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\S 1. Introduction and statement of results.

In analytical aspect of the Yang-Mills theory one of the most fundamental
results is the K. Uhlenbeck’s compactness theorem on the moduli space of Yang-
Mills connections.

The purpose of the present paper is to generalize the theorem of Uhlenbeck
to higher dimensions. More precisely, let $G$ be a compact Lie group, and $\{D(i)\}$

a sequence of Yang-Mills connections on a G-principal $P$ over an n-dimensional
Riemannian manifold $M$ such that for some constant $R$

$\int_{M}|R(i)|^{2}dV\leqq R<\infty$ .

Then we can state the theorem of K. Uhlenbeck:

(1.1) FACT ([8], [2]). Let $2\leqq n\leqq 4$ . Then there exist a subsequence $\{j\}\subset\{i\}$ ,

a subset $M’(\subset M)$ , and a Yang-Mills connectim $D(\infty)mP$ over $M’$ such that
$M-M’$ consists of at most finitely many pojnts $\{p_{1}, \cdots p_{l}\}$ , and that for each
compact subset $K\subset M’$ there exist gauge transformatims $g_{K}C$ ) of $P$ over $K$ so
that

$g_{K}(j)^{*}(D(]))arrow D(\infty)$ in $C^{\infty}$-topolOgy on $K$.
Furthermore,

a) when $n=2,3$ , we have $M’=M$,
b) when $n=4$ , in a neighborhood of each $p_{k}$ , the following happens:

If $x=(x_{1}, x_{2}, x_{3}, x_{4}),$ $|x|<\delta$ , denote normal coordinates of $M$ at $p_{k}$ , then there
are rescalings $\rho(j)(x)=(1/r_{j})x$ of this coordinates with $r_{j}arrow 0$ such that for each
compact subset $H\subset R^{n}$ there exist gauge transformations $\gamma_{H}(j)$ of $\rho(j)^{*}P$ over $H$

so that
$\gamma_{H}(])^{*}\rho(])^{*}D(j)arrow D$ in $C^{\infty}$-topology on $H$

where $D$ is a non-flat Yang-Mills connection on $R^{4}$ with respect to the standard
metric of $R^{4}$ with finite actim
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$\int_{R^{4}}|R$ ldy $<\infty$ .

Our result now reads:

(1.2) THEOREM. Let $n\geqq 4$ . Then there exist a subsequence $\{J\}\subset\{i\}$ , a com-
pact subset $S$ with finite $(n-4)$-dimensional Hausdorff measure $H_{n-4}(S)<\infty,$ $a$

$G- pnn\alpha pal$ bundle $Q$ over $M-S$ , and a Yang-Mills cmnectim $D(\infty)mQ$ such
that for each comPact subset $K\subset M-S$ there are bundle equivalences

$g_{K}(j)$ : $P|Karrow Q|K$

so that
$g_{K}(j)^{*}(D(j))arrow D(\infty)$ in $C^{\infty}$-topology on $K$.

Furthermore, in a neighborhood of $p\in s$ the following happens. Let $x=(x_{1}, \cdots x_{n})$ ,
$|x|<\delta$ , denote normal coordinates of $M$ at $p$ . Then there are rescalings $\rho(j)(x)$

$=(1/r_{j})x$ of this coordinates, where $r_{t}0$ such that there exist gauge transfor-
matims $\gamma(])$ of $\rho C^{\cdot})^{*}P$ over $B_{1}(0)$ (n-dimensional unit ball with center at $0$), so
that

$\gamma(])^{*}\rho(j)^{*}(DC))arrow D$ in $C^{\infty}$-topology $mB_{1}(0)$

where $D$ is a non-flat Yang-Mills connectim on $B_{1}(0)$ with $resPect$ to the standard
metric of $R^{n}$ .

We remark here that when dimension $n=4$ , the singular set $S$ is a finite
set, $M-S$ is diffeomorphic to $S^{3}\cross(0,1)$ in each neighborhood of $p\in s$ . Thus
we can extend the bundle map $g_{K}(j)$ over $K$ to a bundle map over $M-S$ if
we take a sufficiently large $K$. Hence the bundle $Q$ is isomorphic to $P$ over
$M-S$ . But we do not know whether it holds in higher dimensions: Indeed,
the topology of $M-S$ is not so clear that our method can be successfully
applied. Moreover in dimension $n=4$ , by removable singularities theorem ([7])

we can extend the bundle $P|M-S$ and the connection $D$ over $M-S$ to a bundle
$Q$ (not necessarily equivalent to $P$) and a Yang-Mills connection $\tilde{D}$ over the
whole $M$, and the connection $D$ can be extended on $S^{4}$ through the stereographic
projection $S^{4}-\{northpole\}arrow R^{4}$ .

If we replace the $C^{\infty}$ convergence by the weak $L_{1}^{2}$ convergence, Fact (1.1)

holds for general (not necessarily Yang-Mills) connections $D(i)$ (see [6]). Indeed,
these results follows from the existence of the Coulomb gauges in case that
$L^{n/2}$-norm of curvature is small (see K. Uhlenbeck ([8])). We shall derive an
estimate for the $C^{0}$-norm of curvature for Yang-Mills connections in case that

$r^{4-n} \int_{B_{r}(x)}|R|^{2}dV$ is sufficiently small. Combining this with K. Uhlenbeck’s result

on the existence of the Coulomb gauge we can prove Theorem (1.2).

Our method to get the estimate is analogous to that for harmonic maps
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which is obtained by R. Schoen ([5, Th. 2.2]). He has derived this estimate
using a Bochner-Weitzenbock formula and a monotonicity formula. Since we
have these formulas also in the Yang-Mills case, we can follow his proof.

The author would like to thank Prof. T. Ochiai for his advice, and Prof. Y.
Matsumoto for his lectures at the University of Tokyo which stimulated the
author’s interest in Yang-Mills theory.

\S 2. Notation.

In this section we summarize the notation. Let $G$ be a compact Lie group,
and 9 its Lie algebra.

We define two bundles $Aut(P)$ and $Ad(P)$ associated with a G-principal
bundle $P$ over an n-dimensional Riemannian manifold.M. $Aut(P)$ is the auto-
morphism bundle of $P,$ $i.e$ .

$Aut(P)=P\cross AdG$ ,

$Ad(P)$ the adjoint bundle with fiber 9, $i$ . $e$ .
$Ad(P)=P\cross Ad\mathfrak{g}$ ,

and we Put a fiber metric on $Ad(P)$ by some Ad-invariant metric on $\mathfrak{g}$ .
Let $\Omega^{k}(Ad(P))$ denote the space of k-forms on $M$ with values in $Ad(P)$ .
$C(P)$ is the space of G-connections on $P$. We fix a connection $D_{0}$ , and

identify $C(P)$ with $\Omega^{1}(Ad(P))$ since the difference $A=D-D_{0}$ is a l-form with
values in $Ad(P)$ .

Let $R=R^{D}$ be the curvature form of $D$ , which is a 2-form with values in
$Ad(P)$ . We define the Yang-Mills functional over $C(P)$ by

$\mathcal{Y}\mathcal{M}(D)=\frac{1}{2}\int_{M}|R^{D}|^{2}dV$

where $dV$ is the volume element of $M$. A critical point of the Yang-Mills
functional is called a Yang-Mills connection.

We call the group of all inner automorphisms of $P$ the gauge group of $P$,
and denote it by $\mathcal{G}(P)$ . This is nothing but the space of global cross sections
of $Aut(P)$ . The gauge group $\mathcal{G}(P)$ acts on the $C(P)$ as follows;

given $g$ in $\mathcal{G}(P)$ and $D$ in $C(P)$ we define
$g^{*}(D)0$

Then we have $R^{g(D)}*=g\circ R^{D_{O}}g^{-1}$ . Thus the Yang-Mills functional $\mathcal{Y}\mathcal{M}$ is in-
variant under the action of $\mathcal{G}(P)$ . Especially the space of Yang-Mills connection
is invariant under the action of $\mathcal{G}(P)$ . We say two connections $D_{1}$ and $D_{2}$ to be
gauge equivalent when there exists a gauge transformation $g$ in $\mathcal{G}(P)$ such that
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$D_{2}=g^{*}(D_{1})$ .
A connection $D$ on $P$ naturally induces a connection on $Ad(P)$ (also denoted

by $D$). On the other hand we have Levi-Civita connection $\nabla$ on the tangent
bundle $TM$. Thus we have naturally the connection (also denoted by $D$) on
$\otimes^{k}T^{*}M\otimes Ad(P)$ induced from $D$ and $\nabla$. We define the exterior differential
operator $d^{D}$ : $\Omega^{k}(Ad(P))arrow\Omega^{k+1}(Ad(P))$ by

$(d^{D} \psi)(X_{0}, \cdots X_{k})=\sum_{i=0}^{k}(-1)^{k}(D_{X_{i}}\psi)(X_{0}, \cdots \hat{X}_{i}, \cdots X_{k})$ .

We denote by $\delta^{D}$ : $\Omega^{k+1}(Ad(P))arrow\Omega^{k}(Ad(P))$ the formal adjoint operator of $d^{D}$.
We can write it as

$( \delta^{D}\psi)(X_{2}, \cdots X_{k})=-\sum_{l=1}^{n}(D_{e_{i}}\psi)(e_{i}, X_{2}, \cdots , X_{k})$

where $(e_{1}, \cdots , e_{n})$ is an orthonormal frame of $TM$ .
Then it is well known that a connection $D$ is a Yang-Mills connection if

and only if
$\delta^{D}R^{D}=0$ .

Now we recall two useful formulas which will be used in the later sections.

(2.1) FACT (Bochner-Weitzenbock formuIa [1]). If $D$ is a Yang-Mills connec-
tion on $P$, then we have

trace $D^{2}R^{D}=R^{D_{\circ}}(Ric\Lambda I)+\mathcal{R}^{T}(R^{D})+\mathcal{R}^{P}(R^{D})$ ,

where Ric $\Lambda I$ is the Riccr transformation $m$ 2-forms defined by

$(Ric\Lambda I)(X, Y)=Ric(X)\Lambda Y+X\Lambda Ric(Y)$ ; and

$\mathcal{R}^{T}(R^{D})$ and $\mathcal{R}^{P}(R^{D})$ are the curvature operatOrs of $TM$ and $P$ respectjvely defined by

$\mathcal{R}^{T}(R^{D})(X, Y)=\sum_{j}R^{D}(e_{j}, R^{M}(X, Y)e_{j})$ ,

$\mathcal{R}^{P}(R^{D})(X, Y)=2\sum_{j}[R^{D}(e_{j}, X), R^{D}(e_{j}, Y)]$ .

Here $(e_{1}, \cdots e_{n})$ is an orthmormal frame of $TM$ and $R^{M}$ the Riemannian cur-
vature tensor, and $[, ]$ the bracket operatjOn induced from that of Lie algebra $\mathfrak{g}$ .

(2.2) FACT (Monotonicity formula [4]). Let $B_{r}=\{x\in R^{n} : |x|<r\}$ be the
r-ball in $R^{n}$ , and $g$ a metric on $B_{r}$ which satisfies

$\frac{1}{\Lambda}(\delta_{ij})\leqq(g_{ij})\leqq\Lambda(\delta_{ij})$ , $r| \frac{\partial g_{ij}}{\partial x_{k}}|\leqq\Lambda$ , and $r^{2}| \frac{\partial^{2}g_{ij}}{\partial x_{k}\partial x_{l}}|\leqq\Lambda$ .

Then there exists a constant $C=C(n, \Lambda)$ depending only on $n$ and $\Lambda$ , such that if
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$D$ is a Yang-Mills cmnectim on a G-princrpal bundle $P$ with respect to the metric
$g$ , then we have

$\sigma^{4-n}\int_{B_{\sigma}}|R^{D}|^{2}dV\leqq C\rho^{4-n}\int_{B_{\rho}}|R^{D}|^{2}dV$ for $\sigma\leqq\rho\leqq r$ .

\S 3. Local estimate.

(3.1) LEMMA. Let the notation be as in Fact (2.2). There exist constants
$\epsilon=\epsilon(n, \Lambda, G)$ and $C=C(n, \Lambda, G)$ such that if $D$ is a Yang-Mills connection on
$P$ satisfying $r^{4-n} \int_{B_{r}}|R^{D}|^{2}dV\leqq\epsilon$ , then

$\sup_{B_{r/4}}|R^{D}|^{2}\leqq Cr^{-n}\int_{B_{r}}|R^{D}|^{2}dV$ .

PROOF. From Fact (2.1) we have

(3.2) $\Delta|R|^{2}\geqq-C(|R|+r^{-2})|R|^{2}$ on $B_{r}$ .

We take $x_{0}\in Closure(B_{r/2})$ such that

$( \frac{r}{2}-|x_{0}|)^{2}|R(x_{0})|=\sup_{B_{r/2}}(\frac{r}{2}-|x|)^{2}|R(x)|$ .

Let $\rho=(1/2)(r/2-|x_{0}|)$ . We may assume $\rho>0$ ; If $\rho=0i$ . $e$ . $|R|=0$ on $B_{r/2}$ ,
our assertion is clearly true. Then we have

(3.3) $\sup_{B_{\rho}(x_{0})}|R|\leqq\sup_{B_{\rho+1x_{0}1}}|R|\leqq\rho^{-2}\sup_{B_{\rho+|x_{0}|}}(\frac{r}{2}-|x|)^{2}|R(x)|\leqq 4|R(x_{0})|$ .

We shall study two cases $|R(x_{0})|\leqq\rho^{-2}$ and $|R(x_{0})|>\rho^{-2}$ separately. Now
suppose $|R(x_{0})|\leqq\rho^{-2}$ . Then we have from (3.2) and (3.3)

$\Delta|R|^{2}\geqq-C\rho^{-2}|R|^{2}$ on $B_{\rho}(x_{0})$ .
By the mean value theorem (cf. [3], Th. 9.20) we have

(3.4) $|R(x_{0})|^{2} \leqq C\rho^{-n}\int_{B_{\rho}(x_{0})}|R^{D}|^{2}dV$ .

Here we should remark that the constant $C$ of mean value theorem depends on
(coefficient of $|R|^{2}$) $\cross$ ($radius$ of ball). Thus in our case the constant depends
only on $n,$

$\Lambda$ and $G$ .
On the other hand from Fact (2.2)

$\rho^{4-n}\int_{B_{\rho}(x_{0})}|R|^{2}dV\leqq C(\rho+\frac{r}{2})^{4-n}\int_{B_{\rho+r/2}(x_{0})}|R|^{2}dV\leqq Cr^{4-n}\int_{B_{r}}|R|^{2}dV$ .
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Thus combining with (3.4) we obtain

$\sup_{B_{r/4}}|R|^{2}\leqq(\frac{r}{4})^{-4}\sup_{B_{r/4}}(\frac{r}{2}-|x|)^{4}|R(x)|^{2}\leqq(\frac{r}{4})^{-4}(2\rho)^{4}|R(x_{0})|^{2}$

$\leqq Cr^{-n}\int_{B_{r}}|R|^{2}dV$ ,

which shows our assertion is true for the case $\Vert R(x_{0})\Vert\leqq\rho^{-2}$ .
Next suppose $|R(x_{0})|>\rho^{-2}$ . Set $r_{0}=|R(x_{0})|^{-1/2}$ . Then we have $r_{0}<\rho$ . So

we have got from (3.2) and (3.3),

$\Delta|R|^{2}\geqq-Cr_{0}^{-2}|R|^{2}$ on $B_{r_{0}}(x_{0})$ .
Using mean value theorem again we obtain

(3.5) $|R(x_{0})|^{2} \leqq Cr_{0}^{-n}\int_{B_{r_{0}}(x_{0})}|R|^{2}dV$ .

Also in this case the constant $C$ depends only on $n,$
$\Lambda$ and $G$ by the same

reason as the previous case. We use Fact (2.2) again to get

(3.6) $r_{0}^{4-n} \int_{B_{r_{0}}(x_{0})}|R|^{2}dV\leqq C(r_{0}+\frac{r}{2})^{4-n}\int_{B_{r_{0}}+r/2^{(x_{0})}}|R|^{2}dV\leqq Cr^{4-n}\int_{B_{r}}|R|^{2}dV\leqq C\epsilon$ .

From (3.5) and (3.6), we obtain

$r_{0}^{-4}=|R(x_{0})|^{2}\leqq r_{0}^{-4}C\epsilon$ ,

which is impossible for sufficiently small $\epsilon$ . Q. E. D.

This lemma corresponds to Theorem (2.2) in [5] and the above proof is
similar to his proof.

(3.7) LEMMA. Let the notation be as in Fact (2.2). There exist constants
$\epsilon=\epsilon(n, \Lambda, G)$ and $C=C(n, \Lambda, G)$ such that if $D$ is a Yang-Mills connection on
$P$ satisfying $r^{4-n} \int_{B_{r}}|R|^{2}dV\leqq\epsilon$ then there exists a Yang-Mills connection $D=d+A$

on $P|B_{r/4}$ which is gauge equivalent to $D$ on $B_{r/4}$ , and satisfies
1) $r \sup_{B_{r/4}}|A|\leqq Cr^{2}\sup_{B_{r’ 4}}|R|$

2) $\delta A=0$

where $d$ is the extenor differential oPeraior with resPect to the flat connection on
$P=B_{r}\cross G$ , and $\delta$ its adjmnt oPerator.

PROOF. Combining Lemma (3.1) with K. Uhlenbeck’s result ([7]), we obtain
the conclusion immediately. Q. E. D.
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\S 4. Proof of main theorem.

We take $\epsilon=\epsilon(M, \Lambda, G)$ as in Lemma (3.7). We define the singular set $S$ by

$S= \bigcap_{0<r<\delta}\{x\in M:\lim_{larrow\infty}\inf r^{4-n}\int_{B_{r}(x)}|R(i)|^{2}dV\geqq\epsilon\}$ , where $\delta$ is the injectivity radius

of $M$.
First we show $S$ is closed. Suppose $\{x_{j}\}$ is a sequence in $S$ converging to

$x$ in $M$, and $r$ is arbitrary positive number. Then for all $r_{1}<r,$ $B_{r_{1}}(x_{j})\subset B_{r}(x)$

holds for sufficiently large $j$ . Hence

$r_{1}^{4-n} \lim_{iarrow\infty}\inf\int_{B_{r}(x)}|R(i)|^{2}dV\geqq r_{1}^{4-n}\lim_{iarrow\infty}\inf\int_{B_{r_{1}}(x_{j})}|R(i)|^{2}dV\geqq\epsilon$ .

Taking limit $r_{1}arrow r$ , we get $x\in S$ .
Next we claim $H_{n-4}(s)<\infty$ . For all $r$ , we take finitely many balls

$\{B_{r}(x_{k}):x_{k}\in S\}$ such that

1) $S \subset_{k}\bigcup_{=1}^{N}B_{2r}(x_{k})$

2) $B_{r}(x_{k})\cap B_{r}(x_{1})=\emptyset$ for $k\neq 1$ .
Since $x_{k}\in S$ , for sufficiently large $i$ we get

$r^{4-n} \int_{B_{r}(x_{k})}|R(i)|^{2}dV\geqq\frac{\epsilon}{2}$ for all $k=1,$ $\cdots$ , $N$ .
And so

$\sum_{k=1}^{N}r^{n-4}\leqq 2\epsilon^{-1}\sum_{k}\int_{B_{r}(x_{k})}|R(i)|^{2}dV\leqq C\int_{M}|R(i)|^{2}dV\leqq CR$ ,

from which it follows that $H_{n-4}(S)<\infty$ .
From the definition of $S$ if we take a subsequence $D(j)$ , we can take a

countable covering $\{B_{\alpha}=B_{r_{\mathcal{O}}/4}(x_{\alpha})\}$ of $M-S$ so that

$r_{a}^{4-n} \int_{B_{r_{a}}(x_{a})}|R(j)|^{2}dV<\epsilon$ for all $\alpha$ and $j$ .

From Lemma (3.2) we can take $\tilde{D}(j)=d+A_{\alpha}(])$ such that
1) $D(j)$ and $\tilde{D}(j)$ are gauge equivalent on $B_{a}$ ,
2)

$r_{\alpha} \sup_{B_{a}}|A_{a}(j)|\leqq C$ ,

3)
$r_{a}^{2} \sup_{B_{\alpha}}|R(j)|\leqq C$ ,

4) $\delta A_{a}(j)=0$ .
If we put $\delta A_{a}(j)=0$ and Yang-Mills equations $\delta R(])=0$ together, we get an
uniform elliptic system on $A_{a}(j)$ . Therefore we can use the standard technique
to obtain $C^{k}$-estimates of $A_{a}(j)$ for all $k$ . Thus if we take a subsequence once
again (we use same letter $A_{\alpha}(j)$), we conclude

$A_{\alpha}(j)arrow A_{a}(\infty)$ in $C^{\infty}$ topology, with $A_{a}(\infty)$ in $\Omega^{1}(Ad(P)|B_{a})$ .
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Next we observe that $\{A_{\alpha}(\infty)\}$ fits together to define a connection on some
G-principal bundle $Q$ over $M-S$ . From the above construction we have the
transition functions $\gamma_{\alpha\beta}(j):B_{\alpha}\cap B_{\beta}arrow G$ for each $j$ such that

$A_{\alpha}(j)=-d\gamma_{a\beta}(J)\gamma_{\alpha\beta}(J)^{-1}+\gamma_{\alpha\beta}(])A_{\beta}C^{\cdot})\gamma_{a\beta}(])^{-1}$

for all $\alpha$ and $\beta$ with $B_{\alpha}\cap B_{\beta}\neq\emptyset$ .

Since $G$ is compact, it follows that $\{\gamma_{\alpha\beta}(])\}$ is uniformly bounded. Combining
this with the estimate of $A_{\alpha}(])$ mentioned above, we can get $C^{k}$ estimates of
$\gamma_{\alpha\beta}(])$ for all $k$ by bootstrapping method; we may assume

$\gamma_{a\beta}(j)arrow\gamma_{\alpha\beta}(\infty)$ in $C^{\infty}$ topology with $\gamma_{a\beta}(\infty):B_{a}\cap B_{\beta}arrow G$ .

Since for each $j,$ $\{\gamma_{\alpha\beta}(j)\}$ satisfies the cocycle condition, $\{\gamma_{\alpha\beta}(\infty)\}$ also satisfies
the cocycle condition, and $\{\gamma_{\alpha\beta}(\infty)\}$ defines a G-principal bundle $Q$ over $M-S$ ,
and $\{A_{\alpha}(\infty)\}$ defines a Yang-Mills connection $D(\infty)$ on $Q$ .

Next we shall construct a bundle map $g_{K}(j):P|Karrow Q|K$ for each compact
subset $K\subset M-S$ so that $g_{K}(j)^{*}D(])$ converges to $D(\infty)$ in $C^{\infty}$ topology on $K$.
This can be done by the induction on the number of balls $B_{\alpha}$ covering $K$ just
as in [8, \S 3]. We shall show that we can take a smaller cover $U_{\alpha}\subset B_{\alpha}$ and
smooth functions $\rho_{\alpha}(j):U_{\alpha}arrow G$ for sufficiently large $j$ satisfying the consistency
condition

$\gamma_{\alpha\beta}(\infty)=\rho_{\alpha}(J)\gamma_{\alpha\beta}(J)\rho_{\beta}(J)^{-1}$ on $U_{\alpha}\cap U_{\beta}$ .
We introduce an ordering in $\{B_{a}\}$ , and represent this by 1, $\cdots$ , $\alpha,$

$\cdots$ , $N$.
At first we set $\rho_{1}(])=e\in G$ on $B_{1}$ . If we have constructed $U_{\beta}$ and $\rho_{\beta}(])$

for $\beta\leqq\alpha-1$ , we define $\rho_{\alpha}(j):B_{\alpha}arrow G$ as follows; We define $X_{\alpha}(j)$ by

exp $X_{\alpha}(J)=\gamma_{\alpha\beta}(\infty)\rho_{\beta}(J)\gamma_{\alpha\beta}(])^{-1}$ on $B_{\alpha}\cap(\cup U_{\beta})$ .

Taking $j$ sufficiently large so that $\gamma_{\alpha\beta}(])\gamma_{a\beta}(\infty)^{-1}$ is sufficiently near to $e\in G$ ,

we can construct $\rho_{\beta}(j)$ sufficiently near to $e\in G$ . Hence $X_{\alpha}(])$ can be defined
by the above equation which is independent of $\beta$ by the consistency condition.
Take a smooth function $f$ on $K$ which is $0$ on $B_{\alpha}-( \bigcup_{\beta<\alpha}U_{\beta})$ and 1 on an
appropriate subset of $\bigcup_{\beta<a}U_{\beta}$ (we fix later). We set

$\rho_{a}(j)=\exp(fX_{\alpha}(j))$ on $B_{\alpha}$ .
If we replace $U_{\beta}$ by $U_{\beta}\cap int\{f=1\}$ for $\beta<\alpha$ , and define $U_{\alpha}$ by $B_{\alpha}$ , the con-
sistency condition will be satisfied between $\rho_{\alpha}(])$ and $\rho_{\beta}(])$ for $\beta<\alpha$ . And if
we take an appropriate $f$, then $U_{\beta}(\beta\leqq\alpha)$ and $B_{\gamma}(\gamma>\alpha)$ still cover $K$. Thus
by induction we can construct a smaller cover $\{U_{\alpha}\}$ and $\rho_{\alpha}(j)$ . And $\rho_{\alpha}(])$

converges to $e\in G$ in $C^{\infty}$ topology on $U_{a}$ .
Let $\sigma_{\alpha}(j):P|U_{\alpha}arrow U_{\alpha}\cross G$ and $\sigma_{\alpha}(\infty):Q|U_{\alpha}arrow U_{\alpha}\cross G$ be the local trivialization
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which induce transition functions $\gamma_{\alpha\beta}(])$ and $\gamma_{\alpha\beta}(\infty)$ respectively. We define
bundle maps $g_{K}(j)$ by

$g_{K}(j)= \sigma_{a}(\infty)^{-1}\rho_{a}(j)\sigma_{\alpha}(\int)$ .
This definition is well defined on $K$ by the consistency condition and

$\gamma_{\alpha\beta}(])=\sigma_{\alpha}(])\sigma_{\beta}(])^{-1}$ , $\gamma_{\alpha\beta}(\infty)=\sigma_{\alpha}(\infty)\sigma_{\beta}(\infty)^{-1}$ .

Then $g_{K}(j)^{*}D(])$ is locally represented as
$d-d\rho_{\alpha}(])\rho_{\alpha}(J)^{-1}+\rho_{\alpha}(J)A_{\alpha}(])\rho_{\alpha}(j)^{-1}$ ,

using the local trivialization $\sigma_{a}(\infty)$ on $U_{\alpha}$ . Thus $g_{K}(j)^{*}D(])$ converges to

$d+A_{\alpha}(\infty)$ ,

$i.e$ . $g_{K}(j)^{*}D(J)$ converges to $D(\infty)$ .
We now prove the second statement of main theorem. We introduce normal

coordinates $x=(x_{1}, \cdots , x_{n})$ at $p\in s$ . Then we have

$\lim_{jarrow}r^{4-n}\int_{B_{r}(p)}|R(j)|^{2}dV\geqq\epsilon$ for all $r>0$ .

But for fixed $j$ , we know that

$\lim_{\tauarrow 0}r^{4-n}\int_{B_{r}(x)}|R(j)|^{2}dV=0$ uniformly on $x\in M$ .

Hence for all $j$ , there exists a radius $r_{j}>0$ such that

(4.1) $r_{J^{-n}}^{4} \int_{B_{r_{j}}(p)}|R(j)|^{2}dV=\frac{\epsilon}{4C}$ where $C$ is as in (2.2).

Then we may assume $r_{j}arrow 0$ as $jarrow\infty$ . In fact, if there exists a positive number
$r_{0}$ with $r_{0}\leqq r_{j}$ for all $j$ ,

$\frac{\epsilon}{2}\leqq r_{0}^{4-n}\int_{B_{r_{0}}(p)}|R(j)|^{2}dV\leqq Cr_{j}^{4-n}\int_{B_{r_{j}}(p)}|R(j)|^{2}dV\leqq\frac{\epsilon}{4C}\cross C=\frac{\epsilon}{4}$ ,

which is a contradiction.
We introduce new coordinates $y=\rho(])(x)=(1/r_{j})x$ , and then have, by (4.1),

(4.2) $\int_{B_{1}(0)}|\hat{R}(])|^{2}dV_{j}(y)=\frac{\epsilon}{4C}$

where $\tilde{R}(j)=\rho(])^{*}R(])$ , and $dV_{j}(y)$ the volume element of the rescaled metric
$(1/r_{j}^{2})\rho(j)^{*}g$ . In the coordinates, the rescaled metric converges to the standard
metric in $R^{n}$ in $C^{\infty}$ topology. Moreover from (4.2) curvature $\hat{R}(j)$ does not
concentrate in this case. Although the metrics $(1/r_{j}^{2})\rho(j)^{*}g$ differ each other,
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they converge to the standard metric. Thus we can argue as in the first part
of the proof, and conclude that there exist gauge transformations 7(7) over
$B_{1}(0)$ such that $\gamma(j)^{*}\rho(j)^{*}D(j)$ converges to a Yang-Mills connection $D$ in $C^{\infty}$

topology.
Moreover by (4.2)

$\int_{B_{1}(0)}|R|^{2}dy=\frac{\epsilon}{4C}$ ,

showing $D$ is not trivial.
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