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1. Introduction.

Let $\Gamma$ be a countable discrete subgroup of the group $T^{1}=\{z\in C||z|=1\}$ .
The character group $\Gamma^{\wedge}$ of $\Gamma$ is a compact metric abelian group. Let $\chi_{\Gamma}$ be an
element of $\Gamma^{\wedge}$ determined by $\langle z, \chi_{\Gamma}\rangle=z$ for $z\in\Gamma$ , and $R(\Gamma)$ a homeomorphism
of $\Gamma^{\wedge}$ defined by $R(\Gamma)x=x\chi_{\Gamma}$ for $\chi\in\Gamma\wedge$ . $R(\Gamma)$ is called the translation of $\Gamma^{\wedge}$ .
The notion of flow equivalence of homeomorphisms was introduced by W. Parry
and D. Sullivan [2]. In this article we are concerned with flow equivalence of
translations $R(\Gamma)$ . This is closely related with stable isomorphism of irrational
rotation $C^{*}$-algebras (N. Riedel [3], M. Rieffel [4], S. Kawamura and H. Take-
moto [1]). We prove the following

THEOREM. For countable subgrouPs $\Gamma_{1}$ and $\Gamma_{2}$ of $T^{1}$ , translation$sR(\Gamma_{1})$ and
$R(\Gamma_{2})$ are mutually flow equivalent if and only if there exists a positive constant
$c$ such that $K_{1}=cK_{2}$ , where $K_{j}$ are subgroups of $R$ defined by $K_{j}=\{x\in R|$

$\exp(2\pi ix)\in\Gamma_{j}\},$ $j=1,2$ .
As an application we shall give necessary and sufficient conditions for flow

equivalence of n-dimensional irrational rotations, adding machine transformations
and solenoidal transformations respectively in the following examples.

EXAMPLE 1. Let $\lambda(1),$ $\lambda(2),$ $\cdots$ , $\lambda(n)$ be rationally independent irrational num-
bers and $\Gamma=\{\exp(2\pi i\Sigma_{j\Rightarrow 1}^{n}m(j)\lambda(]))|m(j)\in Z, j=1,2, \cdots , n\}$ . The translation
$R(\Gamma)$ is topologically conjugate with an n-dimensional irrational rotation $T=$

$T(\lambda(1), \lambda(2),$ $\cdots$ , $\lambda(n))$ defined by $T(x_{1}, x_{2}, \cdots , x_{n})=(x_{1}+\lambda(1), x_{2}+\lambda(2),$ $\cdots$ , $x_{n}+\lambda(n))$

for $(x_{1}, x_{2}, \cdots , x_{n})\in R^{n}/Z^{n}$ . Our theorem implies that irrational rotations
$T(\lambda(1), \lambda(2),$ $\cdots$ , $\lambda(n))$ and $T(\mu(1), \mu(2),$ $\cdots$ , $\mu(n))$ are mutually flow equivalent if
and only if there exist a positive constant $c$ and a matrix $A\in SL(n+1, Z)$ such
that

$(1, \lambda(1),$ $\lambda(2),$ $\cdots$ , $\lambda(n))=c(1, \mu(1),$ $\mu(2),$ $\cdots$ , $\mu(n))A$ .

EXAMPLE 2. Let $r=(r_{n})_{n\geqq 1}$ be a sequence of $integers\geqq 2$ , and $\Gamma=\{\exp(2\pi ik/$
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$(r_{1}r_{2}\cdots r_{n}))|k\in Z,$ $n\geqq 1$ }. An infinite direct product $X(r)$ of sets $\{0,1, \cdots , r_{n}-1\}$ ,
$n\geqq 1$ , becomes a compact metric group admitting coordinatewise addition with
right carry with respect to the product of discrete topologies on coordinate sets.
The translation $R(\Gamma)$ is topologically conjugate with an adding machine trans-
formation $T=T(r)$ of $X(r)$ defined by $T(x_{n})=(x_{n})+(1,0,0, )$ for $(x_{n})\in X(r)$ .
Our theorem implies that adding machine transformations $T((r_{n}))$ and $T((s_{n}))$

are mutually flow equivalent if and only if there exist positive integers $L$ and
$M$ such that $\{k/(Lr_{1}r_{2}\cdots r_{n})|k\in Z, n\geqq 1\}=\{k/(Ms_{1}s_{2}\cdots s_{n})|k\in Z, n\geqq 1\}$ . For a
positive integer $n$ and a prime number $p$ , let $r_{n}(p)$ be the maximal non-negative
integer $m$ such that $r_{n}$ is divisible by $p^{m}$ . Then the last condition is also
equivalent to the condition that, for any prime number $p,$ $r_{n}(p)\geqq 1$ for infinitely
many $n$ if and only if $s_{n}(p)\geqq 1$ for infinitely many $n$ and that $\sum_{n=1}^{\infty}r_{n}(p)=$

$\Sigma_{n=1}^{\infty}s_{n}(p)$ except for a finite number of prime numbers $p$ .

EXAMPLE 3. Let $\lambda$ be an irrational positive number, $r=(r_{n})_{n\geqq 1}$ a sequence of
$integers\geqq 2$ , and $\Gamma=\{\exp(2\pi ik\lambda/(r_{1}r_{2}\cdots r_{n}))|k\in Z, n\geqq 1\}$ . A set $X(\lambda, r)$ consist-
ing of all sequences $(x_{n})_{n\geq 0}$ of elements of $R/Z$ such that $x_{n-1}=r_{n}x_{n}$ (mod l)

for $n\geqq 1$ , becomes a compact subgroup of the infinite dimensional torus $\Pi_{n=0}^{\infty}R/Z$.
The translation $R(\Gamma)$ is topologically conjugate with a solenoidal transformation
$T=T(\lambda, r)$ of $X(\lambda, r)$ defined by

$T(x_{n})=(x_{n})+(\lambda, \lambda/r_{1}, \lambda/(r_{1}r_{2}), \cdots \lambda/(r_{1}r_{2}\cdots r_{n}), )$

for $(x_{n})\in X(\lambda, r)$ . Our theorem implies that solenoidal transformations $T(\lambda, (r_{n}))$

and $T(\mu, (s_{n}))$ are mutually flow equivalent if and only if there exist positive
integers $L$ and $M$ such that

$\{k/(Lr_{1}r_{2}\cdots r_{n})|k\in Z, n\geqq 1\}=\{k/(Ms_{1}s_{2}\cdots s_{n})|k\in Z, n\geqq 1\}$

and that $1/(L\lambda)+1/(M\mu)$ or $1/(L\lambda)-1/(M\mu)$ is in the above set.

2. Preliminaries.

We recall the definition of a flow built under function. For a homeomorphism
$T$ on a compact metric space $X$ and a continuous positive function $f(x)$ defined
on $X$, we denote by (X, f) the set $\{(x, u)\in X\cross R|x\in X, 0\leqq u\leqq f(x)\}$ . With the
identification of a point $(x, f(x))$ with the point $(Tx, 0)$ for $x\in X$, the set (X, f)
becomes a compact metric space under the relative topology induced from the
product topology of $X\cross R$ . Set for $(x, u)\in X\cross Z$

$f(x, n)=\{\begin{array}{ll}n-1\sum f(T^{i}x) if n>0,i=0 0 if n=0,-\Sigma f(T^{-i}x)-n if n<0.i=1 \end{array}$
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A flow $((T, f)_{t})_{t\in R}$ on the space (X, f) defined by $(T, f)_{t}(x, u)=(T^{n}x, u+t-f(x, n))$

if $f(x, n)\leqq u+t<f(x, n+1)$ , for $(x, u)\in(X, f)$ and $t\in R$ , is called a flow built
under function.

Homeomorphisms $T$ and $S$ on compact metric spaces $X$ and $Y$ are said to
be flow equivalent if flows $((T, f)_{t})_{t\in R}$ and $((S, g)_{t})_{t\in R}$ are topologically conjugate
for some continuous positive functions $f(x)$ and $g(y)$ , that is, if there exists a
homeomorphism $\varphi:(X, f)arrow(Y, g)$ such that $\varphi(T, f)_{t}=(S, g)_{t}\varphi$ for $t\in R$ .

Let $K$ be a countable discrete subgroup of $R$ and $\chi_{t}$ for $t\in R$ be a character
of $K$ defined by $\langle x, x_{t}\rangle=\exp(2\pi ixt)$ for $x\in K$. Then we obtain a flow $(K_{t})_{t\in R}$

acting on the character group $K^{\wedge}$ of $K$ defined by $K_{t}y=y^{\chi_{t}}$ for $y\in K^{\wedge}$ and $t\in R$.
LEMMA 1. Let $\Gamma$ be a countable discrete subgroup of $T^{1}$ and $c$ a positive

number, then the flow $((R(\Gamma), 1/c)_{t})_{t\in R}$ is toPologically conjugate with the flow
$((cK)_{t})_{t\in R}$ , where $K$ is a subgroup of $R$ defined by $K=\{x\in R|\exp(2\pi ix)\in\Gamma\}$ .

PROOF. Set $Y=(cK)^{\wedge}$ and $Y_{0}=\{y\in Y|\langle c, y\rangle=1\}$ , then the closed subgroup
$Y_{0}$ is a cross section for the flow $((cK)_{t})_{t\in R}$ with return time $1/c$ . Therefore
the flow $((cK)_{t})_{t\in R}$ is topologically conjugate with the flow $(((cK)_{1/C}, 1/c)_{t})_{t\in R}$

acting on $(Y_{0},1/c)$ . Moreover the latter is topologically conjugate with the flow
$((R(\Gamma), 1/c)_{t})_{t\in R}$ acting on $(\Gamma^{\wedge}, 1/c)$ under a conjugacy map $\varphi:(Y_{0},1/c)arrow(\Gamma^{\wedge}, 1/c)$

defined by $\varphi(y, u)=(\chi u)$ , where $\chi\in\Gamma^{\wedge}$ such that $\langle cx, y\rangle=\langle\exp(2\pi ix), \chi\rangle$ for
$x\in K$. Q. E. D.

We recall Schwartzman’s winding number [5] which plays an important role
in the sequel. Let $(F_{t})_{t\in R}$ be a flow on a compact metric space $X$ and $C(X, T^{1})$

$(C(X, R^{1}))$ the set of all $T^{1}$ -valued (resp. $R^{1}$-valued) continuous functions defined
on $X$. We take for a $\xi\in C(X, T^{1})$ and a point $x\in X$ a function $\rho_{x}\in C(R^{1}, R^{1})$

satisfying

$\xi(F_{t}x)/\xi(x)=\exp(2\pi i\rho_{x}(t))$ for $t\in R$ , and $\rho_{x}(0)=0$ .

A winding number $W((F_{t}), x, \xi)$ is defined by

$W((F_{t}), x, \xi)=\lim_{tarrow\infty}\rho_{x}(t)/t$

if the limit exists.
One can easily see the following properties:
(1) If flows $(F_{t})_{t\in R}$ and $(F_{t}’)_{t\in R}$ are topologically conjugate under a conjugacy

map $\varphi:Xarrow X’$ then $W((F_{t}’), \varphi(x),$ $\xi(\varphi^{-1}\cdot))=W((F_{t}), x, \xi)$ , for $\xi\in C(X, T^{1})$ and
$x\in X$.

(2) If $\xi$ and $\eta\in C(X, T^{1})$ are homotopic with each other, that is, if $\xi(x)/\eta(x)$

$=\exp(2\pi ir(x)),$ $x\in X$, for some $r\in C(X, R^{1})$ , then $W((F_{t}), x, \xi)=W((F_{t}), x, \eta)$ ,
$x\in X$.
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LEMMA 2. Let $T$ be a homeomorpfusm on a comPact metric sPace Xand $f(x)$

a Positive continuous function on X. If $T$ is uniquely ergodic, that is, if $T$ has a
unique invariant probability measure $\mu$ , ihen we have

$W(((T, 1)_{t}),$ $(x, 0))= \int_{X}f(x)d\mu(x)\cross W(((T, f)_{t}),$ $(x, 0))$ , $x\in X$ .
PROOF. Let $\xi\in C((X, f),$ $T^{1}$ ) and $x\in X$ and assume that the limit

$\lim_{tarrow\infty}\rho_{(x.0)}(t)/t$ exists, where $\rho_{(x.0)}\in C(R^{1}, R^{1}),$ $\rho_{Cx.0)}(0)=0$ and $\xi((T, f)_{t}(x, 0))/$

$\xi(x, 0)=\exp(2\pi i\rho_{(x,0)}(t))$ for $t\in R$ . We dePne a homeomorphicImap $\varphi:(X, f)arrow$

(X, 1) by $\varphi(z, u)=(z, u/f(z))$ . Then we have for $n\leqq t<n+1$

$\xi(\varphi^{-1}(T, 1)_{t}(x, 0))/\xi(\varphi^{-1}(x, 0))=\xi((T^{n}x, (t-n)f(T^{n}x))/\xi(x, 0)$

$=\xi((T, f)_{s}(x, 0))/\xi(x, 0)$

$=\exp(2\pi i\rho_{(x.0)}(s))$ ,

where $s=f(x, n)+(t-n)f(T^{n}x)$ . Since $T$ is uniquely ergodic.

$\lim_{tarrow\infty}s/n=\lim_{narrow\infty}f(x, n)/n=\int_{X}f(x)d\mu(x)$ .
Hence we have

$W(((T, 1)_{t}),$ $(x, 0),$ $\xi(\varphi^{-1}\cdot))=\lim_{tarrow\infty}\rho_{(x.0)}(s)/t$

$= \lim_{sarrow\infty}\rho_{(x.0)}(s)/s\cross\lim_{tarrow\infty}s/n\cross\lim_{tarrow\infty}n/t$

$=W(((T, f)_{t}),$ $(x, 0),$ $\xi$ ) $\cross\int_{X}f(x)d\mu(x)$ .

This implies $W(((T, 1)_{t}),$ $(x, 0))= \int_{X}f(x)d\mu(x)\cross W(((T, f)_{t}),$ $(x, 0))$ . Q. E. D.

LEMMA 3. There exist for any $\xi\in C(T^{n}, T^{1})$ a $r\in C(T^{n}, R^{1})$ and integers
$m_{1},$ $m_{2},$

$\cdots$ , $m_{n}$ such that

$\xi(z_{1}, z_{2}, z_{n})=z_{1}^{m_{1}}z_{2}^{m_{2}}\cdots z_{n}^{m_{n}}\exp(2\pi ir(z_{1}, z_{2}, z_{n}))$

for $(z_{1}, z_{2}, z_{n})\in T^{n}$ .
PROOF. Since $\xi\in C(T^{n}, T^{1})$ , we obtain a $t\in C(R^{n}, R^{1})$ such that

$\xi(\exp(2\pi iu_{1}), \exp(2\pi iu_{2}),$ $\cdots$ , $\exp(2\pi iu_{n}))=\exp(2\pi it(u_{1}, u_{2}, \cdots , u_{n}))$

for $(u_{1}, u_{2}, \cdots , u_{n})\in R^{n}$ . Then for each $j=1,2,$ $\cdots$ , $n$ , $t(u_{1}, \cdots , u_{j}+1, \cdots , u_{n})$

$-t(u_{1}, \cdots , u_{j}, \cdots , u_{n})$ is an integer-valued continuous function, and hence, $a_{\sim}^{-}con-$

stant. We denote it by $m_{j}$ . Set

$r(z_{1}, z_{2}, \cdots , z_{n})=t(u_{1}, u_{2}, \cdots , u_{n})-\sum_{j=1}^{n}m_{j}u_{J}$

for $(z_{1}, z_{2}, \cdots , z_{n})\in T^{n}$ , where $z_{j}=\exp(2\pi iu_{j}),$ $j=1,2,$ $\cdots$ , $n$ , then $r$ is well-defined,
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$r\in C(T^{n}, R^{1})$ and it satisfies the equation of the lemma. Q. E. D.

3. Proof of the theorem.

First we show that for any countable discrete subgroup $K$ of $R,$ $W((K_{t}), y)$

$=K$ for $y\in K^{\wedge}$ . Let for $x\in K\xi_{x}$ be a function defined by $\xi_{x}(y)=\langle x, y\rangle$ for
$y\in K^{\wedge}$ . Since

$\xi_{x}(K_{t}y)=\langle x, y^{\chi_{t}}\rangle$

$=\langle x, y\rangle\langle x, \chi_{t}\rangle$

$=\exp(2\pi ixt)\xi_{x}(y)$ for $y\in K^{\wedge}$ and $t\in R$ ,

we have $W((K_{t}), y, \xi_{x})=x$ . Therefore by the property (2) of Section 2 it suffices
to show that each $\xi\in C(K^{\wedge}, T^{1})$ is homotopic with $\xi_{x}$ for some $x\in K$.

For the group $K$, we can take a rationally independent sequence $\{\lambda(i)|i\in$

$I\cup J\}$ of real numbers and sequences $(r(j, n))_{n\geq 1},$ $j\in J$, of integers $\geqq 2$ such that
$K$ is generated by $\bigcup_{i\in I}\lambda(i)Z\cup\bigcup_{j\in J}\lambda(])K(j)$ , where $I$ and $J$ are countable sets
with $I\cap\backslash J=\emptyset$ , and $K(j)=\{k/(r(j, 1)r(j, 2)\cdots r(j, n))|k\in Z, n=1,2, \cdots\},$ $j\in J$. Then
the character group $K^{\wedge}$ of $K$ is isomorphic with a compact subgroup $X$ of the
infinite dimensional torus $T^{\infty}$ defined by

$X=\{(z_{1}, z_{2}, z_{10}, z_{11}, z_{20}, z_{21}, z_{j0}, z_{j1}, )|$

$z_{i}\in T^{1}$ for $i\in I,$ $z_{jn}\in T^{1}$ for $n=0,1,$ $\cdots$ and $j\in J$,
and $z_{jn}^{r(f.n)}=z_{j(n-1)}$ for $n=1,2,$ $\cdots$ and $j\in J$}.

Here an isomorphism map $\varphi:K^{\wedge}arrow X$ is given by

$\varphi x=$ $(z_{1}, z_{2}, \cdots , z_{10}, z_{11}, \cdots , z_{20}, z_{21}, \cdots , z_{j0}, z_{j1}, )$ for $x\in K^{\wedge}$ ,

where $z_{i}=\langle\lambda(i), x\rangle$ for $i\in I$ and $z_{jn}=\langle\lambda(j)/(r(j, 1)r(j, 2)\cdots r(j, n)), x\rangle$ for $n=$

$0,1,2$ , ,.. and $j\in J$. By the Stone-Weierstrass theorem there exists for any
$\xi\in C(K^{\wedge}, T^{1})$ a function $\xi\in C(X, T^{1})$ whose values depend only on a finite
number of coordinates $z_{i},$

$i\in I’$ and $z_{jn(j)},$ $j\in J’$ , such that $|\xi(\varphi^{-1}z)-\xi(z)|,$ $z\in X$,
are uniformly small, say

$|\xi(\varphi^{-1}z)-\tilde{\xi}(z)|<2$ for $z\in X$ ,

where $I’$ and $J’$ are finite subsets of $I$ and $J$ respectively and $n(j)$ , $j\in J’$ , are
positive integers. Here we note that for $j\in Jz_{j0},$ $z_{j1},$

$\cdots$ , $z_{jn(j)-1}$ are determined
by $z_{jn(j)}$ . Therefore $\xi$ can be considered to be a function on $T^{k}$ , where $k$ is
the cardinality of the set $I’\cup J’$ . Then by Lemma 3 $\xi\in C(T^{k}, T^{1})$ is homotopic

with a function $\Pi_{i\in I’}z_{i}^{m(i)}\cross\Pi_{J\in J’}z_{jn(j)}^{mtj)}$ for some integers $m(i),$ $i\in I’\cup J’$ . Since

$\Pi z_{i}^{m(i)}\cross\prod_{j\in J’}z_{jn(j)}^{m(j)}=\Pi\langle\lambda(i), \chi\rangle^{m(i)}\cross\prod_{j\in J’}\langle\lambda(])/(r(j, 1)\cdots r(j, n(j))), \chi\rangle^{m(j)}$

$t\in J’$ $i\in I’$

$=\langle x, \chi\rangle$ ,
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where $x=\Sigma_{i\in I’}m(i)\lambda(i)+\Sigma_{J\in J’}m(j)\lambda(])/(r(j, 1)\cdots r(j, n(j))),$ $\xi(\varphi\cdot)$ is homotopic
with $\xi_{x}$ . From the above inequality $\xi$ is homotopic with $\xi(\varphi\cdot)$ , and hence with $\xi_{x}$ .

Next we let $\Gamma_{1}$ and $\Gamma_{2}$ be countable discrete subgroups of $T^{1}$ and assume
that there exist positive continuous functions $f_{1}$ and $f_{2}$ on character groups $\Gamma_{1}^{\wedge}$

and $\Gamma_{2}^{\wedge}$ such that the flows $((R(\Gamma_{1}), f_{1})_{t})_{t\in R}$ and $((R(\Gamma_{2}), f_{2})_{t})_{t\in R}$ are topologically
conjugate. Since the translations $R(\Gamma_{1})$ and $R(\Gamma_{2})$ are uniquely ergodic, from
property (1) of Section 2, Lemma 1, Lemma 2 and the above result we have

$(1/ \int_{\Gamma_{1}^{\wedge}}f_{1}(z)d\mu_{1}(z))\cross K_{1}=(1/\int_{\Gamma_{2}^{\wedge}}f_{2}(z)d\mu_{2}(z))\cross K_{2}$ ,

where $\mu_{j}$ is the normalized Haar measure on $\Gamma_{j}^{\wedge},$ $j=1,2$ .
Conversely if $K_{1}=cK_{2}$ for some positive constant $c$ then by Lemma 1 the

flow $((R(\Gamma_{1}), 1)_{t})_{t\in R}$ is topologically conjugate with $((R(\Gamma_{2}), 1/c)_{t})_{t\in R}$ and hence
$R(\Gamma_{1})$ and $R(\Gamma_{2})$ are mutually flow equivalent. We complete the proof of the
theorem. Q. E. D.
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