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§0. Introduction.

To classify reflection groups is one of the most important matter in the
group theory. It attracted many mathematicians. For example, finite reflection
subgroups of orthogonal group O(n) are classified by Coxeter [3]—— they are
called the Coxeter groups ——, those of the unitary group U(n) are classified
by Shephard and Todd —— they are called the unitary reflection groups—,
discrete cocompact reflection subgroups of the complex motion group are classified
by Popov [8] —— they are called the crystallographic reflection groups —, and
discrete reflection subgroups of the parabolic subgroup of the special unitary
group SU(n, 1) of signature (n, 1) are partially classified by Yoshida-Hattori
and Yoshida [12]—— they are called the parabolic reflection groups in
SU(n, 1).

This paper is devoted to the complete classification of the parabolic reflec-
tion groups in SU(n,1). The group SU(n, 1) gives rise to the group Aut(D)
of analytic automorphisms of a domain D={z, u,, -, Un)=C™; 2Ilm z—
> u;12>0}, which is projectively equivalent to the complex n-ball B"=
{*(zy1, -+, 22)€C™; 212;/1°<1}. The parabolic subgroup G of SU(n, 1) is identified
with a subgroup of Aut(D) which leaves the point P at infinity fixed. Precisely
speaking, reflection groups in question are discrete subgroups of G of locally
finite covolume at P.

In §1, we review the structure of discrete subgroup of G. The main theo-
rem is stated in §2. Proof is given in §3.

The author would like to thank the referee for valuable remarks.

§1. Parabolic subgroup G.

1.1. A matrix representation of G. Let V be an (m+1)-dimensional com-
plex vector space with coordinates (z, ui, -+, un). Let D be a domain in V
defined as follows
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D:= {(z, Uy, =, Un)EV; 2Imz— 3 |u112>0} )
Jj=1

which is analytically equivalent to the unit ball B™+*'={¥z,, -, 2n)EC™*;
27olz;12<1}. The domain D can be considered as a domain in the (m-+1)-
dimensional complex projective space P™*!(C). Let us choose homogeneous
coordinates (v, *++, Um+1) Of P™*(C) which are related to the coordinates of V
by z=v¢/Vm+1, U;j=0;/Vn+1 (=1, ---, m). Then D has the following expression :

D = {v="vo, -, Vms)EP™C); ‘DH>0},

z

where H:< —En ) (E,, denotes the identity matrix of size m).
—1

Since any complex analytic automorphism of D can be extended to an auto-

morphism of P™*(C), we regard the group Aut(D) of analytic automorphisms

of D as a subgroup of the projective transformation group PGL(m+2, C). Con-

sequently, Aut(D) is identified with the quotient group:
{GEGL(m+2, C); ‘GHG=FkH, for some positive number k}/C*,

where C* is the multiplicative group of C. Hereafter we express an element
of Aut(D) by a suitable matrix of size m+2 belonging to the corresponding
coset.

We denote by D and 9D the closure and the boundary of D in P™+{(C),
respectively. Then D meets the hyperplane at infinity v,.;=0 at the unique
point P=%1,0, ---, 0) on dD. We consider the subgroup G of Aut(D) fixing the
boundary point P consisting of the elements of the following form.

LB r+Bs
I:U’ B; T] = 0 U ﬁ ’
0 0 1

UeU(m): the unitary matrices of size m, pB&C™, y<R.

The group G is called the parabolic subgroup at P. For g=[w, B8, y1€G, we
call w the linear part of g, S8 the translation part of g, and y the central part
of g, respectively. Note that the law of product of G is given by

Lw, ,81, Tx][wz, ﬁz; Tz] = [w,w,, ﬁ1+w1,32; T1+72—Imtﬂ_1w1;82] .
For N>0, we define the subdomain D(N) of D by

D(N):= {(z, Uy, o, un)ED; 2Imz— éluj|2>zv}.
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DEFINITION. Let I" be a subgroup of G and let vol(D(N)/I") be the volume
of the quotient space D(N)/I" with respect to the Aut(D)-invariant measure of
D. I' is said to be of locally finite covolume (at P) if vol(D(N)/I")<o for
N>0.

1.2, Crystallographic groups and discrete subgroups of G. Let V'’ be the
quotient space of V by a 1-dimensional vector subspace V,:={(z, 0, ---, 0)EV;
zeC} of V with coordinates u=(u,, ---, u,) and with the natural Hermitian
inner product (u, v)=9'u. With this inner product, V’ is a complex Euclidean
space of dimension m. We denote by E(V’) the complex motion group on V'.

We express elements of E(V’) by (U|ﬁ)=(0U ‘613), where UcU(m) and B=C™.
DEFINITION. A discrete subgroup G, of E(V') is called a crystallographic
group if the quotient space V'/G, is compact.

We define a homomorphism zy from G to E(V’) by z«([U, B, y1)=U|p).
Consider a discrete subgroup I of G of locally finite covolume. The image
w«(I") is a crystallographic group on V’, and the kernel of 74 is the center
Z(I'y of I', i.e. the group I’ admits the following exact sequence: 1-Z([')—
I'-n(I")—1. Moreover we have Z(I")={[E, 0, y]; req"Z}=Z, where q(I")
=inf{|y|; [E, 0, y]=I', y+0}, and E stands for E,,.

In view of Bieberbach’s theorem, any crystallographic group /'y admits the
following exact sequence: 1—Ly— 1 'y—W—1, where L is a lattice in C™ and
W is a finite subgroup of GL(m, C), which is called the point group of I's.
Hence L :=n (" )N{(E|B)€EV"); B=C™} is a lattice of rank 2m and #4([")/L
is a finite group. We can regard L as a subgroup of C™ by identifying (E|j)
with 8. By computing the commutator of [E, 8, y]and [E, B/, y'], it is shown
that 2Im’3p’/¢(I") is an integer for any 8, f’< L. Therefore, there is a natural
number n such that ¢(/")=q,/n, where

go=inf({|2Im‘5p’|; B, p'eL}—{0}).

1.3. Reflections in G. Let us recall the definition of unitary reflections.

DEFINITION. An element weU(m) is called a reflection if w is of finite
order and has exactly m—1 eigenvalues equal to 1.

For a reflection weU(m) we denote by p(w) the unique eigenvalue of w
different from 1 and by r(w) an eigenvector corresponding to p(w). We call
r(w) a root of w.

DEFINITION. An element of E(V’) or G is called a reflection if its order is
finite (1) and if it leaves a hyperplane in V'’ or in D pointwise fixed, respec-
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tively.
By a straightforward calculation we have

LEMMA. () (w|B)€EWV’) is a reflection if and only if weU(m) is a reflec-
tion and B=kr(w) for some k<C.
(ii) [w, B, r1=G is a reflection if and only if (w|B)EEV’) is a reflection
and
BB mw)+1
2 plw)—1 -

Notice that if I" is generated by reflections, then the crystallographic group
nw«(I") is also generated by reflections.

§2. List of parabolic reflection groups.

2.1. Main theorem. Let I" be a discrete subgroup of G (see §1.1) and
assume that I is of locally finite covolume. Then /" admits the following com-
mutative diagram of exact sequences:

1 1 1

1—Z(I"—LUI)—> L —>1

1—ZUINY— I' —zn0)—1

1l — W — W —1

1 1

where the homomorphisms I'—m.([") and I'-»W are given by [w, B, r1—(wl|p)
and [w, B, yl—w, respectively. We also call the point group W of m4(I") the
point group of I'. We consider the case where W is an irreducible unitary
reflection group that is not a Coxeter group. If I" is generated by reflections
we call I" a parabolic reflection group of dimension m-1.

THEOREM. Let I' be a parabolic reflection group of dimension =3. If the
point group W is not a Coxeter group then I' is conjugate in Aut(D) to one of
the groups in the table in §2.2.

REMARK. Parabolic reflection groups of dimension 2 and those whose point
groups are Coxeter groups are classified in and [12]. Therefore, with
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these results, this theorem completes the classification of all parabolic reflection
groups.

2.2. Table of parabolic reflection groups. We list up the parabolic reflec-
tion groups I by giving their generating reflections. Corresponding crystallo-
graphic reflection groups m«(I") are presented only by their point groups W and
their lattices L when they are the semi-direct products of W and L, while if
it is not the case, we give their generators.

NOTATIONS.
i
e;=(,--,0,1,0,--,0), (=1, ---, m): canonical bases of C™.
2wt/8 -—.1+Z\/&§
w=2e = 2 .

r;: the reflection of the point group W of which root is f;.
dim: the dimension of the parabolic reflection group I
Point Group: the point group W of the crystallographic group [ .
Graph: the graph showing generating reflections of W.
Roots: the roots of the generators of W.
Lattice: the lattice consisting of the translations of ['.
Crystallographic Group: the crystallographic reflection group
I'y such that m(I"=Ts.
Center: the center of the parabolic reflection group I

CONVENTION OF THE GRAPHS. A vertex @ of a graph represents a reflec-
tion of order n for which one of its root 8 (| 8|=1) is specified. For simplicity
we write O instead of @. If two roots 8; and B, are not orthogonal, we join
the corresponding two vertices (which represent »; and r,, respectively) by a
segment, directed from ; to k, attached by the value (8;, B:). If the value is
real, the direction is omitted and moreover if the value is —1/2, the value is
also omitted. We follow the naming of the groups used by Shephard-Todd [93
and by Popov [8].
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dim Point Group Graph Roots

=e

1 2 n ﬁl 1
n+1 G@3, 1, n) ©o—C -0 ﬁj:ﬁ;\/‘%ﬁ
(n22) Ve (=2, -, n)

Lattice Crystallographic Group
, 1, ,

Lx—(l+wZ)ﬁﬁl+jZ]=2(Z+wJ)ﬁj G@3, 1, n)x L,

Center Generators of Parabolic Reflection Group
1 1 1 1
’ Oy 0 y » "_'] [ 3 - y ]
[E 0,5 = r—‘ ] ri, 0, 0] [“ NS LW R LR LW

[:rj! 0) 0] [l’j, ‘Bj, 0] [rj; wﬁjr 0] (]:2, Tty n)

0.7

o1 1
[7,0,01 1 750 75 )
[r.ir 0’ O] [7’]', 181'7 0] I:rj: wﬂj: 0] (]‘:2: Uy n)

1, 1 14w
[“’ vz 4¢§] ["’ vzhe 4¢_]
[rjr 09 0] [rj, ﬁj, 0] [7’,’, a)ﬂj, 0] (]:2, e, n)

Lattice Crystallographic Group
24w
Lz—(/+w/)\/——,8 F 5‘__, (Z+wZ)y—— 3 Bi G@3, 1, n)x L,
Center Generators of Parabolic Reflection Group
o, 1
[ I:rl; 01 0] l:rl, J_ﬂl; 4\/’3‘]
E,0, 2+w —14
2\/3 J [rfy 0; 0] [7’], 3 ﬁ]l ] [rj, 3 w,Bjy 0]
(j=2, -, n)
dim Point Group Graph Roots
1 2 n Bi=e
n+1 G4, 1, n) L_ B,i= 7T
(ngz) J 2 (];:2, e, n)
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Lattice

Crystallographic Group

L1=(z+z'z>ﬁﬁ,+ Bz+iz)p,

G@4,1,n)x L,

Center

Generators of Parabolic Reflection Group

1 1 1
r, 0,00 [r7zbug] [t 7580]
(70,01 [ry, B4 01 [ry By, 01 (=2, -, m)

(r, 0,00 [t 5800 [ 2EEs, o]
[rfh 0, 0] [r.ir ABJ‘; 0] [:rjy z..BJ" 0] (.7:2, "ty n)

1 1 147 1
[r,0, 0] [7‘1; 7‘-2‘,31; Z‘] [le'\/i‘-zz.en '2‘]
(75, 0,01 [r;, 8501 [r;,i8; 0] (j=2,+-,n)

1 1 1
(1, 0,0] [7'1, :/__E;Bh Z‘] [7’%, —J—Eﬁn 0]
[75,0,0] [r, B;,0] [r;,iB;,0] (j=2,:-,mn)

[E, 0,Z]

[rl’ 0) 0] [rf) —\/%ﬁly 0]
[rj’ 0! 0] [rjr ;BJ'; 0] [rj, iﬁj, 0:] (]:2, e, n)

AETE I,
[75,0,01 [, B5, 01 [r;iB;,01 (j=2, -, n)

Lattice

Crystallographic Group

L=(Z+i2) 5Bt B z+izm g,

11 G, 1, mx L,

Center Generators of Parabolic Reflection Group
| w00 [ugpnd] [ end
[2.0.42] 20,00 [r2328,0]  [r =58, 0]
(=2, =, )
{7, 0,0] r,——l—-_ﬁ,—l—
ot | 0 D

0,00 [rs 15285, 0] [r =58, 0]

(]‘:2: ) n)

15
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dim Point Group Graph Roots
12 Bi=e,
n
n+1 G, 1, n) ® O 0 szej~,._ej
(nz2) L V2
v (7=2, -, n)
Lattice Crystallographic Group
1 n
L=(Z+a)Z)ﬁ,B,+j§:]2(Z+wZ)ﬂj G, 1, n)x L

Center Generators of Parabolic Reflection Group
2 ._1. —_l.._ 3 —]‘_
[£0, ;4] [r, 0,03 | 5bugg] [ b0 0]
[rj! Or O] [7’]‘, ‘Bf) 0] [7’;’, w‘Bjr 0] (7:2; I 71)
1 NES L1
[E, 0, V;—Z] [7,0,0] {7’1; ﬂﬁl; 4 ] [7'1, ﬁ,@n 0]
[r5,0,01 [r; B;» 01 [r;, @B, 0] (j=2, -, n)
dim Point Group Graph Roots
1 »_(1)81—82
3 n SVz
n+1 G@, 3, n) 14+ ———0 p C;a—e;
(n=3) 2 vz
2 (=2, -, n)
Lattice Crystallographic Group
L= _z":l(zmzm,- G3, 3, m)x L
I= .

Center Generators of Parabolic Reflection Group
/3 .
2.0, %2 7] [7,0,01 [rs, 801 [rs, 0B, 01 (=1, -, n)
dim Point Group Graph Roots
1 ﬁ — iel—ez
3 n 1 2
Lo v
n+1 G4, 4, n) __sz’ —20 p,=dime
(n23) vZ
2 (]221 R 71)
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Lattice

Crystallographic Group

L= Jz: (Z+iZ)B;

G4, 4, n)x L

Center Generators of Parabolic Reflection Group
[E) 0: Z:l [rjr O: O] [rjr ﬂ]" O] [rjr iﬂj; 0] (]‘:ly Tty n)
dim Point Group Graph Roots
1 g,=Lt@e—e
3 n 1 V2
n+1 G(6, 6, n) 2_Jg_w O §—C=¢)
(n=3) V2
2 (].:2, Tty 71)
Lattice Crystallographic Group
L= 3 (Z+eZ)p; G, 6, M L
=
Center Generators of Parabolic Reflection Group
a3 .
[£,0,%577] [r5, 0,01 (7, 5 01 [rj, @8, 01 (=1, -, n)
dim Point Group Graph Roots
_iey—es
1 ﬁl'_’ \/‘?"
n G4, 2, n—1) 1+ 3 n—1 n Cr—e
- - . () O Jj-1 J
(n>3) 2 1 B Ny
5 V2 (j=2, -, n—1)
ﬁn:_en—l
dim Point Group Graph Roots
1 1 Bi= ie;—ey
O V2 =T
3| 64,22 e 3 fym G0
1 V2
2 V2 ,Ba=—ez
Lattice

Crystallographic Group

L= :g‘<z+z"z )8,

G4, 2, n—1)x L,

17
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Center Generators of Parabolic Reflection Group
1 [Tj, 0: 0] [7’1‘, ﬁj’ O] [rj, iﬁj; 0] (]Il, AR 71—1)
[E, 0, ——Z] 145
2 [ras 0,01 (7027580, 0]
[rj) O; 0] [rjx ‘Bj) 0] [rjr iﬁjr O] (7:17 Ty 71—1)
[7z, 0, 0]
[E, 0, Z] v _
[rj: Oy O:] [rjl ﬁj) 0:] [rj; Zﬁjr 0] (].:1, Ty 71'“1)
1+
[rn; '\/757” 0]
Lattice Crystallographic Group
L= 528+ (Z+i%) 56, G4, 2, n=Dx L,
j=1
Center Generators of Parabolic Reflection Group
[:r]" 0; 0] [rjr ﬁjr 0] [7’]‘, iﬂj: O] (j:]w St n..__]_)
0, L 14i
[L, 0, 57| [ra, 0,07 [rn, b o]
1 i
[r 580 0] [ e 0]
[rjv 0; 0] [7’]‘, B]'» 0] [rjr iﬁjt O] (]:11 Tty n_l)
1 i
7 0,00 [res g8 0] [ras 580, 0]
[E, 0, Z]
[rj) O; O:] [rj) ‘BJ'; O] [rj; Z.‘Bjy 0] (]:1) R n_l)
1 i 14
l:rn; «\/_2-‘87“ Ojl |:7’n.v 4\/_2.57” O:I |:rm ’\/”z—[gny O:I
Lattice Crystallographic Group
Ly=(Z+iZ)BH(Z+-iZY141)B, G4, 2,2)x L,
Center Generators of Parabolic Reflection Group
[rly Or O] [7’1: ,Bly O] [rly i‘BlJ O:]
[E, 0, Z] (75, 0,01 [rs (14082, 01 [re, (—142)8,, 0]
[7s, 0,07 [rs, '\/—2—,33; 07 [rs, \/71.,33; 0]
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dim Point Group Graph Roots
1 -
1 ,8,:(————+j;)_;_‘ ‘s
n G6,2,n=1) |94 3 n—1 g) ‘B'_ej_l_ej
£ e =t
(n>3) 2 1 vZ
5 vz (=2, -, n=1)
.Bn:—en—-l
dim Point Group Graph Roots
1 L B _{Itwe—e,
V2 ' V2
3 G, 2, 2) 2to 3 AT
2 1 - \/ 2
2 '\/—2— ﬁsz—ez
Lattice Crystallographic Group
L= (Z+wZ)B, G, 2, n—1)x L,
j=1
Center Generators of Parabolic Reflection Group
|: 1 I:rj) 0: 0] [Tj, anr 0] [rjy w‘ij 0] (]:17 Tty n"l)
E, 0, *—:Z]
2\/ 3 [rn; O; 0] I:rn: _1:‘87!1 ”—L:':l
A2 44/ 3
[rj} 0} 0] [r]" ‘Bjy 0] [rjy wﬁj: 0] (]:1: Ty n—_l)
3 [72,0,0]
2.057] |
[rj) O: O:] [r]'; ﬁf; 0] [rjy w‘Bjy O:] (]:17 Ty n—l)
1 1
[Tny '\/42“871; 4\/‘3‘]

Lattice Crystallographic Group
L,=(Z+0Z)p,+(Z+wZ)2+w)B, G, 2, 2)x L,
Center Generators of Parabolic Reflection Group

[7’1, 0; 0] [7’1, ﬁl; O] [7’1, w‘Bb 0]
3
[£,0,% 7] [r2,0,0] [rs, @+w)8s, 0] [rs, (~1+@)fs, 0]
24w, 43
[7’3, 0) O] [ri!: \/‘21831 4 :I

19
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dim Point Group Graph Roots
[9 =(1+Cﬂ)el'—ez
1 1 NZi
n G(6, 3, n—1) 24w ‘Bj:ej_l__ej
(n>3) 2 vZ
5 (7=2, -, n—1)
,an'_en-l
dim Point Group Roots
ﬁ __(1+a))el—‘ez
V2
3 G(6, 3, 2) 2+o ey —e,
2 B.= Na
53:—‘@2
Lattice Crystallographic Group
Li=E(Z+02)8, G6,3, n—x L,
b=
Center Generators of Parabolic Reflection Group
o [”j) O: 0] [7‘.7" ﬁiv O] [rj; wﬁj) O] (]:1: Ty 72'—1)
V3,
[5.0.25 ,
(a1 0,0] 707, 0]
[7']‘, 07 0] [7’]‘, Bjr O] [rjy wﬁj; 0] (]:1; tty n—1>
- [7a, 0’ 0
2043 ]
[r;,0,01 [rs 8501 [r), 0B;,01 (=1, -, n—1)
1
[rn; ‘\/T?:‘Bn' 0]
Lattice Crystallographic Group
Le=(Z+20Z)B,+Q2Z+0Z)p, G, 3, 2)x L,
Center Generators of Parabolic Reflection Group

[E,0,v3Z]

[rl» 0) 0] [7’1, ﬁl; 0] [rh Zwﬁl’ 0]
[72: 0; 0] l:rzy 2[92’ 0] [r27 w‘eb 0]
[r:, 0,01 [r,, ﬁﬁ:&y 0] [rs, \/_2—(0,83, 0]
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dim Point Group Graph Roots
1 2 lgx—ex
3 K4 ®—"—“®2 Y lmw
T 192'—-“_3—‘(914"@2'*‘93)
Lattice Crystallographic" Group
L=(Z+wZ)BHZ+wZ)B, K4x L
Center Generators of Parabolic Reflection Group
1
1 [rl; 0: 0] [}’1, .81, zv—g‘]
[E, 0, —_—Z]
3 [r2, 0, 0] [ 1 ]
Ve, U, Vo, BZ: zﬁ
dim | Point Group Graph Roots
1 2 =g
3 K5 V224w ” 1l—w -
——'3__— ﬁz'—_T(\/zex‘i‘ez)
Lattice ‘Crystallographic’ Group
L=(Z+0Z)8+(Z+0Z )V TP, ' Kdx L
Center Generators of Parabolic Reflection Group
1
|: . 1 [7'1, O: 0] [rl’ ﬁx, Zﬁ]
E, 0, —ﬁz] )
[r2; Oy 0:] [7’2, '\/ 2 ‘32) 73‘_]
dim Point Group Graph Roots
1 2 Bi=e
@ 1 1
3 K8 @ ﬁ 1—7
2 ,82:"2—(@1"92)
Lattice Crystallographic Group
L=(Z+iZ)B\H(Z+iZ)B, K8x L
Center Generators of Parabolic Reflection Group
_ 1 ]
1 [rb 07 0] Lr“ .Bly E‘] [7'1, ﬂl; 0]
[E’ 0, -Z“Z] - 1
70,01 [r Bo 5| [73 82,03
i 1 1
[E, 0, Z] [2,0,01 [ 8] 070,01 [ra B 5]

21
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dim Point Group Graph Roots
1 SR S S )
aQvz |PErmete
1+4/2:¢ o) B on: Iy [F
3 K12 5 3 |g=2H(V2=2N 2+‘/24 Vi,
144/ Zi 4
2 2 B _1_—_ie ___i_.e
3= 2 1 \/‘2‘ 2
Lattice Crystallographic Group
L=(Z+2iZ)8\+(Z+~/2iZ)B, Ki2x L
Center Generators of Parabolic Reflection Group
1 _— .
[£.0,52] 070,01 [y, B 0] [rs ~/ZiBs 0] (=1,2,3)
dim Point Group Graph Roots
1 ,81-—92
1—
4 K24 7 3 ﬁ2:~2—v(92+93)
1 T 1
Lattice Crystallographic Group
L= 3 (Z+32)p; K24x L
=
Center Generators of Parabolic Reflection Group
v .
(5.0, 7] 75, 0,01 [rs B 01 [rs 785 01 (7=1,2,3
dim Point Group Graph Roots
1 2 3 P ‘:el‘
() p—
4 K25 @ 240 @ 24w ® ,82:*5-9(91'*‘92‘,"83)
3 3
133=——a)e2
Lattice Crystallographic Group

L= 3(Z+wZ)B;

j=1

K25x L
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Center Generators of Parabolic Reflection Group
1 i 1 .
[E; 0: \/@Z] [rj» 0; 0] 1]’]') ﬁjr 2\/?] (]-—1, 2; 3)
dim Point Group Graph Roots
24w
1 9 3 ﬁlzT(‘?x‘*‘ez"r‘ea)
@ > ~ —__O
4 K26 2tw ® 1 B.=e,
3 A2 e,—e;
Ba= 22
V2
Lattice Crystallographic Group

L=3 <z+wz>;%5,-+<2+wz>m

K26 L,

Center Generators of Parabolic Reflection Group
1 [r5, 0, 0] [r- ~Lg, ——1—] (=1, 2)
[£.0.555%] SRRl v L W )
[r:, 0,01  [rs, ‘33, 0] [y, w.Bs, 0]

Lattice

Crystallographic Group

2 1
L,= E (Z4+wZ )ﬁﬁﬁ(z-{-wZ)‘—S-ﬁa

2t K26 L,

Center Generators of Parabolic Reflection Group
1 1 _
. ry, 0,01 |r 580 7o5] (=L
[E’ 0, 24/ 3 Z] 24+ 1
720,01 [ 5528, 0] [ =528:, 0]
3 3
dim Point Group Graph Roots
e,—e,
Bi= i/7
—ie,—e,
Be=—75
5 K29 2
—eyte,
Bs= N
—147 4
ﬁl‘:iz e]

23
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Lattice Crystallographic Group
L= 3 (Z+iZ)B; K29x I,
=
Center Generators of Parabolic Reflection Group
[:E, 0) Z] [rfr 0! 0] [rj, ABJ') 0] [7’_1', iﬁ]’: 0] (]:11 2: 3, 4)
dim Point Group Graph Roots
— 4
A= 47
— &3
182_ ’\/’2_
+
5 K31 Bs= ﬂ
=147
181_ 2\/‘_‘ ng @;
1—:
,83*\/—2' [
Lattice Crystallographic Group
= il(Zan'Z)ﬁj K31x L
=
Center Generators of Parabolic Reflection Group
[E 0: 2 Z:l [rjl 0: 0] I:rj; 19]'; 0] [rjy iﬁj) 0:[ (7:1’ 21 3) 4: 5)
dim Point Group | Graph Roots
,81—(«’3
1 2 3 4 B.= Lo (ey+estes)
5 K32 ——F——B—— 3
24w 2+w 2+t By=—we,
3 3 3
1+2w
‘B'l: 3 (ey—es—ey)
Lattice Crystallographic Group
— 21 (Z+wZ)8; K32x L
=
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Center Generators of Parabolic Reflection Group
[E 0 —1—2] [}, 0, 0] [r‘ 8, —1—] (j=1,2,3, 4
”ﬁ J» Y, 7» 1’2\/—3‘ 1=1,2,3,4)

dim Point Group

Graph

>w
S 1@)

6 K33 o
S i A\
1 2 lte 4
2
Roots
ﬁ;s_Jaiz”(es+eG) ﬁk:%h (k=3,4,5)

ﬁz:é—%—i (el—(1+2w>ez"‘ea_e4_es_eﬁ)

Lattice Crystallographic Group
L= 3 (Z+02)p, K33x L
=
Center Generators of Parabolic Reflection Group
[£,0,%22) 075, 0,01 [rs B3, 01 D73 0,01 (Gi=1,2,3,4,5)
dim Point Gréup Graph
3
7 K34
O— O —QO—0
1 2 14w 4 5 6
2

Roots

181::%(95'*‘96)

_o_

Be=3 5 (er—(1+20)e;—es—ei—es—eo)

_Cr-2—Cra
B= V2
1
.BGZ_Z-%(ex+ez+ea+(1+2‘”)e4+e5_eﬁ)

(k=3, 4, 5)

25
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Lattice Crystallographic Group
6
L=§‘_,1(Z+wZ)ﬁj K34x L
=
Center Generators of Parabolic Reflection Group
JI o
[Ey 0; _2—_ ] [T'j, 0) 0:] [7’]‘, 181'7 0] [7'_7', wﬁj} 0] (]:1) 2: <y 4) 57 6)
dim Point Group Lattice
G4, 2, n—1) = .
" ) L=F @+,

Crystallographic Group

Generators of Crystallographic Group

[G{, 2, n—1), L,I*

(r; 10y (rs 1By (riliBp (=1,-, n—=1)

(ra] 7580

Center Generators of Parabolic Reflection Group
[r]" 01 0] [7’;‘, ‘81'7 0] [7’]’, iﬁf’ 0] (]:1: Tty n—l)
[E,0,Z] 1 i 1
L —ig _Ls. o]
[rny \/2,81” 0i| [7'71; ’\/2/3 » 0:| [rm \/718
dim Point Group Lattice
3 K12 L=(Z+2iZ)BA(Z+~2iZ)B,

Crystallographic Group

Generators of Crystallographic Group

(7 10) (n | .81) (1] '\/?Z‘Bl)

(K12, L]* (ra10) (ra | Bo) (ra | /240
(- 72#)
Center Generators of Parabolic Reflection Group
[E o L Z] [r5 0, .0] 75, By 0]\/_[2?, '\/71',3;‘» 0] (J':l, 2)
o [gtnd] [ 200] [y
dim Point Group Lattice
5 K31 L:JZ,; (Z+iZ)B;

Crystallographic Group

Generators of Crystallographic Group

[K31, LJ*

(ri10) (1 B (r5148) (7=1,2,3,4)

(|5 5:)
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Center Generators of Parabolic Reflection Group
[ 1 ] [rjy Oy 0] [rjr Bj: O:I [rj: iﬁjr 0] (]=17 2: 3; 4)
E0, 57 14 —1+i 1—i
2 [r5) Tﬁs; 0] [7’5; —_Z——ﬁsu 0] [rfn 2 lg5) 0]

2.3. Corollaries. The corollaries below follow immediately from the classi-
fication of parabolic reflection groups.

COROLLARY 1. For any crystallographic reflection group 'y, there exists a
maximal parabolic reflection group I’y such that n ()=, that is, if m(I")=1x
for a parabolic reflection group I', then I' is a subgroup of I'y. Moreover, if I'x
is the semi-divect product of its point group W and the latiice, then I'y has the
structure Wx L(I',).

COROLLARY 2. Let W and W’ be the point groups of parabolic reflection
groups I' and I, respectively. If WCW' then there exists g= Aut(D) such that
g t'gcl”.

REMARK. There are following relations of inclusion among finite unitary
reflection groups;

G, 1, n) G, 1, n)
2/ N3 2
G®,2,n) G@,3,n) G, 2, n)
2 N8 2 |2
G3,1,n) G, 6. n) G4, 4, n)
N e
G@3, 3. n)
K32 K31 K34
[240 6 756
K25 K2 K29 K33
N\ /54
K4

G
The diagram I|{k means GDH, [G: H]=k.
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§3. Proof of the theorem.

Any discrete subgroup I" of G of locally finite covolume admits the exact

sequence :
1— Z(I) r wi(I) 1.

If I is generated by reflections m«(/") is a crystallographic reflection group.
Conversely, starting from crystallographic reflection groups, we shall construct
parabolic reflection groups as extensions of the given crystallographic groups.

3.1. Structure of the center. In this section, we study the center of [,
and give a necessary condition that I is generated by reflections.

PROPOSITION. Let I'yx be a crystallographic reflection group and I' be a
parabolic reflection group such that n(I")=1I"y. There exists the smallest natural
number ¥ which is determined by 'y such that the center of I’ is generated by
LE, 0, go/n], where q, is the number defined in §1.2 and n is a divisor of 9.

PrROOF. We assume first that [y is the semi-direct product of the point
group and the lattice. Let g=[w, B, 7] be a reflection of order 2, 3, 4 or 6,
then by §1.3 Lemmal, the central part 7 is equal to 0, +1/(2+/ 3)!8B, *=1/2¢38
or =+/3/2¢BB, respectively. Hence if I” is generated by reflections of order 2,
then for all g=[w, B8, yJeI’, the central part y belongs to (¢,/2)Z. Following
the same idea for remaining cases, we have the assertion.

Next we study the case that [y is not the semi-direct product of the point
group W and the lattice L. Let us consider the diagram in §2.1 for two para-
bolic reflection groups I' and I such that n ([)=n")=I% If W=W’ and
L=L" (these conditions do not necessarily imply m«(I)=ns(l")), then we have
L(I=L({""). Furthermore the center of L(I") is equal to the center of I
Hence by changing the crystallographic group [’y into the semi-direct product
of W and L and applying the argument of the former case, we get the
assertion. [

3.2. Method of constructing parabolic reflection groups. We fix a crys-
tallographic reflection group 'y and a divisor v of ¥, where ¥ is the number
determined by I'yx in §3.1. In this section, we study the exact sequence:

1 VACD)! r [N =TI —>1
more closely. Let us assume that the center Z(I") is
Z(I)={[E,0,7]; reviZ},

where §=q,/9 (for the definition of ¢,, see §1.2). In view of the coset decom-
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position of I" by Z(I'):
r= U A{[w, B, rw, +7r']; 7'EvizZ},

cwiprels

where y(w, B)€dZ, the reflection group I’ can be regarded as a subgroup of
the group I':

We want to define a map s: ['x—Z which satisfies the following condition

().

(*) The center of the group generated by the set

G(s):={lw, B, sw|P)G+71]; w|P)elx, yeviZ} is
{LE, 0, y1: reviZ}.

A map s satisfies the condition (x) if and only if G(s) itself forms a group. If
we can define such a map s and if the group G(s) is generated by reflections,
then we obtain a parabolic reflection group I by putting I'=G(s)=
{lw, B, sw|B)j+r]l; wip)el'sx, r=vgZ}. Note that we can modify s without
changing G(s) so that the image of sC{0, 1, ---, v—1}, namely we can regard
s as a map from I’y to Z,=Z/vZ, and we can determine s by the values of
the generators of I'y. We construct I” for a crystallographic group /'y and an
abelian group {[E, 0, 7]; y=v3Z} by searching values of the map s such that
G(s) is generated by reflections.

3.3. Some lemmas. In this section we prove some lemmas preparing for
the classification of the parabolic reflection groups 7.

LEMMA 1. Let V be a 2m-dimensional vector space over R, and ey, -+, en,
ef, - ,em be a set of bases of V. We denote by L the lattice Ze,+ - +Zen
+Zej+ - +Zer, and let B be a nondegenerate alternating form such that B(L, L)
=qZ (¢>0). We define a product on N:=VBR as follows:

(b, X", r):= (b+b, r4v'+5 B, 1)

for (b, r), (', ) &N. Let L denote the subgroup of N generated by (e, 0), -+,
(em, 0), (e1, 0), -+, (em, 0), then Z(L)=L N0, n); reR}=[L, [1=(0, n; reqZ},
where Z(L) is the center of L and [L, L] is the commutator subgroup.

PROOF. Since [(b, 7), (", #")]=(0, B(b, b)) Z(L), we have Z(L)D[L, L=
{0, r); r=qZ}. Let us consider an expression of an element (0, ) of Z(f) by
generators (e, 0), -+, (en, 0), (e}, 0), -+, (elr, 0) and their inverses. Then the
number of (e;, 0) appearing in the expression is equal to that of (e;, 0)"'=
(—ej, 0) for all ;. The same assertion is also valid for (e}, 0). Since f/[f, f]
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is a commutative group we have »=0(mod ¢Z), i.e. Z(f)c[lN,, f]. O

The set of bases B, -+, B» of the lattice L in the table is called the root
basis. For a root a, let w denote the reflection of the highest order which has
a as its root. When the order of w is p, we call @ the root of order p.

LEMMA 2. Assume that the order of any veflection of the point group is 2
or 3 and the lattice is of type (Z-+1Z) or (Z+wZ). Let a be a root of order
2. If Bj is a root base of order 2 then 2(a, B;) belongs to Z[i] or Z[w] accord-
ing to the type of the lattice. If Bjisa root of order 3 then v/ 2(a, B)cZ[w].

PrROOF. It is easy to see that the lemma holds if a is a root base. Let r,
denote the reflection of order 3 which has f§, as a root, and », denote the
reflection of order 2 which has 8, as a root. Put a’:=r,(a)=a—(1—w)a, B8:)B:,
and a”:=rp(a)=a—2a, Bn)Bn- It is sufficient to prove that if the lemma
holds for a then it also holds for a’ and «”. If B; is a root base of order 2
then (B:, B;)==1/+/2 or 0, i.e. 2(B., B)a, Br)EZ[w] and 2(B., B,HEZ[i] or
Z[w]. Hence, 2(a’, B)=2a, B))—2(l—w)a, B:) B BHEZ[w], and 2(a”, B;)=
2a, B)—4a, Bu)Bun, BHEZ[i] or Z[w]. If B, is a root base of order 3 then
(Be, B=1—w)/3, 1—®)/3, 1, or 0, i.e. (1—w) B, B)=Z[w] and (B, B,)=
+1/4/2 or 0. Consequently, v/ 2(a’, 8,), vV 2(a”, By)eZ[w]. O

We can prove the following lemma in a similar manner.

LEMMA 2’. Under the assumption of Lemma 2, for a root a of order 3, if
B; is a voot of order 3 or 2 then

(1—w)a, By, (A—a)a, B, 3a, 8,)c Z[lw] or
'\/7(0', ﬁ,)EZ[a)] ,

respectively.

LEMMA 3. Let I' be a parabolic reflection group. Assume that the crystallo-
graphic group mwx(I") is the semi-direct product W L of the point group W and
the lattice L. If the graph of W contains a subgraph O O and

J

k
LNA(CBA4CBy) = (Z+iZ)B,+(Z+iZ)By or (Z+wZ)B;+(Z+wZ)B,
then I' contains the elements
[E, (m+im)B;, 0], [E, (m+in)B., 01 or
[E, (nt+wn)B;, 01, [E, (nton)Bs, 0],

for all integers m, n.
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REMARK. implies that the map s:z4(I")—Z, defined in §3.2
vanishes on LN(CB;+CB).

ProoF. Put the center Z(I'):={[E, 0, y]; y=vGZ}, where § is the number
defined in § 3.2. We define the map s, : ZXZ—3§Z by s,(m, n)=s(E|(m~+Ln)B))j
(=7 or w). We have

L7, 0, Y17 LE, (m+Ln)Bs, sx(m, n)1lr;, 0, ¥]
=[E, m+Ln)Br+B,), selm, n)].
On the other hand,
LE, (m+Ln)Bs, se(m, n)JLE, n+Ln)B;, s;(m, n)]

=LE, m+En)Bs+B, ss(m, n)+s;(m, n)].

Hence [E,0, s;im, n)]el’, that is s;(m, n)=0(modvjiZ). Therefore
S((E|(m+Zn)B;)=0 for all m, n. O

LEMMA 3’. Under the assumption of Lemma 3, if the graph of the point
group W has a subgraph ® ® and the sublattice of L spanned by B;

(2+w)/3
and By is (Z+wZ)B;+(Z+wZ)B; then we have
1
| B, tntom)p), — Im+on?],
1
[E, (m+own)B;, VR lm+wnlz} el

for all integers m, n.

PrROOF. Similar to that of Cemma 3. O

3.4. Construction. Let /'y be a crystallographic reflection group and let
W be its point group. By using the map s: I'y—Z,, we construct a parabolic
reflection group I” such that my(/")=I"s. Assume first that the number of the
generators of W is equal to dimension of V' (see §1.2). Notice that in these
cases the crystallographic group I’y is the semi-direct product of W and the
lattice.

Case 1. Any reflection of W is of order 2. Namely, the case when W is
one of the following: G(m, m, s)(m=3, 4, 6, s=3, 4, ---), K24, K29, K33, K34,

The number ¥ (see §3.1) is 2. By Lemma 3, the map s must vanish on all
of the generators. Let I' be a subgroup of the group I which is defined in
§3.2. Using [Lemma 1 and Lemma 2, we can show that if I" is generated by
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reflections then, the center of I" is generated by [E, 0, g,], where ¢, is the
number defined in §1.2. Consequently we obtain the result in the table.

Case 1’. Any reflection of W is of order 3. Namely, the case when W is
K4, K5, K25 or K32.

The number § is also 2. By [Lemma 3, the reflection group I" contains all
reflections of I'. Thinking over [Lemma 2, we see that the center of I is
generated by [E, 0, ¢q,].

Case 2. Each reflection in W is of order 2 or 3. Namely, the case when
W is one of the following: G(3, 1, s) (s=2, 3, ---), K26.

For each of these finite reflection groups, there are two kinds of invariant
lattices. ¥ is equal to 6 for the case ['4+=G(3,1, s)x L,, and is equal to 2 for
the remaining ones. In the case when ¥ is 2, by and 2/, the center
of I' is generated by [E,0, g,]. The map s is determined by and

the similar calculation as in the proof of [Lemma 3 for the subgraph ® O.

1/vV/2

In the case when I'x=G(3, 1, s)X L,, for each possible value of the map s,
we must check whether I is generated by reflections. Let us assume first that
I" contains all reflections of I". By Lemma 2 and Lemma 2, if I” is generated
by reflections then the center of I is contained in {[E, 0, ¢]; ¢=1/(2+/ 3)Z}.
Meanwhile, the center always contains the set {[E, 0, ¢]; ¢=+/3/2Z}. Hence,
the center must be generated by [E, 0, 1/(2+/3)]or [E, 0, v/ 3/2]. Let B, be the
root of order 3 in the table and r, be a reflection which has 8, as a root. Put

So:=s((r,10) and s,:=s((;|1/4~/2B;1). By computing the third powers of
[71, 0, 50/(4v/3)] and [, 1/v/ 2 B4, s:/(4+/3)], we see that 5,=0, s,=1 (mod 2).
Hence, if the center is generated by [E, 0, 1/(24/3)], then s is determined by
so=0, s;=1. In the case when the center is generated by [E, 0, +/3 /2], there
exist reflections of the form [r,, (n+wn)/v 2 B,, x] in I', if and only if

1 1 .
—2——:{m(s,—so)+n(250—l—sl)—3mn—{-so} = W§1m+wn|2 (mod+3Z),

i.e. m+n)m+n+s,—s,)—@Bn+1)s; =0 (mod6).

On the other hand, any reflections of the form [r;, (m+nw)B;, 0] (=2) belong
to I'. Let L, denote the lattice generated by the set of all the translation
parts of reflections in I'. By computation, we can show that when s is deter-
mined by (s,, $,)=(0, 1), (0, 5) or (4, 1), L, coincides with the lattice L, i.e. I’
is generated by reflections. And the group constructed by the values of
s: (so, $1)=(0, 5) is conjugate to the group constructed by (s,, s;)=(0, 1). In
other cases I” has all reflections in I and we have the result in the table.

Case 3. There exists a reflection of which the order is not a prime. Namely
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the case when W is G4, 1, s), G(6, 1, s) (s=2, 3, ---) or K8.

There exist reflections of order 4 in G4, 1, s) and K8, and of order 6 in
G(6, 1, s). Note that these groups have reflections which are powers of the
reflections of order 4 or 6. For example, we study the case that the point
group is G(4, 1, s). Let B, be a root of order 4 and », be a reflection which
has B, as its root. Put s,:=s((r,]0)) and s,:=s((r1|1/4/2 B,)) as in Case 2.

We consider first the case the lattice is L,. Since g,=1 and §=4, the center
is generated by [E, 0, 1/4], [E,0,1/2] or [E,0,1]. By the contribution of
the reflection [7}, 1/4/2B,, 0], the element [E, 0, 1/4] is written by a product
of reflections. If the center is generated by [E, 0, 1/4], we see that (s,, $;)=
(0,0). In the case that the center is generated by [E, 0, 1/2], the condition
that there exist reflections of the form [r,, (m+in)/+/ 2 By, ] is

(m+n)m+n+s,—s,)—s, =0 (mod2).

Hence (s,, s,)=(0, 0), (0, 1) or (1,1). And L, coincides with L in each case.
In the cases of (s,, s;)=(0, 0) and (1, 1), we remark the contribution of the re-
flections [7%, *,0]. In the case when the center is generated by [E, 0, 1], it
must be 2(s,—s;)=0 (mod4), and there exist reflections of the form

[ry, (m+in)/+/ 2 B;, *] if and only if
(m+n)m+n+s;—s;)—se =0 (mod4).

Therefore (s,, s,)=(0, 0), (0, 2), (1,1) or (3,1). In the cases of (s, s;)=(0, 0)
and (3,1), L. coincides with L by the contribution of the reflections [7%, x, 07.

Next we consider the case the lattice is L,. Since ¢,=1/2 and §=2, we can
choose [E, 0, 1/4] or [E, 0, 1/2] as a generator of the center. If the center is
generated by [E, 0, 1/4], then (s,, s,)=(0, 0). By the contribution of the reflec-
tion [7%, 1/4/2B,, 0], the element [E, 0, 1/4] is written by a product of reflec-
tions. In the case when the center is generated by [E, 0, 1], the condition that
there exist reflections of the form [7,, (m+in)/~/ 2 B, ] is

(m+n)m+n+s¢—5,)—s, =0 (mod2).

But, this condition is not useful in this case. For L, coincides with L in each
case by the contribution of the reflections [7%, *, 0]. Hence we employ the
same method as for the graph @ (O. Then we have

1/4/2
[E, (m+in)/~/ 2 By, (1/2)|m+in|?]=’. This condition is satisfied only in the
case (S, $1)=(0, 1).

Now we study the case that the number of the generators of W is greater
than dimension of V.
Let B; be the root base which does not appear in the expression of the
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lattice in the table except for L, of G(4, 2, s—1). We call it an excessive root
base. The map s must vanish on the generators (r;|*) (j=1, -, s—1), so we
study the value of s for (r|=*).

We have a following list of sublattices LNCS; of L.

Finite Reflection Group Lattice L LNCB;
G4, 2, s—1) L, (Z+iZ) 28
G4, 2, s—1) L, (Z+iZ)%ﬂs
G4, 2, 2) L, (Z+iZ)V T By
G(6, 2, s—1) L, (Z+wZ>;/%ﬁs
G, 3, s—1) L. (Z+a)Z)%,Bs

2
G, 2, 2) L, (Z+02) 5B,
GG, 3, 2) L, (Z+0Z)~ 2 B;
K12 L (Z+iVZZ) By
K31 L (Z+iZ) B

Case 4. Crystallographic group is the semi-direct product of W and L.
Namely the case when W is one of the following: G(4, 2, s), G(, 2, s), G(6,3, s)
(s=3, 4, ---), K12, K31.

Put so:=s((r510)), si:=s((rs|xBs)) and s,:=s((rs|x’Bs)), where x=(1+17)/2
and x’=ix etc. We consider the case all the reflections of I" are of order 2.
Note that =2 in these cases. Let us assume that I” have all reflections in I
By the contribution of the reflections with a root parallel to the excessive root
base, [E, 0, go/2] is written by a product of reflections, and the map s is given
by (s, s1, S2)=(0, 0, 0).

Next we must study the case v=1, that is the center is generated by
[E, 0, ¢o]. In the case when the point group is K12 or K31, if /' is generated
by reflections, the center is necessarily {[E, 0, ¢g]l’; g=q.,/2Z}. 1f the crys-
tallographic group is G(4,2,s—1)X Ly, v/ 2 Bs=—2(Bs-1+ -+ +Bs)+14+)iB— 1),
hence [E, (1+:)/+/28s, 1/2], [E, 1—1)/~/2 85, 1/2]=T". Therefore s,+1=
s((rs|O)+1=s5,=s((rs|(14+7)/v 2 Bs)=s.=5((rs|(1—2)/+/ 2 B5)) (mod2). Consequ-
ently, (sq, S1, $2)=(0,1, 1) or (1,0, 0), and in each case the center is actually
{LE, 0, ¢]Jl"; g=q,Z}. In the case that the point group is G(6, 2, s—1), there
exist reflections of order 3. If the lattice is L,, then $=6. Assume that [’
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contains all reflections of I°, then we see that the center is {LE, 0, g]eT;
g<€qo/3Z}. Hence the center is generated by [E, 0, ¢,/3] or [E, 0, g,]. In the
case when the center is {[FE,0,q¢l<l"; g=qo/3Z}, so=5((rs]0)=0 and s,=
s((rs]1/4/ 2 Bs))=1. If the center is generated by [E, 0, ¢,], then s,=0, s,=1
(mod2) and s,—s,=3 (mod®b). There exist reflections of the form
[7s, (m+wn)/+/ 2 Bs, ] if and only if

(m+n)m+n+s,—s;) =s, (mod6),
hence s,=0 or 4. Therefore (s,, s;)=(0, 3) or (4, 1).

Case 5. Crystallographic group is not a semi-direct product of W and L.
Namely the case when W is G4, 2, s) (s=3, 4, ---), K12 or K31.

All the reflections in I are of order 2, and §=2. Let us assume that I”
contains all reflections of I". The center is generated by [E, 0, go.] for the case
that the point group W is G(4, 2, s—1). In the case when W=K12 or K31, the
center is generated by [FE, 0, go/2]. Moreover [E, 0, q,/2]1I’, even if we
assume the center is {[F, 0, ¢]€I"; g=q,Z}. Hence the center is necessarily
{TE.0,¢)el"; q=q,/2Z}, and the map s vanishes.

We complete the classification.
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