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1. Introduction.

It is well known that any plurisubharmonic function $u$ on $C^{n}$ increasing
slower than logarithmic order at infinity must be constant. This kind of the
Liouville property of the plurisubharmonic functions has been extended to certain
complex manifolds. The purpose of this paper is to prove assertions of this
type by making use of weakly recurrent holomorphic diffusion processes asso-
ciated with plurisubharmonic exhaustion functions on the complex manifolds.
As an application, we give a refinement of a recent result due to Takegoshi
[16] concerning K\"ahler manifolds with poles.

In the case of the complex plane $C$ any subharmonic function $u$ defined on
$C$ does not exceed the harmonic function $v_{R}(z)= \sup_{|w|\leqq 1}u(w)$( $1-$ log $|z|/\log R$ ) $+$

$m(u, R)\log|z|/\log R$ on $\{1<|z|<R\}$ , where $m(u, R)= \sup_{Iz1\leqq R}u(z)$ . Letting
$Rarrow\infty$ , we have $\sup_{|w|\leqq 1}u(w)\geqq u(z)$ over $C$ provided that $\lim_{Rarrow\infty}m(u, R)/\log R=0$ .
Therefore $u$ becomes constant by the maximum principle. We observe in this
argument that logl $z|/\log R$ is just the probability that the standard complex
Brownian motion exits from the circle $\{|z|=R\}$ before hitting the inner circle
$\{|z|=1\}$ . This observation suggests a probabilistic method to work with pluri-
subharmonic functions on complex manifolds which admit holomorphic diffusions
$M=\{Z_{t}, \zeta, \mathcal{F}_{t}, P_{z}\}$ enjoying a kind of recurrence property. In fact any pluri-
subharmonic function becomes M-subharmonic in the sense of Dynkin [4] for
every holomorphic diffusion $M$. The term “holomorphic” is due to the pro-
perty of $M$ that the composite $f(Z_{t})$ of the sample path $Z_{t}$ with any holomor-
phic function $f$ is a local martingale.

In \S 2, we present a general property of subharmonic functions with respect

to a weakly recurrent diffusion, generalizing the above mentioned argument for
the Brownian motion. It will then be shown in \S 3 that a Liouville type theo-
rem for plurisubharmonic functions holds on a complex manifold of dimension
$n$ possessing a plurisubharmonic exhaustion function $\Psi$ such that $(dd^{c}\Psi)^{n}$ tends
to zero in a certain sense as $\Psiarrow\infty$ (Theorem 1). By making use of this ex-
haustion function $\Psi$ , we can $\wedge\vee onstruct$ a Dirichlet form following Fukushima-
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Okada [8] and the associated holomorphic diffusion $M$ with a weakly recurrence
Property. We note that there exists $\Psi$ for which our decay condition on $(dd^{c}\Psi)^{n}$

is satisfied When the underlying manifold is parabolic in the sense of Stoll [14]
( $(dd^{c}\Psi)^{n}=0$ outside a compact set in this case).

In \S 4, we give an application of Theorem 1 to K\"ahler manifolds with poles.
Indeed, we can prove the non-existence of non-constant bounded plurisubharmonic
function even in some case that there is no function $K(x)$ such that the radial

$curvature|\leqq K$ (distance from the pole) with $\int_{0}^{\infty}xK(x)dx<\infty$ (Corollary of Theo-

rem 2). We note a remarkable fact that if the radial curvature is non-positive
and if there exists $K(x)$ as above, then the K\"ahler manifold is biholomorphic
to $C^{n}$ ([10]) and therefore the present assertion is trivial in this case. See [11],

[12], [13] and [17] for other type of gap theorems for complex manifolds.
Corollary of Theorem 2 is an extension of a part of a recent work [16]

where some estimates of energy integrals are utilized in proving that, under
the same conditions as in the corollary, there is no non-constant bounded har-
monic function nor continuous strictly plurisubharmonic function.

Our general setting on the existence of an exhaustion function $\Psi$ is quite
similar to the one appeard in [16]. However the present probabilistic approach
enables us to remove the smoothness condition on the relevant plurisubharmonic
functions.

2. Weakly recurrent diffusion and the associated subharmonic functions.

Let us consider a diffusion process $M=\{Z_{t}, \zeta, F_{t}, P_{z}\}$ on a manifold M. $M$

is said to be weakly recurrent, if there exists a compact set $\Gamma$ which satisfies
$P_{z}(\sigma_{\Gamma}<\infty)=1$ for $a$ . $a$ . $z$ . Here and in the sequel, $\sigma_{E}=\inf\{t>0;Z_{t}\in E\}$ stands
for the hitting time to any set $E\subset M$ and $a$ . $a$ . means “except a set of Lebesgue
measure zero with respect to the complex local coordinate system” on each
complex coordinate neighbourhood.

We say a $[-\infty, \infty$ )-valued Borel function $u$ defined on an open subset $\Omega\subset M$

to be M-subharnzonic, if $u$ is locally upper bounded and M-finely upper semi-
continuous and the submean value property $E_{z}[u(Z_{\tau_{D}});\tau_{D}<\zeta]\geqq u(z)$ holds on $D$

for any open set $D$ with closure being a compact subset of $\Omega$ . Here and in
what follows we employ the notation $\tau_{E}=\inf\{t>0;Z_{t}\not\in E\}$ for the exit time
from $E\subset M$. Let us show that any M-subharmonic function attains the essential
supremum on a compact set, provided that $M$ is weakly recurrent and that the
function is of slow growth.

PROPOSITION 1. Let $M=\{Z_{t}, \zeta, \mathcal{F}_{t}, P_{z}\}$ be a weakly recurrent diffuston on a
manifold $M$ with a compact set $\Gamma$ satisfying $P_{z}(\sigma_{\Gamma}<\infty)=1a.a$ . $z$ and $u$ be an
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M-subharmonic function on M. Supp0se that there exists an increasrng sequence
of relatively compact domains $\{\Omega_{k}\}_{k=1}^{\infty}$ satisfying $U_{k=1}^{\infty}\Omega_{k}=M$. If, for $\mathcal{M}(u, \Omega_{K})$

$= \sup_{z\in\overline{\Omega}_{k}}u(z)$ ,
$\lim_{karrow\infty}\mathcal{M}(u, \Omega_{k})P_{z}(\sigma_{\Gamma}>\tau_{\Omega_{k}})=0$ $a.a$ . $z$

holds, then we have
$u(z) \leqq\sup_{z\in\Gamma}u(z)$ $a.a$ . $z$ .

PROOF. We may assume $\Gamma\subset\Omega_{k}$ for all $k$ . The M-subharmonicity implies
that

$u(z)\leqq E_{z}[u(Z_{\sigma_{\Gamma}\Lambda_{\Omega_{k}}^{-}})]$

$\leqq \mathcal{M}(u, \Omega_{k})P_{z}(\sigma_{\Gamma}>\tau_{\Omega_{k}})+\sup_{z\in\Gamma}u(z)P_{z}(\tau_{\Omega_{k}}>\sigma_{\Gamma})$ .
The desired inequality is immediately seen by letting $karrow\infty$ . $q$ . $e$ . $d$ .

3. A Liouville type theorem.

Let $M$ be a connected complex manifold of dimension $n\geqq 2$ which possesses
an unbounded plurisubharmonic exhaustion function $\Psi$ . Here $\Psi$ is said to be an
exhaustion function if $\Psi$ is a continuous proper map. Define a closed positive
current $\theta$ of bidegree $n-1$ by the exterior power $(dd^{c}\Psi)^{n-1}$ , where $d=\partial+\partial$ and
$d^{c}=i(\partial-\partial)$ . $\theta$ is well defined because $\Psi$ is locally bounded ([2] and [9]). A
plurisubharmonic function $p$ defined on a complex manifold is said to be strictly
plurisubharmonic in distribution sense, if, for each complex local chart, there
exists some $\delta>0$ such that $p-\delta|z|^{2}$ is plurisubharmonic on the complex coordi-
nate neighbourhood. Here $|z|^{2}$ is the function associated with the local coordi-
nate system. In order to construct a weakly recurrent holomorphic diffusion
on $M$, we assume in this section that the following conditions are fulfilled for
some compact set $K\subset M$ :

(C.1) $(dd^{c}\Psi)^{n}=\theta\Lambda dd^{c}\Psi\leqq\rho(\Psi)\theta\Lambda d\Psi\wedge d^{c}\Psi$

outside $K$ for some function $\rho\in \mathcal{A}$ , where $\mathcal{A}$ denotes the set of all non-negative
continuous function$s\rho(x)$ on $[ \inf\Psi, \infty$ ) such that

$\int_{c}^{x}\exp(-\int_{c}^{\eta}\rho(\xi)d\xi)d\etaarrow\infty$

as $xarrow\infty$ for any $c \in[\inf\Psi, \infty$ ).

(C.2) There exists a locally bounded $st’\gamma ctly$ plurisubharm0nic function $p$ in dis-
tnbution sense defined on $M-K$ such that, for each complex chart with coordinate
neighbourhood included in $M-K$, the assocrated Lebesgue measure is absolutely
continuous with respect to the positive Radon measure $\mu=\theta\wedge dd^{c}p$ on the neigh-
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bourhood.

For convenience of descriptions, we introduce some notations. Let

$M(s)=\{\Psi<s\}$ ,

$M[s]=\{\Psi\leqq s\}$ ,

$M(s, R)=\{s<\Psi<R\}$ , and

$M_{*}=M-K$ .

Take $s_{0}> \inf\Psi$ such that $K\subset M(s_{0})$ and set $g_{\rho}(x)= \int_{s_{0}}^{x}\exp(-\int_{s_{0}}^{\eta}\rho(\xi)d\xi)d\eta$ . This

function appears in the above definition of the family $\mathcal{A}$ (with $c=s_{0}$ ).

We will employ the Dirichlet space method related to plurisubharmonic
functions in [8] and [9] and further use the terms in these papers. It is
assured that the real symmetric bilinear form

$\mathcal{E}_{0}(\phi_{1}, \phi_{2})=\int_{K}.d\phi_{1}\Lambda d^{c}\phi_{2}\Lambda\theta$ , $\phi_{1},$ $\phi_{2}\in C_{\cup}^{\infty}(M_{*})$

is closable in $L^{2}(M_{*}, \mu)$ by condition (C.2), because $\theta\wedge dd^{c}|z|^{2}$ is dominated by
$\mu=\theta\wedge dd^{c}p$ on each complex coordinate neighbourhood up to a constant factor.
There exists then holomorphic diffusion $M_{\theta}=\{Z_{t}, \zeta, \mathcal{F}_{t}, P_{z}\}$ on $M_{*}$ such that
the transition function of $M_{\theta}$ is a realization of the $L^{2}$-semigroup generated by
the Dirichlet space $(\mathcal{E}, \mathcal{F})$ the smallest closed extension of $\mathcal{E}_{0}$ in $L^{2}(M_{*}, \mu)$ . We
call the diffusion $M_{\theta}$ holomorphic because, for every holomorphic function $f$ ,
${\rm Re} f(Z_{t\wedge\eta})$ is a $(P_{z}, \mathcal{F}_{t\Lambda\eta})$-local martingale for every starting point $z$ in the de-
fining domain $D$ of $f$ and every stopping time $\eta<\zeta\wedge\tau_{D}$ . It is known that
any $\mathcal{E}$-subharmonic function is $M_{\theta}$ -submean valued (see [9; Appendix]). The
following lemma and proposition concern preliminary properties of $M_{\theta}$ .

LEMMA 1. For any $R>s_{0}$ , let $\tau_{R}=\tau_{M(R)}\wedge\sigma_{M[s_{0}]}$ . Then

$P_{z}(\tau_{R}<\infty)=1$ , $q$ . $e$ . $z$ in $\lrcorner M(s_{0}, R)$ .

PROOF. Because $p\in \mathcal{F}_{1oc}$ , we can clearly see that

$E[p(Z_{\tau_{R}\wedge t})]-p(z)=E_{z}[\tau_{R}\Lambda t]$ $q$ . $e$ . $z$

as in the proof of Lemma 6 in [8]. Therefore we have

$E_{z}[ \tau_{R}]\leqq 2\sup_{=z_{arrow}K(\epsilon_{0},R)}|p(z)|$
$q.e$ . $z$

by letting $tarrow\infty$ . This completes the proof. $q$ . $e$ . $d$ .

PROPCSITION 2. If $R>s_{0}$ , then

$P_{z}(\tau_{M(R)}<\sigma_{M[s_{0}]})\leqq g_{\rho}(\Psi(z))/g_{\rho}(R)$
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holds for $q.e$ . $z$ on $M(s_{0}, R)$ . Especially there exists a weakly recurrent holo-
morphic diffusion $M$ on $M$ which coincides with $M_{\theta}$ on $M[s_{0}]$ .

PROOF. Since $g_{\rho}(x)$ has bounded derivatives, Theorem 5.4.3 in [5] implies
that $g_{\rho}(\Psi)\in \mathcal{F}_{1oc}$ . It is easy to see that

$E( \phi, g_{\rho}(\Psi))=-\int_{M}.\phi g_{\rho}’(\Psi)[dd^{c}\Psi-\rho(\Psi)d\Psi\wedge d^{c}\Psi]\wedge\theta\geqq 0$ ,

for every non-negative $\phi\in C_{0}^{\infty}(M_{*})$ . In fact, it is enough to establish this equality
by assuming that the support of $\phi$ is included in some complex coordinate
neighbourhood and employing the smooth approximating procedure for the
plurisubharmonic function $\Psi$ on the neighbourhood. Hence, we know that
$g_{\rho}(\Psi)$ is $M_{\theta}$ -supermean valued and consequently

$E_{z}[g_{\rho}(\Psi)(Z_{\tau_{M(R)}\Lambda\sigma_{M\subset s_{0})}})]\leqq g_{\rho}(\Psi)(z)$

for $q.e$ . $z\in M(s_{0}, R)$ . This expression leads us to the estimate in the proposi-
tion. Let us extend the state space of $M_{\theta}$ by setting each point $z\in M[s_{0}]$ to
be the trap ( $i$ . $e.,$ $P_{z}$ ( $Z_{t}=z$ , for all $t\geqq 0)=1$). Then the extended diffusion $M$ is
holomorphic and weakly recurrent, because any $\mathcal{E}$-capacity zero set has Lebesgue
measure zero on every complex coordinate neighbourhood on account of (C.2).
$q$ . $e$ . $d$ .

THEOREM 1. Let $M$ be a connected complex manifold of dimension $n\geqq 2$

which Possesses an unbounded plurjsubharmOnjc exhaustion function $\Psi$ satisfying
conditions (C.1) and (C.2). Let $u$ be a plurjsubharmOnjc function on M. If
$\lim_{Rarrow\infty}m_{\Psi}(u, R)/g_{\rho}(R)=0$ , for $m_{\Psi}(u, R)= \sup_{\Psi Cz)\leqq R}u(z)$ , then $u$ is constant. $In$

particular, $M$ admits no non-constant bounded plurjsubharmOnjc function.
PROOF. By virtue of ProPosition 1 in [7], $u$ is M-subharmonic. ApPlying

our Proposition 1 to $\Gamma=M[s_{0}]$ and $\Omega_{k}=M(s_{0}+k),$ $k=1,2,3,$ $\cdots$ , and using Pro-
position 2, we have

$u(z) \leqq\sup_{\Psi(z)\leqq s_{0}}u(z)$
$a$ . $a$ . $z$ .

Because the coordinate spherical submean value property for $u$ is always satisfied
on every complex coordinate neighbourhood, the above inequality is valid for
all $z\in M$. By the maximum principle, $u$ must be constant. $q$ . $e$ . $d$ .

We are confronted with the problem of constructing a suitable plurisub-
harmonic exhaustion function $\Psi$ satisfying properties (i) and (ii). In the next
section, we consider the case that $\Psi$ is a function of the distance from a point

of $M$.
We close this section by giving a simple application of Theorem 1 to a

parabolic manifold. A complex manifold $N$ of dimension $n$ with a non-negative
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smooth unbounded exhaustion function $\psi$ is called parabolic, if log $\psi$ is a pluri-
subharmonic function on $\{\psi>0\}$ satisfying $(dd^{c}$ log $\psi)^{n}=0$ and $(dd^{c}$ log $\psi)^{n-1}\not\equiv 0$

on $\{\psi>0\}$ .

COROLLARY. Let $(N, \psi)$ be a parabolic manifold of dimenszon $n\geqq 2$ and $\psi$ be
strictly plurisubharmOnjc outszde a compact subset of N. Then any plurisubhar-
monic function $u$ on $N$ satisfying $\lim_{Rarrow\infty}m_{\log\psi}(u, R)/\log R=0$ for $m_{\log\psi}(u, R)=$

$\sup_{\log\psi^{(z)\leqq R}}u(z)$ is constant.

PROOF. An elementary calculation shows that $\Psi=\log\psi 0$ is plurisub-
harmonic. Since $(dd^{c}\Psi)^{n}\geqq 0$ , it is clear that $(dd^{c}\psi)^{n}\geqq n\psi^{-1}(dd^{c}\psi)^{n-1}\Lambda d\psi\Lambda d^{c}\psi$ .
Hence, we obtain

$\theta\Lambda dd^{c}\psi\geqq(n\psi^{n-1})^{-1}(dd^{c}\psi)^{n}$

Therefore, the unbounded plurisubharmonic exhaustion function $\Psi$ satisfies con-
dition (C. 1) for $\rho=0$ and (C.2) for $p=\psi$ . Tbe result follows from Theorem 1.
$q.e.d$ .

By looking into the proof, we find that this corollary remains valid even
in the case that $\psi$ is strictly plurisubharmonic in distribution sense. It is well-
known that if $(N, \psi)$ is a parabolic manifold of dimension $n$ and $\psi$ is smooth
strictly plurisubharmonic on $N$, then there exists a biholomorphic map $f$ : $C^{n}arrow N$

enjoying $f^{*}\psi(z)=|z|^{2}$ on $C^{n}$ ( $[3]$ and [14]), thus our assertion becomes trivial
in that case.

4. An application to a hermitian manifold.

THEOREM 2. Let $(M, g)$ be a hermitian manifold of dimension $n\geqq 2$ and let
$r$ be the distance from a point $0\in M$. SuppOse that $r^{2}$ is a smooth strictly pluri-
subharmonic function outstde a compact subset of $M$ and that there exists a non-
decreaszng function $\lambda(x)$ defined on $[0, \infty$ ) satisfying the following conditions;

(i) $\lambda(0)=0$ and further $\lambda’(x)$ is $p_{0\Omega}$ tive and differentiable for large $x$ ,

(ii) $\Psi=\lambda(r)$ is an unbounded plurisubharm0nic exhaustion function on $M$,

(iii) for some $\rho\in \mathcal{A}$ , the inequality

$0<\omega\leqq\{r\lambda’(r)\rho(\Psi)/n-r\lambda’(r)/\lambda’(r)+1\}\omega_{M}/2$

holds outside a compact subset of $M$, where $\omega=dd^{c}r^{2}/4$ and $\omega_{M}$ denotes the funda-
mental 2-form assocrated with the metric $g$ .
Then $M$ does not admit a non-constant plurisubharm0nic function $u$ enjoying
$\lim_{Rarrow\infty}m_{\Psi}(u, R)/g_{\rho}(R)=0$ for $m_{\Psi}(u, R)= \sup_{\Psi(z)\leqq R}u(z)$ .

PROOF. Since $dd^{c}\Psi=2\lambda’(r)\omega/r+r(\lambda’(r)/r)’dr\Lambda d^{c}r$ , a simple computation
shows that the condition (C.1) of \S 3 is satisfied provided that we get
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$\omega^{n}/\alpha n\leqq\omega^{n-1}\Lambda dr\wedge d^{c}r$

for $\alpha=\{r\lambda’(r)\rho(\Psi)/n-r\lambda’’(r)/\lambda’(r)+1\}/2$ with a suitably choosen $\rho\in \mathcal{A}$ . This
inequality actually follows from condition (iii):

$\omega^{n-1}\Lambda dr\wedge d^{c}r/\omega^{n}\geqq\omega_{M}^{n-}\Lambda dr\Lambda d^{c}r/\alpha\omega_{M_{\wedge}}^{n}\geqq(n\alpha)^{-1}$ .
Condition (C.2) can be seen to be fulfilled by taking $p=r^{2}$ similarly to the proof
of Corollary of Theorem 1. Hence Theorem 2 follows from Theorem 1. q.e. $d$ .

Finally we state an application of Theorem 2.

COROLLARY. Let $M$ be a Kahler manifold with a pole of dimension $n\geqq 2$

and $r$ be the distance from the Pole. If the radial curvature $k$ satisfies
$|k|\leqq\delta/(r+a)^{2}$ log $(r+a)$ on $\{r>0\}$

for some $\delta<1/(9n-2)$ and $a>\exp\{2(1+2\delta)\}$ , then there exists no non-constant
plurjsubharmOnjc function $u$ on $M$ such that

$\lim_{sarrow\infty}m_{r}(u, s)/\log(\log s)=0$ ,

for $m_{r}(u, s)= \sup_{r(z)\leqq s}u(z)$ .
PROOF. The proof is based on the estimate concerning $\omega=dd^{c}r^{2}/4$ in [16].

For the sake of completeness, we state the procedure to compare $\omega$ on $M$ with
the one on models. Set

$k_{0}(s)=2\delta\{(s+a)^{2}$ log $(s+a)\}^{-1}$

$k_{1}(s)=k_{0}(s)\{1+2a/s-(1+2\delta)/\log(s+a)\}$

$k_{2}(s)=-k_{0}(s)\{1-1/\log(s+a)\}$

and consider the solutions $f_{i}(i=1,2)$ of the Jacobi equations

$\{f_{i}’’(s)+k_{t}(s)f_{i}(s)=0f_{i}(0)=1,f_{l}(0)=0$

,

$(s>0)$ ,
$i=1,2$ .

In what follows, we use the explicit expression

$f_{1}(s)=s\{\log a/\log(s+a)\}^{2\delta}$

of the solution for $i=1$ .

Let $\lambda(x)=\int_{a}^{xa}ds/f_{1}(s)$ , which enjoys condition (i) in Theorem 2. Because

$1/2<1-(1+2\delta)/\log a$ , the bound $k_{2}(r)\leqq k\leqq k_{1}(r)$ holds everywhere on $\{r>0\}$ .
Accordingly we can obtain estimates for $\omega=dd^{c}r^{2}/4$ by comparing it with the
one on models. In fact, the Hessian comparison theorem (Theorem A and Pro-
position 2.20) and Lemma 1.13 in [10] first assures condition (ii) of Theorem 2
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for $\Psi=\lambda(r)$ and secondly lead us to the relation $0<\omega\leqq(rf_{2}’(r)/f_{2}(r)1)\omega_{M}$ con-
cerning the K\"ahler form $\omega_{M}$ . We can then check the final condition (iii) from
the last relation in the following manner.

Because $\phi_{2}(s)=f_{2}(s)/f_{2}’(s)$ is the solution of $\phi_{2}’(s)=1+k_{2}(s)\phi_{2}^{2}(s)$ , we have

$\phi_{2}(s)\leqq s$

and further we know
$\phi_{2}(s)\geqq s-2\delta s/\log(s+a)$ .

This expression gives
$s/\phi_{2}(s)\leqq 1+4\delta/\log(s+a)$ .

Therefore, by an easy computation we have that

$r/\phi_{2}(r)\leqq\{r\lambda’(r)/n\lambda(r)-r\lambda’(r)/\lambda’(r)+1\}/2$

for sufficiently large $r$ . Condition (iii) for $\rho(x)=1/x$ follows from the above
estimate. The proof is complete by Theorem 2. $q$ . $e$ . $d$ .

References

[1] E. Bedford and B. A. Taylor, Variational properties of the complex Monge-Amp\‘ere
equation I, Dirichlet principle, Duke Math. J., 45 (1978), 375-403.

[2] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta
Math., 149 (1982), 1-44.

[3] D. Burns, Curvature of Monge-Amp\‘ere foliation and parabolic manifolds, Ann.
Math., 115 (1982), 349-373.

[4] E. D. Dynkin, Markov Processes, Springer, 1965.
[5] M. Fukushima, Dirichlet forms and Markov processes, North-Holland and Kodansha,

1980.
[6] M. Fukushima, On holomorphic diffusions and plurisubharmonic functions, in

“Geometry of Random Motion” Contemporary Mathematics, to appear.
[7] M. Fukushima, On the continuity of plurisubharmonic functions along conformal

diffusions, Osaka J. Math., 23 (1986), 69-75.
[8] M. Fukushima and M. Okada, On conformal martingale diffusions and pluripolar

set, J. Funct. Anal., 55 (1984), 377-388.
[9] M. Fukushima and M. Okada, On Dirichlet forms for plurisubharmonic functions,

Acta Math., 159 (1988), 171-214.
[10] R. H. Greene and H. Wu, Function theory on manifolds which possesses a pole,

Lecture Notes in Math., 699, Springer, 1979.
[11] R. H. Greene and H. Wu, Gap theorems for non-compact Riemannian manifolds,

Duke Math. J., 49 (1982), 731-756.
[12] N. Mok, Y. T. Siu and S. T. Yau, The Poincar\’e-Lelong equation on complete K\"ahler

manifolds, Comp. Math., 44 (1981), 183-218.
[13] Y. T. Siu and S. T. Yau, Complete K\"ahler manifolds with non-positive curvature of

faster than quadratic decay, Ann. Math., 105 (1977), 235-264.
[14] W. Stoll, The Ahlfors-Weyl theorem of meromorphic maps on parabolic manifolds,

Lecture Notes in Math., 981, Springer, 1983.



Stochastic appr0ach for plurisubharm0nic functions 299

[15] K. Takegoshi, A non-existence theorem for plurisubharmonic maps of finite energy,
Math. Z., 192 (1986), 21-27.

[16] K. Takegoshi, Energy estimates and Liouville theorems for harmonic maps, Max-
Planck-Institut f\"ur Mathematik, Preprint.

[17] H. Wu, On a problem concerning the intrinsic characterization of $C^{n}$ , Math. Ann.,
246 (1979), 15-22.

HirOShi KANEKO
Department of Mathematical Sciences
College of Engineering
University of Osaka Prefecture
Mozu-Umemachi, Sakai, Osaka 591

$apa^{-}$


	1. Introduction.
	2. Weakly recurrent diffusion ...
	3. A Liouville type theorem.
	THEOREM 1. ...

	4. An application to a ...
	THEOREM 2. ...

	References

