughout this section we assume the condition (1.7;1). Since $D_{E}=\mathcal{O}(1)$, $C=\rho(D)$ is a hyperplane in S.
(4.1) When $n=2$, we have $E E^{*}=D E=D E^{*}=1$ and hence $D^{2}=-2$. So $\mathrm{Bs}|H-D|=\varnothing$ and we have a morphism $f: M_{1} \rightarrow P^{\prime}$ onto the blowing-up P^{\prime} of P at C such that $f^{*} Z=D$ for the exceptional curve Z over C. Then M_{1} is a finite double covering of P^{\prime} and the branch locus B of f is a smooth member of $|2 F|$ for some line bundle F on P^{\prime}. We have $f^{*} S^{\prime}=E+E^{*}$ for the proper transform S^{\prime} of S. So B meets S^{\prime} at the point $f\left(E \cap E^{*}\right)$ with multiplicity 2. Hence, if we set $F=\beta H-\gamma Z$, we have $1=F S^{\prime}=\beta-\gamma$. Let K_{1} and K^{\prime} be the canonical bundles of M_{1} and P^{\prime} respectively. Then $K_{1}=f^{*}\left(K^{\prime}+F\right)=$ $(\gamma-2) H-(\gamma-1) D$, $(K+L) L=\left(K_{1}+H\right) H=2 \gamma-2$ and $g(M, L)=\gamma \geqq 2$. So F is ample and B is connected.

Conversely, for any $\gamma \geqq 2$, we can construct examples of polarized surfaces of the above type in the following way. Take a smooth member B of $|2 F|$ as above. $P^{\prime} \simeq \Sigma_{1}$ is a \boldsymbol{P}^{1}-bundle over \boldsymbol{P}_{ξ}^{1} and the map $B\left(\subset P^{\prime}\right) \rightarrow \boldsymbol{P}_{\xi}^{1}$ is of degree two. Take a point on the branch locus of this map and let S^{\prime} be the fiber of $P^{\prime} \rightarrow \boldsymbol{P}_{\xi}^{1}$ over this point. The pull-back of S^{\prime} on the finite double covering of P^{\prime} branched along B is a sum of two (-1)-curves. Contracting one of them to a smooth point, we get a polarized surface (M, L) of the desired type.

As for numerical invariants, we first note that M is a rational surface. Indeed, $|H-D|$ gives the natural mapping $M_{1} \rightarrow \boldsymbol{P}_{\xi}^{1}$, and any general fiber of it is a double covering of \boldsymbol{P}^{1} branched at two points. So this is a \boldsymbol{P}^{1}-fibration. Its fiber is singular exactly where $B \rightarrow \boldsymbol{P}_{\xi}^{1}$ is ramified. Easy computation gives $g(B)=2 \gamma$ and $c_{2}(M)=4 \gamma+5$.
(4.2) From now on, we assume $n \geqq 3$. Let S_{α} be a general hyperplane in P such that $S \cap S_{\alpha}=C$ and let $\rho^{*} S_{\alpha}=\nu D+T$ for some effective divisor T. Restricting to E we infer $\nu=1$ and $T \cap E=\varnothing$. So T contains no fiber of the type (1.5). Hence $\rho_{T}: T \rightarrow S_{\alpha}$ is a finite morphism. On the other hand, $E^{*} \rightarrow S$ is a birational morphism and $D \cap E^{*}$ is mapped onto C. So, restricting $\rho^{*} S_{\alpha}=D+T$ to E^{*}, we infer that $\operatorname{dim} \rho\left(T \cap E^{*}\right)<n-2$. Hence $\operatorname{dim}\left(T \cap E^{*}\right)<n-2$. This implies $T \cap E^{*}=\varnothing$ since T and E^{*} are Cartier divisors. Therefore $\rho^{-1}(C)=$ $\rho^{-1}\left(S \cap S_{\alpha}\right)=\rho^{*} S \cap \rho^{*} S_{\alpha}=D$ in the ideal-theoretical sense. Thus we obtain a
morphism $\rho_{1}: M_{1} \rightarrow P^{\prime}$ onto the blowing-up P^{\prime} of P along C such that $\rho_{1} * Z_{1}=D$, where Z_{1} is the exceptional divisor over C. However, unlike the cases in the preceding sections, ρ_{1} is not always finite. If there is a fiber X of the type (1.5) such that $X \subset E^{*}$ and $X \cap D=\varnothing$, then $\rho_{1}(X)$ is a point. In fact, any fiber of ρ_{1} of positive dimension must be of this type.
(4.3) For the moment, until (4.13), we study the case $n=3$.

The scheme theoretical intersection $l=E \cap E^{*}$ is a line in $E \simeq \boldsymbol{P}^{2}$. So the intersection is transverse and E^{*} is non-singular along l. Hence the singular locus Σ of E^{*} does not contain a positive dimensional fiber of ρ. On the other hand $\rho(\Sigma)$ is finite since $E^{*} \rightarrow S$ is birational. Therefore Σ is at most a finite set. So E^{*} is normal by Serre's criterion. Note also that l is a Cartier divisor on E^{*} with $l^{2}=-1$ since $[E]_{E}=\mathcal{O}_{E}(-1)$ and $E l=-1$.
(4.4) Claim. Let $E^{\#}$ be the minimal resolution of E^{*}. Then one of the following conditions is satisfied:
a) $E^{*}=E^{*}$ and E^{*} is the blowing-up of S at two points on $\rho(l)$.
b) Σ consists of a single ordinary double point. The map $E^{\#} \rightarrow S$ factors through the blowing-up S_{1} of S at the point $x_{1}=\rho(\Sigma) \in \boldsymbol{\rho}(l)$. Moreover $E^{\#}$ is the blowingu of S_{1} at the point $x_{2}=Y \cap l_{1}$, where Y is the (-1)-curve over x_{1} and l_{1} is the proper transform of $l_{0}=\rho(l)$. The proper transform Y_{1} of Y on $E^{\#}$ is the (-2)curve lying over Σ and the (-1)-curve Y_{2} over x_{2} is mapped onto the unique positive dimensional fiber of $E^{*} \rightarrow S$.

Proof. Suppose that $E^{*} \rightarrow S$ has two positive dimensional fiters X_{1} and X_{2}. Let \tilde{X}_{i} be the proper transforms of them on $E^{\#}$. Clearly $x_{i}=\rho\left(X_{i}\right)$ are points on $l_{0}=\rho(l)$ and $E^{\#} \rightarrow S$ factors through the blowing-up S_{2} of S at these points. The proper transform l_{2} of l_{0} is a (-1)-curve on S_{2}. On the other hand, l lifts to a (-1)-curve \tilde{l} on $E^{\#}$ since $l \cap \Sigma=\varnothing$. So we infer that $E^{\#} \rightarrow S_{2}$ is étale over l_{2} by $l_{2}{ }^{2}=\tilde{l}^{2}$. This implies that \tilde{X}_{i} is the proper transform of the (-1)-curve on S_{2} over x_{i}. By the minimality of the resolution, the exceptional curve of the final blowing-up of $E^{\#} \rightarrow S$ over x_{i} is not contracted to a point by $E^{\#} \rightarrow E^{*}$. So it must be one of \tilde{X}_{i} 's. Thus we conclude $S_{2}=E^{\#}=E^{*}$, which proves a).

Suppose that there is only one positive dimensional fiber X of $E^{*} \rightarrow S$. Let \tilde{X} be the proper transform of X on $E^{\#} . \quad x_{1}=\rho(X)$ is a point on the line $l_{0}=\rho(l)$ and $\rho^{\#}: E^{\#} \rightarrow S$ factors through the blowing-up S_{1} of S at x_{1}. Then $l_{1}{ }^{2}=0$ for the proper transform l_{1} of l_{0} on S_{1}. Since $E^{\#} \rightarrow S_{1}$ is étale except over the (-1)-curve Y_{1}, this map factors through the blowing-up S_{2} of S_{1} at $x_{2}=Y_{1} \cap l_{1}$. Then the proper transform l_{2} of l_{1} is a (-1)-curve on S_{2}. Hence $E^{\#} \rightarrow S_{2}$ is étale over l_{2}. This implies that \tilde{X} is the proper transform of the (-1)-curve Y_{2} on S_{2} over x_{2}. Similarly as in case a), we infer $E^{\#}=S_{2}$ by the minimality of the resolution. The proper transform \tilde{Y}_{1} of Y_{1} on S_{2} is the (-2)-curve con-
tracted to Σ on E^{*}. Thus the condition b) is satisfied.
(4.5) For the moment, until (4.8), we consider the case (4.4; a). The positive dimensional fibers of $\rho_{1}: M_{1} \rightarrow P^{\prime}$ are the two exceptional curves X_{1} and X_{2} of $E^{*} \rightarrow S$. For $x_{i}=\rho_{1}\left(X_{i}\right)$, we have $\rho_{1}{ }^{-1}\left(x_{i}\right)=X_{i}$ in the set-theoretical sense. In fact this is true in the stronger scheme-theoretical sense.

We will verify this assertion at the point $y_{i}=X_{i} \cap l$, since it is much easier to check at other points. Take a local parameter (u, v, w) of M_{1} at y_{i} such that E^{*}, E and X_{i} are defined at y_{i} by $w=0, v=0$ and $u=w=0$ respectively. Let S_{α} (resp. S_{β}) be general plane in P containing l_{0} (resp. x_{i}). Then $D_{1}=\rho_{1} * S$, $D_{2}=\rho_{1} * S_{\alpha}$ and $D_{3}=\rho_{1} * S_{\beta}$ are defined by $v w=0, u v+w\left(\psi_{1}+v \psi_{2}\right)=0$ and $u+w \psi_{3}$ $=0$ at y_{i} respectively, where ψ_{j} 's are holomorphic functions in a neighborhood of y_{i} such that $\psi_{1}\left(y_{i}\right) \neq 0$, since $\left.D_{1}\right|_{E}=l,\left.D_{2}\right|_{E^{*}}=l+X_{i}$ and $\left.D_{3}\right|_{E^{*}}=X_{i}$. So elementary computation yields $\rho_{1}{ }^{*} x_{i}=D_{1} \cap D_{2} \cap D_{3}=X_{i}$ in the scheme-theoretical sense.
(4.6) Let $P^{\prime \prime}$ be the blowing-up of P^{\prime} at the points x_{1}, x_{2} and let Y_{i} be the exceptional divisor over x_{i}. Let M_{2} be the blowing-up of M_{1} along the two curves X_{1}, X_{2} and let V_{i} be the exceptional divisors over X_{i}. By (4.5) we have a morphism $f: M_{2} \rightarrow P^{\prime \prime}$ such that $f * Y_{i}=V_{i}$.

Since $0=X_{i} \cdot \rho^{*} S=X_{i}\left(E+E^{*}+D\right)$, we have $E^{*} X_{i}=-1$. Moreover X_{i} is a (-1)-curve on E^{*}. So the normal bundle of X_{i} in M_{1} is $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$. This implies $V_{i} \simeq \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ and the normal bundle is of bidegree ($-1,-1$). So the restriction of f to V_{i} is a finite double covering of $Y_{i} \simeq \boldsymbol{P}^{2}$ with branch locus being a smooth conic. This implies that f itself is a finite double covering. Its branch locus B is a smooth member of $|2 F|$ for some line bundle F on $P^{\prime \prime}$ whose restriction to Y_{i} is $\mathcal{O}(1)$.
(4.7) Set $F=\beta H-\gamma Z_{1}-Y_{1}-Y_{2}$, where Z_{1} denotes the total transform of $Z_{1} \in$ $\operatorname{Pic}\left(P^{\prime}\right)$ by abuse of notation. Recall that $Y_{i} \cap Z_{1}=\varnothing$. The proper transform $S^{\prime \prime}$ of S is a member of $\left|H-Z_{1}-Y_{1}-Y_{2}\right|$ and $f^{*} S^{\prime \prime}=E_{2}+E_{2}{ }^{*}$ where E_{2} and $E_{2}{ }^{*}$ are the proper transforms of E and E^{*} on M_{2} respectively. Clearly $E_{2}{ }^{*} \simeq E^{*}$, $l_{2}=E_{2}{ }^{*} \cap E_{2} \simeq l$ and $E_{2} \rightarrow E$ is the blowing-up at the two points $y_{i}=X_{i} \cap E$. So E_{2} and $E_{2}{ }^{*}$ meet along l_{2} transversally. From this we infer that the restriction of B to $S^{\prime \prime}$ is $2 l^{\prime \prime}$ where $l^{\prime \prime}=f\left(l_{2}\right)$. Hence $\beta-\gamma=1$.

Let K_{2} and $K^{\prime \prime}$ be the canonical bundles of M_{2} and $P^{\prime \prime}$ respectively. Then $K_{2}=f *\left(K^{\prime \prime}+F\right)=(\gamma-3) H-(\gamma-1) D+V_{1}+V_{2},(K+2 L) L^{2}=\left(K_{1}+2 H\right) H^{2}=\left(K_{2}+2 H\right) H^{2}$ $=2 \gamma-2$ and so $\gamma=g(M, L) \geqq 2$. If we cut things by a general hyperplane in P, we will be in a situation as in (4.1). In particular B is connected.

Remark. Let $M_{1} \rightarrow W \rightarrow P^{\prime}$ be the Stein factorization of ρ_{1} and let B^{\prime} be the image of B by the map $P^{\prime \prime} \rightarrow P^{\prime}$. The above observations imply that W is
the double covering of P^{\prime} branched along B^{\prime}, which has ordinary double points x_{1}, x_{2}. Hence W itself has ordinary double points at them. The map $M_{2} \rightarrow W$ is the blow-up at these points and V_{i} 's are the exceptional divisors. The desingularization $M_{2} \rightarrow M_{1} \rightarrow W$ is of the type which is well-known in three-dimensional geometry.
(4.8) Conversely, for any $\gamma \geqq 2$, we can find a smooth member B of $\left|2 H-2 \gamma\left(H-Z_{1}\right)-2 Y_{1}-2 Y_{2}\right|$ on $P^{\prime \prime}$ such that $B \cap Y_{i}$ are smooth conics and the restriction of B to $S^{\prime \prime}$ is $2!^{\prime \prime}$ for the proper transform $l^{\prime \prime}$ of the line passing x_{1} and x_{2}. Taking the double covering M_{2} of $P^{\prime \prime}$ branched along B and blowingdown M_{2} suitably, we get a polarized 3 -fold of the desired type. Details will be left to the reader, but we just make a remark here.
$V_{i}=f^{*} Y_{i}$ is isomorphic to $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ and its normal bundle in M_{2} is of bidegree $(-1,-1)$. So it can be blown-down to \boldsymbol{P}^{1} along two directions. On the other hand $f^{*} S^{\prime \prime}$ is the sum of two components both of which are isomorphic to $S^{\prime \prime}$. By a contraction $V_{i} \rightarrow \boldsymbol{P}^{1}$, a (-1)-curve on one of these components is contracted to a point, but the other component remains the same. The contraction $V_{i} \rightarrow \boldsymbol{P}^{1}$ along the other direction has the opposite effect. Thus, if we blow down V_{1} and V_{2} correctly, then we are in a desired situation. But if we blow down in the wrong way, both components are blown down to Σ_{1}.
(4.9) Now we consider the case (4.4; b). Let X be the fiber of $E^{*} \rightarrow S$ over x_{1}. Then X is the unique fiber of $\rho_{1}: M_{1} \rightarrow P^{\prime}$ of positive dimension. Note that $X \simeq \boldsymbol{P}^{1}$ and $-E^{*} X=E X=1$.

Let M_{2} be the blowing-up of M_{1} along X and let V be the exceptional divisor over X. The proper transform of E^{*} will be denoted by E^{*} since it is isomorphic to the minimal resolution of E^{*}. Moreover the restriction of $E^{\#}$ to V as a divisor is $X_{2}+Y$, where X_{2} (resp. Y) is a section (resp. the fiber over the double point of E^{*}) of the projection $V \rightarrow X$. Note that X_{2} and Y are identified with the curves Y_{2} and Y_{1}^{\prime} on $E^{\#}$ in (4.4; b). In particular, $X_{2}{ }^{2}=-1$, $X_{2} Y=1$ and $Y^{2}=-2$ on $E^{\#}$. Since the restriction of V to $E^{\#}$ is $X_{2}+Y$, we have $V X_{2}=0$ and $V Y=-1$. On the other hand, the total transform of E^{*} on M_{2} is $E^{\#}+V$ and so $\left(E^{\#}+V\right) X_{2}=E^{*} X=-1,\left(E^{\#}+V\right) Y=0$. Hence $E^{\#} X_{2}=-1$ and $E^{\#} Y=1$. So $X_{2}{ }^{2}=-2$ on V since $X_{2} Y=1$. This implies that $V \simeq \Sigma_{2}=$ $\boldsymbol{P}(\mathcal{O}(2) \oplus \mathcal{O})$ and that X_{2} is the unique (-2)-section of it. Since $V X_{2}=0$ and $V Y=-1$, the conormal bundle of V is the tautological bundle $\mathcal{O}(1)=X_{2}+2 Y$. This implies that the normal bundle of $X \simeq \boldsymbol{P}^{1}$ in M_{1} is $\mathcal{O}(-2) \oplus \mathcal{O}$.
(4.10) If $x=\rho_{1}(X)$, the fiber of $M_{2} \rightarrow P^{\prime}$ over x is V in the set-theoretical sense. Furthermore, similarly as in (4.5), we infer that this is true in the scheme-theoretical sense too. The key point here is to observe $E^{\#} \cap \rho_{1}{ }^{-1}(x)=$ $E^{\#} \cap V$ in the scheme-theoretical sense.

Thus we have a morphism $\rho_{2}: M_{2} \rightarrow P^{\prime \prime}$ onto the blowing-up $P^{\prime \prime}$ of P^{\prime} at x such that $\rho_{2}^{*}\left(Z_{2}\right)=V$, where Z_{2} is the exceptional divisor over x.
(4.11) The restriction of ρ_{2} to $E^{\#}$ is isomorphic to the mapping $E^{\#} \rightarrow S_{1}$ in (4.4; b), which is the contraction of $X_{2}=Y_{2}$ to a smooth point x_{2}. The restriction of ρ_{2} to $V \simeq \Sigma_{2}=\left\{\left(\xi_{0}: \xi_{1}\right),\left(\zeta_{0}: \zeta_{1}: \zeta_{2}\right) \in \boldsymbol{P}_{\xi}^{1} \times \boldsymbol{P}_{\zeta}^{2} \mid \zeta_{1}: \zeta_{2}=\xi_{0}{ }^{2}: \xi_{1}{ }^{2}\right\}$ is isomorphic to the mapping $\Sigma_{2} \rightarrow \boldsymbol{P}_{\zeta}^{2}$ of degree two induced by the second projection. So X_{2} is the unique fiber of ρ_{2} of positive dimension. We claim $\rho_{2}^{-1}\left(x_{2}\right)=X_{2}$ in the scheme-theoretical sense.

Indeed, this is obvious set-theoretically. The proper transform E^{\prime} of E on M_{2} is isomorphic to the blow-up of E at the point $E \cap X$. So $E^{\prime} \simeq \rho_{2}\left(E^{\prime}\right)=$ $\rho_{2}\left(E^{\#}\right) \simeq S_{1}$. Hence $\rho_{2}^{-1}\left(x_{2}\right) \cap E^{\prime}$ is a simple point in the scheme-theoretical sense. So the claim is true at this point. Recall that $\rho_{2}{ }^{*}\left(\rho_{2}\left(E^{\#}\right)\right)=E^{\prime}+E^{\#}$. Examining the mapping $E^{\#} \rightarrow \rho_{2}\left(E^{\#}\right)$, we infer $\rho_{2}^{-1}\left(x_{2}\right) \cap E^{\#}=X_{2}$ in the strong sense. Combining these observations we prove the claim.
(4.12) Now we get a morphism $f: M_{3} \rightarrow P^{\prime \prime \prime}$ with $f^{*} Z_{3}=E_{3}$, where M_{3} and $P^{\prime \prime \prime}$ are the blowing-ups of M_{2} and $P^{\prime \prime}$ along/at X_{2} and x_{2}, and E_{3} and Z_{3} are the exceptional divisors over X_{2} and x_{2} respectively. Since $E^{\#} X_{2}=-1$ and $X_{2}{ }^{2}=-1$ on $E^{\#}$, the normal bundle of X_{2} in M_{2} is $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$. This implies $E_{3} \simeq \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ and the conormal bundle of it is of bidegree (1, 1). So the restriction $E_{3} \rightarrow Z_{3}$ of f is a finite double covering. Hence f itself is a finite double covering.

The branch locus B of f is a smooth inember of $|2 F|$ for some line bundle F on $P^{\prime \prime \prime}$. The restriction of B to $Z_{3} \simeq \boldsymbol{P}^{2}$ is a smooth conic. The proper transform $Z_{2}{ }^{\prime}$ of Z_{2} is the blowing-up Σ_{1} of \boldsymbol{P}^{2} at a point, and the restriction of B to $Z_{2}{ }^{\prime}$ is the sum of two fibers of $\Sigma_{1} \rightarrow \boldsymbol{P}^{1}$. Hence we may set $F=$ $\beta H-\gamma Z_{1}-Z_{2}-Z_{3}$, where Z_{i} denote the total transforms and hence $Z_{2}=Z_{2}{ }^{\prime}+Z_{3}$.

Let S_{3} be the proper transform of S on $P^{\prime \prime \prime}$. Then $f^{*} S_{3}=\tilde{E}+\tilde{E}^{*}$ and $\tilde{E} \simeq$ $\tilde{E}^{*} \simeq S_{3}$, where \tilde{E} and \tilde{E}^{*} are the proper transforms of E and E^{*} on M_{3} respectively. So the restriction of the divisor B to S_{3} is $2 l_{2}$, where l_{2} is the proper transform of the line $\rho_{1}\left(E \cap E^{*}\right)$ on S. This implies $\beta=\gamma+1$. Similarly as before, we have $\gamma=g(M, L) \geqq 2$. This implies that B is connected.

Conversely, for any integer $\gamma \geqq 2$, we can construct examples of polarized manifolds of the above type. Details are left to the reader.
(4.13) Remark. The situation (4.4; b) can be viewed as a degeneration of the case (4.4; a), where the two points x_{1} and x_{2} are infinitely near. Similar degeneration of double coverings can be constructed locally as follows.

Let $S=S_{0}$ be a plane in $P \cong \boldsymbol{P}^{3}$, let $l=l_{0}$ be a line in S and let x_{1} be a point on l. We assume that there is a divisor $B=B_{0}$ on P which is defined by $u^{k} w+v^{2}+v w=0$ in a neighborhood of x_{1}, where k is a positive integer and
(u, v, w) is a local parameter system of P at x_{1} such that S and l are defined by $\{w=0\}$ and $\{v=w=0\}$ at x_{1} respectively. So B has an isolated singularity at x_{1} and is tangent to S along l.

Let P_{1} be the blowing-up of P at x_{1} and let Z_{1} be the exceptional divisor over x_{1}. Let B_{1}, S_{1} and l_{1} be the proper transforms of B, S and l respectively. Then B_{1} has an isolated singularity at $x_{2}=l_{1} \cap Z_{1}$ if $k>1$. Moreover, if $\left(u_{1}, v_{1}, w_{1}\right)$ is the local parameter system at x_{2} such that $u=u_{1}, v=u_{1} v_{1}$ and $w=u_{1} w_{1}$, then B_{1}, S_{1} and l_{1} are defined by $u_{1}{ }^{k-1} w_{1}+v_{1}{ }^{2}+v_{1} w_{1}=0, w_{1}=0$ and $v_{1}=w_{1}=0$ respectively.

Next we blow up at x_{2} and repeat this process similarly. Precisely speaking, the center of the i-th blowing-up $P_{i} \rightarrow P_{i-1}$ is the point $x_{i}=l_{i-1} \cap S_{i-1}$, where l_{i-1} and S_{i-1} are the proper transforms of l and S on P_{i-1} respectively. If we take the local parameter $\operatorname{system}\left(u_{i}, v_{i}, w_{i}\right)$ at x_{i+1} such that $u_{i-1}=u_{i}, v_{i-1}=u_{i} v_{i}$ and $w_{i-1}=u_{i} w_{i}$, then the proper transform B_{i} of B_{0} is defined by $u_{i}{ }^{k-i} w_{i}+v_{i}{ }^{2}$ $+v_{i} w_{i}=0$, provided $i \leqq k$. In particular B_{k} is non-singular on P_{k}, while x_{k} is an ordinary double point of B_{k-1}.

Set $P^{\prime}=P_{k}$ and let Z_{i}^{\prime} be the proper transform on P^{\prime} of the exceptional divisor Z_{i} over x_{i}. Then, for each $i<k, Z_{i}{ }^{\prime}$ is isomorphic to Σ_{1} and the restriction of $B^{\prime}=B_{k}$ to Z_{i}^{\prime} consists of two different fibers of $\Sigma_{1} \rightarrow \boldsymbol{P}^{1}$. The restriction of B^{\prime} to $Z_{k} \simeq \boldsymbol{P}^{2}$ is a smooth conic.

Let $f: M_{k} \rightarrow P^{\prime}$ be the finite double covering branched along B^{\prime} and set $Y_{i}=f^{*} Z_{i}{ }^{\prime}$. Then $Y_{k} \simeq \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ and its normal bundle is of bidegree $(-1,-1)$. The divisor $Y_{k-1} \cap Y_{k}$ is of bidegree (1, 1). For each $i<k, Y_{i}$ is isomorphic to Σ_{2}, the \boldsymbol{P}^{1}-bundle $\boldsymbol{P}(\mathcal{O}(2) \oplus \mathcal{O})$ over $\boldsymbol{P}_{\sigma}^{1}$. Its normal bundle is $2 H_{\sigma}-2 H_{\tau}$, where H_{τ} is the tautological line bundle and H_{σ} is the pull-back of the $\mathcal{O}(1)$ of $\boldsymbol{P}_{\sigma}^{1}$. Note that the (-2)-section is the unique member of $\left|H_{\tau}-2 H_{\sigma}\right|$ and is identified with $Y_{i+1} \cap Y_{i}$ while $Y_{i-1} \cap Y_{i}$ is another section of $Y_{i} \simeq \Sigma_{2} \rightarrow \boldsymbol{P}_{\sigma}^{1}$ and belongs to $\left|H_{\tau}\right|$.

Since the restriction of the divisor B^{\prime} to $S^{\prime}=S_{k}$ is $2 l^{\prime}$, we have $f^{*} S^{\prime}=$ $\tilde{E}+\tilde{E}^{*}$ for some divisors \tilde{E}, \tilde{E}^{*} isomorphic to $S^{\prime} . \tilde{E} \cap Y_{k}$ is a fiber of one of the two rulings of $Y_{k} \simeq \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ and $\tilde{E}^{*} \cap Y_{k}$ is a fiber of the other ruling. They are mapped isomorphically to the exceptional curve of the final blowingup $S^{\prime}=S_{k} \rightarrow S_{k-1}$. For $i<k, \tilde{E} \cap Y_{i}$ is a fiber of $Y_{i} \simeq \Sigma_{2} \rightarrow \boldsymbol{P}_{\sigma}^{1}$ and $\tilde{E}^{*} \cap Y_{i}$ is another fiber. They are (-2)-curves on \tilde{E} and \tilde{E}^{*}.

Since the normal bundle of Y_{k} is of bidegree $(-1,-1)$, we can contract Y_{k} to \boldsymbol{P}^{1} in two directions. We choose the blow-down $\pi_{k}: M_{k} \rightarrow M_{k-1}$ such that $\pi_{k}\left(\tilde{E}^{*}\right) \simeq \tilde{E}^{*}$ and $\tilde{E} \rightarrow \pi_{k}(\tilde{E})$ is the contraction of the (-1)-curve $Y_{k} \cap \tilde{E}$ on \tilde{E}. The image $\pi_{k}\left(Y_{k-1}\right)$ is isomorphic to $Y_{k-1} \simeq \Sigma_{2}$ and its normal bundle in M_{k-1} is $-H_{\tau}$. Hence it can be contracted to \boldsymbol{P}^{1} and let $\pi_{k-1}: M_{k-1} \rightarrow M_{k-2}$ be the blowing-down. Contracting the images of $Y_{k}, Y_{k-1}, \cdots, Y_{1}$ successively in this
way, we get a birational mapping $\pi: M_{k} \rightarrow M_{k-1} \rightarrow \cdots \rightarrow M_{0}$. Then $E=\pi(\tilde{E})$ is isomorphic to $S \simeq \boldsymbol{P}^{2}$ and $E^{*}=\boldsymbol{\pi}\left(\tilde{E}^{*}\right)$ is obtained by contracting the $(k-1)(-2)-$ curves $Y_{i} \cap \tilde{E}^{*}(i=1, \cdots, k-1)$ to a rational double point of type $A_{k-1} . f$ yields a morphism $\rho: M_{0} \rightarrow P$ of degree two and $X=\rho^{-1}\left(x_{1}\right)$ is the unique fiber of ρ of positive dimension.

In case (4.4; a) (resp. (4.4; b)), we are in a situation as above where $k=1$ (resp. $k=2$).
(4.14) Now we consider the case $n \geqq 4$. We claim that this cannot happen.

To show this, it suffices to rule out the case $n=4$ since any general member of $|L|$ is a polarized manifold of the same type of dimension $n-1$. So we consider the case $n=4$.

Set $W=\left\{x \in P^{\prime} \mid \operatorname{dim} \rho_{1}^{-1}(x)>0\right\}$. Then $W \subset S^{\prime}$ for the proper transform S^{\prime} of S on P^{\prime}. Since any fiber of $D \rightarrow C$ is mapped onto a curve by ρ_{1}, any fiber over W does not meet D. Hence the image of W in $S \simeq S^{\prime}$ does not meet C. This implies that W is a finite set since C is a hyperplane in $S \simeq \boldsymbol{P}^{3}$. Therefore $W \cap T=\varnothing$ for any general member T of $|H|$ on P^{\prime}.

On the other hand, if $N_{1}=\rho_{1}{ }^{*}(T)$ and if N is its image in M, then $\left(N, L_{N}\right)$ is a polarized 3 -fold of the type (4.3). So, by the observation (4.4), the mapping $N_{1} \rightarrow T$ has one or two positive dimensional fiber(s). This contradicts $W \cap T=\varnothing$.

Thus we prove the claim.
(4.15) Summary of results. Let things be as in $(1.7 ; 1)$. Then $n \leqq 3$ and $C=\rho(D)$ is a hyperplane in $S \simeq \boldsymbol{P}^{n-1}$. Let P^{\prime} be the blowing-up of P along C. When $n=2, M_{1}$ is a finite double covering of P^{\prime} branched along a smooth connected member B of $|2 H+2 \gamma(H-Z)|$, where Z is the exceptional curve over C and $\gamma=g(M, L) \geqq 2 . \quad B$ is tangent to the proper transform S^{\prime} of S on P^{\prime} at any point on $B \cap S^{\prime} . M$ is a rational surface.

When $n=3$, there is a morphism $\rho_{1}: M_{1} \rightarrow P^{\prime}$ of degree two. $W=$ $\left\{x \in P^{\prime} \mid \operatorname{dim} \rho_{1}^{-1}(x)>0\right\}$ consists of one or two point(s) and $W \cap Z=\varnothing$. If W has two points, the local structure of ρ_{1} at each point of W looks like that in the case $k=1$ in (4.13). If W is one point, ρ_{1} has a local structure as in the case $k=2$ in (4.13). In any case the branch locus B^{\prime} of ρ_{1} is a member of $|2 H+2 \gamma(H-Z)|$ with $\gamma=g(M, L) \geqq 2$, is non-singular off W, and is tangent to S^{\prime} along the proper transform of the line $\rho\left(E \cap E^{*}\right)$.

References

[F0] T. Fujita, On Δ-genera of polarized manifolds, (in Japanese), Master Thesis, Univ. of Tokyo, 1974.
[F1] T. Fujita, On hyperelliptic polarized varieties, Tôhoku Math. J., 35 (1983), 1-44.
[F2] T. Fujita, On the structure of polarized manifolds with total deficiency one III, J. Math. Soc. Japan, 36 (1984), 75-89.
[F3] T. Fujita, Theorems of Bertini type for certain types of polarized manifolds, J. Math. Soc. Japan, 34 (1982), 709-718.
[F4] T. Fujita, On polarized manifolds of Δ-genus two; part I, J. Math. Soc. Japan, 36 (1984), 709-730.
[F5] T. Fujita, Classification of polarized manifolds of sectional genus two, in Algebraic Geometry and Commutative Algebra, in Honor of Masayoshi Nagata, Kinokuniya, 1988, pp. 73-98.
[F6] T. Fujita, A generalization of Lefschetz theorem, Proc. Japan Acad., 63 (1987), 233-234.
[F7] T. Fujita, Triple covers by smooth manifolds, J. Fac. Sci. Univ. Tokyo, Sect. IA, Math., 35 (1988), 169-175.
[L] R. Lazarsfeld, A Barth-type theorem for branched coverings of projective space, Math. Ann., 249 (1980), 153-162.
[M] R. Miranda, Triple covers in algebraic geometry, Amer. J. Math., 107 (1985), 1123-1158.

Takao Fujita

Department of Mathematics
College of Arts and Sciences
University of Tokyo
Komaba, Meguro
Tokyo 153
Japan

