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Introduction.

Let $M$ be a complex manifold with the complex structure $J$ . A J-invariant
symmetric tensor $g$ is called a Kaehler tensor if the associated 2-form $\omega_{g}(X, Y)$

$=g(X, JY)(X, Y\in TM)$ is closed. In addition, if $g$ is non-degenerate it is called
an indefinite Kaehler metric. A Kaehler tensor is called analytic if it is real
analytic. Let $C^{r}$ . be a complex linear space $C^{N}(N=r+s)$ with the indefinite
Kaehler metric:

$g_{r.s}=2 \{\sum_{\sigma=1}^{r}d\xi^{\sigma}\otimes d\overline{\xi}^{\sigma}-\sum_{\sigma=1}^{s}d\xi^{\sigma+r}\otimes d\overline{\xi}^{\sigma+r}\}$ ,

where $(\xi^{1}, \cdots , \xi^{N})$ denotes the canonical complex coordinate system.
E. Calabi [1] gave a necessary and sufficient condition for a Kaehler mani-

fold to be locally immersed into a complex space form as a Kaehler submanifold,
and showed the rigidity of such immersions. In this paper we discuss the ex-
istence and the local rigidity of a full holomorphic mapping of $M$ into $C^{r.s}$ pre-
serving a Kaehler tensor, and give several applications, where “full” means that
the image of the mapping does not lie in any complex hyperplane in $C^{r.s}$ .

In \S 1, we generalize the concept of diastases (introduced by Calabi [1] for
analytic Kaehler metrics) for analytic Kaehler tensors and prepare some basic
facts. In \S 2, we define the rank of an analytic Kaehler tensor. For a Kaehler
tensor of finite rank, a pair of integers, called “extended signature”, is introduced.
The Calabi condition for a local existence of holomorphic and isometric immer-
sions into $C^{N.0}$ (which is said to be resolvable of rank $N$ ) coincides with the
condition that the extended signature is $(N, 0)$ . We prove the following:

THEOREM. A simply connected complex manifold $M$ with a Kaehler tensor $g$

admits a full holomorPhic mappng $\Phi$ into $C^{r}\cdot$ . such that $\Phi^{*}g_{r.s}=g$ if and only

if $g$ is analytic and the extended signature is $(r, s)$ . Moreover $\Phi$ is locally rigid.

Furthermore we mention some facts about holomorphic mappings into the
Hilbert space $l^{2}$ .



520 M. UMEHARA

In \S 3, we investigate the set $\Lambda(M)$ of real analytic functions on a complex
manifold $M$, which consists of R-linear combinations of functions $h\overline{k}+k\overline{h}(h$ and
$k$ are holomorphic functions on $M$), and show that if $M$ is simply connected,
then for an arbitrarily fixed point $p\in M$ such a function $f\in\Lambda(M)$ is decomposed
into the following form

$f={\rm Re}( \phi^{0})+\sum_{\sigma=1}^{t}|\phi^{\sigma}|^{2}-\sum_{\sigma=1}^{l}|\phi^{\sigma+r}|^{2}$ ,

$\phi^{\sigma}(P)=0$ $(\sigma=1, ’ r+s)$ ,

where $\phi^{0},$ $\cdots$ , $\phi^{r+s}$ are holomorphic functions such that $\phi^{1},$ $\cdots$ , $\phi^{r+s}$ are C-linearly
independent. In this decomposition, $(r, s)$ , which is called the type of $f$, is
uniquely determined and coincides with the extended signature of the Kaehler
tensor corresponding to $-2\sqrt{-1}\partial\partial f$. Furthermore, $\phi^{0}$ and $\{\phi^{1}, \cdots , \phi^{r+s}\}$ are
also uniquely determined up to a constant term and a C-linear transformation
in the unitary group $U(r, s)$ of type $(r, s)$ respectively. It is easily seen that
the preceding theorem is a geometrical restatement of this decomposition theorem.
Accordingly, the rigidity of indefinite Kaehler submanifolds in $C^{r.s}$ comes to the
uniqueness of the decomposition as above. This suggests that $\Lambda(M)$ is deeply
concerned with the geometry of complex submanifolds. In fact, (as we show
in \S 3), the theorem in [4], which asserts that any two of complex space forms
of different types have no Kaehler submanifolds in common, is obtained from
the following transcendental properties concerned with $\Lambda(M)$ .

PROPOSITION. Let $p\in M$ be a fixed point of a complex manifold $M$ and let
$h^{1},$ $\cdots$ , $h^{N}$ be non-cmstant holomorphjc functions on $M$ such that $h^{\sigma}(P)=0(\sigma=$

$1,$ $\cdots$ , $N$). Then

(1) $\exp(\sum_{\sigma\Leftarrow 1}^{N}|h^{\sigma}|^{2})\not\in\Lambda(M)$ ,

(2) log $(1- \sum_{\sigma=1}^{N}|h^{\sigma}|^{2})\not\in\Lambda(M)$ ,

(3) $(1- \sum_{\sigma=1}^{N}|h^{\sigma}|^{2})^{-\alpha}\not\in\Lambda(M)$ $(\alpha>0)$ .

These properties will be also applied in [5] to prove that every Einstein
Kaehler submanifold of a complex linear or hyperbolic space is totally geodesic.

In \S 4, we mention conditions on the existence and the rigidity of holomor-
phic mappings preserving a Kaehler tensor into a non-flat indefinite complex
space form.
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\S 1. Diastases of analytic Kaehler tensors.

The diastases of analytic Kaehler metrics were originally introduced by E.
Calabi [1]. In this section diastases are introduced for analytic Kaehler tensors
on complex manifolds.

Let $M$ be a complex manifold with complex structure $J$ . A (real) covariant
symmetric 2-tensor $g$ on $M$ is said to be J-invariant if it satisfies $g(X, Y)=$

$g(JX, JY)$ (X, $Y\in TM$). For a J-invariant symmetric tensor $g$ , we define the
associated 2-form $\omega_{g}$ by

$\omega_{g}(X, Y)=g(X, JY)$ (X, $Y\in TM$).

If $\omega_{g}$ is closed, then $g$ is called a Kaehler tensor. In addition, if $g$ is non-
degenerate, it is called an indefinite Kaehler metric. A Kaehler tensor is called
analytic if it is real analytic.

On the complex tangent space, the associated 2-form $\omega_{g}$ of a Kaehler tensor
$g$ is a self-conjugate closed $(1, 1)$-form, namely it satisfies the following:

(1) $\overline{\omega}_{g}=\omega_{g}$ ,

(2) $d\omega_{g}=0$ ,

(3) $\omega_{g}(Z, W)=0$ if $Z$ and $W$ are both of $(1, 0)$ or $(0,1)$-type.

Conversely, for a given self-conjugate closed $(1, 1)$-form $\omega$ , we can construct a
Kaehler tensor $g_{\omega}$ by

$g_{\omega}(X, Y)=\omega(JX, Y)$ (X, $Y\in TM$).

Hence there is a one to one correspondence between Kaehler tensors and self-
conjugate closed $(1, 1)$-forms.

Let $g$ be an analytic Kaehler tensor on a complex n-manifold. Then locally,
there exists a real analytic function $f$ such that $\omega_{g}=-2\sqrt{-1}\partial\partial f$, where $f$ is
called a prjmjtjve function of $g$ . The primitive function $f$ is determined up to
the real part of a holomorphic function, that is, for any holomorphic function
$h,$ $f+h+\overline{h}$ is also a primitive function.

Now we introduce the multi-index defined as follows: We arrange all n-
tuples of non-negative integers as the sequence $\{(m_{I,1}, \cdots , m_{I,n})\}_{I=0,1,2},\cdots$ such that

$m_{0}=(0, 0)$ ,

$|m_{I}|\leqq|m_{I+1}|$ $(I=0,1, 2, )$ ,

where $m_{I}=(m_{I.1}, \cdots , m_{I.n})$ and $|m_{I}|= \sum_{\alpha=1}^{n}m_{I.a}$ . Then we denote by $(z)^{m_{l}}$ the
monomial $\Pi_{a=1}^{n}(z^{\alpha})^{m_{I.a}}$ in n-variables.

Let $f$ be a primitive function of $g$ . For a complex local coordinate system
$(z^{1}, \cdots , z^{n}),$ $f$ is expressed as a power series expansion:
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$f(q)=$ $\sum$

I. $K\Rightarrow 0$

Using this expression we define a complex-valued function $F$ as follows:

$F(P, q)=$ $\sum_{I,K=0}^{\infty}b_{I\overline{K}}(z(p))^{m_{I}}(\overline{z(q)})^{m_{K}}$ ,

where $p,$ $q$ are points in the convergence domain of $f$. Now a functional element
of a diastasis $D_{g}(p, q)$ is defined as follows:

(1.1) $D_{g}(p, q)=F(P, P)+F(q, q)-F(P, q)-F(q, p)$ .
Since $F$ is independent of local coordinate systems, so is $D_{g}$ . Using the

same discussion as in Calabi [1], the following properties are easily verified:

(1) $D_{g}$ is independent of the choice of a primitive function, namely it is
uniquely determined by $g$ .

(2) $D_{g}(p, q)=D_{g}(q, p)$ .
(3) $D_{g}$ is a real analytic function.

The diastasis $D_{g}(p, q)$ is defined on some neighborhood of the diagonal set
$\{(p, p);p\in M\}$ of the product space $M\cross M$. For $p\in M$ fixed, $D_{g}(p, q)$ is a
primitive function of $g$ . So we may regard the diastasis as a normalization of
the primitive functions at the point $p$ .

EXAMPLE 1. The space $C^{r.s}$ $(r, s=0, \cdots , N, r+s=N)$ is the complex linear
space $C^{N}$ with the indefinite Kaehler metric:

$g_{r.s}=2 \{\sum_{\sigma\Leftarrow 1}^{r}d\xi^{\sigma}\otimes d\overline{\xi}^{\sigma}-\sum_{\sigma=1}^{s}d\xi^{\sigma+r}\otimes d\overline{\xi}^{\sigma+r}\}$ ,

where $(\xi^{1}, \cdots , \xi^{N})$ is the canonical complex coordinate system of $C^{N}$ . The as-
sociated 2-form $\omega_{r.\iota}$ is given by

$\omega_{r,s}=-2\sqrt{-1}\{\sum_{\sigma=1}^{r}d\xi^{\sigma}\wedge d\overline{\xi}^{\sigma}-\sum_{\sigma=1}^{s}d\xi^{\sigma+r}\wedge d\overline{\xi}^{\sigma+r}\}$ ,

and the diastasis is given by

(1.2) $D_{r.s}(p, q)= \sum_{\sigma=1}^{r}|\xi^{\sigma}(P)-\xi^{\sigma}(q)|^{2}-\sum_{\sigma=1}^{s}|\xi^{\sigma+r}(p)-\xi^{\sigma+r}(q)|^{2}$ $(P, q\in C^{r.s})$ .

EXAMPLE 2. The indefinite complex projective space $CP_{s}^{N}(b)(0\leqq s\leqq N)$

of constant holomorphic sectional curvature $b>0$ is the open submanifold
$\{(\xi^{0}, \xi^{1}, \cdots , \xi^{N})\in C^{N+1} ; \Sigma_{\sigma=0}^{N-s}|\xi^{\sigma}|^{2}-\Sigma_{\sigma=0}^{s-1}|\xi^{N-\sigma}|^{2}>0\}/C^{*}$ of $CP^{N}=(C^{N+1}\backslash (0))/C^{*}$ .
The associated 2-form of the indefinite Kaehler metric of $CP_{s}^{N}(b)$ is defined by
$(-4\sqrt{-1}/b)\partial\partial$ log $( \sum_{\sigma=0}^{N-s}|\xi^{\sigma}|^{2}-\Sigma_{\sigma=0}^{s-1}|\xi^{N-\sigma}|^{2})$ . The diastasis is given by
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(1.3) $D(P, q)=(2/b)$ log $(1+ \sum_{\sigma\Leftarrow 1}^{N-S}|\xi^{\sigma}(q)/\xi^{0}(q)|^{2}-\sum_{\sigma=0}^{s-1}|\xi^{N-\sigma}(q)/\xi^{0}(q)|^{2})$

where $P=(1, 0, \cdots , 0)$ and $\xi^{0}(q)=0$ . In case $s=0$ , this space coincides with the
ordinary complex projective space $CP^{N}(b)$ with Fubini-Study metric.

EXAMPLE 3. The indefinite complex hyperbolic space $CH_{s}^{N}(b)(0\leqq s\leqq N)$ of
constant holomorphic sectional curvature $b<0$ is obtained from $CP_{N-S}^{N}(-b)$ by
replacing the metric of $CP_{N-S}^{N}(-b)$ by its negative. In case $s=0$ , this space
coinsides with the ordinary complex hyperbolic space $CH^{N}(b)$ .

The indefinite Kaehler manifolds $C^{r.s},$ $CP_{s}^{N}(b)$ and $CH_{s}^{N}(b)$ are all called the
indefinite complex sPace forms with index $2s$ .

The diastases have the following useful property.

PROPOSITION 1.1. Let $M$ and $\tilde{M}$ be complex manifolds with analytic Kaehler
tensors $g$ and $\tilde{g}$ respectively and $\Phi$ a holmorphjc maPping of $M$ into M. Then
$\Phi^{*}\tilde{g}=g$ if and only if
(1.4) $D_{g}(p, q)=D_{\tilde{g}}(\Phi(p), \Phi(q))$ ,

where $p,$ $q\in M$ in the region of definition.
PROOF. We suppose that $\Phi^{*}\tilde{g}=g$ . Then for a primitive function $f$ of $\tilde{g}$ ,

we have
$-2\sqrt{-1}\partial\partial(f\circ\Phi)=-2\sqrt{-1}\Phi^{*}\partial\partial f=\Phi^{*}\omega_{\tilde{g}}=\omega_{g}$ .

This implies that $f\circ\Phi$ is a primitive function of $g$ . Since $\Phi$ is holomorphic, by
the definition of the diastasis, we have the relation (1.4). The converse is
easily shown by differentiating (1.4) with respect to the variable $q$ . $q.e.d$ .

\S 2. Extended signature of analytic Kaehler tensors.

First of all, we prepare some properties of infinite dimensional matrices.

DEFINITION. The rank of an infinite dimensional matrix $B=(b_{I\overline{K}})_{I.K=1.2.8}\ldots$ .
is defined by

rank $(B)= \lim_{marrow\infty}$ rank $(B_{mm})$ ,

where $B_{mm}=(b_{i\overline{j}})_{i,j=1,\cdots,m}$ .

Let $a^{\sigma}=(a_{I}^{\sigma})_{I=1.1,3}\ldots.(\sigma=1, \cdots , N)$ be systems of sequences. If we set

$b_{I\overline{K}}= \sum_{\sigma=1}^{r}a_{I}^{\sigma}\overline{a}_{K}^{\sigma}-\sum_{\sigma=1}^{*}a_{I}^{\sigma+r}\overline{a}_{K}^{\sigma+r}$ $(r+s=N)$ ,
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then $B=(b_{I\overline{K}})_{I.K=1.2,8}\ldots$ . is an infinite dimensional Hermitian matrix, that is
$b_{I\overline{K}}=\overline{b_{K\overline{I}}}$ . If we put $P_{m}=(a_{i}^{\sigma})_{\sigma=1\ldots..N.i=1\ldots..m}$ , then $B_{mm}={}^{t}\overline{P}_{m}I_{r},{}_{s}P_{m}$ , where

$I_{r.s}=($ $1\sim_{r_{\backslash }}1-1\sim_{S}-1\backslash ]$

Hence we have

rank $(B)= \lim_{marrow\infty}$ rank $(B_{mm}) \leqq\lim_{marrow\infty}rank(P_{m})\leqq N$ .

The equality holds if and only if $\lim_{marrow\infty}rank(P_{m})=N$, that is, $\{a^{\sigma}\}_{\sigma=1\ldots..N}$ are
C-linearly independent.

Conversely, every Hermitian matrix of finite rank is obtained in such a way.
In fact, let $B=(b_{I\overline{K}})_{I.K=1,2.\theta}\ldots$ . be a Hermitian matrix of rank $N<\infty$ . First, we
suPpose rank $(B_{NN})=N$, then $B_{NN}$ is known to be written as follows:

(2.1) $B_{NN}={}^{t}\overline{P}I_{r}.{}_{s}P$ ,

where $r$ (resp. s) is the number of positive (resp. negative) eigenvalue of $B_{NN}$

and $P=(p_{\tau}^{\sigma})_{\sigma.\tau=1\ldots..N}$ is a non-singular matrix. Since every column is a C-linear
combination of the first N-th columns, there exist $u_{I}^{\sigma}\in C(\sigma=1, \cdots , N, I=1,2,3, \cdots)$

such that

(2.2) $b_{I\overline{K}}= \sum_{\sigma=1}^{N}b_{I\overline{\sigma}}u_{K}^{\sigma}$ (I, $K=1,2,$ 3, ).

Now if we let $a_{I}^{\sigma}=\Sigma_{\tau=1}^{N}\overline{p}_{\tau}^{\sigma}\overline{u}f$ $(\sigma=1, \cdots , N, I=1,2, 3, )$ , then

(2.3) $b_{I\overline{K}}= \sum_{\sigma=1}^{r}a_{I}^{\sigma}\overline{a}_{K}^{\sigma}-\sum_{\sigma=1}^{s}a_{I}^{\sigma+r}\overline{a}_{K}^{\sigma+r}$ .

Next we consider the case rank $(B_{NN})<N$. Since $B$ is of rankN, there ex-
ists a positive integer $m$ such that rank $(B_{mm})=N$. By a suitable simultaneous
permutation of the first m-th columns and lows, we can obtain a new Hermitian
matrix $B’=(b_{I\overline{K}}’)_{I,K=1,2.8},\cdots$ such that rank $(B_{NN}’)=N$. We denote this permuta-
tion by

$\iota=(\begin{array}{lll}1, \cdots m\iota(1), \cdots \iota(m)\end{array})$ .

We have already shown that each component of $B’$ is written as follows:

$b_{I\overline{K}}’= \sum_{\sigma\Rightarrow 1}^{r}c_{I}^{\sigma}\overline{c}_{K}^{\sigma}-\sum_{\sigma=1}^{l}c_{I}^{\sigma+r}\overline{c}_{K}^{\sigma+r}$

Hence if we put
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$a_{i}^{\sigma}=c_{(i)}^{\sigma}$ $(i=1, m)$ ,

$a_{I+m}^{\sigma}=c_{I+m}^{\sigma}$ $(I=1,2, 3, )$ ,

then each component of $B$ is also expressed as (2.3). The pair of integers $(r, s)$

determined by (2.3) is called the signature of the Hermitian matrix $B$ . For a
sufficiently large integer $m,$ $r$ (resp. s) is the number of positive (resp. negative)
eigenvalues of $B_{mm}$ .

Moreover our construction (2.3) is determined up to a linear transformation.
Let $U(r, s)(r+s=N)$ be the group of linear transformations of $C^{r.s}$ which pre-
serve the indefinite Kaehler metric $g_{r}..$ . Each element of $U(r, s)$ is also re-
garded as an $N\cross N$ complex matrix $T$ which satisfies ${}^{t}\overline{T}I_{r.s}T=I_{r},’$ . We have
the following:

LEMMA 2.1. Let $B=(b_{I\overline{K}})_{I.K=1,2,3},\cdots$ be a Hermitian matrix of rank $N<\infty$

satisfying (2.3) with respect to a system of sequences a $=\{a_{I}^{\sigma}\}_{I=1.2.3},\cdots(\sigma=1, \cdots , N)$ .
SuPpose that each component of $B$ has another such $decompo\alpha tion$ :

(2.4) $b_{I\overline{K}}= \sum_{\sigma=1}^{r’}c_{I}^{\sigma}\overline{c}_{K}^{\sigma}-\sum_{\sigma\Leftarrow 1}^{\epsilon’}c_{f}^{\sigma+r’}\overline{c}_{K}^{\sigma+r’}$ $(r’+s’=N)$ ,

for $I,$ $K=1,2,3,$ $\cdots$ . Then $(r’, s’)=(r, s)$ and there exis $ts$ a matrix $T=(t_{ij})\in U(r, s)$

$(r+s=N)$ such that

$c_{K}^{\sigma}= \sum_{\tau=1}^{N}f,a_{K}^{\tau}$ $(\sigma=1, \cdots , n, K=1,2, 3, )$ .
PROOF. Let

$x_{K}={}^{t}(a_{K}^{1}, \cdots a_{K}^{N})$ ,

$y_{K}={}^{t}(c_{K}^{1}, \cdots c_{K}^{N})$ $(K=1,2, 3, )$ .
Then (2.3) and (2.4) give us

(2.5) $b_{IR}={}^{t}\overline{x}_{K}I_{r.s}x_{I}={}^{t}\overline{y}_{K}I_{r.s}y_{I}$ .

Since the matrix $B$ is of rank $N$, we can choose C-linearly independent
vectors $\{x_{i_{\sigma}}\}_{\sigma=1,\cdots.N}$ and $\{y_{J_{\sigma}}\}_{\sigma=1\ldots.,N}$ . Then there exists an $N\cross N$ complex
matrix $T$ such that $Tx_{i_{\sigma}}=y_{J_{\sigma}}$ $(\sigma=1, \cdots , N)$ . Let $X,$ $Y$ be non-singular matrices
$X=(a_{i_{\tau}}^{\sigma})_{\sigma.\tau=1,\cdots.N}$ and $Y=(c_{j_{\tau}}^{\sigma})_{\sigma.\tau=1\ldots.,N}$ . From (2.5) it follows that

${}^{t}\overline{X}I_{r.s}X={}^{t}\overline{Y}I_{r.s}Y={}^{t}\overline{X}({}^{t}\overline{T}I_{r.s}T)X$ .
Since $X$ is non-singular, we have

${}^{t}\overline{T}I_{r.s}T=I_{r.s}$ .
Hence $(r’, s’)=(r, s)$ and $T\in U(r, s)$ . We also have
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${}^{t}\overline{X}I_{r.s}x_{K}={}^{t}\overline{Y}I_{r.s}y_{K}$

$={}^{t}\overline{X}^{t}\overline{T}I_{r.s}y_{K}$

$={}^{t}\overline{X}({}^{t}\overline{T}I_{r,s}T)T^{-1}y_{K}$

$={}^{t}\overline{X}I_{r.s}(T^{-1}y_{K})$ ,

thus $x_{K}=T^{-1}y_{K}(K=1,2, 3, )$ , which concludes our assertion. $q.e.d$ .
Let $g$ be a Kaehler tensor on a complex n-manifold $M$. For a complex local

coordinate system $(z^{1}, \cdots , z^{n})$ , we put $g_{\alpha\overline{\beta}}=g(\partial/\partial z^{a}, \partial/\partial\overline{z}^{\beta})$ , then $(g_{\alpha\overline{\beta}})_{a.\beta=1\ldots..n}$ is
a Hermitian matrix. At each point $p\in M$, the signature of the matrix $(g_{a\overline{\beta}})$ is
called the signature of the Kaehler tensor $g$ . Obviously this definition is in-
dependent of local complex coordinate systems.

Now we define the extended signature of an analytic Kaehler tensor $g$ on $M$.
Let $p\in M$ be a point of a coordinate neighborhood $\{U;(z^{1}, \cdots , z^{n})\}$ . The
diastasis $D_{g}(p, q)$ has the power series expansion at $P$ as a function of variable $q$ :

$D_{g}(p, q)=$ $\sum_{I,K=1}^{\infty}b_{IK}(z(q)-z(p))^{m_{I}}(\overline{z(q)-z(p)})^{m_{K}}$ .

Then $B=(b_{I\overline{K}})_{I.K=1.2.S},\cdots$ is considered as an infinite dimensional Hermitian matrix.
The rank of the matrix $B$ is called the rank of the analytic Kaehler tensor $g$

at $p$ . If the rank of $B$ is finite, we call the signature of $B$ the extended signature
of $g$ at $p$ in this paper. Note that the extended signature is defined only for
analytic Kaehler tensors of finite rank. We will show later that the extended
signature is independent of local coordinate systems and the choice of a point
in $M$.

REMARK. Let $(r, s)$ and $(r’, s’)$ be the signature and the extended signature
of an analytic Kaehler tensor $g$ at $p$ respectively. Since $g_{a\overline{\beta}}=b_{\alpha\overline{\beta}}$ , the matrix
$(g_{a\overline{\beta}})_{a,\beta=1\ldots.,n}$ is considered as a submatrix of $B$. So we can easily check the
inequalities $r’\geqq r,$ $s’\geqq s$ .

A holomorphic mapping of a complex manifold into $C^{r.s}$ is called full if the
image of the mapping does not lie in any complex hyperplane of $C^{r.s}$. Now we
prove the following:

THEOREM 2.2. Let $M$ be a complex manifold with a Kaehler tensor $g$ . $s_{u}p-$

pose that there exists a full holomorphic maPpng $\Phi$ of $M$ into $C^{r,s}$ such that
$\Phi^{*}g_{r.s}=g$. Then $g$ is analytic and its extended signature is $(r, s)$ at every point
with respect to any coordinate systems. Conversely, if $g$ is analytic and its ex-
tended $\alpha gnature$ is $(r, s)(r+s=N<\infty)$ at $p\in M$ with respect to a coordinate
system, then there exists a full holomorphic mapping $\Phi$ of some neighborhood of
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$p$ into $C^{r,s}$ such that $\Phi^{*}g_{r.s}=g$.
To prove this, we prepare some lemmas.

LEMMA 2.3. Let $\Phi=(\phi^{1}, \cdots , \phi^{N})$ be a holomorphic $map\mu ng$ of a complex
n-manifold $M$ into $C^{N}$ su.ch that $\Phi(p)=0$ for fixed $p\in M$ and let $\phi^{\sigma}=$

$\sum_{I=0}^{\infty}a_{l}^{\sigma}(z-z(P))^{m_{I}}(\sigma=1, \cdots , N)$ , where $(z^{1}, \cdots , z^{n})$ is a local coordinate system
of M. Then the system of sequences a $=(a_{I}^{\sigma})_{t=1,2.8}\ldots.(\sigma=1, \cdots , N)$ is C-linearly
indepmdmt if and $mly$ if $\Phi$ is full.

PROOF. For an open subset $U,$ $\Phi|_{U}$ is full if and only if so is $\Phi$ by the
analyticity of $\Phi$ . Now our assertion is immediate. q.e. $d$ .

LEMMA 2.4. Let $M$ be a complex manifold with a Kaehler tensor $g$ and $\Phi a$

holomorphic mapping of $M$ into $C^{r.\partial}(r+s=N)$ such that $\Phi^{*}g_{r.s}=g$ . Then $g$ is
analytic and its rank is less than or equal to $N$ at each point. Moreover if $\Phi$ is
full then the rank of $g$ is everywhere $N$ and its extended signature is $(r, s)$ .

PROOF. Since $g_{r.*}$ is analytic, so is $g$ . Let $p\in M$ be an arbitrarily fixed
point. Without loss of generality, we may put $\Phi(p)=0$ and take a coordinate
system $(z^{1}, \cdots , z^{n})$ with the origin $p$ . Then by Proposition 1.1,

(2.6) $D_{g}(p, q)=D_{r.s}(0, \Phi(q))$

$= \sum_{\sigma=1}^{f}|\phi^{\sigma}(z(q))|^{2}-\sum_{\sigma=1}^{l}|\phi^{\sigma+r}(z(q))|^{2}$ .

Substituting $\phi^{\sigma}=\Sigma_{I=1}^{\infty}a_{l}^{\sigma}(z)^{m_{I}}$ into (2.6), we have

$D_{g}(p, q)= \sum_{I.K=1}^{\infty}\{\sum_{\sigma=1}^{r}a_{I}^{\sigma}\overline{a}_{K}^{\sigma}-\sum_{\sigma=1}^{s}a_{I}^{\sigma+r}\overline{a}_{K}^{\sigma+r}\}(z(q))^{m_{I}}(\overline{z(q)})^{m_{K}}$ .

Now our assertion follows immediately from Lemma 2.3 and the discussion of
infinite dimensional matrices in this section. $q.e.d$.

PROOF OF THEOREM 2.2. By Lemma 2.4, the first assertion is ovbious. We
prove tbe converse. By using a complex local coordinate system $(z^{1}, \cdots , z^{n})$

with the origin $p\in M,$ $D_{g}$ has the power series expansion:

(2.7) $D_{g}(p, q)=$ $\sum$

I. $K=1$

Let $\rho_{1},$
$\cdots$ , $\rho_{n}$ be positive numbers such that the power series (2.7) converges

absolutely in $|z^{\alpha}|<\rho_{\alpha}$ $(\alpha=1, \cdots , n)$ . By the assumption, the Hermitian matrix
$B=(b_{I\overline{K}})_{I.K=1.’.9},\cdots$ determined by (2.7) is of rank $N$. Without loss of generality,
we may suppose that rank $(B_{NN})=N$ and that $B$ satisfies the relations (2.1) and
(2.2) for some nonsingular matrix $P=(P_{\tau}^{\sigma})_{\sigma,e=1\ldots.,N}$ and $u_{I}^{\tau}\in C$ $(\sigma=1,$ $\cdots$ , $N$,
$I=1,2,$ 3, ). Now let



528 M. UMEHARA

$a_{I}^{\sigma}= \sum_{\tau=1}^{N}\overline{p}_{\tau}^{\sigma}\overline{u}_{I}^{\tau}$
$(\sigma=1, \cdots , N, I=1,2, 3, )$ ,

then we have already shown that each component of $B$ is expressed by

$b_{I\overline{K}}= \sum_{\sigma=1}^{f}a_{I}^{\sigma}\overline{a}_{K}^{\sigma}-\sum_{\sigma=1}^{l}a_{I}^{\sigma+r}\overline{a}_{K}^{\sigma+r}$ .
By setting $\phi^{\sigma}=\Sigma_{I=1}^{\infty}a_{I}^{\sigma}(z)^{m_{I}}$ , from (2.7) and (2.8), we have the relation (2.6).

Therefore it suffices to show that each $\phi^{\sigma}$ converges absolutely on some neigh-
borhood of $p$ . Let $B_{I}$ denote the I-th column ${}^{t}(b_{1\overline{I}}, \cdots , b_{N\overline{I}})$ of the matrix
$B_{N\infty}=(b_{\sigma\overline{I}})_{\sigma=1\ldots..N,I=1.2,8}\ldots.$ . Then it is regarded as an element of $C^{N}$ . Let
$\{e_{1}, \cdots , e_{N}\}$ be an orthonormal basis of $C^{N}$ . Since (2.2) implies $B_{I}=\Sigma_{\sigma=1}^{N}B_{\sigma}u_{I}^{\sigma}$ ,

we have

$u_{I}^{\sigma}= \sum_{\sigma=1}^{N}h^{\sigma\tau}\langle e_{\tau}, B_{I}\rangle$ ,

where $(h^{\sigma\tau})_{\sigma,\tau=1,\cdots.N}$ is the inverse matrix of $(\langle e_{\sigma}, B_{\tau}\rangle)_{\sigma.\tau=1\ldots..N}$ . We set $d_{1}=$

$\max_{\sigma,\tau=1,\cdots,N}\{|p_{\tau}^{\sigma}|\}$ and $d_{2}= \max_{\sigma,\tau=1\ldots.,N}\{|h_{\tau}^{\sigma}|\}$ . Then we have the following
estimates:

$|a_{I}^{\sigma}| \leqq\sum_{\tau\Leftarrow 1}^{N}|p_{\tau}^{\sigma}||u_{I}^{\tau}|$

$\leqq d_{1}\sum_{\tau=1}^{N}|u_{I}^{\tau}|$

$\leqq d_{1}\sum_{\sigma,\tau=1}^{N}|h^{\tau\sigma}||\langle e, B_{I}\rangle|$

$\leqq N^{2}d_{1}d_{2}(\sum_{\sigma=1}^{N}|b_{\sigma I}|^{2})^{1/2}$

Taking numbers $\rho_{\alpha}’$ ( $\alpha=1,$ $\cdots$ , n) such that $0<\rho_{\alpha}’<\rho_{\alpha}$ and putting $R=$

$\Sigma_{I,K\Leftarrow 1}^{\infty}|b_{I\overline{K}}|(\rho’)^{m_{I}}(\rho’)^{m_{K}}$ , we have $|b_{I\overline{K}}|\leqq R/(\rho’)^{m_{I}+m_{K}}$ . This, together with the
convention of our multi-indices $|m_{\sigma}|\leqq|m_{N}|$ $(\sigma=1, \cdots , N)$ , yields

$|a_{I}^{\sigma}| \leqq N^{2}d_{1}d_{2}(\sum_{\sigma=1}^{N}R^{2}/(\rho’)^{2(m_{\sigma}+m_{I})})^{1/2}$

$\leqq N^{2}d_{1}d_{2}\{\sum_{\sigma=1}^{N}R^{2}/\delta^{2\rceil m_{N}}(\rho’)^{2m_{I}}\}^{1/2}$

$=(N^{5/2}d_{1}d_{2}R/\delta^{|m_{N^{1}}})(1/(\rho’)^{m_{I}})$ ,

where $\delta=\min\{1, \rho_{1}’, \cdots , \rho_{n}’\}$ . Hence each $\phi^{\sigma}$ $(\sigma=1, \cdots , N)$ converges absolutely
in the regIon $\{|z^{a}|<p_{\alpha}’, \alpha=1, \cdots, n\}$ . By Lemma 2.3, the mapping $\Phi=(\phi^{1}, \cdots , \phi^{N})$

is full. $q.e.d$ .
REMARK. In the proof of Theorem 2.2, we assumed that the matrix $B$
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satisfies the relations (2.1) and (2.2). But this normalization of the infinite
dimensional Hermitian matrix is obtained by finite exchanges of columns and
lows. So these assumptions give no influence on our estimates.

PROPOSITION 2.5. Let $g$ be an analytic Kaehler tensor on a connected com-
plex manifold M. If the rank of $g$ is $N<\infty$ at some pmnt, then so is everywhere.

PROOF. Let $A$ be the subset of points at which the rank is $N$. It is suffi-
cient to show that $A$ is open and cIosed. By Theorem 2.2, $A$ is obviously open.
Now we take a sequence $\{x_{l}\}_{l=1.2.3},\cdots$ of points in $A$ , which converges to a point
$x_{\infty}\in M$. On a complex local coordinate neighborhood $\{U:(z^{1}, \cdots , z^{n})\}$ around
$x_{\infty}$ , the diastasis is expressed by

$D_{g}(p, q)=$ $\sum$

I. $K=1$

Since $e^{ach}b_{IR}(p)$ is a continuous function of the variable $p$ , we have $\infty>N=$

rank $\{(b_{I\overline{K}}(x_{l}))\}\geqq rank\{(b_{I\overline{K}}(x_{\infty}))\}$ .
By Theorem 2.2, the rank of $g$ is locally constant unless it is infinite. Hence

$x_{\infty}\in A$ , which implies that $A$ is closed. $q.e.d$ .
COROLLARY 2.6. The rank and the extended $\alpha gnature$ of a Kaehler tensor

on a cmnected complex manifold are invariant under the change of complex local
coor&nate systems and the choice of a pOint.

The rigidity holds for full holomorphic mappings into $C^{r.s}$ which preserve a
Kaehler tensor.

THEOREM 2.7. Let $\Phi_{i}(i=1,2)$ be full holomorphic mappngs of a connected
ffplex manifold $M$ with an analytic Kaehler tensor $g$ into $C^{r_{i},s_{i}}$ such that
$\Phi fg_{r_{i}.s_{i}}=g$ . Then $(r_{i}, s_{i})(i=1,2)$ coinctde with the extended signature $(r, s)$ of
$g$ . In addition, $\Phi_{1}$ and $\Phi_{2}$ differ by a motion in $C^{r.s}$ .

PROOF. By Theorem 2.2, we have $(r_{1}, s_{1})=$ ( $r_{2}$ , S2) $=(r, s)$ . We may assume
$\Phi_{i}(p)=0(i=1,2)$ for some fixed point $P\in M$. Each component of $\Phi_{i}=(\phi_{i}^{1}, \cdots, \phi_{i}^{N})$

has a power series expansion on a coordinate neighborhood $\{U;(z^{1}, \cdots , z^{n})\}$ with
the origin $p$ ;

$\phi_{1}^{\sigma}=\sum_{I=1}^{\infty}a_{I}^{\sigma}(z)^{m_{I}}$ ,

$\phi_{2}^{\sigma}=\sum_{I=1}^{\infty}c_{l}^{\sigma}(z)^{m_{I}}$ .

On the other hand, $D_{g}(p, q)$ has a power series expansion:
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$D_{g}(p, q)=$ $\sum_{I,K=1}^{\infty}b_{I\overline{K}}(z(q))^{m_{I}}(\overline{z(q)})^{m_{K}}$ $(q\in U)$ .

In the proof of Lemma 2.4, we have already seen that

$b_{I\overline{K}}= \sum_{\sigma=1}^{f}a_{I}^{\sigma}\overline{a}_{K}^{\sigma}-\sum_{\sigma\Leftarrow 1}^{l}a_{I}^{\sigma+r}\overline{a}_{K}^{\sigma+r}$

$= \sum_{\sigma=1}^{r}c_{I}^{\sigma}\overline{c}_{K}^{\sigma}-\sum_{\sigma=1}^{l}c_{I}^{\sigma+r}\overline{c}_{K}^{\sigma+r}$ .
By applying Lemma 2.1, there exists a linear transformation $T\in U(r, s)$ such that
$T\circ\Phi_{1}=\Phi_{2}$ . This proves our assertion. $q.e.d$ .

REMARK. Without the assumption ’full’, the rigidity is not expected. In
fact, the holomorphic mapping of $C^{1,0}$ into $C^{2.1}$ defined by $\Phi(z)=(z, 0,0)(z\in C^{1.0})$

is not rigid. Though $\Psi(z)=(z, z^{2}, -z^{2})$ also satisfies $\Psi^{*}g_{2,1}=g_{1,0}$ , its components
cannot be expressed by C-linear combinations of the components of $\Phi$ . But in
case $s=0$ , our assumption ’full’ can be omitted, because the restriction of the
metric $g_{r,0}$ to any subspace in $C^{N,0}$ is also non-degenerate.

Now we suppose that $M$ is connected and simply connected. Since the ex-
tended signature is independent of the choice of a point, Theorem 2.2 and
Theorem 2.7 imply that every full holomorphic mapping of an open subset of
$M$ into $C^{r.s}$, which preserves a Kaehler tensor, is uniquely extended to the
whole of $M$. So we obtain the following:

THEOREM 2.8. Let $M$ be a connected and simply connected complex manifold.
Then for a Kaehler tensor $g$ on $M$, the following two conditions are equivalent:

(1) $g$ is analytic and its extended signature is $(r, s)$ .
(2) There exists a full holomorphic $maP\ovalbox{\tt\small REJECT} ng\Phi$ of $M$ into $C^{r,s}(r+s=N)$

such that $\Phi^{*}g_{r.s}=g$ .
Isometric mappings of Kaehler manifolds into infinite dimensional spaces have

been investigated in [1] and [4]. We consider holomorphic mappings of a com-
plex manifold with a Kaehler tensor into the Hilbert space $l^{2}$ . The space $l^{2}$

consists of the points with the coordinates $(\xi^{1}, \xi^{2}, \xi^{3}, )$ such that $\Sigma_{\sigma\Rightarrow 1}^{\infty}|\xi^{\sigma}|^{2}<\infty$

\langle $\xi^{\sigma}\in C$ ). The Hermitian innerproduct $\langle, \rangle$ is defined by $\langle p, q\rangle=\Sigma_{\sigma=1}^{\infty}\xi^{\sigma}(p)\overline{\xi^{\sigma}(q)}$

$(p, q\in l^{2})$ .

DEFINITION. Let $M$ be a complex manifold and $\Phi$ a mapping of $M$ into $l^{2}$ .
Then $\Phi$ is said to be holomorphic if it satisfies the following two conditions:

(1) $\phi^{\sigma}=\xi^{\sigma}\circ\Phi$ is holomorphic for all $\sigma=1,2,3,$ $\cdots$

(2) $\Phi$ is locally bounded, that is, for every $p\in M$, there exist a neighborhood
$U$ of $p$ and a positive number $m$ such that $|\Phi|=\langle\Phi, \Phi\rangle^{1/2}<m$ on $U$ .
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If $\Phi$ and $\Psi$ are holomorphic mappings into $l^{2}$ , then the function $f(p, q)=$

$\langle\Phi(p), \Psi(q)\rangle(p, q\in M)$ defined on $M\cross\overline{M}$ is also holomorphic, where $\overline{M}$ denotes
the conjugate manifold of $M$ (cf. [4; Lemma 1.4]). Now we define a diastasis
of $l^{2}$ by

$D^{\infty}(P, q)=|p-q|^{2}$ $(p, q\in l^{2})$ .
LEMMA 2.9. Let $M$ be a complex manifold with an analytic Kaehler tensor

and $\Phi$ a holomorPhix maplnng of $M$ into $l^{2}$ . Then the following two assertions
are equivalent to each other.

(1) $\Phi$ preserves the diastaszs, that is, $D_{g}(p, q)=D^{\infty}(\Phi(P), \Phi(q))(p, q\in M)$ .
(2) $|\Phi|^{2}$ is a primitive functim of $g$ .
PROOF. We have

(2.9) $D^{\infty}(\Phi(p), \Phi(q))=\langle\Phi(p), \Phi(p)\rangle+\langle\Phi(q), \Phi(q)\rangle-\langle\Phi(p), \Phi(q)\rangle-\langle\Phi(q), \Phi(p)\rangle$ .

If $|\Phi|^{2}$ is a primitive function of $g$ , then by (1.1) and (2.9), $D^{\infty}(\Phi(p), \Phi(q))$

coincides with $D_{g}(p, q)$ . On the other hand, for a fixed $p\in M,$ $(2.9)$ implies that
$D^{\infty}(\Phi(p), \Phi(q))$ and $|\Phi|^{2}$ differ by the real part of a holomorhic function with
respect to the variable $q$ . Hence the converse is obvious. $q.e.d$ .

The following is an extension of [4; Proposition 1.8].

PROPOSITION 2.10. Let $M$ be a complex manifold with an analytic Kaehler
tensor of extended signature $(r, s)(r+s=N)$ and $\Phi$ a holomorphjc mapfnng of $M$

into $l^{2}$ which preserves the diastasis. Then $s=0$ and $\Phi(M)$ lies in some complex
$N$-plane in $l^{2}$ .

PROOF. Let $(\xi^{1}, \cdots , \xi^{N})$ be the canonical complex coordinate system of $C^{N}$

$(r+s=N)$ . We define a real bilinear form $\beta_{r.*}$ on $C^{N}$ by

$\beta_{r,s}(p, q)={\rm Re}\{\sum_{\sigma=1}^{r}\xi^{\sigma}(p)\overline{\xi^{\sigma}(q)}-\sum_{\sigma=1}^{s}\xi^{\sigma+r}(p)\overline{\xi^{\sigma+r}(q)}\}$ $(p, q\in C^{N})$ .

Obviously the following identity holds:

(2.10) $\beta_{r.s}(pq_{1}arrow, Pq_{2})arrow=(1/2)\{D_{r,s}(p, q_{1})+D_{r,s}(p, q_{2})+D_{r.s}(q_{1}, q_{2})\}(p, q_{1}, q_{2}\in C^{r,s})$ ,

where $Pq=q-parrow(p, q\in C^{N})$ .
Let $p\in M$ be an arbitrary point. Since the extended signature of $g$ is $(r, s)$ ,

there exists a full holomorphic mapping $\Psi$ of some neighborhood $U$ of $p$ into $C^{r.s}$

such that $\Psi^{*}g_{r.s}=g$ . Now we suppose that $\Phi(U)$ does not lie in any real 2N-

plane. Then there exist points $p,$ $q_{1},$ $\cdots,$ $q_{2N+1}\in U$ such that $\{\Phi(p)\Phi(q_{j})\}_{j=1\ldots.,2N+1}$

$arrow$
are R-linearly independent. On the other hand, since $\{\Psi(p)\Psi(q_{2})\}_{j=1,\cdots.2N+1}$ are
R-linearly dependent, there exist a $(2N+1)$-tuple of real numbers (a, $\cdots$ , $a^{2N+1}$ ) $\neq 0$
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such that $\Sigma_{j=1}^{2N+1}a^{j}\Psi(p)\Psi(q_{j})=0arrow$ . By (2.10) and Proposition 1.1, we have

$0=\beta_{r.s}$($\sum_{j=1}^{2N+1}a^{f}\Psi(p)\Psi(q_{j}),$ $\Sigma$ a $k\Psi(p)\Psi(q_{k})$)
$arrow$$arrow 2N+1$

$k=1$

$=(1/2) \sum_{j.k=1}^{2N+1}a^{j}a^{k}\{D_{g}(p, q_{j})+D_{g}(p, q_{k})-D_{g}(q_{j}, q_{k})\}$

$={\rm Re} \langle\sum_{j=1}^{2N+1}a^{j}\Phi(p)arrow\Phi(q_{j}),\sum_{k=1}^{2N+1}$ a $\Phi(p)arrow\Phi(q_{k})\rangle$ .
Hence $\Sigma_{j=1}^{2N+1}a^{j}\Phi(p)\Phi(q_{j})=0arrow$, which yields a contradiction. So $\Phi(U)$ lies in some
real $2N$-plane. Since $p$ is arbitrary, $\Phi(M)$ spans a finite dimensional complex
plane. Thus, by Theorem 2.7, $s=0$ and $\Phi(M)$ lies in a complex N-plane in $l^{2}$ .

$q.e.d$ .

\S 3. Real analytic functions on complex manifolds.

A real analytic function on a connected complex manifold $M$ is said to be
of finite rank if the Kaehler tensor $g$ associated to the form $-2\sqrt{-1}\partial\overline{\partial}f$ is of
finite rank. We call the extended signature $(r, s)$ of $g$ the tyPe of $f$. Suppose
that $f$ has the power series expansion at a fixed point $p\in M$

$f=$ $\sum$

I. $K=0$

where $(z^{1}, \cdots , z^{n})$ is a local coordinate system with the origin $p$ . Then $f$ is of
finite rank if and only if the rank of the matrix $(b_{I\overline{K}})_{I.K=0,1.2}\ldots$ . is finite. The
type of $f$ coincides with the signature of the Hermitian matrix $(b_{I\overline{K}})_{I.K=1,2.3},\cdots$ .
Let $\Lambda(M)$ denote the set of R-linear combinations of real analytic functions
$h\overline{k}+k\overline{h}$ ( $h$ and $k$ are holomorphic functions on $M$). Obviously $\Lambda(M)$ forms an
associative algebra. If $M$ is compact, $\Lambda(M)$ is nothing but the set of constant
functions.

PROPOSITION 3.1. If $f\in\Lambda(M)$ , then $f$ is of finite rank.

PROOF. By using the identity $h\overline{k}+k\overline{h}=|h+k|^{2}-|h|^{2}-|k|^{2},$ $f$ is expressed as

$f= \sum_{\sigma=1}^{t}|\phi^{\sigma}|^{2}-\sum_{\sigma=1}^{l}|\phi^{\sigma+r}|^{2}$ ,

where $\phi^{\sigma}$ $(\sigma=1, \cdots , N)$ are holomorphic functions. We define a holomorphic
mapping $\Phi$ of $M$ into $C^{r,s}$ by $\Phi=(\phi^{1}, \cdots , \phi^{N})$ . Then $-2\sqrt{-1}\partial\partial f=\Phi^{*}\omega_{r.\iota}$, this
implies that $f$ is of finite rank by Lemma 2.4. $q.e.d$ .

The converse is also true.
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THEOREM 3.2. Let $M$ be a connected and $\alpha mply$ cmnected complex manifold
and $f$ a real analytic fimctim of finite rank defined $m$ M. Then for a fixed
$p\alpha nip\in M$, there exist a pair of nm-negative integers $(r, s)$ and holomorphic
functims $\phi^{0},$ $\phi^{1},$ $\cdots$ $\phi^{N}(r+s=N)mM$ such that

$f={\rm Re}( \phi^{0})+\sum_{\sigma=1}^{f}|\phi^{\sigma}|^{2}-\sum_{\sigma=1}^{l}|\phi^{\sigma+r}|^{2}$ ,

$\phi^{\sigma}(P)=0$ $(\sigma=1, N)$ ,

where $\phi^{1},$ $\cdots$ , $\phi^{N}$ are C-linearly independent. In additim, if $f$ has the decompOsi-
tim as above, then $(r, s)$ coincides with the type of $f$, and $\phi^{0}$ is uniquely determined
up to a constant term. And $\Phi=(\phi^{1}, \cdots , \phi^{N})$ are also uniquely determined up to
a complex linear transformatim in $U(r, s)$ .

PROOF. Let $f$ be a real analytic function of type $(r, s)(r+s=N<\infty)$ .
Since the extended signature of the Kaehler tensor $g$ associated to the form
$-2\sqrt{-1}\partial\partial f$ is $(r, s)$ , by Theorem 2.8 there exists a full holomorphic mapping
$\Phi=(\phi^{1}, \cdots , \phi^{N})$ of $M$ into $C^{r.s}$ such that $\Phi^{*}g_{r.s}=g$ and $\Phi(p)=0$ . This implies
that

$D_{g}(p, q)= \sum_{\sigma=1}^{t}|\phi^{\sigma}(q)|^{2}-\sum_{\sigma=1}^{S}|\phi^{\sigma+r}(q)|^{2}$ $(q\in M)$ .

Since $f$ is a primitive function of $g$, there exists a holomorphic function $\phi^{0}$

such that

(3.1) $f={\rm Re}( \phi^{0})+\sum_{\sigma=1}^{f}|\phi^{\sigma}|^{2}-\sum_{\sigma=1}^{\}|\phi^{\sigma+r}|^{2}$ .

Now we prove the uniqueness of this decomposition. Suppose that we have
another such decomposition:

(3.2) $f={\rm Re}( \theta^{0})+\sum_{\sigma\Leftarrow 1}^{t’}|\psi^{\sigma}|^{l}-\sum_{\sigma=1}^{s’}|\psi^{\sigma+r}$
‘

$|^{2}$ ,

$\psi^{\sigma}(P)=0$ $(\sigma=1, N’ ; N’=r’+s’)$ .
Then we obtain a full holomorphic mapping $\Psi$ of $M$ into $C^{r’.\partial’}$ defined by
$\Psi=(\psi^{1}, \cdots , \psi^{N}‘)$. Hence $(r’, s’)=(r, s)$ , and by Theorem 2.7, $\Phi$ and $\Psi$ differ by
a linear transformation of $C^{r.s}$ which preserves the metric $g_{r.\partial}$ . Moreover,
since $\Phi(p)=\Psi(p)=0$, by Proposition 1.1, we have

$f(q)-{\rm Re}(\phi^{0}(q))=D_{r.s}(0, \Phi(q))=D_{g}(p, q)$

$=D_{r.s}(0, \Psi(q))=f(q)-{\rm Re}(\psi^{0}(q))$ .
Hence ${\rm Re}(\phi^{0})={\rm Re}(\psi^{0})$, which implies that $\phi^{0}$ and $\psi^{0}$ differ by a constant term.

$q.e.d$ .
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COROLLARY 3.3. Let $M$ be a $\alpha mply$ cmnected compfex manifold. Then $\Lambda(M)$

$coin\dot{\alpha}\ s$ with the set of real analytic functims of finite rank.

Next we show some transcendental properties concerned with $\Lambda(M)$ . The
following lemma is a direct consequence of Proposition 2.10.

LEMMA 3.4. Let $\Phi$ be a holomorphjc $maP2nng$ of a complex manifold $M$ into
$l^{2}$ . If $\Phi(M)$ does not lie in any finite dimensional subspace in $l^{2}$ . Then $|\Phi|^{2}\not\in\Lambda(M)$ .

PROOF. Let $g$ be a Kaehler tensor associated with the $2- form-2\sqrt{-1}\partial\partial|\Phi|^{2}$ .
Then by Lemma 2.9, $\Phi$ preserves the diastasis $D_{g}$ . Since $\Phi(M)$ does not lie in
any finite dimensional subspace, the rank of $g$ is infinite by Proposition 2.10.
Hence $|\Phi|^{2}\not\in\Lambda(M)$ . $q.e.d$ .

PROPOSITION 3.5. Let $p\in M$ be a fixed point of a complex manifold $M$ and
let $h^{1},$ $\cdots$ , $h^{N}$ be nm-cmstant holomorphjc function on $M$ such that $h^{\sigma}(P)=0(\sigma=1$ ,
. . , $N$). Then

(1) $e xp(\sum_{\sigma=1}^{N}|h^{\sigma}|^{2})\not\in\Lambda(M)$ ,

(2) $\log(1-\sum_{\sigma=1}^{N}|h^{\sigma}|^{2})\not\in\Lambda(M)$ ,

(3) $(1- \sum_{\sigma=1}^{N}|h^{\sigma}|^{2})^{-\alpha}\not\in\Lambda(M)$ $(\alpha>0)$ .

PROOF. We obtain the series expansions

(3.3) $\exp(\sum_{\sigma=1}^{N}|h^{\sigma}|^{2})-1=$
$\sum_{i_{1}+\cdots+i_{N}\geqq 1}$

$|(h^{1})^{i_{1}}\cdots(h^{N})^{t_{N}}/\sqrt{i_{1}}$! $i_{N}$ ! $|^{2}$ ,

(3.4) $- \log(1-\sum_{\sigma=1}^{N}|h^{\sigma}|^{2})=\sum_{i_{1}+\cdots+t_{N}\geqq 1}|\sqrt{\frac{(i_{1}++i_{N}-1)!}{i_{1}!i_{N}!}}(h^{1})^{i_{1}}\cdots(h^{N})^{i_{N}}|^{2}$

Since $h^{\sigma}(p)=0(\sigma=1, \cdots , N)$ , those series converge in a sufficiently small neigh-
borhood $U$ of $p$ . Thus we rewrite those series as follows:

(3.5) $\exp(\sum_{\sigma=1}^{N}|h^{\sigma}|^{2})-1=\sum_{\iota=1}^{\infty}|\phi^{l}|^{2}$ ,

(3.6) $- \log(1-\sum_{\sigma=1}^{N}|h^{\sigma}|^{2})=\sum_{l=1}^{\infty}|\psi^{l}|^{2}$ ,

where $\phi^{l}$ and $\psi^{l}(l=1,2, 3, )$ are holomorphic functions which are determined
by the series expansions (3.3) and (3.4) respectively. Then we may define
holomorphic mappings $\Phi=(\phi^{1}, \phi^{2}, \phi^{3}, )$ and $\Psi=(\psi^{1}, \psi^{2}, \psi^{3}, )$ of $U$ into $l^{2}$ . Since

$\{\phi^{\iota}\}$ and $\{\psi^{l}\}$ have the C-linearly independent subsequences $\{(h^{1})^{m}/m!\}_{m=1,2,3}\ldots$ .

and $\{(h^{1})^{m}/m\}_{m=1,2,8},\cdots$ respectively, by Lemma 3.4, we have
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$\exp(\sum_{\sigma=1}^{N}|h^{\sigma}|^{2})=1+\sum_{l=1}^{\infty}|\phi^{l}|^{2}\not\in\Lambda(M)$ ,

$\log(1-\sum_{\sigma=1}^{N}|h^{\sigma}|^{2})=-\sum_{l=1}^{\infty}|\psi^{l}|^{2}\not\in\Lambda(M)$ .

This proves (1) and (2). Next we prove (3). Using the expression (3.6), we
have

$(1- \sum_{\sigma=1}^{N}|h^{\sigma}|^{2})^{-\alpha}=\exp\{-\alpha\log(1-\sum_{\sigma=1}^{N}|h^{\sigma}|^{2})\}$

$= \exp(\alpha\sum_{l=1}^{\infty}|\psi^{l}|^{2})$

$=1+\Sigma^{\infty}$ $\Sigma^{\infty}$

$|(\sqrt{\alpha})^{k}\psi^{i_{1}}\cdots\psi^{i_{k}}|^{2}$ .
$k=1i_{1}+\cdots+i_{k}\geqq 1$

If we arrange the holomorphic functions $\{(\sqrt{\alpha})^{k}\psi^{i_{1}}\cdots\psi^{i_{k}}\}$ as a sequence
$\{\psi^{l}\}_{l=1,2,3},\cdots$ , we have the following:

$(1- \sum_{\sigma=1}^{N}|h^{\sigma}|^{2})^{-\alpha}=1+\sum_{l=1}^{\infty}|\tilde{\psi}^{l}|^{2}$ .

So we obtain a holomorphic mapping of $U$ into $l^{2}$ defined by $\tilde{\psi}=(\tilde{\psi}^{1},\tilde{\psi}^{2},\tilde{\psi}^{3}, )$ .
Now we can easily take a subsequence of $\{\tilde{\psi}^{l}\}_{l=1,2.3}\ldots$ . which is linearly inde-
pendent. Hence, by Lemma 3.4, we have

$(1- \sum_{\sigma=1}^{N}|h^{\sigma}|^{2})^{-\alpha}=1+\sum_{l=1}^{\infty}|\tilde{\psi}^{l}|^{2}\not\in\Lambda(M)$ . $q.e.d$ .

In [4], the author showed that any two of complex space forms of different
types have no Kaehler submanifolds in common. Now we show that this fact
is a corollary of Proposition 3.5. We prepare the following basic lemma:

LEMMA 3.6 ([4; Lemma 1.2]). Let $(M, g)$ be an analytic Kaehler manifold
and $p\in M$ an arbitrarily fixed Point. Then a neighborhood $U$ of $p$ is holomor-
phically $md$ isometrically immersed into a complex space form of holomorphjc
sectional curvature $2b\neq 0$ if and $mly$ if there exist holomorphic functions $\phi^{1},$ $\cdots$ ,
$\phi^{N}$ defined $mU$ such that

exp $\{bD_{g}(p, q)\}=1+sgn(b)\sum_{\sigma=1}^{N}|\phi^{\sigma}(q)|^{2}$ $(q\in U)$ ,

$\phi^{\sigma}(P)=0$ $(\sigma=1, \cdots N)$ .

PROOF. See [4], or this lemma is easily obtained from Theorem 4.1 in the
next section. $q.e.d$ .

COROLLARY 3.7 ([4; Proposition 2.1]). Let $(M, g)$ be a Kaehler n-submanifold
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of $C^{N.0}$ . Then any open subset of $M$ can not be a Kaehler submanifold of
$CP^{N’}(b’)$ for any $N’$ and $b’>0$ .

PROOF. We suppose that an open subset $U$ of $M$ is a Kaehler submanifold
of $CP^{N^{r}}(2b)(b’=2b)$ . For a fixed $p\in U$ , exp $\{bD_{g}(p, *)\}\in\Lambda(M)$ by Lemma 3.6.
Since $b>0$ and $M$ is a Kaehler submanifold of $C^{N,0}$, by Theorem 3.2 there
exist holomorphic functions $h^{1},$ $\cdots$ , $h^{N}$ such that

$bD_{g}(p, q)= \sum_{\sigma=1}^{N}|h^{\sigma}(q)|^{2}$ $(q\in U)$ ,

$h^{\sigma}(P)=0$ $(\sigma=1, \cdots N)$ .
Hence exp $( \sum_{\sigma=1}^{N}|h^{\sigma}|^{2})\in\Lambda(M)$ . But this contradicts (1) of Proposition 3.5.

$q.e.d$ .
COROLLARY 3.8 ([4; Proposition 2.2]). Let $(M, g)$ be a Kaehler n-submanifold

of $C^{N,0}$ . Then any open subset of $M$ can not be a Kaehler submanifold of $CH^{N’}(b’)$

for my $N’$ and $b’<0$ .
PROOF. We suppose that an open subset $U$ of $M$ is a Kaehler submanifold

of $CH^{N’}(2b)(b’=2b)$ . Let $p\in U$ be a fixed point. Then by Lemma 3.6, there
exist holomorphic functions $h^{1},$ $\cdots$ , $h^{N’}$ defined on $U$ such that

$D_{g}(p, q)= \frac{1}{b}\log(1-\sum_{\sigma=1}^{N’}|h^{\sigma}(q)|^{2})$ $(q\in U)$ ,

$h^{\sigma}(P)=0$ $(\sigma=1, N’)$ .
Since $M$ is a Kaehler submanifold of $C^{N,0}$ , we have $(1/b)\log(1-\Sigma_{\sigma=1}^{N’}|h^{\sigma}|^{2})\in\Lambda(M)$ .
But this contradicts (2) of Proposition 3.5. $q.e.d$ .

COROLLARY 3.9 ([4; Proposition 2.3]). Let $(M, g)$ be a Kaehler n-submanifold
of $CH^{N}(b’)$ . Then any open subset of $M$ can not be a Kaehler submanifold of
$CP^{N’}(c’)$ for any $N’$ and $c’>0$ .

PROOF. Since $M$ is a Kaehler submanifold of $CH^{N}(2b)(b’=2b)$ , for a fixed
$p\in M$, there exist holomorphic functions $h^{1},$ $\cdots$ , $h^{N}$ defined on some sufficiently
small neighborhood $U$ of $P$ such that

(3.7) $D_{g}(p, q)= \frac{1}{b}\log(1-\sum_{\sigma=1}^{N}|h^{\sigma}(q)|^{2})$ $(q\in U)$ ,

$h^{\sigma}(P)=0$ $(\sigma=1, N)$ .
Now we assume that $U$ is a Kaehler submanifold of $CP^{N^{J}}(2c)(c’=2c)$ . By
Lemma 3.6, there exist holomorphic functions $\phi^{1},$ $\cdots$ , $\phi^{N’}$ such that
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(3.8) $D_{g}(p, q)= \frac{1}{c}\log(1+\sum_{\sigma\Leftarrow 1}^{N’}|\phi^{\tau}(q)|^{2})$ $(q\in U)$ ,

From (3.7) and (3.8) we have

$1+ \sum_{\tau=1}^{N’}|\phi^{\tau}|^{2}=(1-\sum_{\sigma=1}^{N}|h^{\sigma}|^{2})^{c/b}$

Since $c/b<0$, this contradicts (3) of Proposition 3.5. $q.e.d$

\S 4. Non-flat indefinite complex space forms.

In this section we consider holomorphic mappings into nonflat indefinite
complex space forms preserving Kaehler tensor. Since the metrics of indefinite
complex hyperbolic and projective spaces differ by the sign, we may only discuss
on the indefinite complex projective spaces. In \S 1, we defined the indefinite
complex projective spaces as open subsets of ordinary complex projective spaces.
A holomorphic mapping into $CP_{s}^{N}(b)(\subset CP^{N})$ is called full if its image does
not lie in any hyperplane of $CP^{N}$ .

THEOREM 4.1. Let $M$ be a cmplex manifold with an analytic Kaehler tensor
$g$ and $p\in M$ be an arbitrarily fixed point. Then there exists a full holomorphjc
$map\mu ng\Phi$ of some $suffi\alpha ently$ small neighborhood $U$ into $CP_{l}^{N}(2b)$ such that
$\Phi^{*}g_{0}=g$ if and $mly$ if the functim exp $\{bD_{g}(p, *)\}$ is of type $(N-s, s)$ , where
go is the metric of $CP_{s}^{N}(2b)$ .

PROOF. Now we suppose that there is such a holomorphic mapping ex-
pressed by $\Phi=(\phi^{0}, \cdots , \phi^{N})$ in terms of the homogeneous coordinate system.
By a suitable motion in $CP_{s}^{N}(2b)$ we may put $\Phi(p)=(1,0, \cdots , 0)$ . Then by
(1.3) and Proposition 1.1, we have

$D_{g}(p, *)= \frac{1}{b}\log(1+\sum_{\sigma=1}^{N-S}|\phi^{\sigma}/\phi^{0}|^{2}-\sum_{\sigma=0}^{s-1}|\phi^{N-\sigma}/\phi^{0}|^{2})$ ,

that is,

exp $\{bD_{g}(p, *)\}=1+\sum_{\sigma=1}^{N-\theta}|\phi^{\sigma}/\phi^{0}|^{2}-s-1\Sigma|\phi^{N-\sigma}/\phi^{0}|^{2}$ .
$\sigma=0$

Since $\Phi$ is full, $\{\phi^{\sigma}/\phi^{0}\}_{\sigma=1,\cdots,N}$ are C-linearly independent. Hence Theorem 3.2
implies that exp $\{bD_{g}(p, *)\}$ is of type $(N-s, s)$ . Conversely, we suppose that
exp $\{bD_{g}(p, *)\}$ is of type $(N-s, s)$ . Then by Theorem 3.2, there exist holomor-
phic functions $\phi^{0},$ $\phi^{1},$ $\cdots$ , $\phi^{N}$ on a simply connected neighborhood $U$ of $P$ such
that

exp $\{bD_{g}(p, *)\}={\rm Re}(\phi^{0})+N-s\Sigma|\phi^{\sigma}|^{2}-\Sigma^{s-1}|\phi^{N-\sigma}|^{2}$ ,
$\sigma=1$ $\sigma=0$

$\phi^{\sigma}(P)=0$ $(\sigma=1, N)$ ,
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where $\{\phi^{1}, \cdots , \phi^{N}\}$ are C-linearly independent. Since $D_{g}(p, *)$ is the diastasis,
we can easily check that $\phi^{0}=1$ . Now if we define a holomorphic mapping of
$U$ into $CP_{s}^{N}(2b)$ by $\Phi=(1, \phi^{1}, \cdots , \phi^{N})$ , then

$D_{g}(p, *)= \frac{1}{b}\log(1+\sum_{\sigma=1}^{N-S}|\phi^{\sigma}|^{2}-\sum_{\sigma=0}^{s- 1}|\phi^{N-\sigma}|^{2})$ .

By Proposition 1.1, we have $\Phi^{*}g_{0}=g$ . $q.e.d$ .

THEOREM 4.2. Let $M$ be a complex manifold with a Kaehler tensor and let
$\Phi_{i}(i=1,2)$ be full holmorPhtc maPpngs of $M$ into $CP_{s_{i}}^{N_{i}}(2b)$ such that $\Phi_{i}^{*}g_{i}=g$ ,

where $g_{i}$ is the metric of $CP_{s_{i}}^{N_{i}}(2b)$ . Then $N_{1}=N_{2}$ and $s_{1}=s_{2}$ . In additim $\Phi_{1}$

and $\Phi_{2}$ differ by a motim in $CP_{s_{1}}^{N_{1}}(2b)$ .

PROOF. Obviously $N_{1}=N_{2}(=N)$ and $s_{1}=s_{2}(=s)$ (by Theorem 4.1). By a
suitable motion $CP_{s}^{N}(2b)$ , we may put $\Phi_{1}(p)=\Phi_{2}(p)=(1,0, \cdots , 0)$ for a fixed
point $p\in M$. By using the homogeneous coordinate system $(\xi^{0}, \cdots , \xi^{N}),$ $\Phi_{i}(i=1,2)$

are expressed by $\Phi_{i}=(1, \phi_{i}^{1}, \cdots , \phi_{i}^{N})$ . Then we have

exp $\{bD_{g}(p, *)\}=1+N-s\Sigma|\phi_{i}^{\sigma}|^{2}-S- 1\Sigma|\phi_{i}^{N-\sigma}|^{2}$ $(i=1,2)$ ,
$\sigma=1$ $\sigma=0$

$\phi_{i}^{\sigma}(p)=0$ $(\sigma=1, \cdots N)$ .

Since $\Phi_{i}(i=1,2)$ are full, by the uniqueness of such decompositions, there exists
a matrix $(t_{\tau}^{\sigma})_{\sigma.\tau=1,\cdots,N}\in U(N-s, s)$ such that

$\phi_{2}^{\sigma}=\sum_{\tau=1}^{N}r_{\tau}\phi_{1}^{\tau}$
$(\sigma=1, \cdots N)$ .

The transformation $T$ of $CP_{s}^{N}(2b)$ , which is defined by $T(q)=(\xi^{0}(q), \Sigma_{\sigma=1}^{N}t_{\sigma}^{1}\xi^{\sigma}(q)$ ,
, $\Sigma_{\sigma=1}^{N}t_{\sigma}^{N}\xi^{\sigma}(q))(q\in CP_{s}^{N}(2b))$ , is ovbiously an isometry of $CP_{s}^{N}(2b)$ and $TQ\Phi_{1}$

$=\Phi_{2}$ . $q.e.d$ .

REMARK. After this paper submitted, the author received the paper [3],

in which A. Romero independently showed that full holomorphic and isometric
immersions of indefinite Kaehler manifolds into indefinite complex space forms
are rigid. This result is also obtained from Theorem 2.7 and Theorem 4.2.

As an application of Theorem 4.2, we consider the following example.

EXAMPLE. The canonical mapping $C^{n+1}\cross C^{m+1}arrow C^{n+1}\otimes C^{m+1}$ induces the
full holomorphic mapping $\Phi$ : $CP^{n}\cross CP^{m}arrow CP^{n+m+nm}$ , which is called the Segre
imbedding. It is easy to see that $\Phi$ maps $CP_{s}^{n}(c)\cross CP_{t}^{m}(c)$ into $CP_{r}^{n+m+nm}(c)$ ,
where $r=s(m-t)+t(n-s)+s+t(0\leqq s\leqq n, 0\leqq t\leqq m)$ . The restricted mapping
$\tilde{\Phi}$ : $CP_{s}^{n}(c)\cross CP_{t}^{m}(c)arrow CP_{r}^{n+m+nm}(c)$ is called the indefinite Segre imbedding.
Using Proposition 1.1, we can easily show that $\tilde{\Phi}$ is isometric. By Theorem
4.2, $\hat{\Phi}$ is rigid.
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REMARK. The rigidity of the indefinite Segre imbedding was pointed out in
T. Ikawa, H. Nakagawa and A. Romero [2]. For further properties of the
indefinite Segre imbedding, see [2].

Now we suppose that $M$ is connected and simply connected. Then Theorem
4.1 and Theorem 4.2 imply that every full holomorphic mapping of an open
subset of $M$ into $CP_{s}^{N}(2b)$ , which preserves a Kaehler tensor, is uniquely extended
to the whole of $M$. So we have the following:

THEOREM 4.3. Let $M$ be a connected and srmply cmnected complex manifold
and $p\in M$ an arbitrary point. Then for a Kaehler tensor $g$ on $M$, the following
two cmditions are equivalent:

(1) $g$ is analytic and exp $\{bD_{g}(p, *)\}$ is of type $(r, s)$ .
(2) There exists a full holomorphic mapping $\Phi$ of $M$ into $CP_{s}^{N}(2b)(N=r+s)$

such that $\Phi^{*}g_{0}=g$ , where $g_{0}$ is the metnc of $CP_{s}^{N}(2b)$ .
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