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1. Introduction and main results.

We consider the minimal Markov process $\{X(t)\}_{t\geqq 0}$ on the nonnegative in-
tegers with a generator $A=(a_{ij})$ defined as follows. For nonnegative integers
$i$ and $j$ ,

(1.1) $a_{ij}=\beta_{i}$ if $i>0$ and $j=i+1$ ,

$=-(\beta_{i}+\delta_{i})$ if $i>0$ and $j=i$ ,

$=\delta_{i}$ if $i>0$ and $j=i-1$ ,

$=0$ otherwise,

where $\delta_{1}\geqq 0,$ $\delta_{i}>0$ for $i=2,3,$ $\cdots$ , and $\beta_{i}>0$ for $i=1,2,$ $\cdots$ Such a process is
called birth and death process. This process is strongly Markov by its minimality.
Note that if $X(s)=0$ for some instant $s>0$ , then $X(t)=0$ for all $t>s$ , that is,
the state $0$ is a trap. Also note that the state $0$ is attained from other states
with positive probability whenever $\delta_{1}>0$ . Let

$\tau_{n}(\omega)=\inf\{t>0;X(t, \omega)=n\}$

be the first passage time for $X(t)$ to $n$ . Here we do not define $\tau_{n}(\omega)$ if
$\{t;X(t, \omega)=n\}=\emptyset$ . Let $\mu_{mn}$ be the distribution of $\tau_{n}$ when the process starts
at $m$ . We denote by $\sigma_{mn}(s)$ the Laplace transform of $\mu_{mn}$ , that is,

$\sigma_{mn}(s)=E_{m}(e^{-s\epsilon_{n}})=\int_{0}^{\infty}e^{-st}\mu_{mn}(dt)$ .
Note that in the case $\delta_{1}>0$ , the total mass of $\mu_{mn}$ , $1\leqq m<n$ , is less than 1.
We set $\overline{\mu}_{mn}=\mu_{mn}/\mu_{mn}([0, \infty))$ and $\overline{\sigma}_{mn}(s)=\sigma_{mn}(s)/\sigma_{mn}(0)$ . Main purpose of this
paper is to determine the class of $\mu_{mn},$ $m<n$ , for all birth and death processes.

Let $R_{+}=[0, \infty$). Let $\mathcal{P}(R_{+})$ be the totality of probability measures on $R_{+}$ .
For $\mu\in \mathcal{P}(R_{+})$ , we denote by $\mathcal{L}\mu(s)$ its Laplace transform. Let $G$ be a pro-
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bability measure on $(0, \infty$ ]. We say that $\mu\in \mathcal{P}(R_{+})$ is a mixture of exponential
distributions with mixing distribution $G$ if the distribution function $F_{\mu}(x)$ of $\mu$

is represented as

(1.2) $F_{\mu}(x)= \int_{(0.\infty 1}(1-e^{-ux})G(du)$ , $x>0$ .

Here, we regard the delta measure at $0$ as the degenerate exponential distribu-
tion. Denote by $ME_{+}$ the class of mixtures of exponential distributions. Let
$ME_{+}(0)=ME(0)$ be the class consisting of only one measure–the delta measure
at $0$ . For $k\geqq 1$ , denote by $ME_{+}(k)$ the class of distributions $\mu$ in $ME_{+}$ such that
the support of the mixing distribution of $\mu$ consists of $k$ points in $(0, \infty)$ . For
$k\geqq 1$ , denote by $CE_{+}(k)$ the subclass of $\mathcal{P}(R_{+})$ consisting of convolutions of $k$

distinct non-degenerate exponential distributions. For probability measures $\mu_{1}$

and $\mu_{2}$ , we denote by $\mu_{1}*\mu_{2}$ the convolution of $\mu_{1}$ and $\mu_{2}$ . Let $\mu_{1}\in CE_{+}(m)$

$(m\geqq 1)$ with Laplace transform

$\mathcal{L}\mu_{1}(s)=\prod_{k=1}^{m}$ a $k(s+a_{k})^{-1}$

where $0<a_{1}<a_{2}<--$ $<a_{m}<\infty$ . For $0<b_{1}<b_{2}<\ldots<b_{n}<\infty$ , let $\mu_{2}\in ME_{+}(n)$

$(n\geqq 2)$ with $\{b_{k} ; 1\leqq k\leqq n\}$ as the support of its mixing distribution. Then there
is a sequence $\{c_{k}\}_{1\leqq k\leqq n-1}$ such that

$0<b_{1}<c_{1}<b_{2}<\ldots<c_{n-1}<b_{n}$

and
$x_{\mu_{2}(s)=\Pi c_{k}^{-1}(s+c_{k})\Pi b_{k}(s+b_{k})^{-1}}n-1n$

$k=1$ $k\Leftarrow 1$

See Steutel [12]. We say that $\mu=\mu_{1}*\mu_{2}$ is a $CME_{+}(m, n)$ distribution if

{a $k$ } $\cap[\{b_{k}\}\cup\{c_{k}\}]=\emptyset$ .
We define classes $CME_{+}(m, 1)$ for $m\geqq 0$ and $CME_{+}(0, n)$ for $n\geqq 2$ by $CME_{+}(m, 1)$

$=CE_{+}(m+1)$ and $CME_{+}(0, n)=ME_{+}(n)$ , respectively. Set

$CE_{+}^{f}=\bigcup_{k=1}^{\infty}CE_{+}(k)$ and $CME_{+}^{f}=\bigcup_{m=0}^{\infty}\bigcup_{n=1}^{\infty}CME_{+}(m, n)$ .

The superscript $f$ stands for finite. We will discuss, in a forthcoming paper,
extensions of the classes $CE_{+},$ $ME_{+}$ and $CME_{+}$ to distributions on the whole line.
So we use the subscript $‘+$ in order to denote the classes on the nonnegative
real line. The following theorem is our main result.

THEOREM 1. Let $1\leqq m\leqq n$ . Then the following hold:
(i) There is $k( \max\{1,2m-n\}\leqq k\leqq m)$ such that

$\overline{\mu}_{m.n+1}\in CME_{+}(n-m, k)$ .
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(ii) For any $\mu\in CME_{+}(n-m, k)$ with max $\{1, 2m-n\}\leqq k\leqq m$ , there is a birth
and death prOcess for which $\overline{\mu}_{m.n+1}$ cozncrdes with $\mu$ .

COROLLARY 1. The class of upward first passage time distributions of birth
and death processes with reflecting boundary at 1 coincrdes with the class $CME_{+}^{f}$ .

It should be noted that ‘upward’ is not essential. The situation that we
are dealing with is that there are finitely many states between the boundary
and the hitting point, the starting point is located between them, and the paths
can jump only to neighboring states.

Using Stone’s result [14], R\"osler [11] shows that first passage time dis-
tributions of generalized diffusion processes with local boundary conditions can
be approximated by upward first passage time distributions of birth and death
processes. Hence we have the following:

COROLLARY 2. All first passage time distributims (normalized to be pro-
bability measures) of one-dimensional generalized diffusim processes with local
boundary cmditions are contained in the closure of the class $CME_{+}^{f}$ .

The definition of the generalized diffusion processes is found in Kotani and
Watanabe [9]. These processes are also called gap diffusions in Knight [8].

There are many works about the first passage time distributions of birth
and death processes. Among them, two works are very close to our result.
Rosler shows that $\mu_{mn}$ is unimodal. Approximating diffusion processes by birth
and death processes, he also shows the unimodality of first passage time dis-
tributions for diffusion processes with absorbing or reflecting boundary. Keilson
[5] shows that an upward passage time distribution of a birth and death process
is a convolution of a finite number of exponential distributions and a mixture
of exponential distributions. Hence (i) of Theorem 1 is a refinement of his
result. Our method of the proof is different from his. Our method has an
advantage in refining his result as in (i) of Theorem 1 and in getting the con-
verse result (ii) of Theorem 1. Our method also has an advantage in getting a
condition under which the first passage time distribution is strongly unimodal.
The definition of the strong unimodality is stated in Section 6. As Keilson
points out, distributions in $CE_{+}^{f}$ are strongly unimodal and distributions in $ME_{+}$

are unimodal and hence distributions in $CME_{+}^{f}$ are unimodal, which gives an
alternative proof of Rosler’s result.

In order to prove Theorem 1, we restate Theorem 1 in Theorem 2 in Sec-
tion 2. This restatement is also useful for the study of strong unimodality of
the first passage time distributions. In Sections 3 and 4, we prove Theorem 2.
In Theorem 2 (i), we describe a relation between zeros of polynomials $P_{m}(s)$

and $P_{n}(s)$ , defined by (2.1). The relation is obtained by Stieltjes [13]. We prove
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this relation in a different way. We give in Section 5 the representation of the
Laplace transforms of distributions in the closure of the class $CME_{+}^{f}$ . We define,
in Section 6, a class $CME_{+}^{d}$ which contains, in addition to $CME_{+}^{f}$ , many of first
passage time distributions of one dimensional diffusion processes, and give a
necessary and sufficient condition for a distribution in $CME_{+}^{d}$ to be strongly
unimodal. This condition partially extends an earlier result of the author [17].

We describe in Section 7 some examples and applications of our results from
Sections 1 through 6.

2. Restatement of Theorem 1.

Define a sequence of polynomials $\{P_{m}(s)\}_{m\geqq 0}$ by

$P_{0}(s)=1$

and

(2.1) $P_{m}(s)=\beta_{1}\cdots\beta_{m}/\sigma_{1.m+1}(s)$

for $m\geqq 1$ . Since the process is strongly Markov and paths are ’continuous’, the
equality $\sigma_{1n}(s)=\sigma_{1m}(s)\sigma_{mn}(s)$ holds for $1<m<n$ . Hence we have

(2.2) $\sigma_{mn}(s)=\beta_{m}\cdots\beta_{n- 1}P_{m-1}(s)/P_{n- 1}(s)$ .

It is easy to show that $\{P_{m}(s)\}_{m\geqq 0}$ satisfies the recurrence relation

$P_{0}(s)=1$ ,

(2.3) $P_{1}(s)=s+\beta_{1}+\delta_{1}$ and
$P_{m}(s)=(s+\beta_{m}+\delta_{m})P_{m- 1}(s)-\delta_{m}\beta_{m- 1}P_{m- 2}(s)$

for $m\geqq 2$ . To prove this, again use the strong Markov property of the process
and the ’continuity’ of its paths. By this relation, we easily obtain the follow-
ing: $P_{m}(s)$ is a polynomial of degree $m$ . The leading coefficient is equal to
one. The zeros of $P_{m}(s)$ are simple and negative. The zeros of $P_{m}(s)$ are in-
terlaced with zeros of $P_{m+1}(s)$ for $m\geqq 1$ . These properties of $\{P_{m}\}_{m\geqq 0}$ are proved
in the same way as for a system of polynomials $\{Q_{m}(s)\}$ which is defined in
Section 3. See Lemma 1 and Lemma 2.

For each positive integer $m$ , denote by $PSN(m)$ the class of polynomials of
degree $m$ whose zeros are all real, simple and negative and whose value at the
origin is positive. For notational convenience, we denote by PSN(0) the class
of positive constant functions and set $PSN(-1)=PSN(O)$ . Let $W_{1}(s)\in PSN(m)$

and $W_{2}(s)\in PSN(n)$ for $1\leqq m<n$ . Let

$0>a_{1}>a_{2}>\ldots>a_{m}$

be zeros of $W_{1}(s)$ and put $a_{0}=0$ and $a_{m+1}=-\infty$ . We say that $W_{2}$ interlaces $W_{1}$
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in the weak sense and denote as $W_{1}\triangleleft W_{2}=$ if there is at least one zero of $W_{2}$ in
each open interval $(a_{i+1}, a_{i}),$ $0\leqq i\leqq m$ . We say that $W_{2}$ interlaces $\dot{T}V_{1}$ and denote
as $W_{1}\triangleleft W_{2}$ if $W_{1}\triangleleft W_{2}=$ and $W_{1}$ and $W_{2}$ have no common zero. If $n\geqq 1$ , then we
always say that $W_{2}\in PSN(n)$ interlaces $W_{1}\in PSN(0)$ . Applying this definition to
$\{P_{m}(s)\}_{m\geq 1}$ , we have that $P_{m}(s)\in PSN(m)$ and $P_{m}(s)\triangleleft P_{m+1}(s)$ for $m\geqq 0$ . Let $\mu\in$

$CME_{+}(j, k)$ with $j\geqq 0$ and $k\geqq 1$ . Then there are measures $\mu_{1}\in CE_{+}(j)$ and $\mu_{2}\in$

$ME_{+}(k)$ such that $\mu=\mu_{1}*\mu_{2}$ . For $\mu_{1}$ and $\mu_{2}$ , there are polynomials $W_{1}\in PSN(j)$ ,
$W_{2}\in PSN(k-1)$ and $W_{3}\in PSN(k)$ such that

$\mathcal{L}\mu_{1}(s)=1/W_{1}(s)$ , $\mathcal{L}\mu_{2}(s)=W_{2}(s)/W_{3}(s)$ , $W_{2}\triangleleft W_{3}$ and $W_{2}\triangleleft W_{3}W_{1}$ .
Hence $\mu\in CME_{+}(j, k)$ if and only if there are polynomials $W_{1}\in PSN(k-1)$ and
$W_{2}\in PSN(j+k)$ such that

$\mathcal{L}\mu(s)=W_{1}(s)/W_{2}(s)$ and $W_{1}\triangleleft W_{2}$ .
If we establish the following theorem, then Theorem 1 is true by the above fact.

THEOREM 2. Let $1\leqq m\leqq n$ . Then the following hold:
(i) The polynomial $P_{n}$ interlaces $P_{m- k}$ in the weak sense. Write $\sigma_{m,n+1}(s)$ as

$\sigma_{m.n+1}(s)=W_{j}(s)/W_{k}(s)$

with $W_{j}(s)\in PSN(j)mdW_{k}(s)\in PSN(k)$ so that $W_{j}$ and $W_{k}$ have no commm zero
point. Then

$k-j=n-m+1$ , max $\{0,2m-n-1\}\leqq j\leqq m-1$

and $W_{j}(s)\triangleleft W_{k}(s)$ .
(ii) Let $j$ and $k$ be nonnegative integers such that $k-j=n-m+1$ and

max $\{0,2m-n-1\}\leqq j\leqq m-1$ . For $W_{j}\in PSN(j)$ and $W_{k}\in PSN(k)$ with $W_{j}\triangleleft W_{k}$ ,

we can cmstruct a birth and death process for which

$W_{j}(s)/W_{k}(s)=const$ . $\sigma_{m,n+1}(s)$ .

3. Proof of Theorem 2 (i).

Let $n\geqq 1$ . Define a system of polynomials $\{Q_{m}(s)\}_{0\leq m\leq n}$ by

$Q_{0}(s)=1$ ,

$Q_{1}(s)=s+\beta_{n}+\delta_{n}$ ,
(3.1)

$Q_{m}(s)=(s+\beta_{n-m+1}+\delta_{n- m+1})Q_{m-1}(s)-\delta_{n-m+2}\beta_{n- m+1}Q_{m- 2}(s)$ ,

$Q_{n}(s)=(s+\beta_{1}+\delta_{1})Q_{n- 1}(s)-\delta_{2}\beta_{1}Q_{n- 2}(s)$ .
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LEMMA 1. FOr $1\leqq m\leqq n$ ,

$Q_{m}(0)>\delta_{n-m+1}Q_{m-1}(0)$ .
PROOF. We prove this lemma by induction in $m$ . If $m=1$ , then

$Q_{1}(0)=\beta_{n}+\delta_{n}>\delta_{n}=\delta_{n}Q_{0}(0)$ .
Suppose that the lemma is true for $m\leqq k$ . Then we have

$Q_{k+1}(0)=(\beta_{n-k}+\delta_{n-k})Q_{k}(0)-\delta_{n- k+1}\beta_{n-k}Q_{k-1}(0)>\delta_{n-k}Q_{k}(0)$ .

LEMMA 2. For $1\leqq m\leqq n,$ $Q_{m}(s)\in PSN(m)$ and $Q_{m-1}\triangleleft Q_{m}$ .
PROOF. We prove this lemma by induction in $m$ . For $m=1$ , it is obvious

that $Q_{1}\in PSN(1)$ and $Q_{0}\triangleleft Q_{1}$ . Suppose that the lemma is true for $m\leqq k$ . By the
recurrence relation (3.1) $Q_{k+1}(s)$ is a polynomial of degree $k+1$ . If $s$ is a zero
point of $Q_{k}$ , then, by (3.1), $Q_{k+1}(s)$ and $Q_{k-1}(s)$ have alternative signs. Thus
$Q_{k+1}(s)$ has at least $k-1$ zero points between zeros of $Q_{k}$ . Since $Q_{m}(0)>0$ for
$1\leqq m\leqq n$ by Lemma 1 and since $Q_{k-1}\triangleleft Q_{k},$ $Q_{k-1}(s_{1})>0$ for the largest zero $s_{1}$

of $Q_{k}$ . Hence $Q_{k+1}(s_{1})<0$ and there is a zero of $Q_{k+1}$ between $s_{1}$ and $0$ . Since
$Q_{k- 1}$ and $Q_{k+1}$ must have the same sign near $-\infty$ and have alternative signs
at the smallest zero $s_{k}$ of $Q_{k}$ , $Q_{k+1}$ must have a zero between $-\infty$ and $s_{k}$ .
This completes the proof.

LEMMA 3. For $1\leqq m\leqq n$ ,

(3.2) $P_{n}(s)=P_{n-m}(s)Q_{m}(s)-\delta_{n-m+1}\beta_{n-}{}_{m}P_{n-m-1}(s)Q_{m- 1}(s)$ .
PROOF. The proof is accomplished by induction in $m$ . If $m=1$ . then by

\langle 2.3) and (3.1) we have that

$P_{n}(s)=(s+\beta_{n}+\delta_{n})P_{n-1}(s)-\delta_{n}\beta_{n-1}P_{n-2}(s)$

$=P_{n-1}(s)Q_{1}(s)-\delta_{n}\beta_{n- 1}P_{n- 2}(s)Q_{0}(s)$ .
Suppose that (3.2) holds for $m\leqq k$ . Then, for $m=k$

$P_{n}(s)=P_{n-k}(s)Q_{k}(s)-\delta_{n-k+1}\beta_{n-}{}_{k}P_{n-k-1}(s)Q_{k-1}(s)$

holds. Applying (2.3) and (3.1) to the above equality, we have

$P_{n}(s)=\{(s+\beta_{n-k}+\delta_{n-k})P_{n-k-1}(s)-\delta_{n-k}\beta_{n-k-1}P_{n- k-2}(s)\}Q_{k}(s)$

$-\delta_{n-k+1}\beta_{n-}{}_{k}P_{n-k-1}(s)Q_{k-1}(s)$

$=P_{n-k-1}(s)\{(s+\beta_{n-k}+\delta_{n-k})Q_{k}(s)-\delta_{n- k+1}\beta_{n- k}Q_{k-1}(s)\}$

$-\delta_{n-k}\beta_{n-k-1}P_{n-k-2}(s)Q_{k}(s)$

$=P_{n-k-1}(s)Q_{k+1}(s)-\delta_{n-k}\beta_{n-k-1}P_{n-k-2}(s)Q_{k}(s)$ .
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The proof is complete.

Set
$V_{m.n+1}(s)=\beta_{m}\cdots\beta_{n}/\sigma_{m,n+1}(s)$ .

By (2.2) and (3.2), we have

(3.3) $V_{m.n+1}(s)=Q_{n-m}(s)R_{mn}(s)$

where
$R_{mn}(s)=P_{m}(s)/P_{m-1}(s)-\delta_{m+1}\beta_{m}Q_{n-m-1}(s)/Q_{n-m}(s)$ .

PROOF OF THEOREM 2 (i). NOte that fOr $1\leqq m\leqq n$

$P_{m}(0)/P_{m-1}(0)>\delta_{m+1}\beta_{m}Q_{n-m-1}(0)/Q_{n-m}(0)>0$

since $V_{m.n+1}(s)>0$ . Let $0>a_{1}>a_{2}>\ldots>a_{m-1}$ be the zeros of $P_{m-1}(s)$ and let
$a_{0}=0$ and $a_{m}=-\infty$ . Since $P_{m-1}\triangleleft P_{m},$ $P_{m}(s)/P_{m-1}(s)$ is strictly increasing on
$(a_{k}, a_{k-1})$ for $k=1,2,$ $\cdots$ , $m$ , and the range on $(a_{k}, a_{k-1})$ coincides with $(-\infty, \infty)$

if $2\leqq k\leqq m$ and coincides with (–co, $P_{m}(0)/P_{m-1}(0)$) if $k=1$ (see Appendix). Let
$0>b_{1}>b_{2}>\ldots>b_{n-m}$ be the zeros of $Q_{n-m}(s)$ and let $b_{0}=0$ and $b_{n-m+1}=-\infty$ .
Since $Q_{n-m-1}(s)\triangleleft Q_{n-m}(s)$ , $\delta_{m+1}\beta_{m}Q_{n-m-1}(s)/Q_{n-m}(s)$ is strictly decreasing on
$(b_{k}, b_{k-1})$ for $k=1,2,$ $\cdots$ , $n-m+1$ and the range on $(b_{k}, b_{k-1})$ coincides with
$(-\infty, \infty)$ if $2\leqq k\leqq n-m+1$ and coincides with $(\delta_{m+1}\beta_{m}Q_{n-m-1}(0)/Q_{n-m}(0), \infty)$ if
$k=1$ . Thus, for each $k(1\leqq k\leqq m)$ , there is a zero of $R_{mn}(s)$ in $(a_{k}, a_{k-1})$ .
That is, $P_{m-1}\triangleleft P_{n}=$ . From this fact, it is obvious that $W_{j}\triangleleft W_{k},$ $0\leqq j\leqq m-1$ , and
$k-j=n-m+1$ , when we write

$\sigma_{m,n+1}(s)=W_{j}(s)/W_{k}(s)$

in the reduced form with $W_{j}\in PSN(j)$ and $W_{k}\in PSN(k)$ . Note that $P_{m}$ and $P_{m-1}$

have no common zero. Zeros of $P_{m-1}$ may cancel only with zeros of $Q_{n-m}$ .
Hence $2m-n-1\leqq j$ . The proof is complete.

4. Proof of Theorem 2 (ii).

LEMMA 4. Fix $0\leqq m\leqq n-1$ . Let $f_{n-m-1}(s)$ and $f_{n-m}(s)$ be polynomials in
$PSN(n-m-1)$ and PSN(n–in), respectjvely, with the leading coefficients equal 1
such that $f_{n-m-1}\triangleleft f_{n-m}$ . Fix $\delta_{m+1}$ so that

$0<\delta_{m+1}<f_{n-m}(0)/f_{n-m-1}(0)$ .
Then there is a unique sequence of $po\alpha tive$ numbers $\{\beta_{m+1}, \cdots , \beta_{n}, \delta_{m+2}, \cdots , \delta_{n}\}$

such that the sequence of polynomials $\{Q_{k}(s)\}_{0gk}$ ., n-m defined by the recurrence
relatim (3.1) satisfies

$Q_{n-m-1}(s)=f_{n-m-1}(s)$
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and
$Q_{n- m}(s)=f_{n-m}(s)$ .

LEMMA 5. Fix $m\geqq 1$ . Let $g_{m- 1}$ and $g_{m}$ be polynomials in $PSN(m-1)$ and
$PSN(m)$ , respectively, with the leading coefficzents equal 1 such that $g_{m-1}\triangleleft g_{m}$ .
Fix $\beta_{m}$ so that

$0<\beta_{m}\leqq g_{m}(0)/g_{m- 1}(0)$ .
Then there uniquely exist a nmnegative number $\delta_{1}$ and positive numbers $\beta_{1},$ $\cdots$ ,
$\beta_{m-1},$ $\delta_{2},$ $\cdots$ , $\delta_{m}$ such that $\{P_{k}(s)\}_{osksm}$ defined by the recurrence relatim (2.3)

satisfies
$P_{m-1}(s)=g_{m-1}(s)$

and
$P_{m}(s)=g_{m}(s)$ .

Moreover, $\delta_{1}=0$ if and $mly$ if $\beta_{m}=g_{m}(0)/g_{m-1}(0)$ .
Proofs of Lemmas 4 and 5 are similar. So we prove only Lemma 5.

PROOF OF LEMMA 5. We prove this lemma by induction in $m$ . Let $m=1$

and let $0>c_{1}$ . It is obvious that if we fix $\beta_{1}$ so that

$0<\beta_{1}\leqq-c_{1}$ ,

then there is $\delta_{1}\geqq 0$ such that
$P_{1}(s)=s+\beta_{1}+\delta_{1}=s-c_{1}$ .

Here $\delta_{1}=0$ if and only if $\beta_{1}=-c_{1}$ . Suppose now that the lemma is true for
$m\leqq k$ . Let

$g_{k+1}(s)=(s-c_{1})\cdots(s-c_{k+1})$

and
$g_{k}(s)=(s-b_{1})\cdots(s-b_{k})$

with
$0>c_{1}>b_{1}>c_{2}>\ldots>b_{k}>c_{k+1}$ .

Put
$p_{i}=g_{k+1}(b_{i})$ for $i=1,$ $\cdots$ , $k$ .

Then we have

(4.1) $(-1)^{i}p_{i}>0$ for $i=1,$ $\cdots$ $k$ .
There is one and only one polynomial

$g_{k-1}(s)= \sum_{j=0}^{k-1}\alpha_{j}s^{j}$

of degree not greater than $k-1$ such that

$-g_{k-1}(b_{i})=p_{i}$ for $i=1,2,$ $\cdots$ , $k$ .
Since $g_{k- 1}(s)$ must have at least $k-2$ extremums by (4.1), we have $\alpha_{k-1}>0$ and
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$\alpha_{0}>0$, that is, $g_{k-1}(s)\in PSN(k-1)$ and $g_{k-1}\triangleleft g_{k}$ . Set

$G_{k+1}(s)=g_{k+1}(s)+g_{k-1}(s)$ ,

which is a polynomial of degree $k+1$ . The points $b_{1},$ $\cdots$ , $b_{k}$ are zero points of
$G_{k+1}(s)$ . Denote another zero point of $G_{k+1}(s)$ by $b_{k+1}$ . We have

$G_{k+1}(s)=(s-b_{1})\cdots(s-b_{k+1})=(s-b_{k+1})g_{k}(s)$ ,

that is,
$g_{k+1}(s)=(s-b_{k+1})g_{k}(s)-g_{k-1}(s)$ .

Since $g_{k+1}(0),$ $g_{k}(0)$ and $g_{k-1}(0)$ are positive, the number $-b_{k+1}$ is positive. Fix
$\beta_{k+1}$ so that $0<\beta_{k+1}\leqq g_{k+1}(0)/g_{k}(0)$ . Since

(4.2) $g_{k+1}(0)/g_{k}(0)=-b_{k+1}-g_{k-1}(0)/g_{k}(0)<-b_{k+1}$ ,

we can find $\delta_{k+1}>0$ satisfying $\beta_{k+1}+\delta_{k+1}=-b_{k+1}$ . Moreover, by (4.2), $\delta_{k+1}$

satisfies
$g_{k-1}(0)/g_{k}(0)\leqq\delta_{k+1}$ .

Define $\beta_{k}$ by $\beta_{k}=\alpha_{k-1}/\delta_{k+1}$ . Then we have

$0<\beta_{k}\leqq\alpha_{k-1}g_{k}(0)/g_{k-1}(0)$ .
By the assumption of the induction, we can uniquely choose a sequence of a
nonnegative number $\delta_{1}$ and positive integers $\beta_{1},$ $\cdots$ , $\beta_{k-1},$ $\delta_{2},$ $\cdots$ , $\delta_{k}$ so that

$P_{k-1}(s)=g_{k-1}(s)/\alpha_{k-1}$ and $P_{k}(s)=g_{k}(s)$ .
Hence

$g_{k+1}(s)=(s-b_{k+1})P_{k}(s)-\alpha_{k-1}P_{k-1}(s)$

$=(s+\beta_{k+1}+\delta_{k+1})P_{k}(s)-\delta_{k+1}\beta_{k}P_{k-1}(s)$ .
Note that the uniqueness of $\beta_{k}$ and $\delta_{k+1}$ is obvious. Therefore, we complete
the proof letting $g_{k+1}(s)=P_{k+1}(s)$ .

LEMMA 6. Let $j,$ $k$ and $m$ be nonnegative integers satisfying $j+1\leqq m\leqq k$ .
Let $U(s),$ $W_{1}(s)$ and $W_{2}(s)$ be polynomials in $PSN(k),$ $PSN(j)$ and $PSN(k-j-1)$ ,
respectively, such that $W_{1}W_{2}\in PSN(k-1)$ and $W_{1}W_{2}\triangleleft U$. Let $c_{k-j-1}$ be the smallest
zero of $W_{2}$ and set $R(s)=W_{2}(s)/(s-c_{k-j-1})$ . Then we can find pOlynOmials $U_{1}\in$

$PSN(j+1),$ $T_{1}\in PSN(m-1-j),$ $T_{2}\in PSN(k-m)$ and $T_{3}\in PSN(m-j-1)$ such that
$W_{1}T_{3}\in PSN(m-1),$ $U_{1}T_{1}T_{2}=U,$ $T_{2}T_{3}\in PSN(k-j-1),$ $W_{1}T_{3}\triangleleft U_{1}T_{1}$ and $R\triangleleft T_{f}T_{3}$ .

PROOF. Let
$0>a_{1}>a_{2}>\ldots>a_{j}$

be the zeros of $W_{1}$ and let $a_{0}=0$ and $a_{j+1}=-\infty$ . For $i=1,2,$ $\cdots$ , $j+1$ , denote
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by $b_{i}$ the smallest zero of $U$ in $(a_{i}, a_{i- 1})$ . Set $U_{1}(s)=(s-b_{1})\cdots(s-b_{j+1})$ and
define $U_{2}(s)$ by

$U_{2}(s)=U(s)/U_{1}(s)=(s-d_{1})(s-d_{2})\cdots(s-d_{k-j-1})$ .
Denote by

$0>c_{1}>c_{2}>\ldots>c_{k-j-1}$

the zeros of $W_{2}(s)$ . Then, by the choice of $U_{1}$ , we have that $W_{1}\triangleleft U_{1}$ and

$0>d_{1}>c_{1}>d_{2}>c_{2}>\ldots>d_{k-j- 1}>c_{k-j-1}$ .
Obviously, $R\triangleleft U_{2}$ . Note that neither $U_{2}$ nor $W_{2}$ has a zero in each interval
$(a_{i}, b_{i}),$ $i=1,2,$ $\cdots$ , $k+1$ . Also, neither $U_{1}$ nor $W_{1}$ has a zero in each interval
$(c_{i}, d_{i}),$ $i=1,2,$ $\cdots$ , $k-j-1$ . Choose $e_{i}$ in $(c_{i}, d_{i})$ arbitrarily for $i=1,2,$ $\cdots$ ,

$m-j-1$ and set

$T_{1}(s)=(s-d_{1})\cdots(s-d_{m- j-1})$ ,

$T_{2}(s)=(s-d_{m-j})\cdots(s-d_{k-j-1})$

and
$T_{3}(s)=(s-e_{1})\cdots(s-e_{m-j-1})$ .

We have, by the above choice of polynomials, that

$W_{1}T_{3}\triangleleft U_{1}T_{1}$ and $R\triangleleft T_{2}T_{3}$ .

PROOF OF THEOREM 2 (ii). Let $j$ and $k$ be nonnegative integers satisfying
$k-j=n-m+1$ and $j+1\leqq m\leqq k$ . Let $W_{j}\in PSN(j)$ and $W_{k}\in PSN(k)$ such that
$W_{j}\triangleleft W_{k}$ . Choose a polynomial $W\in PSN(k-j-1)$ so that $W_{j}W\in PSN(k-1)$ and
$W_{j}W\triangleleft W_{k}$ . Let $d$ be the smallest zero of $W$ and set $R(s)=W(s)/(s-d)$ . Choose
$p>0$ sufficiently small. Then, since zeros of a polynomial are continuous with
respect to its coefficients,

$V(s)=W_{k}(s)/W_{j}(s)R(s)+p$

is represented by $U\in PSN(k)$ as

$V(s)=U(s)/W_{j}(s)R(s)$

without changing the configuration of zeros. Hence, by Lemma 6, we can con-
struct polynomials $U_{1}\in PSN(j+1),$ $T_{1}\in PSN(m-1-j),$ $T_{2}\in PSN(k-m)$ and $T_{\}\in$

$PSN(m-j-1)$ such that $W_{j}T_{s}\in PSN(m-1)$ , $U_{1}T_{1}T_{2}=U$ , $T_{2}T_{3}\in PSN(k-]-1)$ ,
$W_{j}T_{3}\triangleleft U_{1}T_{1}$ and $R\triangleleft T_{l}T_{\}$ . Since

$\{U_{1}(0)T_{1}(0)/W_{j}(0)T_{8}(0)\}\{T_{l}(0)T_{3}(0)/R(0)\}=- V(0)_{\alpha}^{\tau}=W_{k}(0)/W_{j}(0)R(0)+p>p$ ,

we can choose $\beta_{m}$ and $\delta_{m+1}$ so that

$\delta_{m+1}\beta_{m}=p$ ,
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$\beta_{m}\leqq U_{1}(0)T_{1}(0)/W_{j}(0)T_{3}(0)$

and
$\delta_{m+1}<T_{2}(0)T_{3}(0)/R(0)$ .

Hence by Lemmas 4 and 5 we can choose sequences of nonnegative numbers

(4.3) $\{\beta_{1}, \cdots \beta_{m-1}, \delta_{1}, \delta_{m}\}$

and

(4.4) $\{\beta_{m+1}, \cdots \beta_{n}, \delta_{m+2}, \delta_{n}\}$

such that the polynomials $\{P_{k}(s)\}_{0\leq k\leq m}$ and $\{Q_{k}(s)\}_{0\leq k\leq n-m}$ defined by the $recurarrow$

rence relations (2.3) and (3.1) satisfy

$P_{m-1}(s)=*W_{j}(s)T_{3}(s)$ ,
and

$Q_{n-m-1}(s)=R(s)$ ,
We have

$W_{k}/W_{j}=(V-p)R$

$P_{m}(s)=U_{1}(s)T_{1}(s)$

$Q_{n-m}(s)=T_{2}(s)T_{3}(s)$ .

$=\{(U_{1}T_{1}/W_{j}T_{3})(T_{2}T_{3}/R)-\delta_{m+1}\beta_{m}\}R$

$=P_{m}Q_{n-m}/P_{m-1}-\delta_{m+1}\beta_{m}Q_{n-m-1}$ .
Thus, we have by (3.3)

$W_{j}(s)/W_{k}(s)=const$. $\sigma_{m.n+1}(s)$

where $\sigma_{m.n+1}(s)$ is the Laplace transform of the first passage time distribution
from $m$ to $n+1$ of a birth and death process whose generator is defined by (1.1)

with quantities (4.3) and (4.4). This completes the proof.

5. Closure of $CME_{+}^{f}$ .
We denote by $I_{+}$ the class of infinitely divisible distributions on $R_{+}$ . Laplace

transform $X\mu(s)$ of $\mu\in I_{+}$ has the L\’evy canonical representation:

$\mathcal{L}\mu(s)=\exp[-\gamma s+\int_{(0.\infty)}(e^{-sx}-1)N(dx)]$

where $\gamma\in R_{+}$ and $N$ is a measure on $(0, \infty)$ such that

$\int_{(0.\infty)}u(1+u)^{-1}N(dx)<\infty$ .

The measure $N$ is called the L\’evy measure of $\mu$ . Denote by BO the smallest
subclass of $\mathcal{P}(R_{+})$ which contains $ME_{+}$ and is closed under convolutions and weak
limits. We call this class BO the Bondesson class. A distribution $\mu$ in $I_{+}$ belongs
to BO if and only if its L\’evy measure $N(dx)$ is absolutely continuous and the
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density $n(x)$ of $N$ is represented as

$n(x)= \int_{(0,\infty)}e^{-xu}M(du)$

where $M$ is a measure on $(0, \infty)$ such that

$\int_{(0.\infty)}$ min $\{u^{-1}, u^{-2}\}M(du)<\infty$ .
It is easy to see that $\mu\in BO$ if and only if its Laplace transform is represented
by the above $M$ as

$X \mu(s)=\exp[-\gamma s+\int_{(0.\infty)}\{(x+s)^{-1}-x^{-1}\}M(dx)]$ .

See Bondesson [1]. A distribution $\mu\in BO$ is determined by the pair $[\gamma, M]$ . So,
we identify the pair $[\gamma, M]$ with $\mu$ . Since the Laplace transform of $\mu\in$

$CME_{+}(m, n)$ is represented as

$X\mu(s)=W_{n-1}(s)/W_{m+n}(s)$

by $W_{n-1}\in PSN(n-1)$ and $W_{m+n}\in PSN(m+n)$ satisfying $W_{n-1}\triangleleft W_{m+n}$ , it is easy
to show the following fact. A distribution $\mu$ belongs to $CME_{+}(m, n)$ if and only
if $\mu\in BO$ , the measure $M$ is absolutely continuous and there are sequences
$\{a k\}_{0\leq k\leq m+1},$ $\{b_{k}\}_{1\leq k\leq n}$ and $\{c_{k}\}_{0\leq k\leq n}$ satisfying

{a $k$ ; $1\leqq k\leqq m$ } $\cap[\{b_{k} ; 1\leqq k\leqq n\}\cup\{c_{k} ; 1\leqq k\leqq n-1\}]=\emptyset$ ,

$0=a_{0}<a_{1}<a_{2}<\ldots<a_{m}<a_{m+1}=\infty$

and
$0=c_{0}<b_{1}<c_{1}<b_{2}<c_{2}<\ldots<b_{n}<c_{n}=\infty$

such that the density $m(x)$ of $M$ is represented as
$m(x)=m_{1}(x)+m_{2}(x)$

where
$m_{1}(x)=k$ if $a_{k}\leqq x<a_{k+1}$

for $k=0,1,2,$ $\cdots$ , $m$ , and

$m_{2}(x)=0$ if $c_{k}\leqq x<b_{k+1}$ and
$=1$ if $b_{k+1}\leqq x<c_{k+1}$

for $k=0,1,2,$ $\cdots$ , $n-1$ . Thus the class $CME_{+}^{f}$ is contained in BO.
We say that $\mu\in \mathcal{P}(R_{+})$ is a $CE_{+}$ distribution if $\mu\in BO,$ $M$ is absolutely con-

tinuous and there is a nondecreasing sequence of positive numbers $\{a_{k}\}_{1\leq k<p}$

$(p\leqq\infty)$ satisfying $\sum a_{k}^{-1}<\infty$ such that the density $m(x)$ of $M$ is represented as
follows:
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In the case $p<\infty$,

$m(x)=0$ on $(0, a_{1})$

$=k$ on $(a_{k}, a_{k+1})$ if $a_{k}<a_{k+1}$

$=p-1$ on $[a_{p-1}, \infty$ )

for $1\leqq k<p-1$ and in the case $p=\infty$ ,

$m(x)=0$ on $(0, a_{1})$

$=k$ on $(a_{k}, a_{k+1})$ if $a_{k}<a_{k+1}$

for $1\leqq k$ . The class $CE_{+}$ coincides with the class of PF densities on $[0, \infty$ ).

See Karlin [4]. The classes $CE_{+}$ and $ME_{+}$ are closed in the weak convergence
sense. These facts are found in Bondesson [1] (p. 50 Remark 5.2 and p. 46).

Let $CME_{+}$ be the class of $\mu\in P(R_{+})$ represented as $\mu=\mu_{1}*\mu_{2}$ with $\mu_{1}\in CE_{+}$ and
$\mu_{2}\in ME_{*}$.

THEOREM 3. The class $CME_{+}$ coincides with the closure of $CME_{+}^{f}$ in the weak
convergence sense.

PROOF. It is easy to see that every $CME_{+}$ distribution is approximated by
$CME_{+}^{f}$ distributions. So, it is enough to show that the class $CME_{+}$ is closed.
Let $\mu_{n}=\mu_{n}^{1}*\mu_{n}^{2}$ , with $\mu_{n}^{1}\in CE_{+}$ and $\mu_{n}^{2}\in ME_{+}$ , be a $CME_{+}$ distribution converging
weakly as $narrow\infty$ to a distribution $\mu$ on $R_{+}$ . Regard these distributions as pro-
bability measures ‘on $\overline{R}_{+}=[0, \infty]$ . Then $\{\mu_{n}^{1}\}_{n\geq 1}$ and $\{\mu_{n}^{2}\}_{n\geq 1}$ are relatively
compact. Choose a subsequence $\{n’\}$ of natural numbers so that $\mu_{n}^{1}$ ’ and $\mu_{n}^{2}$ ’

converge weakly to probability measures $\mu^{1}$ and $\mu^{2}$ on $\overline{R}_{+}$ , respectively, as $n’arrow$

$\infty$ . Since $\mu_{n}^{1}([0, K])\geqq\mu_{n}([0, K])arrow 1$ uniformly in $n$ as $Karrow\infty$ , we have $\mu^{1}(\{\infty\})$

$=0$ . Similarly $\mu^{2}(\{\infty\})=0$ . Hence $\mu_{n}^{1}$ ’ and $\mu_{n}^{2}$ ’ converge weakly to $\mu^{1}$ and $\mu^{2}$

respectively as probability measures on $R_{+}$ . By the closedness of $CE_{+}$ and $ME_{+}$ ,
we have $\mu^{1}\in CE_{+}$ and $\mu^{2}\in ME_{+}$ . Hence $\mu=\mu^{1}*\mu^{2}\in CME_{+}$ . Thus $CME_{+}$ is closed
in the weak convergence sense.

6. Strong unimodality of $CME_{+}^{d}$ distributions.

A probability measure $\mu$ on $R^{1}$ is said to be unimodal if there is $a\in R^{1}$ such
that the distribution function of $\mu$ is convex on $(-\infty, a)$ and concave on $(a, \infty)$ .
We say that a probability measure $\mu$ on $R^{1}$ is strongly unimodal if $\mu$ is unimodal
and its convolution with any umimodal distribution is again unimodal. Ibragimov
[3] shows that a probability measure $\mu$ on $R^{1}$ is strongly unimodal if and only
if $\mu$ is absolutely continuous, its support is an interval and the logarithm of its
density is concave on the support. We say that $\mu\in \mathcal{P}(R_{+})$ is a $CME_{+}^{d}$ distribu-
tion (the superscript $d$ stands for discrete) if there are $\gamma\in R_{+}$ and strictly in-
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creasing sequences of extended real numbers $\{a_{k}\}_{0\leqq k\leq p},$ $\{b_{k}\}_{1\leq k\leq q}$ and $\{c_{k}\}_{0\leq k\leq r}$

$(p, q, r\leqq\infty)$ , satisfying

$r+1=q<\infty$ or $r=q\leqq\infty$ ,

$a_{0}=c_{0}=0$ , $a_{p}=b_{q-}^{B}=Jc_{r}=\infty$ ,

$\{a_{k}\}_{1\leqq k<p}\cap[\{b_{k}\}_{1\xi k<p}\cup\{c_{k}\}_{1\leq k<r}]=\emptyset$ ,

$0<b_{k}<c_{k}<b_{k+1}$ for $1\leqq k<r$

and $\Sigma_{1\leqq k<P}a_{k}^{-1}<\infty$ such that the Laplace transform of $\mu$ is represented as

(6.1) $X \mu(s)=\exp[-\gamma s+\int_{(0.\infty)}\{(x+s)^{-1}-x^{-1}\}\{m_{1}(x)+m_{2}(x)\}dx]$

where
$m_{1}(x)=k$ on $(a_{k}, a_{k+1})$

for $0\leqq k<p$ and
$m_{2}(x)=1$ on $(b_{k}, c_{k})$ for $1\leqq k<q$ and

$=0$ on $(c_{k}, b_{k+1})$ for $0\leqq k<r$ .
It is easy to see that the Laplace transform of $\mu$ is represented by these $\gamma,$

$\{a_{n}\}$ ,
$\{b_{n}\}$ and $\{c_{n}\}$ as

(6.2) $\mathcal{L}\mu(s)=e^{-\gamma s}\prod_{1\xi k<p}a_{k}(s+a_{k})^{-1}\prod_{1\xi k<q}c_{k}^{-1}(s+c_{k})b_{k}(s+b_{k})^{-1}$ .

We regard $c_{r}^{-1}(s+c_{r})=1$ in (6.2). Let $\sigma_{1}(s)=\Pi_{1\leq k<q}c_{k}^{-1}(s+c_{k})b_{k}(s+b_{k})^{-1}$ . Then
$\sigma_{1}(s)$ is the Laplace transform of a mixture $\mu_{1}$ of exponential distributions with
a mixing distribution $G$ on $\{b_{k}\}_{1\leqq k<q}\cup\{\infty\}$ . We remark that $G(\{\infty\})>0$ if and
only if $\Pi_{1\leqq k<q}c_{k}/b_{k}$ converges. The distribution function $F_{1}(x)$ of $\mu_{1}$ is re-
presented with this $G$ as

$F_{1}(x)= \int_{[b_{1}.\infty]}(1-e^{-ux})G(du)$ for $x>0$ .

In Section 7-3, we will discuss first passage time distributions of Bessel diffusion
processes. These distributions are not contained in $CME_{+}^{f}$ but are contained in
$CME_{+}^{d}$ . So, we describe here a necessary and sufficient condition for strong
unimodality of CME’ distributions for later application.

LEMMA 7. Let $\mu\in CME_{+}^{d}$ with Laplace transform (6.2). Assume that $\gamma=0$

and $a_{1}<\infty$ in (6.2). Then $\mu$ is absolutely cmtinuous and the density $f(x)$ is a $C^{\infty}$

fwnction $m(0, \infty)$ . If $a_{2}=\infty$ , then with the above $G$ , the densrty $f(x)$ of $\mu$ and
its &nvatives $f’(x)$ and $f’(x)$ are represented as

(6.3) $f(x)= \int_{[b_{1}.\infty]}a_{1}u(u-a_{1})^{-1}(e^{-a_{1}x}-e^{-ux})G(du)$ ,
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(6.4) $f’(x)= \int_{[b_{1}.\infty]}a_{1}u(u-a_{1})^{-1}(-a_{1}e^{-a_{1^{\tilde{c}}}}+ue^{-ux})G(duI$

and

(6.5) $f’(x)= \int_{[b_{1},\infty]}a_{1}u(u-a_{1})^{-1}(a_{1}^{2}e^{-a_{1}x}-u^{2}e^{-ux})G(du)$ .

The proof is easy and omitted.

LEMMA 8. Let $\mu\in CME_{+}^{d}$ with Laplace transforym (6.2). SuPpose that $\gamma=0$

and $b_{2}<a_{1}<\infty$ . Then (i) $\mu$ has a density $f(x)$ which is of $C^{\infty}m(0, \infty)$ and (ii)

$f(x)md$ its derivatives $f’(x)$ and $f^{\chi}(x)$ have the following asymptOtjcs near infinity.

$f(x)=C_{1}e^{-b_{1}x}+C_{2}e^{-b_{2}x}+o(e^{-b_{2}x})$ ,

$f’(x)=-b_{1}C_{1}e^{-b_{1}x}-b_{2}C_{2}e^{-b_{2}x}+o(e^{-b_{2}x})$

and
$f^{\chi}(x)=b_{1}^{2}C_{1}e^{-b_{1}x}+b_{2}^{2}C_{2}e^{-b_{2}x}+o(e^{-b_{2}x})$ .

Here $C_{1}$ and $C_{2}$ are $po\alpha tive$ cmstants.

PROOF. If $a_{2}=\infty$ , then the conclusion is the direct consequence of Lemma
7. Suppose that $a_{2}<\infty$ . In this case, by the inversion formula for Laplace
transform ([16]), we have

$f(x)= \lim_{Tarrow\infty}(2\pi i)^{-1}\int_{-iT}^{iT}e^{sx}\mathcal{L}\mu(s)ds$ .

We can aPply the residue theorem to get

$| \lim_{Tarrow\infty}(2\pi i)^{-1}\int_{-iT}^{iT}e^{sx}X\mu(s)ds-\sum_{k=1}^{2}r_{S=-b_{k}}esidue[e^{sx}\mathcal{L}\mu(s)]|<Me^{-ux}$

for $x>0$ , where $b_{2}<u< \min\{b_{3}, a_{1}\}$ and $M>0$. Hence we have

(6.6) $f(x)=C_{1}e^{-b_{1}x}+C_{2}e^{-b_{2}x}+o(e^{-b_{2}x})$

where
$C_{1}=(s+b_{1})X\mu(s)|_{s=-b_{1}}$ and $C_{2}=(s+b_{2})\mathcal{L}\mu(s)|_{s\Rightarrow-b_{2}}$ .

Note that $C_{1}$ and $C_{2}$ are positive. Let

$\sigma_{1}(s)=\mathcal{L}\mu(s)a_{1}^{-1}(s+a_{1})$ .
Then $\sigma_{1}(s)$ is the Laplace transform of a $CME_{+}^{d}$ distribution $\mu_{1}$ . Since $a_{2}<\infty,$ $\mu_{1}$

is absolutely continuous. The density $f_{1}(x)$ of $\mu_{1}$ is of $C^{\infty}$ class on $(0, \infty)$ . We
have

(6.7) $f(x)=a_{1} \int_{0}^{x}e^{-a_{1}(x-y)}f_{1}(y)dy$ .
Differentiating (6.7), we have
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(6.8) $f’(x)=-a_{1}f(x)+a_{1}f_{1}(x)$ .
In case $a_{3}=\infty$ apply Lemma 7 and in case $a_{3}<\infty$ apply to $f_{1}(x)$ the same
argument which is previously used for $f(x)$ . In both cases we have

(6.9) $f_{1}(x)=C_{1}’e^{-b_{1}x}+C_{2}’e^{-b_{2}x}+o(e^{-b_{2}x})$

with positive constants C\’i and $C_{2}’$ . By (6.7), we have

(6.10) $f(x)=a_{1}(a_{1}-b_{1})^{-1}C_{1}’e^{-b_{1}x}+a_{1}(a_{1}-b_{2})^{-1}C_{2}’e^{-b_{2}x}+o(e^{-b_{2}x})$

as $xarrow\infty$ . Therefore, by $(6.8)-(6.10)$ , we get

$C_{1}=a_{1}(a_{1}-b_{1})^{-1}C_{1}’$ , $C_{2}=a_{1}(a_{1}-b_{2})^{-1}C_{2}’$

and
(6.11) $f’(x)=-b_{1}C_{1}e^{-b_{1}x}-b_{2}C_{2}e^{-b_{2}x}+o(e^{-b_{2}x})$

as $xarrow\infty$ . If $a_{3}=\infty$ , then by Lemma 7

(6.12) $f_{1}’(x)=-b_{1}C_{1}’e^{-b_{1}x}-b_{2}C_{2}’e^{-b_{2}x}+o(e^{-b_{2}x})$

as $aarrow\infty$ . If $a_{3}<\infty$ , then by the preceding argument, we have the same result.
Differentiating the both sides of (6.8) and applying (6.11) and (6.12), we have

$f’’(x)=b_{1}^{2}C_{1}e^{-b_{1}x}+b_{2}^{2}C_{2}e^{-b_{2}x}+o(e^{-b_{2}x})$

as $xarrow\infty$ . This completes the proof.

THEOREM 4. Let $\mu$ be a $CME_{+}^{d}$ hstribution with the Laplace transform (6.2).

Then $\mu$ is strmgly mimodal if and only if $a_{1}<c_{1}$ or $a_{1}=c_{1}=\infty$ .
PROOF. Without loss of generality we may assume $\gamma=0$ . In case $c_{1}=\infty$ ,

the conclusion is obvious since exponential distributions are strongly unimodal.
Hence we may assume that $c_{1}<\infty$ . First, suppose that $a_{1}<c_{1}$ . We can assume
that $a_{1}<b_{1}$ interchanging $a_{1}$ and $b_{1}$ in case $b_{1}<a_{1}$ . It is enough to show the
strong unimodality in case $a_{2}=\infty$ since exponential distributions are strongly
unimodal. In this case we already know that $\mu$ is strongly unimodal by [17].
But for completeness we state the proof here in this simpler case. By Lemma
7, $\mu$ has a density $f(x)$ which is of $C^{\infty}$ class on $(0, \infty)$ . By $(6.3)-(6.5)$ , we have

$f’(x)^{2}-f(x)f’’(x)=2^{-1} \int\int_{[b_{1},\infty]\cross\subset b_{1}.\infty)}a_{1}^{2}uv\{(u-a_{1})(v-a_{1})\}^{-1}A(u, v, x)G(du)G(dv)$ ,

where
$A(u, v, x)=\{(u-a_{1})^{2}e^{-(a_{1}+u)x}+(v-a_{1})^{2}e^{-(a_{1}+v)x}-(u-v)^{2}e^{-(u+v)x}\}$ .

Since $a_{1}<b_{1}$ , we have

$\{(u-a_{1})(v-a_{1})\}^{-1}A(u, v, x)\geqq 2e^{-(u+v)x}$ .
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Hence
$f’(x)^{2}-f(x)f’(x) \geqq\int\int_{[b_{1},\infty]\cross[b_{1},\infty]}a_{1}^{2}uve^{-(u+v)x}G(du)G(dv)\geqq 0$

for all $x>0$ . This shows that $f(x)$ is log concave on $(0, \infty)$ and hence $\mu$ is
strongly unimodal by Ibragimov’s theorem ([3]). Next, suPpose that $a_{1}>c_{1}$ .
Without loss of generality, we may assume that $b_{2}<a_{1}$ . By Lemma 8, we have

$f’(x)^{2}-f(x)f’(x)=-C_{1}C_{2}(b_{1}-b_{2})^{2}e^{-(b_{1}+b_{2})x}+o(e^{-(b_{1}+b_{2})x})$

as $xarrow\infty$ . Hence we have

$f’(x)^{2}-f(x)f’’(x)<0$ for large $x>0$ .
The proof when $a_{1}=\infty$ goes on the same line since the density of discrete
mixture of exponential distributions has a Dirichlet series with positive coefficients.
The proof is complete.

7. Some examples and applications.

7-1. Strong unimodality of first passage time distributions of birth and
death processes. Let $\mu\in CME_{+}^{f}$ and $X\mu(s)=W_{j}(s)/W_{k}(s)$ where $W_{j}\in PSN(])$ and
$W_{k}\in PSN(k)$ such that $W_{j}\triangleleft W_{k}$ . In this case, Theorem 4 is restated as follows:
$\mu$ is strongly unimodal if and only if the largest zero of $W_{j}$ is smaller than the
second largest zero of $W_{k}$ . For $\mu_{m.n+1}$ , by (3.3), this is equivalent to the fol-
lowing: $\mu_{m.n+1}$ is strongly unimodal if and only if the largest zero of $Q_{n-m}(s)$

is not less than the largest zero of $P_{m-1}(s)$ . Of course in general, it is difficult
to solve the equations

$P_{m-1}(s)=0$ and $Q_{n-m}(s)=0$ .
We list the simplest cases as examples.

EXAMPLE 1. Let $m=2$ and $n=3$ . Then

$P_{m-1}(s)=P_{1}(s)=s+\beta_{1}+\delta_{1}=0$

and
$Q_{n-m}(s)=Q_{1}(s)=s+\beta_{3}+\delta_{3}=0$ .

Therefore, $\mu_{2,4}$ is strongly unimodal if and only if $\beta_{3}+\delta_{3}\leqq\beta_{1}+\delta_{1}$ .
EXAMPLE 2. Let $m=3$ and $n=5$ . Then

(7.1) $P_{m-1}(s)=P_{2}(s)=(s+\beta_{2}+\delta_{2})(s+\beta_{1}+\delta_{1})-\delta_{2}\beta_{1}=0$

and
(7.2) $Q_{n- m}(s)=Q_{2}(s)=(s+\beta_{4}+\delta_{4})(s+\beta_{6}+\delta_{5})-\delta_{5}\beta_{4}=0$ .
The roots of the equation (7.1) are
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$-(\beta_{1}+\beta_{2}+\delta_{1}+\delta_{2})\pm[(\beta_{1}+\beta_{2}+\delta_{1}+\delta_{2})^{2}-4\{(\beta_{1}+\delta_{1})(\beta_{2}+\delta_{2})-\delta_{2}\beta_{1}\}]^{1/2}$

and the roots of the equation (7.2) are

$-(\beta_{4}+\beta_{5}+\delta_{4}+\delta_{5})\pm[(\beta_{4}+\beta_{5}+\delta_{4}+\delta_{6})^{2}-4\{(\beta_{4}+\delta_{4})(\beta_{6}+\delta_{5})-\delta_{5}\beta_{4}\}]^{1/2}$ .
Therefore, $\mu_{3,6}$ is strongly unimodal if and only if

$-(\beta_{1}+\beta_{2}+\delta_{1}+\delta_{2})+[(\beta_{1}+\beta_{2}+\delta_{1}+\delta_{2})^{2}-4\{(\beta_{1}+\delta_{1})(\beta_{2}+\delta_{2})-\delta_{2}\beta_{1}\}]^{1/2}$

$\leqq-(\beta_{4}+\beta_{5}+\delta_{4}+\delta_{5})+[(\beta_{4}+\beta_{5}+\delta_{4}+\delta_{5})^{2}-4\{(\beta_{4}+\delta_{4})(\beta_{5}+\delta_{5})-\delta_{5}\beta_{4}\}]^{1/2}$ .
7-2. Relations between $CME_{+}$ and other classes of infinitely divisible

distributions. We call the smallest subclass of $\mathcal{P}(R_{+})$ which contains gamma
distributions and is closed under convolutions and weak convergence as Thorin
class. We denote by $T$ the Thorin class. It is known ([1]) that a probability
measure $\mu(=[\gamma, M])$ belongs to the Thorin class if and only if it belongs to
BO, the measure $M$ is absolutely continuous and the density $m(x)$ is non-decreas-
ing. The names Thorin class and Bondesson class are due to Kent [7]. We
see that

$BO\supset CME_{+}\supset T\supset CE_{+}$ .
A probability measure $\mu$ on $R_{+}$ belongs to the class $L$ if $\mu$ is infinitely divisible,
the L\’evy measure $N(dx)$ is absolutely continuous and the density $n(x)$ is repre-
sented as

$n(x)=x^{-1}k(x)$

with nondecreasing $k(x)$ (see [2]). Choosing non differentiable $k$ , we get that
$L\not\subset BO$ . Let

$k(x)=e^{-ax}-e^{-bx}+e^{-cx}$

with $0<a<b<c$ . Since

$x^{-1}k(x)= \int e^{-xu}m(u)du$

where
$m(u)=0$ for $0<u<a$ ,

$=1$ for $a\leqq u<b$ ,

$=0$ $b\leqq u<c$ and
$=1$ $c\leqq u$ ,

the distribution $\mu$ with L\’evy measure $x^{-1}k(x)dx$ belongs to $CME_{+}$ . But if we
choose $a,$

$b$ and $c$ appropriately, then $k’(x)>0$ for some $x>0$ . Let us show this
fact. Differentiating $k(x)$ , we have

$k’(x)=-ae^{-ax}+be^{-bx}-ce^{-cx}$ .
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Fix $a$ and $b$ so that $2a<b$. Put

$x=(c-a)^{-1}\log(c/a)>0$ .
Then, for this $x$ ,

$ce^{-cx}=ae^{-ax}$

and
$-k’(x)=\exp[-b(c-a)^{-1}\log(c/a)]\{2a\exp[(b-a)(c-a)^{-1}\log(c/a)]-b\}$ .

Since
$(b-a)(c-a)^{-1}\log(c/a)arrow 0$ as $carrow\infty$ ,

there is $x>0$ such that $k’(x)>0$ by the choice of $a$ and $b$ . Therefore $CME_{+}\not\subset L$ .
It is obvious that $T\subset L$ .

7-3. Location of zeros of Bessel functions with order $\alpha>-1$ . Let $\alpha$ be
a real number greater than $-1$ . Let

$J_{\alpha}(z)=(z/2)^{\alpha} \sum_{n=0}^{\infty}(-1)^{n}(z/2)^{2n}/(n ! \Gamma(\alpha+n+1))$

be the Bessel function with order $\alpha$ . Let

$I_{\alpha}(z)=e^{-ia\pi/2}J_{\alpha}(e^{t\pi/2}z)$

$= \sum_{n=0}^{\infty}(z/2)^{\alpha+2n}/(n ! \Gamma(\alpha+n+1))$

and
$K_{\alpha}(z)=2^{-1}\pi\{I_{-\alpha}(z)-I_{\alpha}(z)\}/\sin\alpha\pi$ .

Let $\sigma_{ab}^{\alpha}(s)$ be the Laplace transform of the first passage time distribution $\mu_{ab}^{a}$

from $a$ to $b$ of the diffusion process, called Bessel process, determined by the
differential operator

$2^{-1} \{\frac{d^{2}}{dx^{2}}+(2\alpha+1)x^{-1}\frac{d}{dx}\}$

with reflecting boundary condition at $0$ in the case $-1<\alpha<0$ (in the case $\alpha\geqq 0$,
the boundary $0$ is an entrance boundary). In Kent [6], the following are found:

(i) If $0<a<b$ , then

(7.3) $\sigma_{ab}^{\alpha}(s)=(b/a)^{\alpha}I_{a}(a(2s)^{1/2})/I_{\alpha}(b(2s)^{1/2})$ .
(ii) If $0<b<a$ , then

$\sigma_{ab}^{\alpha}(s)=(b/a)^{a}K_{a}(a(2s)^{1/2})/K_{\alpha}(b(2s)^{1/2})$ .
Moreover in the case (ii), the first passage time distribution belongs to the
Thorin class (see [1]). It is known that if $\alpha>-1$ , then all zeros of $z^{-\alpha}J_{a}(z)$

are real (see Watson [15] p. 483). Let $\{j_{a.n}\}_{n\geq 1}$ be the set of positive zeros of
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$z^{-\alpha}J_{\alpha}(z)$ arranged in ascending order in magnitude. We have

(7.4) $J_{\alpha}(z)= \Gamma(\alpha+1)^{-1}(z/2)^{\alpha}\prod_{n=1}^{\infty}(1-z^{2}/j_{\alpha,n}^{2})$ .

In the case (i), we rewrite (7.3) and get

$\sigma_{ab}^{\alpha}(s)=(b/a)^{\alpha}J_{\alpha}(e^{i\pi/2}a(2s)^{1/2})/J_{\alpha}(e^{t\pi/2}b(2s)^{1/2})$

$= \prod_{n=1}^{\infty}(1+2sa^{2}/J_{a,n}^{2})/\prod_{n=1}^{\infty}(1+2sb^{2}/j_{a,n}^{2})$ .
The poles of $\sigma_{ab}^{\alpha}(s)$ are

$-2^{-1}(]_{\alpha.n}/b)^{2}$ for $n=1,2,$ $\cdots$

The zeros of $\sigma_{ab}^{a}(s)$ are
$-2^{-1}(]_{\alpha.n}/a)^{2}$ for $n=1,2,$ $\cdots$

Since, for any $0<a<b,$ $\mu_{ab}^{a}\in CME_{+}$ by Corollary 2 of Theorem 2, there are
Laplace transforms $\sigma_{1}(s)$ and $\sigma_{2}(s)$ of a $CE_{+}$ and an $ME_{+}$ distribution respec-
tively such that

$\sigma_{ab}^{\alpha}(s)=\sigma_{1}(s)\sigma_{2}(s)$ .
Note that $\sigma_{2}(s)=\sigma_{ab}^{\alpha}(s)/\sigma_{1}(s)$ is a meromorphic function whose poles are located
on the negative real line. We can apply the residue theorem to the inversion
formula for Stieltjes transforms and we get that the mixing distribution of $\sigma_{2}(s)$

is discrete. Hence it can be shown that the meromorphic function $\sigma_{1}(s)\sigma_{2}(s)$ is
the Laplace transform of a $CME_{+}^{d}$ distribution. Detailed proof of this fact will
be published elsewhere.

PROPOSITION. For $k\geqq 1$ , following $inequality_{\wedge}$ holds:

(7.5) $j_{a.k+1}/j_{\alpha.k}\geqq j_{a.k+2}/j_{\alpha.k+1}$ .
PROOF. Suppose that for some integer $k$

$j_{\alpha.k+1}/j_{\alpha.k}<j_{a.k+2}/j_{a.k+1}$ .
Then we can choose $0<a<b$ so that

$j_{a.k+1}/]_{\alpha.k}<b/a<j_{\alpha,k+2}/]_{\alpha,k+1}$ .
By the property of $CME_{+}^{d}$ distributions $\sigma_{ab}^{a}(s)$ has a pole between any adjoining
zeros of $\sigma_{ab}^{a}(s)$ . Hence, if

$j_{a.k+1}/j_{a.k}<b/a$ $i.e.$ , $(j_{a.k+1}/b)^{2}<(j_{a.k}/a)^{2}$

then
$(j_{\alpha.k+2}/b)^{t}\leqq(j_{\alpha.k+1}/a)^{2}$ $i.e.$ , $b/a\geqq j_{\alpha.k+2}/j_{\alpha.k+1}$ .

This is a Contradiction. Thus we have (7.5). The proof is complete.
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Lorch [10] proved (7.5) without the equality sign. So, our result is not new
but the proof is entirely different and it may be of some interest.

EXAMPLE 3. If $a=-1/2$ then the process is a one-dimensional Brownian
motion on $[0, \infty$ ) with reflecting boundary at the origin. In this case,

$I_{-1/2}(x)=2^{-1}(e^{x}+e^{-x})(2/\pi x)^{1/2}$

and
$\sigma_{ab}^{-1/2}(s)=\cos(a(-2s)^{1/2})/\cos(b(-2s)^{1/2})$

for $0<a<b$ . The zeros of $\cos(a(-2s)^{1/2})$ are
$-(n+1/2)^{2}\pi^{2}/2a^{2}$ for $n=0,1,2,$ $\cdots$

and the zeros of $\cos(b(-2s)^{1/2})$ are
$-(n+1/2)^{2}\pi^{2}/2b^{2}$ for $n=0,1,2,$ $\cdots$

For any $n\geqq 0$ , there is a positive integer $m$ such that

$(b/a)(n+1/2)-1/2<m<(b/a)(n+3/2)-1/2$ .
We have

$(n+1/2)^{2}\pi^{2}/2a^{2}<(m+1/2)^{2}\pi^{2}/2b^{2}<(n+3/2)^{2}\pi^{2}/2a^{2}$ .

This shows that there is a zero of $\cos(b(-2s)^{1/2})$ between zeros of $\cos(a(-2s)^{1/2})$ .
By Theorem 4, in order that $\mu_{ab}^{-1/2}$ be strongly unimodal, it is necessary and
sufficient

$(3/2)^{2}\pi^{2}/2b^{2}\leqq(1/2)^{2}\pi^{2}/2a^{2}$ ,

equivalently, $b\geqq 3a$ .
ACKNOWLEDGEMENT. This work is inspired by a talk of Ken-iti Sato at a

seminar on probability in Nagoya that introduced some of works on this area.
The author wishes to thank him for his well arranged talk. The author also
wishes to thank him and Tadahisa Funaki for their advices which enabled the
author to shorten the proof of Theorem 3.

Appendix.

Let
$0=b_{0}>a_{1}>\ldots>b_{m}>a_{m+1}>b_{m+1}=-\infty$ .

Let

$g_{m}(s)= \prod_{k=1}^{m}(s-b_{k})$ , $g_{m+1}(s)=^{m}\square ^{+1}(s-a_{k})$

$k=1$

and set
$U(s)=g_{m+1}(s)/g_{m}(s)$ .
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Then for $1\leqq k\leqq m+1$

$U(s)>’0$ for a $k<s<b_{k-1}$ ,

$=0$ for $s=a_{k}$ ,

$<0$ for $b_{k}<s<a_{k}$ ,

and $U’(s)>0$ for $s\neq b_{1},$ $b_{2},$ $\cdots$ , $b_{m}$ .
PROOF. Differentiating log $U(s)$ with respect to $s\neq b_{1},$ $b_{2},$ $\cdots$ , $b_{m}$ , we have

$U’(s)=U(s) \{\sum_{k=1}^{m+1}(s-a_{k})^{-1}-\sum_{k=1}^{m}(s-b_{k})^{-1}\}$ .

Let $1\leqq k\leqq m+1$ . If $a_{k}<s<b_{k-1}$ , then $(-1)^{k}g_{m}(s)$ and $(-1)^{k}g_{m+1}(s)$ are negative
and

$(s-a_{1})^{-1}>(s-b_{1})^{-1},$ , $(s-a_{m})^{-1}>(s-b_{m})^{-1},$ $(s-a_{m+1})^{-1}>0$ .
Hence $U(s)>0$ and $U’(s)>0$ . If $b_{k}<s<a_{k}$ , then $(-1)^{k}g_{m}(s)$ is negative, $(-1)^{k}g_{m+1}(s)$

is positive and
$(s-a_{1})^{-1}<0$ ,

$(s-a_{2})^{-1}<(s-b_{1})^{-1}$ , $\cdot$ .. $(s-a_{m+1})^{-1}<(s-b_{m})^{-1}$ .
Hence $U(s)<0$ and $U’(s)>0$ . If $s=a_{k}$ , then $(-1)^{k}g_{m}(s)<0,$ $g_{m+1}(s)=0$ and
\langle $-1)^{k}\Pi_{j\neq k}(a_{k}-a_{j})<0$ . Hence we have

$U(a_{k})=0$

and
$U’(a_{k})= \prod_{j\neq k}(a_{k}-a_{j})/g_{m}(a_{k})>0$ .
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