Ruled fibrations on normal surfaces

Dedicated to Professor M. Nagata on his 60th birthday

By Fumio SAKAI

(Received Nov. 6, 1986)

Let Y be a normal projective surface over C. A ruled fibration on Y over a smooth curve B is a surjective morphism $p: Y \rightarrow B$ such that the general fibre is isomorphic to P^1 . We have the notion of exceptional curves of the first kind in the category of normal surfaces. Namely, an irreducible curve C on Y is called an *exceptional curve of the first kind* if $K_rC < 0$ and $C^2 < 0$, where the K_r denotes a canonical divisor on Y. Cf. [S3]. A minimal ruled fibration will mean a ruled fibration whose fibres contain no exceptional curves of the first kind. Given a ruled fibration on Y, contract successively all exceptional curves of the first kind in fibres, then we obtain a minimal ruled fibration. In this paper we study the structure of a normal surface Y having a minimal ruled fibration over a curve B of genus g.

In §1 we consider the structure of singular fibres. It turns out that every singular fibre is necessarily a multiple fibre and contains one or two singular points of Y. To describe a singular fibre, we observe the weighted dual graph of the inverse image of the singular fibre on the minimal resolution of Y. In we introduce a nonnegative rational number τ , which measures the amount of Sing(Y). We have the formula: $K_Y^2 = 8(1-g) - 4\tau$. Suppose that Y has singular fibres f_i with multiplicities m_i , $i=1, \dots, k$. Then we show that $\tau \geq \sum (1-1/m_i)$. In §3 we define the invariants $s_n \in Q$ for positive integers n. The first invariant $s=s_1$ is defined to be the minimum of the self-intersection numbers of all sections in the ruled fibration. Provided that Y is singular, we prove the inequality: $s \leq g + \tau - 1$. Recall that for the smooth case a theorem of Nagata [N] says that $s \leq g$. Similarly, we define the invariants s_n to be $1/n^2$ of the minimum of the self intersection numbers of all effective divisors of degree *n* over *B*. We show that $s_n \leq \frac{2g}{(n+1)+\tau}$. The invariant $s_* = \inf\{s_n\}$ plays an important role in the numerical criterion for an ample divisor. In we consider the anti-Kodaira dimension $\kappa^{-1}(Y)$. We give a classification of Y in terms of $\kappa^{-1}(Y)$ together with the numerical type of the anticanonical divisor $-K_{Y}$. For the smooth case, this was done in [S1], [S3]. We also deal with the question when Y admits another ruled fibration or an elliptic fibration. We finally prove that Y becomes a normal del Pezzo surface (i.e., a normal surface with ample anticanonical divisor) if and only if either Y admits another minimal ruled fibration, or Y contains an exceptional curve of the first kind in the above sense.

NOTATION AND CONVENTIONS. We use the notation and the results in the previous papers [S2], [S3]. Let Y be a normal surface. A *divisor* will mean a Weil divisor. Let Div(Y) denote the group of divisors on Y. We employ the Q-valued intersection theory on Div(Y), which was introduced by Mumford. We denote by \sim (resp. \equiv) the linear equivalence (resp. numerical equivalence) on Div(Y). For a divisor D, we denote by $\mathcal{O}(D)$ the corresponding divisorial sheaf. We mean by $\kappa(D, Y)$ the D-dimension of Y. A divisor D is *nef* if $DC \geq 0$ for all irreducible curves C on Y, and is *pseudoeffective* if $DP \geq 0$ for all nef divisors P on Y. We say that D is *ample* if some positive multiple of D becomes an ample Cartier divisor in the usual sense.

In the previous papers [S3], [S4], a minimal ruled fibration is also called a P^{1} -fibration. But some authors use it to mean a ruled fibration. To avoid confusion we employ "minimal ruled fibration" in this paper. A smooth projective surface with a minimal ruled fibration is known to be a P^{1} -bundle over the base curve. As usual, such a surface is called a *geometrically ruled surface*. See [H2], [M] for the general theory of geometrically ruled surfaces.

§1. Singular fibres.

Let D be the unit disc. Let us consider a normal surface Y having a minimal ruled fibration $p: Y \rightarrow D$. In this section, we describe the structure of singular fibres. Let f denote the fibre over 0. More precisely, we define f to be the Cartier divisor $p^*(0)$ where (0) is regarded as a divisor on D. We say that f is a regular fibre if f does not meet $\operatorname{Sing}(Y)$ and $f \cong P^1$. Otherwise, we say that f is a singular fibre. We have seen in [S3] that f contains no exceptional curves of the first kind if and only if $\operatorname{Supp}(f)$ is irreducible. The argument is as follows. Suppose that $\operatorname{Supp}(f)$ is reducible, so that $f = \sum m_i F_i$ where the F_i are irreducible. The connectedness of $\operatorname{Supp}(f)$ implies that $F_i^2 < 0$ for all i. Since $K_Y(\sum m_i F_i) = K_Y f = -2$, there must exist at least one component F_i with $K_Y F_i < 0$. This F_i would be an exceptional curve of the first kind. Thus the fibre f has the form:

(1.1) f = mF (*F* is irreducible)

where the positive integer m is called the *multiplicity* of f. The fibre f is a *multiple fibre* if $m \ge 2$. If m=1, then we get $(K_r+f)f=-2$ and so we infer from Lemma 1 in [S4] that f is a regular fibre. We conclude therefore that there are only multiple singular fibres.

To describe singular fibres, we fix the notation:

 $\circ: (-a)$ -curve, $\bullet: (-2)$ -curve, *: (-1)-curve.

Here a (-a)-curve is a smooth rational curve with self-intersection number -a. Given positive integers a_1, \dots, a_n , we define the continued fraction:

$$[a_1, \cdots, a_n] = a_1 - \frac{1}{a_2 - \dots} \cdot \frac{1}{a_n}$$

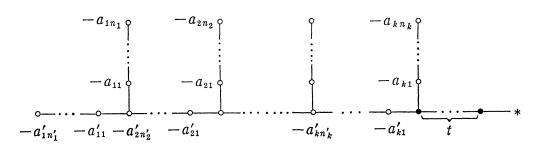
We write $[a_1, \dots, a_n] = d/e$ where the *d* and *e* are mutually prime positive integers. If $a_i \ge 2$ for all *i*, then the sequence $\{a_1, \dots, a_n\}$ is uniquely determined by the pair (d, e) with 0 < e < d. Consider the linear equations of indeterminates X_0, \dots, X_{n+1} :

$$X_{j+1} = a_j X_j - X_{j-1}, \quad j = 1, \dots, n.$$

Let $\{w_j\}$ be the solution satisfying the conditions: $w_n = c$, $w_{n+1} = 0$. Then we find that $w_0 = cd$.

THEOREM 1.2. Let $p: Y \rightarrow D$ be a minimal ruled fibration of a normal surface Y over the unit disc **D**. Suppose that it has a singular fibre f over $0 \in D$. If $\pi: X \rightarrow Y$ is the minimal resolution of Y, then

(i) the curves in $\pi^{-1}(f)$ consist of a tree of P^{1} , s with the following weighted dual graph:



where $a_{ij} \ge 2$, $a'_{ij} \ge 2$ for all i, j and $t \ge 0$, (ii) if $[a_{11}, \dots, a_{1n}] = d_1/e_1$, then

$$[a'_{11}, \cdots, a'_{1n'_{1}}] = d_{1}/(d_{1}-e_{1}),$$

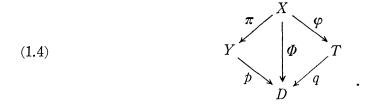
and for $i \ge 2$, if $[a_{i1}, \cdots, a_{in_i}] = d_i/e_i$, then

$$[a'_{i1}, \cdots, a'_{in'_i-1}, a'_{in'_i}-1] = d_i/(d_i-e_i),$$

(iii) the multiplicity of f is equal to the product $\prod_{i=1}^{k} d_i$.

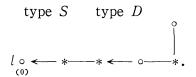
DEFINITION 1.3. In the above case, the singular fibre f is said to be of type $\{(d_1, e_1), \dots, (d_k, e_k), t\}$.

PROOF. We may assume that there are no singular fibres other than f. Since $\Phi = p \circ \pi : X \to D$ is a ruled fibration, by contracting (-1)-curves in its fibres, it factors through a P^1 -bundle $T \to D$:



Let *l* be the fibre of $T \rightarrow D$ over 0. Then $\pi^* f = \varphi^* l$ and $\pi^{-1}(f) = \varphi^{-1}(l)$. We observe the process of blowing ups in $X \rightarrow T$. Following Fujita [F1], p. 520, a blowing up over *l* is called *subdivisional* (type D, for short) if it is performed at one of the points where two curves over *l* meet together, otherwise it is called *sprouting* (type S, for short).

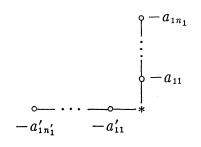
Write f=mF as in (1.1). Let \overline{F} be the strict transform of F by π . We see that \overline{F} is a (-1)-curve. Indeed, since $\pi^{-1}(f)$ is reducible, $\overline{F}^2 < 0$, also $K_X \overline{F} \leq K_Y F = -2/m < 0$, hence \overline{F} is a (-1)-curve. Therefore, in every intermediate step of $X \rightarrow T$, there are no mutually disjoint (-1)-curves over l. By this reason, the first two blowing ups should be the following:



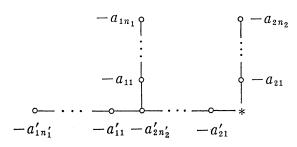
After this step, there is only one (-1)-curve over l, and every blowing up must be performed on that (-1)-curve. We write the order of types of blowing ups over l in φ :

$$\underbrace{S\underbrace{D}\cdots D}_{r_1}\underbrace{S}\underbrace{\cdots}_{t_2}\underbrace{D}\cdots D}_{r_2}\cdots\cdots\underbrace{S}\cdots \underbrace{S}\underbrace{D}\cdots D}_{t_k}\underbrace{S}\underbrace{D}\cdots D}_{r_k}\underbrace{S}\cdots \underbrace{S}_{t_k}$$

where $r_1 \ge 1$ and $t \ge 0$. After the first r_1 -times type D blowing ups, one has the dual graph:



where $a_{1j} \ge 2$, $a'_{1j} \ge 2$, and $n_1 + n'_1 = 1 + r_1$. Next, after t_2 -times type S blowing ups followed by r_2 -times type D blowing ups, we arrive at the following dual graph:



where $a_{2j} \ge 2$, $a'_{2j} \ge 2$ and $n_2 + n'_2 = t_2 + r_2$. Continuing the process of blowing ups in this way, we finally obtain the assertion (i).

By induction, the assertion (ii) follows from the following

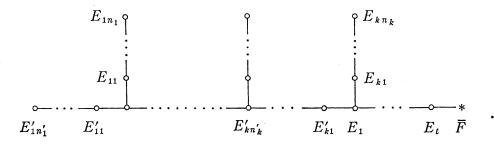
LEMMA 1.5. If positive integers $a_1, \dots, a_n, a'_1, \dots, a'_{n'}$ satisfy the condition:

$$[a_1, \cdots, a_n]^{-1} + [a'_1, \cdots, a'_{n'}]^{-1} = 1,$$

then the following equality holds:

$$[a_1+1, a_2, \cdots, a_n]^{-1}+[2, a'_1, \cdots, a'_{n'}]^{-1}=1.$$

To prove (iii), we name the curves as follows



Since $f = \pi_*(\pi^* f) = \pi_*(\varphi^* l)$, the multiplicity *m* is equal to the coefficient of \overline{F} in the divisor $\varphi^* l$. Write

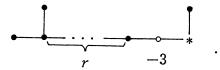
$$\varphi^*l = \sum m_{ij} E_{ij} + \sum m'_{ij} E'_{ij} + \sum m_i E_i + m\overline{F}.$$

By checking step by step, we see the following relations:

$$\begin{cases} m_1 = \dots = m_t = m \\ m_{1n_1} = m'_{1n'_1} = 1 \\ m_{in_i} = m'_{in'_i} & \text{for } i=2, \dots, k. \end{cases}$$

Since $(\varphi^{*l})E_{1j}=0$ for all j, the sequence of integers $\{m_{1j}\}$ with $m_{10}=m'_{2n'_2}$ is a solution of the equations: $X_{j+1}=a_{1j}X_j-X_{j-1}$ with $m_{1n_1+1}=0$, $m_{1n_1}=1$. As we have seen before, we get $m_{10}=d_1$. Thus $m_{2n_2}=m'_{2n'_2}=d_1$. Similarly, the equations: $(\varphi^{*l})E_{2j}=0$ imply that $\{m_{2j}\}$ with $m_{20}=m'_{3n'_3}$ is a solution of the equations: $X_{j+1}=a_{2j}X_j-X_{j-1}$ with $m_{2n_2+1}=0$, $m_{2n_2}=d_1$. Hence $m_{20}=d_1d_2$, and it follows that $m_{3n_3}=d_1d_2$. Repeating the calculation in this way, we can show that $m=\prod_{i=1}^{k}d_i$.

REMARK 1.6. In case k=1, the weighted dual graph is uniquely determined by the type. But in case $k \ge 2$, this is not the case. For instance, the following is of type {(2, 1), (2, 1), 0} for every $r \ge 1$.



REMARK 1.7. If t=0, f contains two singularities of Y, and if $t\geq 1$, then f contains one singularity of Y. Note that f contains only rational double points if and only if f is of type $\{(2, 1), t\}$ with $t\geq 0$.

§2. The invariant τ .

Let Y be a normal projective surface having a minimal ruled fibration $p: Y \to B$ over a smooth curve B of genus g. We know that Y carries only rational singularities ([S3], Lemma 4.6). Let $\pi: X \to Y$ be the minimal resolution of Y. Let $\operatorname{Sing}(Y) = \{y_1, \dots, y_t\}$ and $A = \sum A_i$ where each A_i denotes the exceptional set $\pi^{-1}(y_i)$. Let r_i be the determinant of the intersection matrix of all irreducible components of A_i , and let $r=1. \text{ c. m.}(r_i)$.

- LEMMA 2.1. Let r be as above. Then
- (i) $DD' \in (1/r)\mathbf{Z}$ for $D, D' \in \text{Div}(Y)$,
- (ii) rD is a Cartier divisor for every $D \in \text{Div}(Y)$.

PROOF. (i) follows directly from the definition of intersection numbers ([S2]). (ii) follows from Theorem (4.2) in [S2]. \Box

There exists an effective Q-divisor Δ supported on A satisfying the relation: $\pi^*K_Y = K_X + \Delta$. Cf. [S2]. Decompose $\Delta = \sum \Delta_i$ as $\operatorname{Supp}(\Delta_i) \subset A_i$. For each singular point y_i , we define

$$\tau(y_i) = \frac{1}{4} (\rho(A_i) + \Delta_i^2)$$

where $\rho(A_i)$ denotes the number of irreducible components of A_i . Note that $\tau(y_i) \in \mathbf{Q}$, which is possibly negative and that $\tau(y_i)$ depends only on the weighted dual graph of A_i . Define

$$\tau = \tau(Y) = \Sigma \tau(y_i)$$

where the summation is taken over all singularities. Since each y_i is a rational singularity, $4\tau(y_i)$ is equal to the (generalized) Milnor number $\mu(y_i)$ defined in [S2]. The Noether formula (4.7) in [S2] gives

$$K_Y^2 = 8(1-g) - 4\tau.$$

Lemma 2.3. $\tau \geq 0$.

PROOF. See [S4], Proposition 5, where it is shown that $K_Y^2 \leq 8(1-g)$. In Remark 2.10 below we give another simple proof.

Each singular fibre contains one or two singular points of Y. Cf. §1. For a singular fibre f, define

$$\tau(f) = \sum_{y_j \in f} \tau(y_i).$$

EXAMPLE 2.4. (i) If f is of type $\{(d, e), 0\}$, then $\tau(f)=1-1/d$. To see this, consider the following action of $G=\mathbb{Z}/d\mathbb{Z}$ on $\mathbb{P}^1 \times \mathbb{P}^1$.

$$\begin{array}{ccc} P^1 \times P^1 \longrightarrow P^1 \times P^1 \\ & & & \\ & & & \\ (z, w) \longrightarrow (\zeta z, \zeta^e w) \end{array}$$

where ζ is a primitive d-th root of unity. The action has four fixed points. The induced ruled fibration on the quotient $Y = \mathbf{P}^1 \times \mathbf{P}^1/G$ is minimal and has two singular fibres f_1 , f_2 of type $\{(d, e), 0\}$. It follows from (2.2) that $K_Y^2 = 8 - 4(\tau(f_1) + \tau(f_2))$. But

$$K_Y^2 = (1/d) K_{P^1 \times P^1}^2 = 8/d$$
.

So this implies that $\tau(f_1) = \tau(f_2) = 1 - 1/d$.

(ii) If f is of type $\{(d, 1), t\}$, then $\tau(f) = (d+t)(d-1)/d^2$.

THEOREM 2.5. Let Y be a normal projective surface with a minimal ruled fibration. Let f be a singular fibre of the ruled fibration, and let m denote its multiplicity. Then

$$\tau(f) \ge 1 - \frac{1}{m}$$

The equality holds if and only if f is of type $\{(m, e), 0\}$ for some e.

PROOF. Since the question is local, it suffices to consider the case in which $p: Y \rightarrow P^1$ has one singular fibre f of the given type and one singular fibre f'

F. Sakai

of type $\{(m, 1), 0\}$. Choose inhomogeneous coordinate z on P^1 so that f is over 0 and f' is over ∞ . Take an *m*-fold covering $P^1 \ni w \to z = w^m \in P^1$. Let \tilde{Y} be the normalization of the fibre product $Y \times_{P^1} P^1$. Then \tilde{Y} has an induced ruled fibration (not necessarily minimal) without multiple fibres. We see that $K_{\tilde{Y}}^2 \leq 8$. Indeed, let $\tilde{Y} \to \tilde{Y}_0$ be successive contractions of exceptional curves of the first kind in fibres, so that \tilde{Y}_0 has a minimal ruled fibration. Then $K_{\tilde{Y}}^2 < K_{\tilde{Y}_0}^2$ unless $\tilde{Y} = \tilde{Y}_0$. But by Lemma 2.3, $K_{\tilde{Y}_0}^2 \leq 8$. Note that the cyclic group G =Z/mZ acts on \tilde{Y} and $Y = \tilde{Y}/G$. By construction G has only a finite number of points with nontrivial stabilizers, and so $K_{\tilde{Y}}^2 = (1/m)K_{\tilde{Y}}^2$. Since $\tau(f') = 1 - 1/m$, it follows that

$$\frac{8}{m} \ge K_Y^2 = 8 - 4 \left(1 - \frac{1}{m} \right) - 4\tau(f),$$

and hence $\tau(f) \ge 1-1/m$ as desired. In case $\tau(f)=1-1/m$, we have $K_{\tilde{Y}}^2=8$ in the above argument. We infer from this that \tilde{Y} is a geometrically ruled surface and that f has two cyclic quotient singularities. It follows easily that f is of type $\{(m, e), 0\}$ for some e. Conversely, if f is of type $\{(m, e), 0\}$, then the multiplicity of f is equal to m (Theorem 1.2) and $\tau(f)=1-1/m$ (Example 2.4).

Let f_1, \dots, f_k be the set of singular fibres, and let m_i denote the multiplicity of f_i for each *i*. If f_i is over $x_i \in B$, then $f_i = p^*(x_i) = m_i F_i$. Of course

$$au = \Sigma au(f_i).$$

Corollary 2.6. $au \geq \Sigma \Big(1 - rac{1}{m_i}\Big).$

In particular, $\tau=0$ if and only if Y is smooth.

A divisor D on Y is said to be of *degree* n over B if Df=n where f is a fibre. An irreducible curve is called an *n*-section (n>0) if it is of degree n over B. A section will mean a 1-section.

LEMMA 2.7. Let D be a divisor of degree 0 over B. Then there exists a Q-divisor \mathfrak{d} on B such that

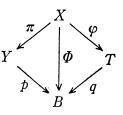
$$D \sim p^* \mathfrak{d}.$$

In this case, b has the form:

$$b = b_0 + \sum \left(\frac{n_i}{m_i} \right) x_i$$

where $\mathfrak{d}_0 \in \operatorname{Div}(B)$ with $\mathcal{O}(\mathfrak{d}_0) \cong p_* \mathcal{O}(D)$ and $0 \le n_i < m_i$ for all *i*.

PROOF. Consider a commutative diagram:



where T is a geometrically ruled surface over B. Namely, φ consists of successive contractions of (-1)-curves contained in fibres of Φ . Cf. (1.4). By definition ([S2]), $\pi^*D=\overline{D}+Z$ where \overline{D} is the strict transform of D and the Z is a Q-divisor supported on A. Write $\overline{D}=\varphi^*D'+G$ where D' is a divisor on T of degree 0 over B and the G is a divisor supported on the exceptional set of φ . It is well known that there is a divisor b' on B such that $D'\sim q^*b'$. Note that $q_*\mathcal{O}(D')\cong\mathcal{O}(b')$. Cf. [H2]. Thus $\pi^*D\sim\Phi^*b'+G+Z$. It follows that $D\sim p^*b'+\pi_*G$. Since $\operatorname{Supp}(G)\subset\pi^{-1}(\cup f_i)$, we have $\pi_*G=\sum n'_iF_i$ for some $n'_i\in \mathbb{Z}$. Write $n'_i\equiv n_i \mod m_i$ with $0\leq n_i<m_i$ for each i, and set $b_0=b'+\sum((n'_i-n_i)/m_i)x_i\in \operatorname{Div}(B)$. Setting $b=b^0+\sum(n_i/m_i)x_i$, we get the required linear equivalence: $D\sim p^*b$. Clearly, $p_*\mathcal{O}(D)\cong\mathcal{O}(b_0)$. \Box

PROPOSITION 2.9. Let $p: Y \rightarrow B$ be a minimal ruled fibration on a normal surface Y over a curve B of genus g. Let D be a divisor on Y of degree n (>0) over B. Then there exists a Q-divisor e(D) on B satisfying:

$$nK_{\rm Y} \sim -2D + p^*(n(\mathfrak{t} + \mathfrak{e}(D)))$$

where t is a canonical divisor on B. In particular, we have

$$K_{\rm Y}D = n\left(2g - 2 + \tau - \frac{D^2}{n^2}\right)$$

and

$$\deg \mathfrak{e}(D) = \frac{D^2}{n^2} + \tau \,.$$

PROOF. Since nK_r+2D is of degree 0 over *B*, the existence of e(D) follows from Lemma 2.7. Since $(nK_r+2D)^2=0$, it follows that

$$nK_{Y}D = -\frac{1}{4}n^{2}K_{Y}^{\circ} - D^{2} = n^{2}(\deg(t) + \tau) - D^{2}$$

(by (2.2)).

Thanks to the definition of e(D) we have

$$nK_YD = -2D^2 + n^2(\deg(\mathfrak{t} + \mathfrak{e}(D))).$$

Combining these together we obtain the remaining formulae. \Box

F. Sakai

REMARK 2.10. We give a simple proof of the fact: (i) $\tau \ge 0$, (ii) $\tau = 0$ if and only if Y is smooth. Cf. Lemma 2.3 and Corollary 2.6. Take a section C on Y, then by Proposition 2.9, $(K_Y+C)C=2g-2+\tau$. To see (i) it is sufficient to show that $(K_Y+C)C\ge 2g-2$. Let \overline{C} be the strict transform of C on the minimal resolution X of Y. We have seen in [S4], Lemma 1 that $(K_Y+C)C\ge$ $(K_X+\overline{C})\overline{C}$. This gives the required inequality, because \overline{C} is smooth and so $(K_X+\overline{C})\overline{C}=2g-2$. (ii) Suppose that $\tau=0$. Then $(K_Y+C)C=(K_X+\overline{C})\overline{C}$, which implies that C does not meet Sing(Y) ([S4], Lemma 1). This is however possible only if Y is smooth, for otherwise there would be multiple fibres.

In the subsequent sections we use the following

LEMMA 2.11. Let Y be a normal surface with a minimal ruled fibration over a curve B. Let D be a divisor on Y of nonnegative degree over B. Suppose that $D^2=0$, $K_rD \leq 0$. Then

(i) there exists an effective Q-divisor D' such that $D' \equiv D$,

(ii) furthermore, in case $B = P^1$, we have $\kappa(D, Y) \ge 0$.

PROOF. Let X, π, Φ be as in (2.8), and let r be as in Lemma 2.1. Applying the proof of Claim 6.5 in [S3] to $\mathcal{L} = \mathcal{O}(\pi^*(rD))$, we see that there exists a degree zero divisor \mathfrak{a} on B such that $H^0(X, \mathcal{L} \otimes \mathcal{O}(\Phi^*\mathfrak{a})) \neq 0$. Take $\Gamma \in |\mathcal{L} \otimes \mathcal{O}(\Phi^*\mathfrak{a})|$, and let $D' = (1/r)\pi_*\Gamma$. Since deg $\mathfrak{a} = 0$, we have $D' \equiv D$. If in addition $B = \mathbf{P}^1$, then $\mathfrak{a} = 0$, and so $|rD| \neq \emptyset$. \Box

§3. The invariants s_n .

Let Y, p, B have the same meaning as in §2. For a positive integer n, we define a rational number s_n by

$$s_n = s_n(Y) = \min\left\{\frac{D^2}{n^2}\right\}$$

where the minimum is taken over all effective divisors D of degree n over B. For simplicity write $s=s_1$, so s is equal to the minimum of the self-intersection numbers of all sections. A section b attaining the minimum s is called a *base* section (or a minimal section).

LEMMA 3.1. The above minimum actually exists.

PROOF. By Lemma 2.1, $D^2/n^2 \in (1/rn^2)\mathbb{Z}$. So it suffices to show that D^2/n^2 is bounded below. This is clear if $D^2 \ge 0$ for all D. We therefore consider the case in which there exists an irreducible curve C_0 with $C_0^2 < 0$. Let n_0 be the degree of C_0 over B. Let D be an arbitrary effective divisor of degree n over B. We can write $D = kC_0 + D'$ with $k \ge 0$, where the D' does not contain C_0 as

its component. If n' denotes the degree of D' over B, then of course, $n' = n - kn_0$. Since $D'C_0 \ge 0$ and $(n_0D' - n'C_0)^2 = 0$, we have $n_0^2D'^2 \ge -n'^2C_0^2$. Thus

$$D^2 \geq k^2 C_0^2 + D'^2 \geq (n_0^2 k^2 - n'^2) \, \frac{C_0^2}{n_0^2} \, , \label{eq:D2}$$

and hence

$$\frac{D^2}{n^2} \ge \left(1 - \frac{2n'}{n}\right) \frac{C_0^2}{n_0^2} \ge \frac{C_0^2}{n_0^2} \,. \qquad \Box$$

LEMMA 3.2. With the above notation, we have

(i) there exists at most one irreducible curve with negative self-intersection number,

(ii) if there is an n_0 -section C_0 with $C_0^2 \leq 0$, then $s_n \geq s_{n_0}$ for all n and $s_n = s_{n_0}$ if $n_0 \mid n$,

(iii) if $s \leq 0$, then $s_n = s$ for all n > 0,

(iv) if s > 0, then $s_n \ge -s$ for all $n \ge 2$,

(v) if s>0, then $s_n \ge -\tau$ for all $n\ge 2$.

PROOF. (i)-(iv) follow immediately from the proof of Lemma 3.1. We prove (v). If $s_n \ge 0$ for all $n \ge 2$, then (v) holds trivially. Suppose that $s_{n_0} < 0$ for some $n_0 \ge 2$. Choose n_0 minimal with this property. By the proof of Lemma 3.1, there is an n_0 -section C_0 with $C_0^2 < 0$, so that $s_{n_0} = C_0^2/n_0^2$. Apply the Hurwitz formula to the ramified covering map $\tilde{C}_0 \to B$ where \tilde{C}_0 is the normalization of C_0 . Then we infer that $(K_r + C_0)C_0 \ge n_0(2g-2)$. By Proposition 2.9, we have

$$(K_{\rm Y}+C_{\rm 0})C_{\rm 0}=n_{\rm 0}(2g-2+\tau)+\left(1-\frac{1}{n_{\rm 0}}\right)C_{\rm 0}^2.$$

It follows that

$$s_{n_0} = \frac{C_0^2}{n_0^2} \ge \frac{-\tau}{n_0 - 1} \ge -\tau$$
 (because $n_0 \ge 2$).

With the help of (ii) we conclude that $s_n \ge s_{n_0} \ge -\tau$ if $n \ge n_0$. By the choice of n_0 , of course $s_n \ge 0$ if $n < n_0$. \Box

EXAMPLE 3.3. We give an example with s>0, $s_2<0$. On the rational ruled surface $F_1=P(\mathcal{O}\oplus\mathcal{O}(-1))$ over P^1 , there is a smooth 2-section $C \in |2b+2f|$ where the *b* is the base section. Let *P* be a point on *C* where $C \rightarrow P^1$ ramifies. Blow up 7-times over *P* at the points where the strict transforms of *C* meet the (-1)-curves. Contract all curves over the fibre passing through *P* except the remaining last (-1)-curve. Then we get a minimal ruled fibration $Y \rightarrow P^1$. We see that *Y* has a singular fibre of type {(2, 1), 5}, so that s=3/4, $\tau=7/4$. If C_0 denotes the strict transform of *C* on *Y*, then C_0 is again a 2-section with $C_0^2=-3$, and so $s_2=-3/4$. In this example, $s=\tau-1$. See Theorem 3.5 below.

F. Sakai

REMARK 3.4. In case Y is smooth, if s>0, then $s_n\geq 0$ for all n>0 (for instance by Lemma 3.2, (v)). However, in the positive characteristic case, this is not the case. See [H2], Exercise 2.15, where an example (ch(k)=3) with s=1, $s_s=-1$ can be found.

THEOREM 3.5. Let Y be a normal projective surface with a minimal ruled fibration over a curve B of genus g. Then

(i)
$$s_n \leq \tau + \begin{cases} \frac{1}{n} \left[\frac{2ng}{n+1} \right] & (if \ n \ is \ odd), \\ \frac{2}{n} \left[\frac{ng}{n+1} \right] & (if \ n \ is \ even), \end{cases}$$

(ii) if Y is singular, then
 $s \leq g + \tau - 1.$

PROOF. We first consider the smooth case. Let T be a geometrically ruled surface $P(\mathcal{E})$ defined by a rank 2 vector bundle \mathcal{E} on B. By virtue of the observation in [H1], p. 51, there is a one to one correspondence between effective devisors D, having no fibre components, of degree n over B and invertible sheaves \mathcal{L} on B which is a subline bundle of the n-th symmetric power $S^n \mathcal{E}$. The correspondence is given by

$$D \longrightarrow \mathcal{L} = p_*(\mathcal{O}_T(n) \otimes \mathcal{O}(-D)) \subseteq S^n \mathcal{E}.$$

Furthermore, by using the computation in [H1], p. 52, we obtain

(3.6)
$$\frac{D^2}{n^2} = \deg \mathcal{E} - \frac{2}{n} \deg \mathcal{L} .$$

Choose D so that D^2/n^2 attains the minimum $s_n(T)$. In this case, D contains no fibre components, and the corresponding \mathcal{L} is a maximal subline bundle of $S^n \mathcal{E}$. Note that rank $S^n \mathcal{E} = n+1$, deg $S^n \mathcal{E} = (1/2)n(n+1)$ deg \mathcal{E} . The Theorem in [MS] applied to $S^n \mathcal{E}$ yields the inequality:

$$\frac{n+1}{2}(n\deg\mathcal{E}-2\deg\mathcal{L}) \leq ng.$$

Thus

$$n\deg \mathcal{E}-2\deg \mathcal{L} \leq \left[\frac{2ng}{n+1}\right].$$

Also if n is even, we have

$$\frac{1}{2}(n\deg \mathcal{E}{-}2\deg \mathcal{L}) \leqq \left[\frac{ng}{n+1}\right].$$

Substituting (3.6) to these inequalities, we get

(3.7)
$$s_n(T) = D^2/n^2 \leq \begin{cases} \frac{1}{n} \left[\frac{2ng}{n+1} \right] & \text{if } n \text{ is odd,} \\ \frac{2}{n} \left[\frac{ng}{n+1} \right] & \text{if } n \text{ is even.} \end{cases}$$

Now we pass to the singular case. Let X, π , T, φ have the same meaning as in (2.8).

CLAIM 3.8.
$$s_n(Y) \leq s_n(T) + \tau$$
.

PROOF. Let D be an effective divisor on T of degree n over B such that $s_n(T)=D^2/n^2$. Let \overline{D} be the strict transform of D on X, and let D' denote the image of \overline{D} on Y. Then

$$s_n(Y) \leq \frac{D'^2}{n^2} = 2g - 2 + \tau - \frac{1}{n} K_Y D'$$
$$= 2g - 2 + \tau - \frac{1}{n} (K_X + \Delta) \overline{D}$$
$$\leq 2g - 2 + \tau - \frac{1}{n} K_X \overline{D}$$
$$\leq \frac{D^2}{n^2} + \tau = s_n(T) + \tau.$$

This claim together with (3.7) yields the assertion (i).

Finally we prove (ii). We can choose T as $s(T) \leq g-1$ under the assumption that Y is singular. By (3.7), we have always $s(T) \leq g$. Suppose that s(T) = g. Since Y is singular, there must be a point P on T over which φ is not isomorphic. In case s(T)=g, Lemma 4.4 in [LN] (see also [M]) guarantees that there exists a base section passing through P. Let $T \dots > T'$ be the elementary transformation of T at P. It is easy to check that $X \rightarrow T'$ is still a morphism, and that s(T')=g-1. Therefore, by replacing T with T', we can make $s(T) \leq g-1$. Consequently, the assertion (ii) follows from Claim 3.8. \Box

COROLLARY 3.9. When $g \leq 1$, we have

$$s_n \leq \tau - \begin{cases} 0 & \text{ in case } g=1 \\ 1 & \text{ in case } g=0 \end{cases}$$

for every n under the condition that Y is singular.

PROOF. In the proof of (ii), if $g \leq 1$, we can make as $s(T) \leq 0$. It follows from Lemma 3.2, (iii) that $s_n(T) = s(T)$ for all n > 0. So by the inequality (ii), $s_n(Y) \leq \tau$ (if g=1), $\leq \tau - 1$ (if g=0). \Box

Now we define the following invariant:

$$s_* = \inf\{s_n\}$$

where the infimum is taken over all positive integers n. The following properties of s_* are immediate from Lemma 3.2.

LEMMA 3.10. (i) If there is an n_0 -section C_0 with $C_0^2 \leq 0$, then $s_* = s_{n_0}$. In particular, if $s \leq 0$, then $s_* = s$,

(ii) if s>0, then $s_*\geq -s$ and $s_*\geq -\tau$,

(iii) if $s_* < 0$, then there exists a unique irreducible curve C_0 with $C_0^2 < 0$, and in this case, $s_* = s_{n_0}$ where $n_0 =$ the degree of C_0 over B.

LEMMA 3.11. Let D be a divisor of degree n (n>0) over B. Then D is nef if and only if $D^2/n^2 \ge -s_*$.

PROOF. Clearly, DF>0 for a fibre component F. So D is nef if $DC \ge 0$ for all irreducible curves C of positive degree over B. Let C be an effective divisor of degree k (k>0) over B. Then

$$DC = \frac{nk}{2} \left(\frac{D^2}{n^2} + \frac{C^2}{k^2} \right).$$

If $D^2/n^2 \ge -s_*$, then it follows that $DC \ge 0$. Conversely, assume that D is nef. By the definition of s_* , for any $\varepsilon > 0$, there exists an effective divisor C such that $s_* \le C^2/k^2 < s_* + \varepsilon$ where k = the degree of C over B. Since D is nef, $DC \ge 0$, and so $D^2/n^2 \ge -C^2/k^2 > -s_* - \varepsilon$. Letting $\varepsilon \to 0$, we find that $D^2/n^2 \ge -s_*$.

PROPOSITION 3.12. The invariant s_* is a nonpositive rational number.

PROOF. First we show that $s_* \leq 0$. Assume to the contrary that $s_* > 0$. We can find a divisor D of positive degree over B such that $0 > D^2/n^2 > -s_*$, where n=the degree of D over B. To see this, take an ample divisor H on Y. Choose a rational number α as $H^2 < 2\alpha h < H^2 + s_* h^2$ where h is the degree of Hover B. Let N be a positive integer such that $N\alpha$ is integral. Then the divisor $D=N(H-\alpha f)$ satisfies the above condition. By Lemma 3.11, this D is nef, and hence we must have $D^2 \geq 0$. This is a contradiction. The rationality of s_* is now clear from (iii) in Lemma 3.10.

We say that Y is of *finite type* if $s_*=s_{n_0}$ for some n_0 , and is of *infinite type* otherwise. Note that if $s_*<0$, then Y is of finite type. In case $s_*=0$, there occur both types.

EXAMPLE 3.13. Let B be a curve of genus ≥ 2 . It is known that there exists a rank 2 vector bundle \mathcal{E} on B such that all its symmetric powers $S^n \mathcal{E}$

are stable. Cf. [H1], Theorem 10.5. Let $T = P(\mathcal{E})$. In this case, $s_n(T) > 0$ for all *n*, and so *T* is of infinite type.

LEMMA 3.14. If $-K_Y$ is pseudoeffective, then Y is of finite type.

PROOF. We have only to consider the case: $s_*=0$. Take a divisor D of positive degree over B such that $D^2=0$. By Lemma 3.11, D is nef, and so $K_rD \leq 0$, because $-K_r$ is pseudoeffective. By Lemma 2.11, there exists an effective **Q**-divisor D' such that $D'\equiv D$, and hence $D'^2=0$ in this situation, which implies that Y is of finite type. \Box

A divisor D is numerically positive if DC>0 for all irreducible curves C on Y. Also D is numerically ample if D is numerically positive and $D^2>0$. In our case, since Y has only rational singularities, D is ample if and only if it is numerically ample (Nakai criterion).

PROPOSITION 3.15. Let Y be a normal surface with a minimal ruled fibration. Let b be a base section, and f a fibre. Let $D \equiv nb + \alpha f$ be a divisor on Y. Then

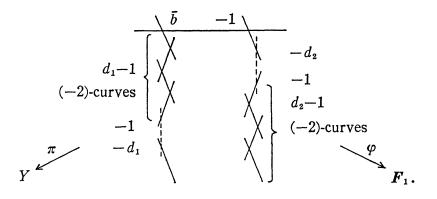
(i) D is numerically positive if and only if n>0, α>-(n/2)(s+s*) (in case Y is of finite type), or n>0, α≥-ns/2 (in case Y is of infinite type, and so s*=0).
(ii) D is ample (resp. nef) if and only if n>0, α>-(n/2)(s+s*) (resp. n≥0,

 $\alpha \ge -(n/2)(s+s_*)).$

(iii) D is pseudoeffective if and only if $n \ge 0$, $\alpha \ge -(n/2)(s-s_*)$.

PROOF. For the smooth case, see [H2], p. 382. See also [L], [S1]. Of course Df=n. Also if C is an effective divisor of degree k>0 over B, then $DC=k(\alpha+(n/2)(s+C^2/k^2))$. Therefore, (i) follows from the definition of s_* . Also we see the criterion for the nefness. Since $D^2=2n(\alpha+ns/2)$ and $s_*\leq 0$, in view of (i), we get the criterion for the ampleness. To see (iii), take a divisor $C=k(b-(1/2)(s+s_*)f)$ for a suitable positive integer k. By (ii), C is nef. Since $DC=k(\alpha+(n/2)(s-s_*))$, the condition: $\alpha\geq -(n/2)(s-s_*)$ is necessary for the pseudo-effectiveness. The other implication is an easy consequence of (ii).

REMARK 3.16. We claim that Y contains an exceptional curve of the first kind if and only if g=0, $s_*<0$, $\tau<2+s_*$. Indeed, we know that there is an irreducible curve C_0 with $C_0^2<0$ if and only if $s_*<0$. By Proposition 2.9, K_YC_0 $=n_0(2g-2-s_*+\tau)$ where $n_0=$ the degree of C_0 over B. So $K_YC_0<0$ if and only if $2g-2-s_*+\tau<0$. Since $s_*<0$, this is equivalent to the condition: g=0, $\tau<$ $2+s_*$. We give a series of examples. Consider F_1 with a base section b, and construct two singular fibres of types $\{(d_1, 1), 0\}$ and $\{(d_2, 1), 0\}$. Let Y be the resulting normal surface. One can make the configuration as follows:



Here \bar{b} is the strict transform of b. Let C_0 be the image of \bar{b} on Y. Then $K_Y C_0 = -2/d_2$, $C_0^2 = -(d_2 - d_1)/d_1 d_2$.

So if $d_2 > d_1$, then C_0 is an exceptional curve of the first kind.

§4. The anti-Kodaira dimension.

Let Y be a normal surface having a minimal ruled fibration $p: Y \rightarrow B$ over a curve B of genus g. We study the anti-Kodaira dimension $\kappa^{-1}(Y)$, which is defined to be $\kappa(-K_Y, Y)$. Cf. [S1], [S3]. Recall the numerical type of a divisor D on Y. We say that D is of type (a) if D is not pseudoeffective. In case D is pseudoeffective, let D=P+N be the Zariski decomposition ([S2]) where P is a nef Q-divisor. We have three types: (b) $P\equiv 0$, (c) $P^2=0$, $P\not\equiv 0$, (d) $P^2>0$.

We first consider the numerical type of the anticanonical divisor $-K_Y$. We fix a base section b on Y. In view of Proposition 2.9, it follows that

$$-K_{\mathbf{Y}} \equiv 2b - (2g - 2 + s + \tau)f$$

By Proposition 3.15, we obtain the following criteria:

(4.1)
$$\begin{cases} -K_Y \text{ is pseudoeffective} \iff 2g-2+s_*+\tau \leq 0\\ -K_Y \text{ is nef} \iff 2g-2-s_*+\tau \leq 0. \end{cases}$$

Suppose now that $-K_r$ is pseudoeffective, but not nef. This is the case in which $s_* < 2g - 2 + \tau \leq -s_*$. In particular, $s_* < 0$. So there exists an irreducible curve C_0 with $C_0^2 < 0$. If n_0 is the degree of C_0 over B, then $s_* = C_0^2/n_0^2$. See Lemma 3.10. With the notation of Proposition 2.9, set $e_0 = e(C_0)$. Note that $deg e_0 = s_* + \tau$. The Zariski decomposition: $-K_r = P + N$ is given by

$$\begin{cases} N = \left(1 - \frac{2g - 2 + \tau}{s_*}\right) \frac{C_0}{n_0}, \\ P = -K_Y - N. \end{cases}$$

Furthermore, we have the linear equivalence:

$$n_{\mathfrak{o}}P \sim -p^{*}(n_{\mathfrak{o}}(\mathfrak{t}+\mathfrak{e}_{\mathfrak{o}})) + \left(1 + \frac{2g-2+\tau}{s_{*}}\right)C_{\mathfrak{o}}.$$

Also,

$$P^2 = \frac{(2g - 2 + s_* + \tau)^2}{-s_*}$$

Therefore, if $P^2=0$, then $2g-2+s_*+\tau=0$, and hence

(4.2)
$$n_0 P \sim -p^*(n_0(\mathfrak{t}+\mathfrak{e}_0)).$$

Suppose next that $-K_Y$ is nef. By (4.1), $2g-2-s_*+\tau \leq 0$, and so either g=0, $\tau-s_*\leq 2$, or g=1, $\tau=0$, $s_*=0$. By (2.2), $K_Y^2=0 \Leftrightarrow \tau=2(1-g)$. So $-K_Y$ is of type (c) in the following cases (i) g=0, $\tau=2$, $s_*=0$, (ii) g=1, $\tau=0$, $s_*=0$.

As a consequence, we obtain the following

LEMMA 4.3. The numerical type of $-K_Y$ is given by the following table:

Type	$2g-2+s_*+\tau$	S*
(a) (b) (c) (d)	>0 0 0 <0	

We now consider the anti-Kodaira dimension $\kappa^{-1}(Y)$.

Type (a). In this case, we have automatically $\kappa^{-1}(Y) = -\infty$.

Type (b). Using (4.2), we see that $\kappa^{-1}(Y)=0$ if $\mathfrak{t}+\mathfrak{e}_0$ is a torsion element, i.e., there exists a positive integer *m* such that $m(\mathfrak{t}+\mathfrak{e}_0)\sim 0$, and that $\kappa^{-1}(Y)=-\infty$ otherwise.

Type (c). For the case in which g=1, $\tau=0$, since Y is smooth, the previous results in [S1], [S3] imply that $\kappa^{-1}(Y)$ can take 0 and 1. For the case in which g=0, $\tau=2$, by Lemma 2.11, we see that $\kappa^{-1}(Y)\geq 0$. Since $-K_Y$ is nef and $K_Y^2=0$, we see that $\kappa^{-1}(Y)\neq 2$. See Example 4.5 below for examples with $\kappa^{-1}(Y)=0$ and 1.

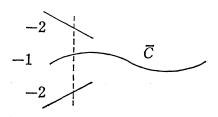
Type (d). It is known that $\kappa^{-1}(Y)=2$.

Summarizing we obtain the following

THEOREM 4.4. Let Y be a normal projective surface with a minimal ruled fibration over a curve of genus g. Then the classification of Y in terms of $\kappa^{-1}(Y)$ is given as follows:

$\kappa^{-1}(Y)$	Туре	$2g-2+s_*+\tau$	S*	Structure
-∞	{ (a)	> 0		
	(b)	0	< 0	$f + e_0$ is not a torsion
	{ (b)	0	< 0	$\mathfrak{k} + \mathfrak{e}_{\mathfrak{o}}$ is a torsion
0	{ (c)	0	0	$\begin{cases} g=0, \ \tau=2\\ g=1, \ \tau=0 \end{cases}$
1	(c)	0<0	0	$\begin{cases} g=0, \ \tau=2 \\ g=1, \ \tau=0 \\ g=0, \ \tau=2 \\ g=1, \ \tau=0 \end{cases}$
2	(d)	< 0		

EXAMPLE 4.5. Take a smooth cubic $C \subset P^2$. Choose a point $P_0 \in C$, which is not a flex. There are four distinct points P_1, \dots, P_4 such that the lines $\overline{P_0P_i}$ are tangent to C. Blow up P_0 , so that the resulting surface is F_1 . In this case, every line passing through P_0 corresponds to a fibre. Blow up over each point P_i in the following way. First blow up at P_i and then blow up at the point where the (-1)-curve meets the strict transform of C. Locally we have the following picture:



One of the (-2)-curves is the strict transform of the line $\overline{P_0P_i}$. By contracting the eight (-2)-curves, we get a normal surface Y with a minimal ruled fibration. There are four singular fibres of type $\{(2, 1), 0\}$. The strict transform C_0 of C on Y is a smooth elliptic curve. Note that C_0 is a 2-section with $C_0^2=0$. We have g=0, $\tau=2$, $s_*=0$. Let P_{∞} be a flex on C. We claim that

$$\boldsymbol{\kappa}^{-1}(Y) = \begin{cases} 1 & \text{ if } (P_0 - P_\infty) \text{ is a torsion element in } \operatorname{Pic}(C), \\ 0 & \text{ otherwise.} \end{cases}$$

Indeed, by construction we find that $K_{\rm Y} \sim -C_0$. Clearly, C_0 is isomorphic to C, and with this isomorphism the normal sheaf $\mathcal{N}_{C_0} = \mathcal{O}(C_0) \otimes \mathcal{O}_{C_0}$ corresponds to the sheaf $\mathcal{O}(3(P_0 - P_\infty))$. The assertion is then a consequence of Proposition 3.3 in **[S3]**.

We give a criterion for the case in which Y admits another ruled fibration or an elliptic fibration. We begin with the following general result.

LEMMA 4.6. Let D be a nef Cartier divisor on a normal surface Y. Suppose that $\kappa(D, Y)=1$. Then

(i) if $K_r D < 0$, then |mD| for some positive integer m defines a ruled fibration on Y,

(ii) if $K_r D=0$, then |mD| for some positive integer m defines an elliptic fibration on Y.

PROOF. We use a theorem of Zariski in the form in [F2], Theorem (4.1), which implies that $\mathcal{O}(mD)$ is generated by global sections for some m>0. It follows from this that the map defined by |mD| provides a fibration onto a curve for some large m. Let f denote its general fibre. We find that $K_{r}f<0$ or =0, according as $K_{r}D<0$ or =0. Accordingly, f is a smooth rational curve or a smooth elliptic curve.

PROPOSITION 4.7. Let $p: Y \rightarrow B$ be a minimal ruled fibration on a normal surface Y over a curve B of genus g. Then Y admits another ruled fibration if and only if g=0, $\tau<2$ and $s_*=0$. In this case, $\tau=2(1-1/n)$ for some positive integer n.

PROOF. Suppose that Y has another ruled fibration. Let l be its general fibre. Let f be a fibre of p. Since $l \cong P^1$, we must have g=0. If we define n=fl, then by Proposition 2.9, $K_Y l = n(\tau-2)$. Since $K_Y l = -2$, it follows that $\tau=2(1-1/n)$. Since $l^2=0$, we infer that $s_n=0$ and $s_*=0$. Cf. Lemma 3.10, (i).

Conversely, assume that g=0, $\tau<2$ and $s_*=0$. Thanks to (4.1), we see that $-K_Y$ is nef. It follows from Lemma 3.14 that Y is of finite type. Since $s_*=0$, this means that there exists an n_0 -section l_0 with $l_0^2=0$ for some n_0 . In particular, $K_Y l_0 = n_0(\tau-2)<0$. The Riemann-Roch theorem implies that $\kappa(l_0, Y)=1$. So by Lemma 4.6, there exists a ruled fibration on Y such that l_0 is a fibre. \Box

EXAMPLE 4.8. (i) In the example in Remark 3.16, if $d_1=d_2=d$, then we have the invariants: g=0, $\tau=2(1-1/d)$, $s=s_*=0$.

(ii) Starting from $P^1 \times P^1$, construct a singular fibre of type $\{(d, 1), d\}$. In this case, we have g=0, $\tau=2(1-1/d)$ and $s=s_*=0$. Cf. Example 2.4, (ii).

PROPOSITION 4.9. Let Y be a normal surface with a minimal ruled fibration over a curve B of genus g. Then Y admits an elliptic fibration if and only if $\kappa^{-1}(Y)=1$.

PROOF. In view of Theorem 4.4, if $\kappa^{-1}(Y)=1$, then $-K_Y$ is nef and $K_Y^2=0$. We infer from Lemma 4.6 that Y has an elliptic fibration.

Conversely, assume that Y has an elliptic fibration. Let C be its general

F. Sakai

fibre. Set n=fC>0. By Proposition 2.9, $K_YC=n(2g-2+\tau)$, because $C^2=0$. Since $K_YC=0$, we find that $2g-2+\tau=0$. There occur two cases (i) $g=1, \tau=0$, (ii) $g=0, \tau=2$. In either case, by Theorem 4.4, $-K_Y$ is of type (c) and $\kappa^{-1}(Y) \ge 0$. We therefore are able to find an effective divisor $D \in |-mK_Y|$ for some m>0. Since DC=0, D is contained in fibres of the elliptic fibration. We infer from this that each connected component of D is proportional to a fibre of the elliptic fibration. It follows that $\kappa^{-1}(Y)=1$.

Let us observe when the anticanonical divisor $-K_Y$ is ample. Recall that in the smooth case, only $P^1 \times P^1$ and F_1 have this property among geometrically ruled surfaces. We infer from Proposition 3.15 that $-K_Y$ is ample $\Leftrightarrow 2g-2-s_*$ $+\tau < 0 \Leftrightarrow g=0, \ \tau < 2+s_*$. There are two cases: (i) $s_*=0$, (ii) $s_*<0$. If $s_*=0$, we infer from Proposition 4.7 that Y admits another minimal ruled fibration and that $\tau=2(1-1/n)$ for some positive integer n. If $s_*<0$, by Remark 3.16, Y contains an exceptional curve of the first kind. Summarizing we obtain the following:

THEOREM 4.10. Let Y be a normal projective surface with a minimal ruled fibration. Then the anticanonical divisor $-K_Y$ is ample if and only if either

- (i) Y admits two distinct minimal ruled fibrations, or
- (ii) Y contains an exceptional curve of the first kind.

CONCLUDING REMARK 4.11. We refer to Fujita [F1] and Gurjar-Miyanishi [GM] for related topics on open surfaces.

References

- [F1] T. Fujita, On the topology of non-complete algebraic surfaces, J. Fac. Sci. Univ. Tokyo, Sect. IA., 29 (1982), 503-566.
- [F2] T. Fujita, Fractionally logarithmic canonical rings of algebraic surfaces, J. Fac. Sci. Univ. Tokyo, Sect. IA., 30 (1984), 685-695.
- [GM] R.V. Gurjar and M. Miyanishi, Affine surfaces with $\bar{\kappa} \leq 1$, preprint.
- [H1] R. Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes Math., 156, Springer, 1970.
- [H2] R. Hartshorne, Algebraic Geometry, Graduate Texts Math., 57, Springer, 1977.
- [L] H. Lange, On stable and ample vector bundles of rank 2 on curves, Math. Ann., 238 (1978), 193-202.
- [LN] H. Lange and M.S. Narasimhan, Maximal subbundles of rank two vector bundles on curves, Math. Ann., **266** (1983), 55-72.
- [M] M. Maruyama, On classification of ruled surfaces, Lectures in Math., Kyoto Univ., 3, Kinokuniya, Tokyo, 1970.
- [MS] S. Mukai and F. Sakai, Maximal subbundles of vector bundles on a curve, Manuscripta Math., 52 (1985), 251-256.
- [N] M. Nagata, On self-intersection number of a section on a ruled surface, Nagoya Math. J., 37 (1970), 191-196.

[S1]	F. Sakai, Anti-Kodaira dimension of ruled surfaces, Sci. Rep	. Saitama Univ.,
	Ser. A., 10 (1982), 1-7.	
[S2]	F. Sakai, Weil divisors on normal surfaces, Duke Math. J., 51	(1984), 877-887.
[S3]	F. Sakai, The structure of normal surfaces, Duke Math. J., 52	(1985), 627-648.

[S4] F. Sakai, Ample Cartier divisors on normal surfaces, J. Reine Angew. Math., 366 (1986), 121-128.

Fumio SAKAI

Department of Mathematics Faculty of Science Saitama University Urawa 338 Japan

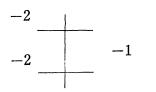
Added in Proof (Correction to the paper [S4]). As we have seen in this paper, a minimal ruled fibration on a normal surface may have multiple fibres. For this reason, in the proof of Theorem 1, type (a) in [S4], we insert the following: Let f=mF be a fibre with multiplicity m. Since $(K_r+H)f<0$, $Hf\geq 1$, we find that $K_rF<-1$, $F^2=0$, which implies that $K_x\overline{F}=-2$, $\overline{F}^2=0$. It follows that $K_rF\geq -2$. On the other hand, $K_rf=m(K_rF)=-2$. So we must have m=1.

Accordingly, we correct the statement (ii) of Proposition 2 in [S4] as follows.

(ii) the singular fibre is obtained by contracting all (-2)-curves in the following configurations:

(ii-1) the same as in [S4],

(ii-2)



(ii-3)

