# Manifolds without conjugate points and with integral curvature zero 

By Nobuhiro InNami

(Received Oct. 12, 1987)

## 0. Introduction.

A complete Riemannian manifold $M$ is said to be without conjugate points if no geodesic contains a pair of mutually conjugate points. E. Hopf ([9]) and L. W. Green ([7]) have proved that the integral of the scalar curvature of a compact Riemannian manifold without conjugate points is nonpositive, and it vanishes only if the metric is flat. The non-conjugacy hypothesis was discussed in [10] and [11]. Namely, it follows that a compact Riemannian manifold is without focal points if there is a point which cannot be a focal point to any geodesic, although a pole and a point which is not a pole can exist simultaneously in a torus $\boldsymbol{T}^{2}$ of revolution. Recently, N. Innami ([12]) has proved that the integral of the scalar curvature of a complete simply connected Riemannian manifold $\boldsymbol{R}^{n}$ without conjugate points is nonpositive if the Ricci curvature is summable on the unit tangent bundle, and it vanishes only if the metric is flat. Here a function is called summable if its absolute integral exists. The purpose of the present paper is to improve the topological hypothesis more.

Let $M$ be a complete Riemannian manifold and let $S M$ be the unit tangent bundle of $M$. Let $f^{t}: S M \rightarrow S M$ be the geodesic flow, i.e., $f^{t} v=\dot{\gamma}_{v}(t)$ for any $v \in S M$ where $\gamma_{v}:(-\infty, \infty) \rightarrow M$ is the geodesic with $\dot{\gamma}_{v}(0)=v$. We say that a $v \in S M$ is non-wandering if there exist sequences $\left\{v_{n}\right\} \subset S M$ and $\left\{t_{n}\right\} \subset \boldsymbol{R}$ such that $t_{n} \rightarrow \infty, v_{n} \rightarrow v$ and $f^{t_{n}} v_{n} \rightarrow v$ as $n \rightarrow \infty$. We denote by $\Omega$ the set of all nonwandering points in $S M$ under the geodesic flow.

Theorem. Let $M$ be a complete Riemannian manifold without conjugate points. Suppose $\Omega$ decomposes into at most countably many ft-invariant sets each of which has finite volume and the Ricci curvature is summable on SM. Then, the integral of the scalar curvature of $M$ is nonpositive, and it vanishes only if $M$ is flat.

If the manifold $M$ is flat outside a compact set, then the assumption of summability for the Ricci curvature is automatically satisfied. Furthermore, the theorem is true without assumption put on the set $\Omega$ of all non-wandering
points (see Corollary 3). The proof of Theorem divides into two parts: One is for $S M-\Omega$ and the other is for $\Omega$. The typical cases are the following.

COROLLARY 1 ([12]). Let $M$ be a complete simply connected Riemannian manifold without conjugate points. If the Ricci curvature of $M$ is summable on $S M$, then the integral of the scalar curvature of $M$ is nonpositive, and it vanishes only if $M$ is Euclidean.
S. Cohn-Vossen ([4]) has proved that a plane without conjugate points has the nonpositive integral curvature if it exists ([2]). Corollary 1 is the answer of the question when it vanishes. L. W. Green and R. Gulliver ([8]) give a partial answer as an application of the theorem of E . Hopf also, proving that a plane whose metric differs from the canonical flat metric at most on a compact set is Euclidean if there is no conjugate point.

Corollary 2. Let $M$ be a complete Riemannian manifold without conjugate points and with finite volume. If the Ricci curvature of $M$ is summable on $S M$, then the integral of the scalar curvature of $M$ is nonpositive, and it vanishes only if $M$ is flat.

It is the difficulty of the proof that the summability of $\operatorname{tr} A$ on $S M$ is not established where $A(v)$ is the limit of the second fundamental forms at $\pi(v)$ of the geodesic spheres $S\left(\pi(v), \gamma_{v}(t)\right)$ with center $\gamma_{v}(t)$ and through $\pi(v)$ in $M$ as $t \rightarrow \infty$, where $\pi$ is the projection of $S M$ to $M$. In fact, Corollary 2 is a direct consequence of the method of E. Hopf and L. W. Green if we assume in addition any condition which ensure the summability of $\operatorname{tr} A$ on $S M$, for example, that the sectional curvature of $M$ is bounded below ([7]). To escape from the summability argument we use the Fubini theorem for $S M-\Omega$ and the Birkhoff ergodic theorem for $\Omega$. This is why we assume that $\Omega$ decomposes into at most countably many $f^{t}$-invariant sets each of which has finite volume.

There is a special case that we can calculate the integral of the Ricci curvature over $\Omega$ without assumption of decomposition.

Corollary 3. Let $M$ be a complete Riemannian manifold without conjugate points which is flat outside some compact set. Then, the integral of the scalar curvature of $M$ is nonpositive, and it vanishes only if $M$ is flat.

The author would like to express his hearty thanks to the referee who suggests Corollary 3 without proof.

## 1. Preliminaries.

Let $M$ be a complete Riemannian manifold and let $S M$ be the unit tangent bundle. Let $f^{t}: S M \rightarrow S M$ be the geodesic flow, i.e., $f^{t} v=\dot{\gamma}_{v}(t)$ for any $t \in$ $(-\infty, \infty)$ where $\gamma_{v}:(-\infty, \infty) \rightarrow M$ is the geodesic with $\dot{\gamma}_{v}(0)=v$. Let $d \sigma$ be the volume form induced from the Riemannian metric of $M$ and let $d \theta$ be the canonical volume form on the unit sphere in the Euclidean space $\boldsymbol{E}^{n}, n=\operatorname{dim} M$. Then, $d \omega=d \sigma \wedge d \theta$ is a volume form on $S M$ and $f^{t}$-invariant.

We define a Riemannian metric $g_{1}$ on $S M$ as follows: Let $\xi \in T_{v} S M, v \in S M$ and let $c:(-\varepsilon, \varepsilon) \rightarrow S M$ be a curve with $\dot{c}(0)=\xi$. If $c(t)=\left(c_{1}(t), c_{2}(t)\right)$ for any $t \in(-\varepsilon, \varepsilon)$ by the local trivialization, then

$$
g_{1}(\xi, \xi)=g\left(\dot{c}_{1}(0), \dot{c}_{1}(0)\right)+g\left(\nabla_{c_{1}} c_{2}(0), \nabla_{c_{1}} c_{2}(0)\right)
$$

where $g$ is the Riemannian metric of $M$ and $\nabla_{c_{1}} c_{2}$ is the covariant derivative along $c_{1}$. The orbits of the geodesic flow are geodesics in $S M$ with the Riemannian metric $g_{1}$. If $\gamma:[a, b] \rightarrow M$ is a minimizing geodesic ( $a=-\infty, b=\infty$ admitted), then the lift $\dot{\gamma}$ of $\gamma$ to $S M$ is a minimizing geodesic in $S M$ also.
1.1. The trajectories of the geodesic flow. We say that a $v \in S M$ is nonwandering if there exist sequences $\left\{v_{n}\right\} \subset S M$ and $\left\{t_{n}\right\} \subset \boldsymbol{R}$ such that $t_{n} \rightarrow \infty$, $v_{n} \rightarrow v$ and $f^{t_{n}} v_{n} \rightarrow v$. We denote by $\Omega$ the set of all non-wandering points in $S M$ under the geodesic flow. It follows that $\Omega$ is closed and $f^{t}$-invariant. We introduce an equivalence relation $\sim$ in $S M-\Omega$ in such a way that $v \sim w$ if $v=f^{t} w$ for some $t \in(-\infty, \infty)$, where $v, w \in S M-\Omega$. Let $N$ be the set of all equivalence classes $[v], v \in S M-\Omega$. Since $S M-\Omega$ is open and $f^{t}$-invariant, there exists locally a hypersurface $H$ in $S M-\Omega$ containing $v$ and diffeomorphic to an open subset in $\boldsymbol{E}^{2 n-2}$ such that $[w] \cap H=\{w\}$ and $H$ intersects [ $w$ ] transversely for any $w \in H$. The collection of such hypersurfaces $H$ yields a differentiable structure of $N$ with dimension $2 n-2$. We define the volume form $d \eta$ on $N$ such that $d \eta_{[v]} \wedge d t=d \omega_{v}$ for any $[v] \in N$. Then we have, for any summable function $F$ on $S M-\Omega$,

$$
\begin{equation*}
\int_{S M-\Omega} F d \omega=\int_{[v] \in N} d \eta \int_{-\infty}^{\infty} F\left(f^{t} v\right) d t \tag{1.1}
\end{equation*}
$$

where $F_{[v]}:[v] \rightarrow \boldsymbol{R}$ is given by $F_{[v]}(w)=F(w)$ for any $w \in[v]$.
1.2. The Birkhoff ergodic theorem. Let $D$ be an $f^{t}$-invariant subset of $S M$ with finite volume. The Birkhoff ergodic theorem says that for any summable function $F$ on $D$

$$
F^{*}(v)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} F\left(f^{t} v\right) d t
$$

exist and are $f^{t}$-invariant for almost all $v \in D$,
2) for any $f^{t}$-invariant measurable subset $B \subset D$,

$$
\int_{B} F * d \omega=\int_{B} F d \omega .
$$

We say that a $v \in D$ is uniformly recurrent if for any neighborhood $U$ of $v$, we have

$$
\liminf _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \chi_{U}\left(f^{t} v\right) d t>0
$$

where $\chi_{U}: D \rightarrow \boldsymbol{R}$ is the characteristic function of $U$. We denote by $W(D)$ the set of all uniformly recurrent vectors in $D$. It follows from the Birkhoff ergodic theorem that $W(D)$ has full measure in $D$ ([1]).
1.3. The limit of the second fundamental forms of geodesic spheres. Let $R$ be the curvature tensor of $M$. For any $v \in S M$ let $R(v): v^{\perp} \rightarrow v^{\perp}$ be a symmetric linear map given by $R(v)(x)=R(x, v) v$ for any $x \in v^{\perp}$, where $v^{\perp}=$ $\left\{w \in T_{\pi(v)} M ;\langle v, w\rangle=0\right\}$.

We assume hereafter that $M$ is without conjugate points unless otherwise stated. Let $\tilde{M}$ be the universal covering space of $M$. Then, $\tilde{M}$ is diffeomorphic to $\boldsymbol{R}^{n}$ and all geodesics are minimizing in $\tilde{M}$. For any $v \in S \tilde{M}$ let $\tilde{A}_{s}(v)$ be the second fundamental form at $\pi(v)$ of the geodesic sphere $S\left(\pi(v), \dot{\gamma}_{v}(s)\right)$ with center $\gamma_{v}(s)$ through $\pi(v)$ relative to $-v$. It follows from [5], [6], [7], [9], [13] that

$$
\lim _{s \rightarrow \infty} \tilde{A}_{s}(v)=\tilde{A}(v)
$$

exists and

$$
|\langle\tilde{A}(v) x, x\rangle| \leqq \max \left\{\left|\left\langle\tilde{A}_{-1}(v) y, y\right\rangle\right|,\left|\left\langle\tilde{A}_{1}(v) y, y\right\rangle\right| ; y \in v^{\perp},|y|=1\right\}
$$

for any $v \in S \tilde{M}$ and any $x \in v^{\perp},|x|=1$. The map

$$
\tilde{A}: S \tilde{M} \longrightarrow \bigcup_{v \in S \bar{M}} L\left(v^{\perp}\right)
$$

satisfies the following, where $L\left(v^{\perp}\right)=\left\{h ; h\right.$ is a linear map of $v^{\perp}$ into itself $\}$.

1) $\operatorname{tr} \tilde{A}$ is measurable.
2) $\tilde{A}(v)$ is symmetric for any $v \in S \tilde{M}$.
3) $\tilde{A}\left(f^{t} v\right)$ is of class $C^{\infty}$ for $t \in(-\infty, \infty)$.
4) $\tilde{A}^{\prime}\left(f^{t} v\right)+\tilde{A}\left(f^{t} v\right)^{2}+R\left(f^{t} v\right)=0$
for any $t \in(-\infty, \infty)$, where $\tilde{A}^{\prime}\left(f^{t} v\right)$ is the covariant derivative of $\tilde{A}\left(f^{t} v\right)$ along $\gamma_{v}$ at $\gamma_{v}(t)$.
5) For any compact set $K \subset \tilde{M}$ there is a constant $C(K)>0$ such that $\|\tilde{A}(v)\|<C(K)$ for any $v \in S K$, where $\|\tilde{A}(v)\|$ is the norm of $A(v)$.

By the construction of the map $\tilde{A}$ we can induce the map $A$ on $S M$ which
satisfies the same properties above.
1.4. The solution of a matrix equation of Riccati type. We consider the following ( $n-1) \times(n-1)$ matrix differential equation of Riccati type.

$$
\begin{equation*}
X^{\prime}(t)+X(t)^{2}+R(t)=0 \tag{J}
\end{equation*}
$$

on $t \in(-\infty, \infty)$, where $R(t)$ is a symmetric matrix and $\operatorname{tr} R$ is summable on $(-\infty, \infty)$. The following lemma will be used in the case that $R(t)=R\left(f^{t} v\right)$ and $\operatorname{tr} R(t)=\operatorname{Ric}\left(f^{t} v\right)$ for almost all $v \in S M$ such that the Ricci curvature $\operatorname{Ric}\left(f^{t} v\right)$ is summable over $(-\infty, \infty)$.

Lemma 1. Suppose there exists a symmetric solution $A(t)$ of (J) on $t \in$ $(-\infty, \infty)$. Then, the integral of $\operatorname{tr} R(t)$ on $(-\infty, \infty)$ is nonpositive. If it vanishes, then both $A(t)$ and $R(t)$ must be identically zero on $(-\infty, \infty)$.

Proof. The proof is the same as in [12]. We first prove that there exist sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\} \subset \boldsymbol{R}$ such that $a_{n} \rightarrow \infty, b_{n} \rightarrow-\infty, \operatorname{tr} A\left(a_{n}\right) \rightarrow 0$ and $\operatorname{tr} A\left(b_{n}\right)$ $\rightarrow 0$ as $n \rightarrow \infty$. Suppose for indirect proof that an $\varepsilon>0$ and an $s$ exist such that $|\operatorname{tr} A(t)|>\varepsilon$ for any $t>s$. Since

$$
(\operatorname{tr} A(t))^{2} \leqq n \operatorname{tr} A(t)^{2}
$$

for any $t \in(-\infty, \infty)$, and, hence,

$$
\int_{s}^{t} \operatorname{tr} A(t)^{2} d t \geqq\left(\varepsilon^{2} / n\right)(t-s)
$$

for any $t>s$, and since

$$
\operatorname{tr} A(t)-\operatorname{tr} A(s)+\int_{s}^{t} \operatorname{tr} A(t)^{2} d t+\int_{s}^{t} \operatorname{tr} R(t) d t=0
$$

for any $t>s$, we see that $\operatorname{tr} A(t) \rightarrow-\infty$ as $t \rightarrow \infty$, since $\operatorname{tr} R(t)$ is summable over $(-\infty, \infty)$. If we take a $u>s$ such that $|\operatorname{tr} A(t)|>1$ for any $t \geqq u$, then

$$
\begin{aligned}
\frac{t-u}{n} \leqq \int_{u}^{t} \frac{\operatorname{tr} A(t)^{2}}{(\operatorname{tr} A(t))^{2}} d t & \leqq\left|\int_{u}^{t} \frac{\operatorname{tr} A^{\prime}(t)}{(\operatorname{tr} A(t))^{2}} d t\right|+\left|\int_{u}^{t} \frac{\operatorname{tr} R(t)}{(\operatorname{tr} A(t))^{2}} d t\right| \\
& \left.\leqq-\frac{1}{\operatorname{tr} A(t)}+\frac{1}{\operatorname{tr} A(u)}\left|+\int_{u}^{t}\right| \operatorname{tr} R(t) \right\rvert\, d t
\end{aligned}
$$

a contradiction, because the right hand side is bounded above. The existence of a sequence $\left\{b_{n}\right\} \subset \boldsymbol{R}$ we want is proved similarly.

Integrating (J) after taking the trace on $\left[b_{n}, a_{n}\right]$ and taking $n \rightarrow \infty$, we obtain

$$
\int_{-\infty}^{\infty} \operatorname{tr} R(t) d t=-\int_{-\infty}^{\infty} \operatorname{tr} A(t)^{2} d t \leqq 0
$$

If the equality holds, then

$$
\operatorname{tr} A(t)^{2}=0 \longrightarrow A(t)=0 \longrightarrow A^{\prime}(t)=0 \longrightarrow R(t)=0
$$

for any $t \in(-\infty, \infty)$ Lemma 1 is proved.

## 2. The integral of the Ricci curvature on $S M-\Omega$.

Let $M$ be a manifold as in Theorem. We will prove the following.
Lemma 2. The integral of the Ricci curvature of $M$ on $S M-\Omega$ is nonpositive, and it vanishes only if $R(v)=R(\cdot, v) v=0$ for any $v \in S M-\Omega$.

Proof. Since the Ricci curvature is summable and by the formula (1.1), the integral of the absolute Ricci curvature is finite along the geodesic $\gamma_{v}:(-\infty, \infty)$ $\rightarrow M$ with $\dot{\gamma}_{v}(0)=v$ for almost all $v \in S M-\Omega$. It follows from (1.3.4) and Lemma 1 that

$$
\int_{-\infty}^{\infty} \operatorname{Ric}\left(f^{t} v\right) d t \leqq 0
$$

for almost all $v \in S M-\Omega$. Integrating it on $N$ as in 1.1, we obtain

$$
\int_{S M-\Omega} \operatorname{Ric} d \omega=\int_{[v]=N} d \eta \int_{-\infty}^{\infty} \operatorname{Ric}\left(f^{t} v\right) d t \leqq 0
$$

The equality means from Lemma 1 that $R(v)=R(\cdot, v) v=0$ for almost all $v \in$ $S M-\Omega$. Since $R(v)$ depends continuously on the points $v \in S M$, we see that $R$ is identically zero on $S M-\Omega$. Lemma 2 is proved.

## 3. The integral of the Ricci curvature on $\Omega$.

Let $M$ be a manifold as in Theorem and let $\Omega_{1} \subset \Omega$ be an $f^{t}$-invariant set which has finite volume. We will prove the following.

Lemma 3. The integral of the Ricci curvature of $M$ over $\Omega_{1}$ is nonpositive, and it vanishes only if $R(v)=R(\cdot, v) v=0$ for any $v \in \Omega_{1}$.

Proof. Let $X\left(\Omega_{1}\right)$ be the set of all vectors $v$ such that $\operatorname{Ric}^{*}(v)$ exists as in (1.2.1). Then, $X\left(\Omega_{1}\right) \cap W\left(\Omega_{1}\right)$ has full measure in $\Omega_{1}$. Let a $v \in X\left(\Omega_{1}\right) \cap W\left(\Omega_{1}\right)$ and let $K$ be a compact neighborhood of $v$ in $\Omega_{1}$. It follows from (1.3.5) that there exists a constant $C(K)>0$ such that $\|A(w)\|<C(K)$ for any $w \in K$. Since $v$ is uniformly recurrent, there exists a sequence $\left\{T_{n}\right\} \subset \boldsymbol{R}$ such that $T_{n} \rightarrow \infty$, $f^{T_{n}}{ }_{v \rightarrow v}$ as $n \rightarrow \infty$ and $f^{T_{n}} v \in K$ for all $n$. By (1.3.4), we have

$$
\frac{1}{T_{n}}\left(\operatorname{tr} A\left(f^{T_{n}} n\right)-\operatorname{tr} A(v)\right)+\frac{1}{T_{n}} \int_{0}^{T_{n}} \operatorname{tr} A\left(f^{t} v\right)^{2} d t+\frac{1}{T_{n}} \int_{0}^{T_{n}} \operatorname{Ric}\left(f^{t} v\right) d t=0 .
$$

Taking $n \rightarrow \infty$ we obtain

$$
\operatorname{Ric}^{*}(v)=-\lim _{n \rightarrow \infty} \frac{1}{T_{n}} \int_{0}^{T_{n}} \operatorname{tr} A\left(f^{t} v\right)^{2} d t \leqq 0
$$

Hence, by the Birkhoff ergodic theorem (1.2.2), we get

$$
\int_{\Omega_{1}} \operatorname{Ric} d \omega=\int_{\Omega_{1}} \operatorname{Ric}^{*} d \omega \leqq 0
$$

Suppose the equality holds. Then, $X_{0}\left(\Omega_{1}\right)=\left\{v \in \Omega_{1} ; \operatorname{Ric}^{*}(v)=0\right\}$ has full measure in $\Omega_{1}$, and, hence, $X_{0}\left(\Omega_{1}\right) \cap W\left(\Omega_{1}\right)$ has full measure in $\Omega_{1}$. We will prove that $\operatorname{Ric}(v)=0$ for any $v \in X_{0}\left(\Omega_{1}\right) \cap W\left(\Omega_{1}\right)$. The idea of the proof is seen in [14]. Let a $v \in X_{0}\left(\Omega_{1}\right) \cap W\left(\Omega_{1}\right)$ and let $\gamma:[0, \infty) \rightarrow S M$ be a geodesic with $\gamma(t)=f^{t} v$ for any $t \in(-\infty, \infty)$. We put $A(t)=A\left(f^{t} v\right)$ and $\operatorname{Ric}(t)=\operatorname{Ric}\left(f^{t} v\right)$ for all $t \in(-\infty, \infty)$. Choose a positive $l$ such that the geodesic open ball $B(l)$ in $S M$ with center $v$ and radius $l$ is strongly convex. The convex ball $B(l)$ has a property that for any points $p, q \in \overline{B(l)}$ there is the unique minimizing geodesic joining $p$ and $q$ which is contained in $B(l)$ possibly except for $p$ and $q$, where $\overline{B(l)}$ is the closure of $B(l)$ in $S M$. Since $\operatorname{Ric}^{*}(v)=0$ and $v \in W\left(\Omega_{1}\right)$, it follows from the argument above that

$$
\lim _{n \rightarrow \infty} \frac{1}{T_{n}} \int_{0}^{T_{n}} \operatorname{tr} A(t)^{2} d t=0
$$

if a sequence $\left\{T_{n}\right\} \subset \boldsymbol{R}$ is such that $T_{n} \rightarrow \infty$ as $n \rightarrow \infty$ and $\gamma\left(T_{n}\right)$ lie in the boundary of $B(l)$ for all $n$.

Assertion. There exists a sequence $\left\{t_{n}\right\} \subset[0, \infty)$ such that

1) $t_{n} \rightarrow \infty$ as $n \rightarrow \infty$,
2) if $A_{n}(t)$ is the matrix given by $A_{n}(t)=A\left(t_{n}+t\right)$ for any $t \in[0, l]$, then

$$
\int_{0}^{l} \operatorname{tr} A_{n}(t)^{2} d t \longrightarrow 0 \text { as } n \rightarrow \infty
$$

and $\operatorname{tr} A_{n}(t) \rightarrow 0$ for almost all $t \in[0, l]$ as $n \rightarrow \infty$,
3) if $\gamma_{n}:[0, l] \rightarrow S M$ is the geodesic given by $\gamma_{n}(t)=f^{t_{n}+t} v$ for any $t \in[0, l]$, then $\gamma_{n}$ converges to the geodesic $\gamma_{0}:[0, l] \rightarrow S M$ with $\gamma_{0}(t)=f^{t-l / 2} v$ for any $t \in$ $[0, l]$ as $n \rightarrow \infty$.

Proof of Assertion. Let $k \geqq 4$ be an integer. Since $B(l / k)$ is a convex ball and $\gamma$ is a geodesic, $\gamma^{-1}(B(l / k))$ is the union of intervals whose lengths are less than or equal to $2 l / k$, say

$$
\begin{aligned}
& \left(a_{1}^{\prime}, b_{1}^{\prime}\right),\left(a_{2}^{\prime}, b_{2}^{\prime}\right), \cdots,\left(a_{i}^{\prime}, b_{i}^{\prime}\right), \cdots \\
& a_{1}^{\prime}<b_{1}^{\prime}<a_{2}^{\prime}<b_{2}^{\prime}<\cdots<a_{i}^{\prime}<b_{i}^{\prime}<\cdots \longrightarrow \infty
\end{aligned}
$$

Put

$$
a_{i}=\frac{a_{i}^{\prime}+b_{i}^{\prime}}{2}-\frac{l}{2} ; \quad b_{i}=\frac{a_{i}^{\prime}+b_{i}^{\prime}}{2}+\frac{l}{2}
$$

for each $i=1,2, \cdots$. Then, $\gamma\left(\left[a_{i}, b_{i}\right]\right) \subset B(l)$ and $\gamma\left(a_{i}\right), \gamma\left(b_{i}\right) \notin B(l / k)$, since

$$
d_{1}(\gamma(t), v) \leqq d_{1}\left(\gamma(t), \gamma\left(a_{i}+\frac{l}{2}\right)\right)+d_{1}\left(\gamma\left(a_{i}+\frac{l}{2}\right), v\right)<\frac{l}{2}+\frac{l}{k}<l
$$

for any $t \in\left[a_{i}, b_{i}\right]$, and since

$$
d_{1}\left(\gamma\left(a_{i}\right), v\right) \geqq d_{1}\left(\gamma\left(a_{i}\right), \gamma\left(a_{i}+\frac{l}{2}\right)\right)-d_{1}\left(\gamma\left(a_{i}+\frac{l}{2}\right), v\right)>\frac{l}{2}-\frac{l}{k} \geqq \frac{l}{k},
$$

from the choice of $k$, where $d_{1}(\cdot, \cdot)$ is the distance induced from the Riemannian metric defined on $S M$ in Section 1. It follows similarly that $d_{1}\left(\gamma\left(b_{i}\right), v\right)>$ $l / k$. Suppose

$$
\liminf _{i \rightarrow \infty} \int_{a_{i}}^{b_{i}} \operatorname{tr} A(t)^{2} d t>\alpha>0
$$

For any $n$, we have

$$
\begin{aligned}
& \frac{1}{T_{n}} \int_{0}^{T_{n}} \operatorname{tr} A(t)^{2} d t \geqq \frac{1}{T_{n}}\left[\sum_{i=1}^{m_{n}} \int_{a_{i}}^{b_{i}} \operatorname{tr} A(t)^{2} d t\right] \\
\geqq & \frac{1}{T_{n}}\left[\sum_{i=1}^{m} \int_{a_{i}}^{b_{i}} \operatorname{tr} A(t)^{2} d t\right]+\frac{\alpha}{l T_{n}} \sum_{i=m+1}^{m n}\left(b_{i}-a_{i}\right) \\
\geqq & \frac{\alpha}{l T_{n}} \sum_{i=m+1}^{m_{n}}\left(b_{i}^{\prime}-a_{i}^{\prime}\right)=\frac{\alpha}{l T_{n}} \int_{0}^{T_{n}} \chi_{B(l / k)}(\gamma(t)) d t-\frac{\alpha}{l T_{n}} \sum_{i=1}^{m}\left(b_{i}^{\prime}-a_{i)}^{\prime},\right.
\end{aligned}
$$

where $m_{n}$ and $m$ are chosen so that

$$
b_{m_{n}}<T_{n}<a_{m_{n}+1} \text { and } \inf _{i \leqslant m} \int_{a_{i}}^{b_{i}} \operatorname{tr} A(t)^{2} d t>\alpha
$$

This implies that

$$
0=\lim _{n \rightarrow \infty} \frac{1}{T_{n}} \int_{0}^{T_{n}} \operatorname{tr} A(t)^{2} d t \geqq \frac{\alpha}{l} \liminf _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \chi_{B(l / k)}\left(f^{t} v\right) d t>0,
$$

a contradiction. Thus we can find an integer $i(k) \geqq k$ such that

$$
r\left(\frac{a_{i(k)}+b_{i(k)}}{2}\right) \in B(l / k) \quad \text { and } \quad \int_{a_{i(k)}}^{b_{i(k)}} \operatorname{tr} A(t)^{2} d t \leqq \frac{1}{k} .
$$

If $t_{k}=a_{i(k)}$ for all $k \geqq 4$, the sequence $\left\{t_{k}\right\}$ satisfies the condition 1) and the first part of 2 ). For the second part of 2 ) and 3 ) we have only to choose a suitable subsequence $\left\{t_{n}\right\}$ of $\left\{t_{k}\right\}$ if necessary.

We return to the proof of $\operatorname{Ric}(v)=0$. Rewritting (1.3.4) in terms of 2 ), we get for each $n$

$$
\begin{equation*}
\operatorname{tr} A_{n}^{\prime}(t)+\operatorname{tr} A_{n}(t)^{2}+\operatorname{Ric}_{n}(t)=0 \tag{3.4}
\end{equation*}
$$

for any $t \in[0, l]$, where $\operatorname{Ric}_{n}(t)=\operatorname{Ric}\left(t_{n}+t\right)$. It should be noted that $\operatorname{Ric}_{n}(t)$ converges to $\operatorname{Ric}(t-l / 2)$ uniformly in $t \in[0, l]$ as $n \rightarrow \infty$. Suppose $\operatorname{Ric}(0)=\operatorname{Ric}(v) \neq 0$,
say $\operatorname{Ric}(v)>0$. Then, there exist $a$ and $b \in[0, l], a<l / 2<b$, such that $\operatorname{Ric}(t-l / 2)$ $>0$ for any $t \in[a, b]$ and $\operatorname{tr} A_{n}(a), \operatorname{tr} A_{n}(b) \rightarrow 0$ as $n \rightarrow \infty$. On the other hand, by integrating (3.4) on the interval $[a, b]$ and taking $n$ to infinity, we have

$$
\int_{a}^{b} \operatorname{Ric}\left(t-\frac{l}{2}\right) d t=0
$$

a contradiction. Therefore, $\operatorname{Ric}(v)=0$ for any $v \in X_{0}\left(\Omega_{1}\right) \cap W\left(\Omega_{1}\right)$. It follows from Lemma 1 that $R(v)=R(\cdot, v) v=0$ for any $v \in X_{0}\left(\Omega_{1}\right) \cap W\left(\Omega_{1}\right)$. Since $R(v)$ depends continuously on the points $v \in S M$, we see that $R$ is identically zero on $\Omega_{1}$. Lemma 3 is proved.

## 4. Proof of Theorem.

By Lemmas 2 and 3, we have

$$
\frac{\theta_{n-1}}{n} \int_{M} S d \sigma=\int_{S M} \operatorname{Ric} d \omega=\int_{S M-\Omega} \operatorname{Ric} d \omega+\sum_{i=1}^{\infty} \int_{\Omega_{i}} \operatorname{Ric} d \omega \leqq 0
$$

where $\theta_{n-1}$ is the volume of the unit sphere in $\boldsymbol{E}^{n}, S$ is the scalar curvature of $M$ and $\Omega=\sum_{i=1}^{\infty} \Omega_{i}$ is the decomposition of $f^{t}$-invariant sets each of which has finite volume. If the equality holds, then

$$
\int_{S M-\Omega} \operatorname{Ric} d \omega=\int_{\Omega_{i}} \operatorname{Ric} d \omega=0
$$

for all $i=1,2, \cdots$. Lemmas 2 and 3 state that the curvature tensor $R(\cdot, v) v$ is zero for any $v \in S M$. Therefore, $M$ is flat. This completes the proof of Theorem.

## 5. Proof of Corollaries.

If a complete simply connected Riemannian manifold $M$ is without conjugate points, then all geodesics are minimizing in $M$. This implies that $\Omega$ is a empty set. Hence, Corollary 1 follows from Theorem. For Corollary 2 we have nothing to prove.

For the proof of Corollary 3 we need the notion of totally convex sets. We say that a set $C$ in a complete Riemannian manifold $M$ is totally convex if for any points $p, q \in C$ all geodesic curves joining $p$ and $q$ are entirely contained in $C$. It follows that any totally convex closed set $C$ is an imbedded submanifold in $M$ (possibly with not differentible boundary), and if $\gamma:[0, \infty) \rightarrow M$ is a geodesic such that $\gamma(0)$ is in the interior of $C$ and $\gamma(s)$ is in the boundary of $C$ for some $s$, then $\gamma(t)$ is outside $C$ for any $t \in(s, \infty)$. G. Thorbergsson ([15]) proved by a slight modification of the Cheeger and Gromoll basic construction ([3]) that if $M$ is a complete Riemannian manifold with nonnegative sectional curvature outside some compact set, then there is a family $\left\{K_{t} ; t>0\right\}$ of com-
pact totally convex sets with $M=\cup K_{t}$ and $K_{t} \subset K_{s}$ for $t \leqq s$.
5.1. Proof of Corollary 3. Let $M$ be as in Corollary 3 and let $K$ be a compact set in $M$ such that the sectional curvature is zero outside $K$. By Thorbergsson's result we can find a compact set $C$ such that the interior $C^{0}$ of $C$ contains $K$. We want to prove that $S C^{0} \cap \Omega$ is $f^{t}$-invariant, where $S C^{0}=\{v \in S M$; $\left.\pi(v) \in C^{0}\right\}$. If this were not true, then there is a $v \in S C^{0} \cap \Omega$ such that $\pi\left(f^{s} v\right)$ is in $M-C$ for some $s>0$, since $\Omega$ is $f^{t}$-invariant and $C$ is a totally convex set. We can choose sequences $\left\{v_{n}\right\} \subset S C^{0}$ and $\left\{t_{n}\right\} \subset \boldsymbol{R}$ such that $t_{n} \rightarrow \infty, v_{n} \rightarrow v$ and $f^{t_{n}} v_{n} \rightarrow v$ as $n \rightarrow \infty$, since $v$ is a non-wandering point under the geodesic flow. Then it follows that $f^{s} v_{n} \rightarrow f^{s} v$ as $n \rightarrow \infty$. Hence, we can find a sufficiently large $m$ such that $\pi\left(v_{m}\right) \in C^{0}, \pi\left(f^{t_{m}} v_{m}\right) \in C^{0}$ and $\pi\left(f^{s} v_{m}\right) \notin C$. This contradicts that $C$ is a totally convex set in $M$, since $\gamma:[0, \infty) \rightarrow M$ given by $\gamma(t)=\pi\left(f^{t} v_{m}\right)$ for any $t$ is a geodesic with $\gamma(0) \in C^{0}, \gamma\left(t_{m}\right) \in C^{0}$ and $\gamma(s) \notin C$.

Thus, we can use Lemma 3 to integrate the Ricci curvature over $S C^{0} \cap \Omega$, since $S C^{0} \cap \Omega$ has finite volume. Now we have in the same notation in Section 4

$$
\frac{\theta_{n-1}}{n} \int_{M} S d \sigma=\int_{S M} \operatorname{Ric} d \omega=\int_{S M-\Omega} \operatorname{Ric} d \omega+\int_{S C^{0} \cap \Omega} \operatorname{Ric} d \omega+\int_{\left(S M-S C^{0}\right) \cap \Omega} \operatorname{Ric} d \omega \leqq 0,
$$

because the third term in the right is zero, since the sectional curvature is zero on $M-C^{0}$. If the equality holds, then

$$
\int_{S M-\Omega} \operatorname{Ric} d \omega=\int_{S C^{\circ} \cap \Omega} \operatorname{Ric} d \omega=0 .
$$

Lemmas 2 and 3 state that the curvature tensor $R(\cdot, v) v$ is zero for any $v \in$ ( $S M-\Omega) \cup\left(S C^{0} \cap \Omega\right)$. Therefore, $M$ is flat. This completes the proof of Corollary 3.

## References

[1] W. Ballmann, M. Brin and P. Eberlein, Structure of manifolds of nonpositive curvature. I, Ann. Math., 122 (1985), 171-203.
[2] H. Busemann, The Geometry of Geodesics, Academic Press, New York, 1955.
[3] J. Cheeger and D. Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. Math., 97 (1972), 413-443.
[4] S. Cohn-Vossen, Totalkrümmung und geodätische Liniien auf einfach zusammenhängenden, offenen, vollständigen Flächenstüchen, Mat. Sb. (N.S.), 1 (1936), 139164.
[5] P. Eberlein, When is a geodesic flow of Anosov type ? 1, J. Diff. Geom., 8 (1973), 437-468.
[6] M. Goto, Manifolds without focal points, J. Diff. Geom., 13 (1978), 341-359.
[7] L.W. Green, A theorem of E. Hopf, Michigan Math. J., 5 (1958), 31-34.
[8] L. W. Green and R. Gulliver, Planes without conjugate points, J. Diff. Geom., 22
(1985), 43-47.
[9] E. Hopf, Closed surfaces without conjugate points, Proc. Nat. Acad. Sci. U.S.A., 34 (1948), 47-51.
[10] N. Innami, On tori having poles, Invent. Math., 84 (1986), 437-443.
[11] -, A note on nonfocality properties in compact manifolds, Arch. Math., 48 (1987), 277-280.
[12] -, The $n$-plane with integral curvature zero and without conjugate points, Proc. Japan Acad., 62, A (1986), 282-284.
[13] -, A proof of existence of the stable Jacobi tensor, Proc. Japan Acad., 63, A (1987), 39-41.
[14] ——, A characterization of flat metrics on tori by ergodicity, Ergodic Theory Dynamical Systems, 7 (1987), 197-201.
[15] G. Thorbergsson, Closed geodesics on non-compact Riemannian manifolds, Math. Z., 159 (1978), 249-258.

Nobuhiro InNAMI<br>Department of Mathematics<br>Faculty of Science<br>Niigata University<br>Niigata 950-21<br>Japan

