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Let $Y$ be a normal projective surface over $C$ . A ruled fibration on $Y$ over
a smooth curve $B$ is a surjective morphism $p;Yarrow B$ such that the general fibre
is isomorphic to $P^{1}$ . We have the notion of exceptional curves of the first
kind in the category of normal surfaces. Namely, an irreducible curve $C$ on
$Y$ is called an excePtional curve of the first kind if $K_{Y}C<0$ and $C^{2}<0$ , where
the $K_{Y}$ denotes a canonical divisor on $Y$. Cf. [S3]. A minimal ruled fibration
will mean a ruled fibration whose fibres contain no exceptional curves of the
first kind. Given a ruled fibration on $Y$, contract successively all exceptional
curves of the first kind in fibres, then we obtain a minimal ruled fibration. In
this paper we study the structure of a normal surface $Y$ having a minimal
ruled fibration over a curve $B$ of genus $g$ .

In \S 1 we consider the structure of singular fibres. It turns out that every
singular fibre is necessarily a multiple fibre and contains one or two singular
points of $Y$. To describe a singular fibre, we observe the weighted dual graph
of the inverse image of the singular fibre on the minimal resolution of $Y$. In
\S 2 we introduce a nonnegative rational number $\tau$ , which measures the amount
of Sing$(Y)$ . We have the formula: $K_{Y}^{2}=8(1-g)-4\tau$ . Suppose that $Y$ has
singular fibres $f_{i}$ with multiplicities $m_{i},$ $i=1,$ $\cdots$ , $k$ . Then we show that
$\tau\geqq\sum(1-1/m_{i})$ . In \S 3 we define the invariants $s_{n}\in Q$ for positive integers $n$ .
The first invariant $s=s_{1}$ is defined to be the minimum of the self-intersection
numbers of all sections in the ruled fibration. Provided that $Y$ is singular, we
prove the inequality: $s\leqq g+\tau-1$ . Recall that for the smooth case a theorem of
Nagata [N] says that $s\leqq g$ . Similarly, we define the invariants $s_{n}$ to be $1/n^{2}$

of the minimum of the self intersection numbers of all effective divisors of
degree $n$ over $B$ . We show that $s_{n}\leqq 2g/(n+1)+\tau$ . The invariant $s_{*}= \inf\{s_{n}\}$

plays an important role in the numerical criterion for an ample divisor. In \S 4
we consider the anti-Kodaira dimension $\kappa^{-1}(Y)$ . We give a classification of $Y$

in terms of $\kappa^{-1}(Y)$ together with the numerical type of the anticanonical divisor
$-K_{Y}$ . For the smooth case, this was done in [S1], [S3]. We also deal with
the question when $Y$ admits another ruled fibration or an elliptic fibration. We
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finally prove that $Y$ becomes a normal del Pezzo surface ( $i$ . $e.$ , a normal surface
with ample anticanonical divisor) if and only if either $Y$ admits another minimal
ruled fibration, or $Y$ contains an exceptional curve of the first kind in the above
sense.

NOTATION AND CONVENTIONS. We use the notation and the results in the
previous papers [S2], [S3]. Let $Y$ be a normal surface. A divisor will mean a
Weil divisor. Let $Div(Y)$ denote the group of divisors on $Y$. We employ the Q-

valued intersection theory on $Div(Y)$ , which was introduced by Mumford. We
denote by $\sim$ (resp. $\equiv$ ) the linear equivalence (resp. numerical equivalence) on
$Div(Y)$ . For a divisor $D$ , we denote by $O(D)$ the corresponding divisorial sheaf.
We mean by $\kappa(D, Y)$ the D-dimension of $Y$. A divisor $D$ is nef if $DC\geqq 0$ for
all irreducible curves $C$ on $Y$, and is pseudoeffective if $DP\geqq 0$ for all nef divisors
$P$ on $Y$. We say that $D$ is ample if some positive multiple of $D$ becomes an
ample Cartier divisor in the usual sense.

In the previous papers [S3], [S4], a minimal ruled fibration is also called
a $P^{1}- fibration$ . But some authors use it to mean a ruled fibration. To avoid
confusion we employ “minimal ruled fibration” in this paper. A smooth pro-
jective surface with a minimal ruled fibration is known to be a $P^{1}$-bundle over
the base curve. As usual, such a surface is called a geometrically ruled surface.
See [H2], [M] for the general theory of geometrically ruled surfaces.

\S 1. Singular fibres.

Let $D$ be the unit disc. Let us consider a normal surface $Y$ having a
minimal ruled fibration $p:Yarrow D$ . In this section, we describe the structure of
singular fibres. Let $f$ denote the fibre over $0$ . More precisely, we define $f$ to
be the Cartier divisor $p^{*}(0)$ where (0) is regarded as a divisor on $D$ . We say
that $f$ is a regular fibre if $f$ does not meet Sing$(Y)$ and $f\cong P^{1}$ . Otherwise,
we say that $f$ is a singular fibre. We have seen in [S3] that $f$ contains no
exceptional curves of the first kind if and only if $Supp(f)$ is irreducible. The
argument is as follows. Suppose that $Supp(f)$ is reducible, so that $f= \sum m_{i}F_{i}$

where the $F_{i}$ are irreducible. The connectedness of $Supp(f)$ implies that $F_{i}^{2}<0$

for all $i$ . Since $K_{Y}( \sum m_{i}F_{i})=K_{Y}f=-2$ , there must exist at least one component
$F_{i}$ with $K_{Y}F_{i}<0$ . This $F_{i}$ would be an exceptional curve of the first kind.
Thus the fibre $f$ has the form:

(1.1) $f=mF$ ( $F$ is irreducible)

where the positive integer $m$ is called the multiplicity of $f$. The fibre $f$ is a
multiPle fibre if $m\geqq 2$ . If $m=1$ , then we get $(K_{Y}+f)f=-2$ and so we infer
from Lemma 1 in [S4] that $f$ is a regular fibre. We conclude therefore that
there are only multiple singular fibres.
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To describe singular fibres, we fix the notation:

$-a\circ$
: $(-a)$-curve , $\cdot$ : $(-2)$-curve , $*$ : (–1)-curve.

Here a $(-a)$-curve is a smooth rational curve with self-intersection number $-a$ .
Given positive integers $a_{1},$

$\cdots$ , $a_{n}$ , we define the continued fraction:

$[a_{1}, \cdots a_{n}]=a_{1}-\frac{1}{a_{2}-}$ .

$\frac{1}{a_{n}}$

We write $[a_{1}, \cdots , a_{n}]=d/e$ where the $d$ and $e$ are mutually prime positive
integers. If $a_{i}\geqq 2$ for all $i$ , then the sequence $\{a_{1}, \cdots , a_{n}\}$ is uniquely deter-
mined by the pair $(d, e)$ with $0<e<d$ . Consider the linear equations of inde-
terminates $X_{0},$ $\cdots$ , $X_{n+1}$ :

$X_{j+1}=a_{j}X_{j}-X_{j-1}$ , $j=1,$ , $n$ .
Let $\{w_{j}\}$ be the solution satisfying the conditions: $w_{n}=c,$ $w_{n+1}=0$ . Then we
find that $w_{0}=cd$ .

THEOREM 1.2. Let $p;Yarrow D$ be a mimmal ruled fibration of a normal surface
$Y$ over the unit disc D. SuppOse that it has a srngular fihre $f$ over $O\in D$ . If
$\pi:Xarrow Y$ is the minimal resolution of $Y$, then

(i) the curves in $\pi^{-1}(f)$ constst of a tree of $P^{1},s$ with the following weighted
dual graPh:

where $a_{ij}\geqq 2,$ $a_{ij}’\geqq 2$ for all $i,$ $j$ and $t\geqq 0$ ,
(ii) if $[a_{11}, \cdots , a_{1n_{1}}]=d_{1}/e_{1}$ , then

$[a_{11}’, \cdots a_{1n_{1}’}’]=d_{1}/(d_{1}-e_{1})$ ,

and for $i\geqq 2$ , if $[a_{i1}, \cdots , a_{in_{i}}]=d_{i}/e_{i}$ , then

$[a_{i1}’, \cdots , a_{in_{i}’-1}’, a_{in_{i}’}’-1]=d_{i}/(d_{i}-e_{i})$ ,

(iii) the multiplicity of $f$ is equal to the prOduct $\Pi_{i\Rightarrow 1}^{k}d_{i}$ .
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DEFINITION 1.3. In the above case, the singular fibre $f$ is said to be of
type $\{(d_{1}, e_{1}), \cdots , (d_{k}, e_{k}), t\}$ .

PROOF. We may assume that there are no singular fibres other than $f$.
Since $\Phi=p\circ\pi:Xarrow D$ is a ruled fibration, by contracting (–1)-curves in its
fibres, it factors through a $P^{1}$-bundle $Tarrow D$ :

(1.4) $Yp\backslash _{D}\swarrow\pi/^{X}I^{\Phi}\backslash _{\tau}\nearrow q\varphi$

Let $l$ be the fibre of $Tarrow D$ over $0$ . Then $\pi^{*}f=\varphi^{*}l$ and $\pi^{-1}(f)=\varphi^{-1}(l)$ . We
observe the process of blowing ups in $Xarrow T$. Following Fujita [F1], p. 520, a
blowing up over $l$ is called subdivisional (type $D$, for short) if it is performed
at one of the points where two curves over $l$ meet together, otherwise it is
called sprouting(tyPe $S$ , for short).

Write $f=mF$ as in (1.1). Let $\overline{F}$ be the strict transform of $F$ by $\pi$ . We
see that $\overline{F}$ is a (–1)-curve. Indeed, since $\pi^{-1}(f)$ is reducible, $\overline{F}^{2}<0$ , also
$K_{X}\overline{F}\leqq K_{Y}F=-2/m<0$, hence $\overline{F}$ is a (–1)-curve. Therefore, in every inter-
mediate step of $Xarrow T$, there are no mutually disjoint (–1)-curves over 1. By
this reason, the first two blowing ups should be the following:

type $S$ type $D$

$o|$

$l\circ-*-*(0)arrow 0-*$ .

After this step, there is only one (–1)-curve over 1, and every blowing up must
be performed on that (–1)-curve. We write the order of types of blowing ups
over $l$ in $\varphi$ :

$SD\cdots DS\cdots SD\cdots D\cdots\cdots S\cdots SD\cdots DS\cdots S$

$\overline{r_{1}}\overline{\iota_{2}}\overline{r_{2}}$ $\overline{\iota_{k}}\overline{r_{k}}\overline{t}$

where $r_{1}\geqq 1$ and $t\geqq 0$ . After the first $r_{1}$-times type $D$ blowing ups, one has
the dual graph:

$\ddagger^{-a_{1n_{1}}}$

.
$-a_{11}$

$0-\cdotsarrow*$
$-a_{1n}’i$ $-a_{I1}’$
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where $a_{1j}\geqq 2,$ $a_{1j}’\geqq 2$ , and $n_{1}+n_{1}’=1+r_{1}$ . Next, after $t_{2}$-times type $S$ blowing
ups followed by $r_{2}$-times type $D$ blowing ups, we arrive at the following dual
graph:

$-a_{1n_{1}’}’$ $-a_{11}’-a_{2n_{2}’}’$ $-a_{21}’$

where $a_{2j}\geqq 2,$ $a_{2j}’\geqq 2$ and $n_{2}+n_{2}’=t_{2}+r_{2}$ . Continuing the process of blowing ups
in this way, we finally obtain the assertion (i).

By induction, the assertion (ii) follows from the following

LEMMA 1.5. If $po\alpha tive$ integers $a_{1},$
$\cdots$ , $a_{n},$ $a_{1}’,$ $\cdots$ , $a_{n’}’$ satisfy the condition:

$[a_{1}, \cdots a_{n}]^{-1}+[a_{1}’, \cdots a_{n’}’]^{-1}=1$ ,

then the following equality holds:

$[a_{1}+1, a_{2}, \cdots , a_{n}]^{-1}+[2, a_{1}’, \cdots , a_{n’}’]^{-1}=1$ .

To prove (iii), we name the curves as follows

$E_{\lfloor\ell n_{1}’}^{’}$ $E_{11}’$ $E_{kn_{k}’}’$ $E_{k1}’$ $E_{1}$ $E_{t}$
$\overline{F}$

Since $f=\pi_{*}(\pi^{*}f)=\pi_{*}(\varphi^{*}l)$ , the multiplicity $m$ is equal to the $coefficient_{A}^{-}of_{-}^{1}\overline{F}$ in
the divisor $\varphi^{*}l$ . Write

$\varphi^{*}1=\Sigma m_{ij}E_{ij}+\Sigma m_{ij}’E_{ij}’+\Sigma m_{i}E_{i}+m\overline{F}$ .
By checking step by step, we see the following relations:

$\{\begin{array}{l}m_{1}=\cdots=m_{t}=mm_{1n_{1}}=m_{1n}’i=1m_{in_{t}}=m_{\ell n_{i}’}’ for i=2, \cdots , k.\end{array}$
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Since $(\varphi^{*}l)E_{1j}=0$ for all $j$ , the sequence of integers $\{m_{1j}\}$ with $m_{10}=m_{2n_{2}’}’$ is a
solution of the equations: $X_{j+1}=a_{1j}X_{j}-X_{j-1}$ with $m_{1n_{1}+1}=0,$ $m_{1n_{1}}=1$ . As we
have seen before, we get $m_{10}=d_{1}$ . Thus $m_{2n_{2}}=m_{2n_{2}’}’=d_{1}$ . Similarly, the equa-
tions: $(\varphi^{*}l)E_{2j}=0$ imply that $\{m_{2j}\}$ with $m_{20}=m_{3n_{3}’}’$ is a solution of the equations:
$X_{j+1}=a_{2j}X_{j}-X_{j-1}$ with $m_{2n_{2}+1}=0$ , $m_{2n_{2}}=d_{1}$ . Hence $m_{20}=d_{1}d_{2}$ , and it follows
that $m_{3n_{3}}=d_{1}d_{2}$ . Repeating the calculation in this way, we can show that $m=$

$\Pi_{i=1}^{h}d_{i}$ . $\square$

REMARK 1.6. In case $k=1$ , the weighted dual graph is uniquely determined
by the type. But in case $k\geqq 2$ , this is not the case. For instance, the following
is of type $\{(2,1), (2,1), 0\}$ for every $r\geqq 1$ .

REMARK 1.7. If $t=0,$ $f$ contains two singularities of $Y$, and if $t\geqq 1$ , then
$f$ contains one singularity of $Y$. Note that $f$ contains only rational double
points if and only if $f$ is of type $\{(2,1), t\}$ with $t\geqq 0$ .

\S 2. The invariant $\tau$ .
Let $Y$ be a normal projective surface having a minimal ruled fibration $p:Y$

$arrow B$ over a smooth curve $B$ of genus $g$ . We know that $Y$ carries only rational
singularities ([S3], Lemma 4.6). Let $\pi:Xarrow Y$ be the minimal resolution of $Y$.
Let Sing $(Y)=\{y_{1}, \cdots , y_{t}\}$ and $A= \sum A_{i}$ where each $A_{i}$ denotes the exceptional
set $\pi^{-1}(y_{i})$ . Let $r_{i}$ be the determinant of the intersection matrix of all irreduci-
ble components of $A_{i}$ , and let $r=1$ . $c$ . $m.(r_{i})$ .

LEMMA 2.1. Let $r$ be as above. Then
(i) $DD’\in(1/r)Z$ for $D,$ $D’\in Div(Y)$ ,
(ii) $rD$ is a Cartier divisor for every $D\in Div(Y)$ .
PROOF. (i) follows directly from the definition of intersection numbers

([S2]). (ii) follows from Theorem (4.2) in [S2]. $\square$

There exists an effective Q-divisor $\Delta$ supported on $A$ satisfying the relation:
$\pi^{*}K_{Y}=K_{X}+\Delta$ . Cf. [S2]. Decompose $\Delta=\sum\Delta_{i}$ as $Supp(\Delta_{l})\subset A_{i}$ . For each
singular point $y_{i}$ , we define

$\tau(y_{i})=\frac{1}{4}(\rho(A_{i})+\Delta_{i}^{2})$
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where $\rho(A_{i})$ denotes the number of irreducible components of $A_{i}$ . Note that
$\tau(y_{i})\in Q$ , which is possibly negative and that $\tau(y_{i})$ depends only on the weighted
dual graph of $A_{i}$ . Define

$\tau=\tau(Y)=\sum\tau(y_{i})$

where the summation is taken over all singularities. Since each $y_{i}$ is a rational
singularity, $4\tau(y_{i})$ is equal to the (generalized) Milnor number $\mu(y_{i})$ dePned in
[S2]. The Noether formula (4.7) in [S2] gives

(2.2) $K_{Y}^{2}=8(1-g)-4\tau$ .

LEMMA 2.3. $\tau\geqq 0$ .

PROOF. See [S4], Proposition 5, where it is shown that $K_{Y}^{2}\leqq 8(1-g)$ . In
Remark 2.10 below we give another simple proof. $\square$

Each singular fibre contains one or two singular points of $Y$. Cf. \S 1. For
a singular fibre $f$, define

$\tau(f)=\sum_{y_{j}\in f}\tau(y_{i})$ .

EXAMPLE 2.4. (i) If $f$ is of type $\{(d, e), 0\}$ , then $\tau(f)=1-1/d$ . To see
this, consider the following action of $G=Z/dZ$ on $P^{1}\cross P^{1}$ .

$P^{1}\cross P^{1}arrow P^{1}\cross P^{1}$

u) u)

$(z, w)$ $arrow(\zeta z, \zeta^{e}w)$

where $\zeta$ is a primitive d-th root of unity. The action has four fixed points.
The induced ruled fibration on the quotient $Y=P^{1}\cross P^{1}/G$ is minimal and has
two singular fibres $f_{1},$ $f_{2}$ of type $\{(d, e), 0\}$ . It follows from (2.2) that $K_{Y}^{2}=$

$8-4(\tau(f_{1})+\tau(f_{2}))$ . But
$K_{Y}^{2}=(1/d)K_{P^{1}\cross P^{1}}^{2}=8/d$ .

So this implies that $\tau(f_{1})=\tau(f_{2})=1-1/d$ .
(ii) If $f$ is of type $\{(d, 1), t\}$ , then $\tau(f)=(d+t)(d-1)/d’$ .
THEOREM 2.5. Let $Y$ be a normal prOjectjve surface with a minimal ruled

fibration. Let $f$ be a singular fibre of the ruled fibration, and lef $m$ denote its
$multipli\alpha ty$ . Then

$\tau(f)\geqq 1-\frac{1}{m}$ .

The equality holds if and only if $f$ is of tyPe $\{(m, e), 0\}$ for some $e$ .

PROOF. Since the question is local, it suffices to consider the case in which
$p;Yarrow P^{1}$ has one singular fibre $f$ of the given type and one singular fibre $f’$
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of type $\{(m, 1), 0\}$ . Choose inhomogeneous coordinate $z$ on $P^{1}$ so that $f$ is
over $0$ and $f’$ is over $\infty$ . Take an m-fold covering $P^{1}\ni warrow z=w^{m}\in P^{1}$ . Let $\tilde{Y}$

be the normalization of the fibre product $Y\cross_{P^{1}}P^{1}$ . Then $\tilde{Y}$ has an induced
ruled fibration (not necessarily minimal) without multiple fibres. We see that
$K_{\tilde{Y}}^{2}\leqq 8$ . Indeed, let $\tilde{Y}arrow\tilde{Y}_{0}$ be successive contractions of exceptional curves of
the first kind in fibres, so that $\tilde{Y}_{0}$ has a minimal ruled fibration. Then $K_{\tilde{Y}}^{2}<K_{\tilde{Y}_{0}}^{2}$

unless $\tilde{Y}=\tilde{Y}_{0}$ . But by Lemma 2.3, $K_{\tilde{Y}_{0}}^{2}\leqq 8$ . Note that the cyclic group $G=$

$Z/mZ$ acts on $\tilde{Y}$ and $Y=\tilde{Y}/G$ . By construction $G$ has only a finite number of
points with nontrivial stabilizers, and so $K_{Y}^{2}=(1/m)K_{\tilde{Y}}^{2}$ . Since $\tau(f’)=1-1/m$ ,
it follows that

$\frac{8}{m}\geqq K_{Y}^{2}=8-4(1-\frac{1}{m})-4\tau(f)$ ,

and hence $\tau(f)\geqq 1-1/m$ as desired. In case $\tau(f)=1-1/m$ , we have $K_{\tilde{Y}}^{2}=8$ in
the above argument. We infer from this that $\tilde{Y}$ is a geometrically ruled sur-
face and that $f$ has two cyclic quotient singularities. It follows easily that $f$

is of type $\{(m, e), 0\}$ for some $e$ . Conversely, if $f$ is of tyPe $\{(m, e), 0\}$ , then
the multiplicity of $f$ is equal to $m$ (Theorem 1.2) and $\tau(f)=1-1/m$ (Example
2.4). $\square$

Let $f_{1},$ $\cdots$ , $f_{k}$ be the set of singular fibres, and let $m_{i}$ denote the multi-
plicity of $f_{i}$ for each $i$ . If $f_{i}$ is over $x_{i}\in B$ , then $f_{i}=p^{*}(x_{i})=m_{i}F_{i}$ . Of course

$\tau=\sum\tau(f_{i})$ .

COROLLARY 2.6. $\tau\geqq\sum(1-\frac{1}{m_{i}})$ .

In particular, $\tau=0$ if and only if $Y$ is smooth.

A divisor $D$ on $Y$ is said to be of degree $n$ over $B$ if $Df=n$ where $f$ is a
fibre. An irreducible curve is called an n-section $(n>0)$ if it is of degree $n$ over
$B$ . A section will mean a l-section.

LEMMA 2.7. Let $D$ be a divisor of degree $0$ over B. Then there exists a
Q-divisor $\mathfrak{d}$ on $B$ such that

$D\sim p^{*}\mathfrak{d}$ .
In this case, $\mathfrak{d}$ has the form:

$\mathfrak{d}=\mathfrak{d}_{0}+\Sigma(\frac{n_{i}}{m_{i}})x_{i}$

where $\mathfrak{d}_{0}\in Div(B)$ with $\mathcal{O}(\mathfrak{d}_{0})\cong p_{*}o(D)$ and $0\leqq n_{i}<m_{i}$ for all $i$ .

PROOF. Consider a commutative diagram:
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(2.8)
$Y\nearrow^{x_{\Phi^{\backslash }}}\pi\backslash _{p}\downarrow_{\nearrow q}\varphi T$

$B$

where $T$ is a geometrically ruled surface over $B$ . Namely, $\varphi$ consists of suc-
cessive contractions of (–1)-curves contained in fibres of $\Phi$ . Cf. (1.4). By
definition ([S2]), $\pi^{*}D=\overline{D}+Z$ where $\overline{D}$ is the strict transform of $D$ and the $Z$

is a Q-divisor supported on $A$ . Write $\overline{D}=\varphi^{*}D’+G$ where $D’$ is a divisor on $T$

of degree $0$ over $B$ and the $G$ is a divisor supported on the exceptional set of
$\varphi$ . It is well known that there is a divisor $\mathfrak{d}’$ on $B$ such that $D’\sim q^{*}\mathfrak{d}’$ . Note
that $q_{*}O(D’)\cong O(\mathfrak{d}’)$ . Cf. [H2]. Thus $\pi^{*}D\sim\Phi^{*}\mathfrak{d}’+G+Z$. It follows that $D\sim$

$p^{*}\mathfrak{d}’+\pi_{*}G$ . Since $Supp(G)\subset\pi^{-1}(\cup f_{i})$ , we have $\pi_{*}G=\Sigma n_{i}’F_{i}$ for some $n_{i}’\in Z$ .
Write $n_{i}’\equiv n_{i}$ mod $m_{i}$ with $0\leqq n_{i}<m_{i}$ for each $i$ , and set $\mathfrak{d}_{0}=\mathfrak{d}’+\Sigma((n_{i}’-n_{i})/m_{i})x_{t}$

$\in Div(B)$ . Setting $\mathfrak{d}=\mathfrak{d}^{0}+\sum(n_{i}/m_{i})x_{i}$ , we get the required linear equivalence:
$D\sim P^{*}\mathfrak{d}$ . Clearly, $p_{*}o(D)\cong O(\mathfrak{d}_{0})$ . $\square$

PROPOSITION 2.9. Let $p;Yarrow B$ be a minimal ruled fibration on a normal

surface $Y$ over a curve $B$ of genus $g$ . Let $D$ be a divisor on $Y$ of degree $n$

$(>0)$ over B. Then there exists a Q-divisor $e(D)$ on $B$ satisfying:

$nK_{Y}\sim-2D+P^{*}(n(f+e(D)))$

where $f$ is a canonical dizrzsor on B. In parijcular, we have

$K_{Y}D=n(2g-2+ \tau-\frac{D^{2}}{n^{2}})$

and

deg $c(D)=\frac{D^{2}}{n^{2}}+\tau$ .

PROOF. Since $nK_{Y}+2D$ is of degree $0$ over $B$ , the existence of $e(D)$ follows
from Lemma 2.7. Since $(nK_{Y}+2D)^{2}=0$ , it follows that

$nK_{Y}D=- \frac{1}{4}n^{2}K_{\dot{Y}}^{Q}-D^{2}=n^{2}(\deg(\mathfrak{k})+\tau)-D^{2}$

(by (2.2)).

Thanks to the definition of $e(D)$ we have

$nK_{Y}D=-2D^{2}+n^{2}(\deg(f+e(D)))$ .

Combining these together we obtain the remaining formulae. $\square$
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REMARK 2.10. We give a simple proof of the fact: (i) $\tau\geqq 0$ , (ii) $\tau=0$ if
and only if $Y$ is smooth. Cf. Lemma 2.3 and Corollary 2.6. Take a section $C$

on $Y$, then by Proposition 2.9, $(K_{Y}+C)C=2g-2+\tau$ . To see (i) it is sufficient
to show that $(K_{Y}+C)C\geqq 2g-2$ . Let $\overline{C}$ be the strict transform of $C$ on the
minimal resolution $X$ of $Y$. We have seen in [S4], Lemma 1 that $(K_{Y}+C)C\geqq$

$(K_{X}+\overline{C})\overline{C}$ . This gives the required inequality, because $\overline{C}$ is smooth and so
$(K_{X}+\overline{C})\overline{C}=2g-2$ . (ii) Suppose that $\tau=0$ . Then $(K_{Y}+C)C=(K_{X}+\overline{C})\overline{C}$ , which
implies that $C$ does not meet Sing$(Y)$ ([S4], Lemma 1). This is however pos-
sible only if $Y$ is smooth, for otherwise there would be multiple fibres.

In the subsequent sections we use the following

LEMMA 2.11. Let $Y$ be a normal surface with a minimal ruled fibration over
a curve B. Let $D$ be a divzsor on $Y$ of nonnegative degree over B. SuppOse that
$D^{2}=0,$ $K_{Y}D\leqq 0$ . Then

(i) there exists an effective Q-divisor $D’$ such that $D’\equiv D$ ,
(ii) furthermore, in case $B=P^{1}$ , we have $\kappa(D, Y)\geqq 0$ .
PROOF. Let $X,$ $\pi,$

$\Phi$ be as in (2.8), and let $r$ be as in Lemma 2.1. Apply-
ing the proof of Claim 6.5 in [S31 to $\mathcal{L}=O(\pi^{*}(rD))$ , we see that there exists a
degree zero divisor $\mathfrak{a}$ on $B$ such that $H^{0}(X, \mathcal{L}\otimes O(\Phi^{*}\mathfrak{a}))\neq 0$ . Take $\Gamma\in|\mathcal{L}\otimes O(\Phi^{*}\mathfrak{a})|$ ,
and let $D’=(1/r)\pi_{*}\Gamma$. Since dega $=0$ , we have $D’\equiv D$ . If in addition $B=P^{1}$ ,
then $\mathfrak{a}=0$ , and so $|rD|\neq\emptyset$ . $\square$

\S 3. The invariants $s_{n}$ .
Let $Y,$ $p,$ $B$ have the same meaning as in \S 2. For a positive integer $n$ , we

define a rational number $s_{n}$ by

$s_{n}=s_{n}(Y)=$ min $\{\frac{D^{2}}{n^{2}}\}$

where the minimum is taken over all effective divisors $D$ of degree $n$ over $B$ .
For simplicity write $s=s_{1}$ , so $s$ is equal to the minimum of the self-intersection
numbers of all sections. A section $b$ attaining the minimum $s$ is called a base
section (or a minimal section).

LEMMA 3.1. The above mimmum actually exists.

PROOF. By Lemma 2.1, $D^{2}/n^{2}\in(1/rn^{2})Z$ . So it suffices to show that $D^{2}/n^{2}$

is bounded below. This is clear if $D^{2}\geqq 0$ for all $D$ . We therefore consider the
case in which there exists an irreducible curve $C_{0}$ with $C_{0}^{2}<0$ . Let $n_{0}$ be the
degree of $C_{0}$ over $B$ . Let $D$ be an arbitrary effective divisor of degree $n$ over
$B$ . We can write $D=kC_{0}+D’$ with $k\geqq 0$ , where the $D’$ does not contain $C_{0}$ as
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its component. If $n’$ denotes the degree of $D’$ over $B$ , then of course, $n’=$

$n-kn_{0}$ . Since $D’C_{0}\geqq 0$ and $(n_{0}D’-n’C_{0})^{2}=0$, we have $n_{0}^{2}D^{\prime 2}\geqq-n^{\prime 2}C_{0}^{2}$ . Thus

$D^{2} \geqq k^{2}C_{0}^{2}+D^{\prime 2}\geqq(n_{0}^{2}k^{2}-n^{\prime 2})\frac{C_{0}^{2}}{n_{0}^{2}}$ ,

and hence

$\frac{D^{2}}{n^{2}}\geqq(1-\frac{2n’}{n})\frac{C_{0}^{2}}{n_{0}^{2}}\geqq\frac{C_{0}^{2}}{n_{0}^{2}}$ . $\square$

LEMMA 3.2. With the above notation, we have
(i) there exists at most one irreductble curve with negative self-intersection

number,
(ii) if there is an $n_{0}$-section $C_{0}$ with $C_{0}^{2}\leqq 0$, then $s_{n}\geqq s_{n_{0}}$ for all $n$ and $s_{n}=s_{n_{0}}$

if $n_{0}|n$ ,
(iii) if $s\leqq 0$, then $s_{n}=s$ for all $n>0$ ,
(iv) if $s>0$, then $s_{n}\geqq-s$ for all $n\geqq 2$ ,
(v) if $s>0$, then $s_{n}\geqq-\tau$ for all $n\geqq 2$ .
PROOF. $(i)-(iv)$ follow immediately from the proof of Lemma 3.1. We

prove (v). If $s_{n}\geqq 0$ for all $n\geqq 2$ , then (v) holds trivially. Suppose that $s_{n_{0}}<0$

for some $n_{0}\geqq 2$ . Choose $n_{0}$ minimal with this property. By the proof of Lemma
3.1, there is an $n_{0}$-section $C_{0}$ with $C_{0}^{2}<0$ , so that $s_{n_{0}}=C_{0}^{2}/n_{0}^{2}$ . Apply the Hur-
witz formula to the ramified covering map $\tilde{C}_{0}arrow B$ where $\tilde{C}_{0}$ is the normalization
of $C_{0}$ . Then we infer that $(K_{Y}+C_{0})C_{0}\geqq n_{0}(2g-2)$ . By Proposition 2.9, we have

$(K_{Y}+C_{0})C_{0}=n_{0}(2g-2+ \tau)+(1-\frac{1}{n_{0}})C_{0}^{2}$ .

It follows that

$s_{n_{0}}= \frac{C_{0}^{2}}{n_{0}^{2}}\geqq\frac{-\tau}{n_{0}-1}\geqq-\tau$ (because $n_{0}\geqq 2$).

With the help of (ii) we conclude that $s_{n}\geqq s_{n_{0}}\geqq-\tau$ if $n\geqq n_{0}$ . By the choice of
$n_{0}$ , of course $s_{n}\geqq 0$ if $n<n_{0}$ . $\square$

EXAMPLE 3.3. We give an example with $s>0,$ $s_{2}<0$ . On the rational ruled
surface $F_{1}=P(\mathcal{O}\oplus O(-1))$ over $P^{1}$ , there is a smooth 2-section $C\in|2b+2f|$

where the $b$ is the base section. Let $P$ be a point on $C$ where $Carrow P^{1}$ ramifies.
Blow up 7-times over $P$ at the points where the strict transforms of $C$ meet
the $(-1)$-curves. Contract all curves over the fibre passing through $P$ except
the remaining last (–1)-curve. Then we get a minimal ruled fibration $Yarrow P^{1}$ .
We see that $Y$ has a singular fibre of type $\{(2,1), 5\}$ , so that $s=3/4,$ $\tau=7/4$ .
If $C_{0}$ denotes the strict transform of $C$ on $Y$, then $C_{0}$ is again a 2-section with
$C_{0}^{2}=-3$ , and so $s_{2}=-3/4$ . In this example, $s=\tau-1$ . See Theorem 3.5 below.
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REMARK 3.4. In case $Y$ is smooth, if $s>0$, then $s_{n}\geqq 0$ for all $n>0$ (for

instance by Lemma 3.2, $(v))$ . However, in the positive characteristic case, this
is not the case. See [H2], Exercise 2.15, where an example $(ch(k)=3)$ with
$s=1,$ $s_{3}=-1$ can be found.

THEOREM 3.5. Let $Y$ be a normal projective surface with a minimal ruled
fibration over a curve $B$ of genus $g$ . Then

(i) $s_{n}\leqq\tau+\{\begin{array}{ll}\frac{1}{n}[\frac{2ng}{n+1}1 (if n is odd),\frac{2}{n}[\frac{ng}{n+1}] (if n is even),\end{array}$

(ii) if $Y$ is srngular, then

$s\leqq g+\tau-1$ .

PROOF. We first consider the smooth case. Let $T$ be a geometrically ruled
surface $P(\mathcal{E})$ defined by a rank 2 vector bundle $\mathcal{E}$ on $B$ . By virtue of the ob-
servation in [H1], p. 51, there is a one to one correspondence between effective
devisors $D$, having no fibre components, of degree $n$ over $B$ and invertible
sheaves $X$ on $B$ which is a subline bundle of the n-th symmetric power $S^{n}\mathcal{E}$ .
The correspondence is given by

$Darrow X=p_{*}(O_{T}(n)\otimes O(-D))\subset S^{n}\mathcal{E}$ .
Furthermore, by using the computation in [H1], p. 52, we obtain

(3.6) $\frac{D^{2}}{n^{2}}=\deg \mathcal{E}-\frac{2}{n}\deg \mathcal{L}$ .

Choose $D$ so that $D^{2}/n^{2}$ attains the minimum $s_{n}(T)$ . In this case, $D$ contains
no fibre components, and the corresponding $X$ is a maximal subline bundle of
$S^{n}\mathcal{E}$ . Note that rank $S^{n}\mathcal{E}=n+1,$ $degS^{n}\mathcal{E}=(1/2)n(n+1)\deg \mathcal{E}$ . The Theorem in
[MS] applied to $S^{n}\mathcal{E}$ yields the inequality:

$\frac{n+1}{2}$ ( $n$ deg $\mathcal{E}-2\deg \mathcal{L}$ ) $\leqq ng$ .

Thus

$n$ deg $\mathcal{E}-2\deg \mathcal{L}\leqq[\frac{2ng}{n+1}]$ .

Also if $n$ is even, we have

$\frac{1}{2}$ ( $n$ deg $\mathcal{E}-2\deg X$ ) $\leqq[\frac{ng}{n+1}]$ .

Substituting (3.6) to these inequalities, we get
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(3.7) $s_{n}(T)=D^{2}/n^{2}\leqq\{\begin{array}{ll}\frac{1}{n}[\frac{2ng}{n+1}] if n is odd,\frac{2}{n}[\frac{ng}{n+1}] if n is even.\end{array}$

Now we pass to the singular case. Let $X,$ $\pi,$ $T,$
$\varphi$ have the same meaning

as in (2.8).

CLAIM 3.8. $s_{n}(Y)\leqq s_{n}(T)+\tau$ .
PROOF. Let $D$ be an effective divisor on $T$ of degree $n$ over $B$ such that

$s_{n}(T)=D^{2}/n^{2}$ . Let $\overline{D}$ be the strict transform of $D$ on $X$, and let $D’$ denote the
image of $\overline{D}$ on $Y$. Then

$s_{n}(Y) \leqq\frac{D^{\prime 2}}{n^{2}}=2g-2+\tau-\frac{1}{n}K_{Y}D’$

$=2g-2+ \tau-\frac{1}{n}(K_{X}+\Delta)\overline{D}$

$\leqq 2g-2+\tau-\frac{1}{n}K_{X}\overline{D}$

$\leqq\frac{D^{2}}{n^{2}}+\tau=s_{n}(T)+\tau$ .

This claim together with (3.7) yields the assertion (i).

Finally we prove (ii). We can choose $T$ as $s(T)\leqq g-1$ under the assump-
tion that $Y$ is singular. By (3.7), we have always $s(T)\leqq g$ . Suppose that $s(T)$

$=g$ . Since $Y$ is singular, there must be a point $P$ on $T$ over which $\varphi$ is not
isomorphic. In case $s(T)=g$, Lemma 4.4 in [LN] (see also [M]) guarantees

that there exists a base section passing through $P$. Let $T---\geq T’$ be the ele-
mentary transformation of $T$ at $P$. It is easy to check that $Xarrow T’$ is still a
morphism, and that $s(T’)=g-1$ . Therefore, by replacing $T$ with $T’$ , we can
make $s(T)\leqq g-1$ . Consequently, the assertion (ii) follows from Claim 3.8. $\square$

COROLLARY 3.9. When $g\leqq 1$ , we have

$s_{n}\leqq\tau-\{\begin{array}{ll}0 in case g=11 in case g=0\end{array}$

for every $n$ under the condition that $Y$ is srngular.

PROOF. In the proof of (ii), if $g\leqq 1$ , we can make as $s(T)\leqq 0$ . It follows
from Lemma 3.2, (iii) that $s_{n}(T)=s(T)$ for all $n>0$ . So by the inequality (ii),
$s_{n}(Y)\leqq\tau$ (if $g=1$ ), $\leqq\tau-1$ (if $g=0$). $\square$
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Now we define the following invariant:

$s_{*}= \inf\{s_{n}\}$

where the infimum is taken over all positive integers $n$ . The following properties
of $s_{*}$ are immediate from Lemma 3.2.

LEMMA 3.10. (i) If there is an $n_{0}$-section $C_{0}$ with $C_{0}^{2}\leqq 0$ , then $s_{*}=s_{n_{0}}$ . In
particular, if $s\leqq 0$ , then $s_{*}=s$ ,

(ii) if $s>0$, then $s_{*}\geqq-s$ and $s_{*}\geqq-\tau$,
(iii) if $s_{*}<0$ , then there exists a unique irreducible curve $C_{0}$ with $C_{0}^{2}<0$ , and

in this case, $s_{*}=s_{n_{0}}$ where $n_{0}=fhe$ degree of $C_{0}$ over $B$ .

LEMMA 3.11. Let $D$ be a divisor of degree $n(n>0)$ over B. Then $D$ is nef
if and only if $D^{2}/n^{2}\geqq-s_{*}$ .

PROOF. Clearly, $DF>0$ for a fibre component $F$ . So $D$ is nef if $DC\geqq 0$

for all irreducible curves $C$ of positive degree over $B$ . Let $C$ be an effective
divisor of degree $k(k>0)$ over $B$ . Then

$DC= \frac{nk}{2}(\frac{D^{2}}{n^{2}}+\frac{C^{2}}{k^{2}})$ .

If $D^{2}/n^{2}\geqq-s_{*}$ , then it follows that $DC\geqq 0$ . Conversely, assume that $D$ is nef.
By the definition of $s_{*}$ , for any $\epsilon>0$ , there exists an effective divisor $C$ such
that $s_{*}\leqq C^{2}/k^{2}<s_{*}+\epsilon$ where $k=the$ degree of $C$ over $B$ . Since $D$ is nef,
$DC\geqq 0$, and so $D^{2}/n^{2}\geqq-C^{2}/k^{2}>-s_{*}-\epsilon$ . Letting $\epsilonarrow 0$ , we find that $D^{2}/n^{2}\geqq-s_{*}$ .

$\square$

PROPOSITION 3.12. The invanant $s_{*}$ is a $nonpo\alpha tive$ rational number.

PROOF. First we show that $s_{*}\leqq 0$ . Assume to the contrary that $s_{*}>0$ .
We can find a divisor $D$ of positive degree over $B$ such that $0>D^{2}/n^{2}>-s_{*}$ ,
where $n=the$ degree of $D$ over $B$ . To see this, take an ample divisor $H$ on $Y$.
Choose a rational number $\alpha$ as $H^{2}<2\alpha h<H^{2}+s_{*}h^{2}$ where $h$ is the degree of $H$

over $B$ . Let $N$ be a positive integer such that $N\alpha$ is integral. Then the divi-
sor $D=N(H-af)$ satisfies the above condition. By Lemma 3.11, this $D$ is nef,
and hence we must have $D^{2}\geqq 0$ . This is a contradiction. The rationality of $s_{*}$

is now clear from (iii) in Lemma 3.10. $\square$

We say that $Y$ is of finite tyPe if $s_{*}=s_{n_{0}}$ for some $n_{0}$ , and is of infinite
type otherwise. Note that if $s_{*}<0$ , then $Y$ is of finite type. In case $s_{*}=0$ ,

there occur both types.

EXAMPLE 3.13. Let $B$ be a curve of genus $\geqq 2$ . It is known that there
exists a rank 2 vector bundle $\mathcal{E}$ on $B$ such that all its symmetric powers $S^{n}\mathcal{E}$
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are stable. Cf. [H1], Theorem 10.5. Let $T=P(\mathcal{E})$ . In this case, $s_{n}(T)>0$ for
all $n$ , and so $T$ is of infinite type.

LEMMA 3.14. If $-K_{Y}$ is Pseudoeffective, then $Y$ is of finite type.

PROOF. We have only to consider the case: $s_{*}=0$ . Take a divisor $D$ of
positive degree over $B$ such that $D^{2}=0$ . By Lemma 3.11, $D$ is nef, and so
$K_{Y}D\leqq 0$ , because $-K_{Y}$ is pseudoeffective. By Lemma 2.11, there exists an effec-
tive Q-divisor $D’$ such that

$D’\equiv D\square$
and hence $D^{\prime 2}=0$ in this situation, which

implies that $Y$ is of finite type.

A divisor $D$ is numerically Positive if $DC>0$ for all irreducible curves $C$ on
$Y$. Also $D$ is numerically ample if $D$ is numerically positive and $D^{2}>0$ . In
our case, since $Y$ has only rational singularities, $D$ is ample if and only if it is
numerically ample (Nakai criterion).

PROPOSITION 3.15. Let $Y$ be a normal surface with a minimal ruled fibra-
tion. Let $b$ be a base section, and $f$ a fibre. Let $D\equiv nb+af$ be a divisor on $Y$.
Then

(i) $D$ is numerically $po\alpha tive$ if and only if $n>0,$ $\alpha>-(n/2)(s+s_{*})$ (in case $Y$

is of finite tyPe), or $n>0,$ $\alpha\geqq-ns/2$ (in case $Y$ is of infinite tyPe, and so $s_{*}=0$).
(ii) $D$ is ample(resp. $nef$) if and only if $n>0,$ $\alpha>-(n/2)(s+s_{*})$ (resp. $n\geqq 0$ ,

$\alpha\geqq-(n/2)(s+s_{*}))$ .
(iii) $D$ is pseudoeffective if and only if $n\geqq 0,$ $\alpha\geqq-(n/2)(s-s_{*})$ .

PROOF. For the smooth case, see [H2], p. 382. See also [L], [S1]. Of
course $Df=n$ . Also if $C$ is an effective divisor of degree $k>0$ over $B$ , then
$DC=k(a+(n/2)(s+C^{2}/k^{2}))$ . Therefore, (i) follows from the definition of $s_{*}$ . Also
we see the criterion for the nefness. Since $D^{2}=2n(\alpha+ns/2)$ and $s_{*}\leqq 0$ , in view
of (i), we get the criterion for the ampleness. To see (iii), take a divisor $C=$

$k(b-(1/2)(s+s_{*})f)$ for a suitable positive integer $k$ . By (ii), $C$ is nef. Since
$DC=k(a+(n/2)(s-s_{*}))$, the condition: $a\geqq-(n/2)(s-s_{*})$ is necessary for the
pseudo-effectiveness. The other implication is an easy consequence of (ii). $\square$

REMARK 3.16. We claim that $Y$ contains an exceptional curve of the first
kind if and only if $g=0,$ $s_{*}<0,$ $\tau<2+s_{*}$ . Indeed, we know that there is an
irreducible curve $C_{0}$ with $C_{0}^{2}<0$ if and only if $s_{*}<0$ . By Proposition 2.9, $K_{Y}C_{0}$

$=n_{0}(2g--2-s_{*}+\tau)$ where $n_{0}=the$ degree of $C_{0}$ over $B$ . So $K_{Y}C_{0}<0$ if and only
if $2g-2-s_{*}+\tau<0$ . Since $s_{*}<0$ , this is equivalent to the condition: $g=0,$ $\tau<$

$2+s_{*}$ . We give a series of examples. Consider $F_{1}$ with a base section $b$ , and
construct two singular fibres of types $\{(d_{1},1), 0\}$ and $\{(d_{2},1), 0\}$ . Let $Y$ be the
resulting normal surface. One can make the configuration as follows:
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Here $\overline{b}$ is the strict transform of $b$ . Let $C_{0}$ be the image of $\overline{b}$ on Y. Then

$K_{Y}C_{0}=-2/d_{2}$ , $C_{0}^{2}=-(d_{2}-d_{1})/d_{1}d_{2}$ .
So if $d_{2}>d_{1}$ , then $C_{0}$ is an exceptional curve of the first kind.

\S 4. The anti-Kodaira dimension.

Let $Y$ be a normal surface having a minimal ruled fibration $p;Yarrow B$ over
a curve $B$ of genus $g$ . We study the anti-Kodaira dimension $\kappa^{-1}(Y)$ , which is
defined to be $\kappa(-K_{Y}, Y)$ . Cf. [S1], [S3]. Recall the numerical type of a divisor
$D$ on $Y$. We say that $D$ is of type(a) if $D$ is not pseudoeffective. In case $D$

is pseudoeffective, let $D=P+N$ be the Zariski decomposition ([S2]) where
$P$ is a nef Q-divisor. We hav $e$ three types: (b) $P\equiv 0,$ $(c)P^{2}=0,$ $P\not\equiv O,$ $(d)P^{2}>0$ .

We first consider the numerical type of the anticanonical divisor $-K_{Y}$ . We
fix a base section $b$ on $Y$. In view of Proposition 2.9, it follows that

$-K_{Y}\equiv 2b-(2g-2+s+\tau)f$ .
By Proposition3.15, we obtain the following criteria:

(4.1) $\{\begin{array}{l}-K_{Y} is pseudoeffective\Leftrightarrow 2g-2+s_{*}+\tau\leqq 0-K_{Y} is nef \Leftrightarrow 2g-2-s_{*}+\tau\leqq 0.\end{array}$

Suppose now that $-K_{Y}$ is pseudoeffective, but not nef. This is the case in which
$s_{*}<2g-2+\tau\leqq-s_{*}$ . In particular, $s_{*}<0$ . So there exists an irreducible curve
$C_{0}$ with $C_{0}^{2}<0$ . If $n_{0}$ is the degree of $C_{0}$ over $B$ , then $s_{*}=C_{0}^{2}/n_{0}^{2}$ . See Lemma
3.10. With the notation of Proposition 2.9, set $\mathfrak{e}_{0}=e(C_{0})$ . Note that $\deg e_{0}=$

$s_{*}+\tau$ . The Zariski decomposition: $-K_{Y}=P+N$ is given by

$\{\begin{array}{l}N=(1-\frac{2g-2+\tau}{s_{*}})\frac{C_{0}}{n_{0}},P=-K_{Y}-N.\end{array}$
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Furthermore, we have the linear equivalence:

$n{}_{0}P \sim-p^{*}(n_{0}(f+e_{0}))+(1+\frac{2g-2+\tau}{s_{*}})C_{0}$ .
Also,

$P^{2}= \frac{(2g-2+s_{*}+\tau)^{2}}{-s_{*}}$ .

Therefore, if $P^{2}=0$, then $2g-2+s_{*}+\tau=0$ , and hence

(4.2) $n_{0}P\sim-P^{*}(n_{0}(f+e_{0}))$ .
Suppose next that $-K_{Y}$ is nef. By (4.1), $2g-2-s_{*}+\tau\leqq 0$, and so either $g=0$ ,
$\tau-s_{*}\leqq 2$ , or $g=1,$ $\tau=0,$ $s_{*}=0$ . By (2.2), $K_{Y}^{2}=0\in\Rightarrow\tau=2(1-g)$ . So $-K_{Y}$ is of
type (c) in the following cases (i) $g=0,$ $\tau=2,$ $s_{*}=0$ , (ii) $g=1,$ $\tau=0,$ $s_{*}=0$ .

As a consequence, we obtain the following

LEMMA 4.3. The numerical type of $-K_{Y}$ is given by the following table:

We now consider the anti-Kodaira dimension $\kappa^{-1}(Y)$ .
Type(a). In this case, we have automatically $\kappa^{-1}(Y)=-\infty$ .
Type (b). Using (4.2), we see that $\kappa^{-1}(Y)=0$ if $f+e_{0}$ is a torsion element,

$i$ . $e.$ , there exists a positive integer $m$ such that $m(f+e_{0})\sim 0$, and that $\kappa^{-1}(Y)=$

$-\infty$ otherwise.
Type (c). For the case in which $g=1,$ $\tau=0$ , since $Y$ is smooth, the previous

results in [S1], [S3] imply that $\kappa^{-1}(Y)$ can take $0$ and 1. For the case in which
$g=0,$ $\tau=2$ , by Lemma 2.11, we see that $\kappa^{-1}(Y)\geqq 0$ . Since $-K_{Y}$ is nef and
$K_{Y}^{2}=0$, we see that $\kappa^{-1}(Y)\neq 2$ . See Example 4.5 below for examples with
$\kappa^{-1}(Y)=0$ and 1.

Type(d). It is known that $\kappa^{-1}(Y)=2$ .
Summarizing we obtain the following

THEOREM 4.4. Let $Y$ be a normal Projective surface with a minimal ruled
fibration over a curve of genus $g$ . Then the classification of $Y$ in terms of $\kappa^{-1}(Y)$

is $\ovalbox{\tt\small REJECT} ven$ as follows:
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$|$ $<0<000$ $|$

$\{$

$\kappa^{-1}(Y)$ $|$ Type $|$ $2g-2+s_{*}+\tau$ $|$

$s_{*}$
$|$ Structure

$\overline{-\infty 201|_{(d)}^{\{}\{0(a)((bb))|>00(c)0(c)|_{1}<00}$

$f+e_{0}$ is not a torsion

$f+e_{0}$ is a torsion

$g=0,$ $\tau=2$

$g=1,$ $\tau=0$

$\{\begin{array}{l}g=0,\tau=2g=1,\tau=0\end{array}$

EXAMPLE 4.5. Take a smooth cubic $C\subset P^{2}$ . Choose a point $P_{0}\in C$ , which
is not a flex. There are four distinct points $P_{1},$ $\cdots$ , $P_{4}$ such that the lines $\overline{P_{0}P_{i}}$

are tangent to $C$ . Blow up $P_{0}$ , so that the resulting surface is $F_{1}$ . In this
case, every line passing through $P_{0}$ corresponds to a fibre. Blow up over each
point $P_{i}$ in the following way. First blow up at $P_{i}$ and then blow up at the
point where the (–1)-curve meets the strict transform of $C$ . Locally we have
the following picture:

One of the (–2)-curves is the strict transform of the line $\overline{P_{0}P_{i}}$ . By contracting
the eight $(-2)$-curves, we get a normal surface $Y$ with a minimal ruled fibra-
tion. There are four singular fibres of type $\{(2,1), 0\}$ . The strict transform
$C_{0}$ of $C$ on $Y$ is a smooth elliptic curve. Note that $C_{0}$ is a 2-section with
$C_{0}^{2}=0$ . We have $g=0,$ $\tau=2,$ $s_{*}=0$ . Let $P_{\infty}$ be a flex on $C$ . We claim that

$\kappa^{-1}(Y)=\{\begin{array}{ll}1 if (P_{0}-P_{\infty}) is a torsion element in Pic(C),0 otherwise.\end{array}$

Indeed, by construction we find that $K_{Y}\sim-C_{0}$ . Clearly, $C_{0}$ is isomorphic to $C$ ,
and with this isomorphism the normal sheaf $\mathfrak{N}_{C_{0}}=O(C_{0})\otimes \mathcal{O}_{C_{0}}$ corresponds to the
sheaf $O(3(P_{0}-P_{\infty}))$ . The assertion is then a consequence of Proposition 3.3 in
[S3].
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We give a criterion for the case in which $Y$ admits another ruled fibration
or an elliptic fibration. We begin with the following general result.

LEMMA 4.6. Let $D$ be a nef Cartier divzsor on a normal surface Y. SuppOse
that $\kappa(D, Y)=1$ . Then

(i) if $K_{Y}D<0$ , then $|mD|$ for some $po\alpha tive$ integer $m$ defines a ruled fibra-
tion on $Y$,

(ii) if $K_{Y}D=0$ , then $|mD|$ for some posrtive integer $m$ defines an elliPtic
fibration on $Y$.

PROOF. We use a theorem of Zariski in the form in [F2], Theorem (4.1),

which implies that $0(mD)$ is generated by global sections for some $m>0$ . It
follows from this that the map defined by $|mD|$ provides a fibration onto a
curve for some large $m$ . Let $f$ denote its general fibre. We find that $K_{Y}f<0$

or $=0$ , according as $K_{Y}D<0$ or $=0$ . Accordingly, $f$ is a smooth rational curve
or a smooth elliptic curve. $\square$

PROPOSITION 4.7. Let $p;Yarrow B$ be a minimal ntled fibration on a normal
surface $Y$ over a curve $B$ of genus $g$ . Then $Y$ admits another ruled fibration if
and only if $g=0,$ $\tau<2$ and $s_{*}=0$ . In this case, $\tau=2(1-1/n)$ for some Posttive
integer $n$ .

PROOF. Suppose that $Y$ has another ruled fibration. Let $l$ be its general
fibre. Let $f$ be a fibre of $p$ . Since $l\cong P^{1}$ , we must have $g=0$ . If we define
$n=fl$ , then by Proposition 2.9, $K_{Y}f=n(\tau-2)$ . Since $K_{Y}l=-2$ , it follows that
$\tau=2(1-1/n)$ . Since $l^{2}=0$ , we infer that $s_{n}=0$ and $s_{*}=0$ . Cf. Lemma 3.10, (i).

Conversely, assume that $g=0,$ $\tau<2$ and $s_{*}=0$ . Thanks to (4.1), we see that
$-K_{Y}$ is nef. It follows from Lemma 3.14 that $Y$ is of finite type. Since $s_{*}=0$ ,

this means that there exists an $n_{0}$-section $l_{0}$ with $l_{0}^{2}=0$ for some no. In par-
ticular, $K_{Y}l_{0}=n_{0}(\tau-2)<0$ . The Riemann-Roch theorem implies that $\kappa(l_{0}, Y)=1$ .
So by Lemma 4.6, there exists a ruled fibration on $Y$ such that $l_{0}$ is a fibre. $\square$

EXAMPLE 4.8. (i) In the example in Remark 3.16, if $d_{1}=d_{2}=d$ , then we
have the invariants: $g=0,$ $\tau=2(1-1/d),$ $s=s_{*}=0$ .

(ii) Starting from $P^{1}\cross P^{1}$ , construct a singular fibre of type $\{(d, 1), d\}$ .
In this case, we have $g=0,$ $\tau=2(1-1/d)$ and $s=s_{*}=0$ . Cf. Example 2.4, (ii).

PROPOSITION 4.9. Let $Y$ be a nomal surface with a minimal ruled fibration
over a curve $B$ of genus $g$ . Then $Y$ admits an ellipijc fibration if and only if
$\kappa^{-1}(Y)=1$ .

PROOF. In view of Theorem 4.4, if $\kappa^{-1}(Y)=1$ , then $-K_{Y}$ is nef and $K_{Y}^{2}=0$ .
We infer from Lemma 4.6 that $Y$ has an elliptic fibration.

Conversely, assume that $Y$ has an elliptic fibration. Let $C$ be its general
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fibre. Set $n=fC>0$ . By Proposition 2.9, $K_{Y}C=n(2g-2+\tau)$ , because $C^{2}=0$ .
Since $K_{Y}C=0$ , we find that $2g-2+\tau=0$ . There occur two cases (i) $g=1,$ $\tau=0$ ,
(ii) $g=0,$ $\tau=2$ . In either case, by Theorem 4.4, $-K_{Y}$ is of type (c) and $\kappa^{-1}(Y)$

$\geqq 0$ . We therefore are able to find an effective divisor $D\in|-mK_{Y}|$ for some
$m>0$ . Since $DC=0,$ $D$ is contained in fibres of the elliptic fibration. We infer
from this that each connected component of $D$ is proportional to a fibre of the
elliptic fibration. It follows that $\kappa^{-1}(Y)=1$ . $\square$

Let us observe when the anticanonical divisor $-K_{Y}$ is ample. Recall that
in the smooth case, only $P^{1}\cross P^{1}$ and $F_{1}$ have this property among geometrically
ruled surfaces. We infer from Proposition 3.15 that $-K_{Y}$ is ample $\Leftrightarrow 2g-2-s_{*}$

$+\tau<0\Leftrightarrow g=0,$ $\tau<2+s_{*}$ . There are two cases: (i) $s_{*}=0$, (ii) $s_{*}<0$ . If $s_{*}=0$ ,
we infer from Proposition 4.7 that $Y$ admits another minimal ruled fibration and
that $\tau=2(1-1/n)$ for some positive integer $n$ . If $s_{*}<0$, by Remark 3.16, $Y$

contains an exceptional curve of the first kind. Summarizing we obtain the
following:

THEOREM 4.10. Let $Y$ be a normal projective surface with a minimal ruled
fibration. Then the anticanonical divisor $-K_{Y}$ is amPle if and only if urther

(i) $Y$ admits two distinct minimal ruled fibrations, $or$

(ii) $Y$ contains an exceptjmal curve of the first kind.

CONCLUDING REMARK 4.11. We refer to Fujita [F1] and Gurjar-Miyanishi
[GM] for related topics on open surfaces.
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Added in Proof (Correction to the paper [S4]). As we have seen in this
paper, a minimal ruled fibration on a normal surface may have multiple fibres.
For this reason, in the proof of Theorem 1, type (a) in [S4], we insert the
following: Let $f=mF$ be a fibre with multiplicity $m$ . Since $(K_{Y}+H)f<0,$ $Hf\geqq 1$ ,

we find that $K_{Y}F<-1,$ $F^{2}=0$ , which implies that $K_{X}\overline{F}=-2,\overline{F}^{2}=0$ . It follows
that $K_{Y}F\geqq-2$ . On the other hand, $K_{Y}f=m(K_{Y}F)=-2$ . So we must have
$m=1$ .

Accordingly, we correct the statement (ii) of Proposition 2 in [S4] as follows.

(ii) the srngular fibre is obtained by contracting all $(-2)$-curves in the follow-
ing configurations:

(ii. 1) the same as in [S4],

(ii-2)

$-1$

(ii-3)

$-1$
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