On the semisimplicity of Hecke algebras

By Akihiko GYoJa and Katsuhiro Uno

(Received July 6, 1987)
0. Let (W, S) be a Coxeter system [2], t an indeterminate, $q=t^{2}$, and $H(W, t)$ a free $\boldsymbol{C}[t]$-module with a basis $\{T(w)\}_{w \in W}$ parametrized by the elements of W. Here \boldsymbol{C} denotes the field of complex numbers. Then $H(W, t)$ has an associative $\boldsymbol{C}[t]$-algebra structure characterized by the conditions

$$
(T(s)+1)(T(s)-q)=0, \quad \text { if } s \in S,
$$

and

$$
T(w) T\left(w^{\prime}\right)=T\left(w w^{\prime}\right), \quad \text { if } l(w)+l\left(w^{\prime}\right)=l\left(w w^{\prime}\right),
$$

where l is the length function [2]. See [2; Chap. 4, § 2, Ex. 23] for the algebra structure of $H(W, t)$. See [5] for the significance of $H(W, t)$ in the representation theory. Let α be a complex number, $\varphi_{\alpha}: \boldsymbol{C}[t] \rightarrow \boldsymbol{C}$ the \boldsymbol{C}-algebra homomorphism defined by $\varphi_{\alpha}(t)=\alpha$, and $H(W, \alpha)=H(W, t) \otimes_{c[t]}\left(\boldsymbol{C}, \varphi_{\alpha}\right)$.

From now on, we assume that W is finite, and (except in the final remark) not of type $A_{1} \times \cdots \times A_{1}$. Let w_{0} be the longest element of $W, N=l\left(w_{0}\right)$, and $G(q)=q^{N} \sum_{w \in W} q^{l(w)}$.

The purpose of this note is to prove the following theorem.
Theorem. The \boldsymbol{C}-algebra $H(W, \alpha)$ is semisimple if and only if $G\left(\alpha^{2}\right) \neq 0$.

1. Let

$$
R_{i}: H(W, t) \longrightarrow M_{n_{i} \times n_{i}}(\boldsymbol{C}[t]) \quad(i=1,2)
$$

be $\boldsymbol{C}[t]$-algebra homomorphisms. Here $M_{m \times n}$ denotes the set of $m \times n$-matrices. Let $T^{\wedge}(w)=q^{N-l(w)} T\left(w^{-1}\right), A \in M_{n_{1} \times n_{2}}(\boldsymbol{C}[t])$ and

$$
B=\sum_{w \in W} R_{1}(T(w)) A R_{2}\left(T^{\wedge}(w)\right) .
$$

Lemma. For $x \in W, R_{1}(T(x)) B=B R_{2}(T(x))$.
Proof. We may assume that $x=s \in S$. Let $X=\{w \in W \mid l(s w)>l(w)\}$. Since W is a disjoint union of X and $s X$, it is enough to prove that

[^0]\[

$$
\begin{aligned}
& R_{1}(T(s))\left\{R_{1}(T(w)) A R_{2}\left(T^{\wedge}(w)\right)+R_{1}(T(s w)) A R_{2}\left(T^{\wedge}(s w)\right)\right\} \\
= & \left\{R_{1}(T(w)) A R_{2}\left(T^{\wedge}(w)\right)+R_{1}\left(T(s w) A R_{2}\left(T^{\wedge}(s w)\right)\right\} R_{2}(T(s))\right.
\end{aligned}
$$
\]

holds for all $w \in X$. The verification of this equality is easy and omitted.
2. Let $K=\boldsymbol{C}(t)$. Assume that $R_{i} \otimes K(i=1,2)$ are irreducible representations.

If $R_{1} \otimes K$ is not isomorphic to $R_{2} \otimes K$, then as a consequence of the above lemma, we have

$$
\sum_{w} R_{1}(T(w))_{i j} R_{2}\left(T^{\wedge}(w)\right)_{k l}=0, \quad \text { for all } i, j, k, l .
$$

Here ()$_{i j}$ etc. mean matrix components. Hence if we put $\chi_{i}=\operatorname{trace} R_{i}$,

$$
\sum_{w} \chi_{1}(T(w)) \chi_{2}\left(T^{\wedge}(w)\right)=0 .
$$

3. Assume that $R_{1} \otimes K=R_{2} \otimes K=R \otimes K$, and is irreducible. Let $\chi_{1}=\chi_{2}=\chi$ and $d_{\chi}=d_{\chi}(q)$ be the generic degree of R : The generic degree is characterized by the conditions
and

$$
d_{\chi}(1)=\chi(1),
$$

$$
d_{\chi}(1) / d_{\chi}(q)=G(q)^{-1} \sum_{w \in W} \chi(T(w)) \chi\left(T^{\wedge}(w)\right) .
$$

4. We now show the following well known result. However the proof given here seems to be simpler than known ones.

Lemma. The K-algebra $H(W, t) \otimes K$ is semisimple.
Proof. Assume that there is a non-zero element h of the Jacobson radical of $H(W, t) \otimes K$. By multiplying an element of $\boldsymbol{C}[t]$, we may assume that $h \in$ $H(W, t)$. Furthermore, dividing by a power of $t-1$, we may assume that h is not contained in $(t-1) H(W, t)$. Let $\varphi: H(W, t) \rightarrow \boldsymbol{C} W$ be the \boldsymbol{C}-algebra homomorphism characterized by $\varphi(t)=1$ and $\varphi(T(w))=w$. Then for any $\left(c_{x y}\right) \in C^{W \times W}$,

$$
\sum_{x, y} c_{x y} x \varphi(h) y=\varphi\left(\sum_{x, y} c_{x y} T(x) h T(y)\right)
$$

is a nilpotent element. Hence $\varphi(h)$ is contained in the Jacobson radical of $\boldsymbol{C} W$. Hence $\varphi(h)=0$ and $h \in \operatorname{ker}(\varphi)=(t-1) H(W, t)$, which contradicts our assumption. Hence the Jacobson radical of $H(W, t) \otimes K$ is zero.
5. For two linear functionals φ_{1}, φ_{2} of $H(W, t) \otimes K$, let

$$
\left\langle\varphi_{1}, \varphi_{2}\right\rangle=G(q)^{-1} \sum_{w \in W} \varphi_{1}(T(w)) \varphi_{2}\left(T^{\wedge}(w)\right) .
$$

Theorem. Let $\chi_{1}, \cdots, \chi_{n}$ be the irreducible characters of $H(W, t) \otimes K$. Then

$$
\left\langle\chi_{i}, \chi_{j}\right\rangle= \begin{cases}d_{\chi_{i}}(1) / d_{x_{i}}(q), & \text { if } i=j, \\ 0, & \text { otherwise } .\end{cases}
$$

6. (i) The above theorem can be considered as a q-analogue of the first orthogonality relation of the character values of a finite group. Note that in the case where W is a Weyl group, this formula was obtained in [3; (2.4)].
(ii) It is known that K is a splitting field for $H(W, t) \otimes K$. See [6], its references, and [1].
(iii) The generic degrees d_{x} are calculated explicitly. See [1] and its references. From these calculations, we can see that $d_{\chi}(q)$ is always a polynomial in q. If W is a Weyl group, this phenomenon can be explained by the following fact: If q_{0} is a prime power, then $d_{x}\left(q_{0}\right)$ is a degree of an irreducible representation of a finite Chevalley group, and, is an integer. But no unified explanation of this phenomenon (including the cases of type H_{3}, H_{4} and $I_{2}(p)$) seems to be known.
7. Define a linear functional δ on $H(W, t) \otimes K$ by

$$
\delta(T(x))= \begin{cases}\sum_{w} q^{l(w)}, & \text { if } x=1, \\ 0, & \text { if } x \neq 1 .\end{cases}
$$

The following equality can be proved easily.

$$
\delta\left(T(x) T^{\wedge}(y)\right)= \begin{cases}G(q), & \text { if } x=y \\ 0, & \text { otherwise }\end{cases}
$$

Hence $\delta\left(h h^{\prime}\right)=\delta\left(h^{\prime} h\right)$ for $h, h^{\prime} \in H(W, t) \otimes K$. Since $H(W, t) \otimes K$ is semisimple and since K is a splitting field for it, δ can be expressed as a linear combination

$$
\delta=\sum_{i=1}^{n} c_{i} \chi_{i} \quad\left(c_{i} \in K\right) .
$$

By the orthogonality relation, we have

$$
\left\langle\delta, \chi_{i}\right\rangle=c_{i} d_{x_{i}}(1) / d_{\chi_{i}}(q) .
$$

On the other hand

$$
\left\langle\delta, \chi_{i}\right\rangle=G(q)^{-1} \sum_{w \in W} \delta(T(w)) \chi_{i}\left(T^{\wedge}(w)\right)=\chi_{i}(1)=d_{\chi_{i}}(1) .
$$

Hence

$$
\begin{equation*}
\delta=\sum_{i=1}^{n} d_{\chi_{i}}(q) \chi_{i} \tag{7.1}
\end{equation*}
$$

8. Let $\delta_{\alpha}=\left.\delta\right|_{t \rightarrow \alpha}$ and $\chi_{i, \alpha}=\left.\chi_{i}\right|_{t \rightarrow \alpha}$. Here $\left.\right|_{t \rightarrow \alpha}$ means the specialization $t \rightarrow \alpha$,
which is possible since the values of δ and χ_{i} on $H(W, t)$ are polynomials in t. (This fact can be proved by a standard argument on representations over quotient fields of principal ideal domains, and by (7.1). Furthermore, using the notion of W-graphs, the first author [3] proved that all the values of χ_{i} at $T(w)$ are polynomials in t whose coefficients are algebraic integers.) We can also show that $\chi_{i, \alpha}$ is a trace of some representation of $H(W, \alpha)$. By (7.1), we get

$$
\begin{equation*}
\delta_{\alpha}=\sum_{i=1}^{n} d_{\chi_{i}}\left(\alpha^{2}\right) \chi_{i, \alpha} \tag{8.1}
\end{equation*}
$$

Let $\operatorname{rad} H(W, \alpha)$ be the Jacobson radical of $H(W, \alpha)$. Since $\operatorname{rad} H(W, \alpha)$ is nilpotent, $\chi_{i, \alpha}(\operatorname{rad} H(W, \alpha))=0$. Hence by $(8.1), \delta_{\alpha}(\operatorname{rad} H(W, \alpha))=0$.
9. Lemma. Assume that $G\left(\alpha^{2}\right) \neq 0$. Let h be an element of $H(W, \alpha)$. If $\delta_{\alpha}\left(h T^{\wedge}(x)\right)=0$ for any x in W, then $h=0$.

Proof. Let $h=\sum_{x \in W} c(x) T(x)$ with $c(x) \in \boldsymbol{C}$. Then

$$
0=\delta_{\alpha}\left(h T^{\wedge}(x)\right)=c(x) G\left(\alpha^{2}\right)
$$

Hence $c(x)=0$ for any x in W. Hence $h=0$.
10. Proof of Theorem ("if part"). Assume that $G\left(\alpha^{2}\right) \neq 0$ and $h \in \operatorname{rad} H(W, \alpha)$. Then for any $x \in W$, we have $h T^{\wedge}(x) \in \operatorname{rad} H(W, \alpha)$. Hence

$$
\delta_{\alpha}\left(h T^{\wedge}(x)\right)=0, \quad \text { for any } x \in W
$$

and $h=0$. Hence $\operatorname{rad} H(W, \alpha)=0$, i. e., $H(W, \alpha)$ is semisimple.
11. Proof of Theorem ("only if part"). First, let us consider the case where $\sum_{w} \alpha^{2 l(w)}=0$. Assume that $H(W, \alpha)$ is semisimple. Define a linear function ind on $H(W, \alpha)$ by ind $T(w)=\alpha^{2 l(w)}$. Then as is easily seen, ind is a linear character of $H(W, \alpha)$. Let E be the primitive idempotent corresponding to ind. This E satisfies

$$
T(s) E=\alpha^{2} E \quad \text { for } s \in S
$$

Hence

$$
E=c \sum_{w \in W} T(w)
$$

with a non-zero constant $c(\in \boldsymbol{C})$. But then we get the equality

$$
E=E^{2}=c \sum_{w \in W} T(w) E=c \sum_{w \in W} \alpha^{2 l(w)} E=0
$$

which is absurd.
To consider the remaining case, we assume $\alpha=0$. Arrange the elements of W in a sequence w_{1}, w_{2}, \cdots so that $l\left(w_{1}\right) \geqq l\left(w_{2}\right) \geqq \cdots$. For any $s \in S$, let $\left\{a_{i j}\right\}_{i j}$
be complex numbers such that $T(s) T\left(w_{j}\right)=\sum_{i} T\left(w_{i}\right) a_{i j}$. Then $\left(a_{i j}\right)$ is an upper triangular matrix. In fact

$$
T(s) T(w)= \begin{cases}T(s w), & \text { if } l(s w)>l(w) \\ -T(w), & \text { if } l(s w)<l(w)\end{cases}
$$

Hence every irreducible representation of $H(W, 0)$ is one dimensional. Since we are assuming that W is not of type $A_{1} \times \cdots \times A_{1}$, there are two elements s, s^{\prime} of S such that $s s^{\prime} \neq s^{\prime} s$. Then $T(s) T\left(s^{\prime}\right)-T\left(s^{\prime}\right) T(s)(\neq 0)$ is contained in the Jacobson radical of $H(W, 0)$. Hence $H(W, 0)$ is not semisimple.
12. Remark. Let us consider the excluded case where W is of type $A_{1} \times \cdots \times A_{1}$ (l factors) .

Since $H(W, \alpha)$ is commutative, it is semisimple if and only if it has 2^{l} $(=\operatorname{dim} H(W, \alpha))$ linear characters. Note that every linear character φ of $H(W, \alpha)$ satisfies $(\varphi(s)+1)\left(\varphi(s)-\alpha^{2}\right)=0$ for $s \in S$. For each subset I of S, a linear functional φ_{I} of $H(W, \alpha)$ given by

$$
\varphi_{I}(T(s))= \begin{cases}-1, & \text { if } s \in I, \\ \alpha^{2}, & \text { otherwise }\end{cases}
$$

is in fact a character of $H(W, \alpha)$, and thus $\left\{\varphi_{I} \mid I \subset S\right\}$ is the totality of the linear characters. Hence the following conditions are equivalent:
(1) $H(W, \alpha)$ is semisimple.
(2) $\varphi_{I} \neq \varphi_{J} \quad$ if $I \neq J$.
(3) $\alpha^{2} \neq-1$.

References

[1] D. Alvis and G. Lusztig, The representations and generic degrees of the Hecke algebra of type H_{4}, J. Reine Angew. Math., 336 (1982), 201-212.
[2] N. Bourbaki, Groupes et algèbres de Lie, Chap. IV, V, VI, Hermann, Paris, 1968.
[3] C. W. Curtis and T. V. Fossum, On centralizer rings and characters of representations of finite groups, Math. Z., 107 (1968), 402-406.
[4] A. Gyoja, On the existence of a W-graph for an irreducible representation of a Coxeter group, J. Algebra, 86 (1984), 422-438.
[5] N. Iwahori, On the structure of the Hecke ring of a Chevalley group over a finite field, J. Fac. Sci. Univ. Tokyo, 10 (1964), 215-236.
[6] G. Lusztig, On a theorem of Benson and Curtis, J. Algebra, 71 (1981), 490-498.

Akihiko GYoJA	Katsuhiro UnO
Department of Mathematics	Department of Mathematics
College of General Education	Faculty of Science
Osaka University	Osaka University
Toyonaka, Osaka 560	Toyonaka, Osaka 560
Japan	Japan

[^0]: This research was supported in part by Grant-in-Aid for Scientific Research (No. 62740037), Ministry of Education, Science and Culture.

