Ruled fibrations on normal surfaces

Dedicated to Professor M. Nagata on his 60th birthday

By Fumio Sakai

(Received Nov. 6, 1986)

Let Y be a normal projective surface over C. A ruled fibration on Y over a smooth curve B is a surjective morphism $p: Y \rightarrow B$ such that the general fibre is isomorphic to \boldsymbol{P}^{1}. We have the notion of exceptional curves of the first kind in the category of normal surfaces. Namely, an irreducible curve C on Y is called an exceptional curve of the first kind if $K_{Y} C<0$ and $C^{2}<0$, where the K_{Y} denotes a canonical divisor on Y. Cf. [S3]. A minimal ruled fibration will mean a ruled fibration whose fibres contain no exceptional curves of the first kind. Given a ruled fibration on Y, contract successively all exceptional curves of the first kind in fibres, then we obtain a minimal ruled fibration. In this paper we study the structure of a normal surface Y having a minimal ruled fibration over a curve B of genus g.

In $\S 1$ we consider the structure of singular fibres. It turns out that every singular fibre is necessarily a multiple fibre and contains one or two singular points of Y. To describe a singular fibre, we observe the weighted dual graph of the inverse image of the singular fibre on the minimal resolution of Y. In $\S 2$ we introduce a nonnegative rational number τ, which measures the amount of $\operatorname{Sing}(Y)$. We have the formula: $K_{\hat{Y}}^{\hat{\gamma}}=8(1-g)-4 \tau$. Suppose that Y has singular fibres f_{i} with multiplicities $m_{i}, i=1, \cdots, k$. Then we show that $\tau \geqq \Sigma\left(1-1 / m_{i}\right)$. In §3 we define the invariants $s_{n} \in \boldsymbol{Q}$ for positive integers n. The first invariant $s=s_{1}$ is defined to be the minimum of the self-intersection numbers of all sections in the ruled fibration. Provided that Y is singular, we prove the inequality: $s \leqq g+\tau-1$. Recall that for the smooth case a theorem of Nagata [N] says that $s \leqq g$. Similarly, we define the invariants s_{n} to be $1 / n^{2}$ of the minimum of the self intersection numbers of all effective divisors of degree n over B. We show that $s_{n} \leqq 2 g /(n+1)+\tau$. The invariant $s_{*}=\inf \left\{s_{n}\right\}$ plays an important role in the numerical criterion for an ample divisor. In $\S 4$ we consider the anti-Kodaira dimension $\kappa^{-1}(Y)$. We give a classification of Y in terms of $\kappa^{-1}(Y)$ together with the numerical type of the anticanonical divisor $-K_{Y}$. For the smooth case, this was done in [S1], [S3]. We also deal with the question when Y admits another ruled fibration or an elliptic fibration. We
finally prove that Y becomes a normal del Pezzo surface (i.e., a normal surface with ample anticanonical divisor) if and only if either Y admits another minimal ruled fibration, or Y contains an exceptional curve of the first kind in the above sense.

Notation and conventions. We use the notation and the results in the previous papers [S2], [S3]. Let Y be a normal surface. A divisor will mean a Weil divisor. Let $\operatorname{Div}(Y)$ denote the group of divisors on Y. We employ the \boldsymbol{Q} valued intersection theory on $\operatorname{Div}(Y)$, which was introduced by Mumford. We denote by \sim (resp. \equiv) the linear equivalence (resp. numerical equivalence) on $\operatorname{Div}(Y)$. For a divisor D, we denote by $\mathcal{O}(D)$ the corresponding divisorial sheaf. We mean by $\kappa(D, Y)$ the D-dimension of Y. A divisor D is nef if $D C \geqq 0$ for all irreducible curves C on Y, and is pseudoeffective if $D P \geqq 0$ for all nef divisors P on Y. We say that D is ample if some positive multiple of D becomes an ample Cartier divisor in the usual sense.

In the previous papers [S3], [S4], a minimal ruled fibration is also called a \boldsymbol{P}^{1}-fibration. But some authors use it to mean a ruled fibration. To avoid confusion we employ "minimal ruled fibration" in this paper. A smooth projective surface with a minimal ruled fibration is known to be a \boldsymbol{P}^{1}-bundle over the base curve. As usual, such a surface is called a geometrically ruled surface. See [H2], [M] for the general theory of geometrically ruled surfaces.

§ 1. Singular fibres.

Let \boldsymbol{D} be the unit disc. Let us consider a normal surface Y having a minimal ruled fibration $p: Y \rightarrow \boldsymbol{D}$. In this section, we describe the structure of singular fibres. Let f denote the fibre over 0 . More precisely, we define f to be the Cartier divisor $p^{*}(0)$ where (0) is regarded as a divisor on \boldsymbol{D}. We say that f is a regular fibre if f does not meet $\operatorname{Sing}(Y)$ and $f \cong \boldsymbol{P}^{1}$. Otherwise, we say that f is a singular fibre. We have seen in [S3] that f contains no exceptional curves of the first kind if and only if $\operatorname{Supp}(f)$ is irreducible. The argument is as follows. Suppose that $\operatorname{Supp}(f)$ is reducible, so that $f=\sum m_{i} F_{i}$ where the F_{i} are irreducible. The connectedness of $\operatorname{Supp}(f)$ implies that $F_{i}^{2}<0$ for all i. Since $K_{Y}\left(\sum m_{i} F_{i}\right)=K_{Y} f=-2$, there must exist at least one component F_{i} with $K_{Y} F_{i}<0$. This F_{i} would be an exceptional curve of the first kind. Thus the fibre f has the form:

$$
\begin{equation*}
f=m F \quad(F \text { is irreducible) } \tag{1.1}
\end{equation*}
$$

where the positive integer m is called the multiplicity of f. The fibre f is a multiple fibre if $m \geqq 2$. If $m=1$, then we get $\left(K_{Y}+f\right) f=-2$ and so we infer from Lemma 1 in [S4] that f is a regular fibre. We conclude therefore that there are only multiple singular fibres.

To describe singular fibres, we fix the notation:

$$
\stackrel{\circ}{\circ}:(-a) \text {-curve , } \quad \bullet:(-2) \text {-curve , } \quad *:(-1) \text {-curve. }
$$

Here a $(-a)$-curve is a smooth rational curve with self-intersection number $-a$. Given positive integers a_{1}, \cdots, a_{n}, we define the continued fraction:

$$
\left[a_{1}, \cdots, a_{n}\right]=a_{1}-\frac{1}{a_{2}-} \quad \ddots-\frac{1}{a_{n}} .
$$

We write $\left[a_{1}, \cdots, a_{n}\right]=d / e$ where the d and e are mutually prime positive integers. If $a_{i} \geqq 2$ for all i, then the sequence $\left\{a_{1}, \cdots, a_{n}\right\}$ is uniquely determined by the pair (d, e) with $0<e<d$. Consider the linear equations of indeterminates X_{0}, \cdots, X_{n+1} :

$$
X_{j+1}=a_{j} X_{j}-X_{j-1}, \quad j=1, \cdots, n .
$$

Let $\left\{w_{j}\right\}$ be the solution satisfying the conditions: $w_{n}=c, w_{n+1}=0$. Then we find that $w_{0}=c d$.

Theorem 1.2. Let $p: Y \rightarrow \boldsymbol{D}$ be a minimal ruled fibration of a normal surface Y over the unit disc \boldsymbol{D}. Suppose that it has a singular fibre f over $0 \in \boldsymbol{D}$. If $\pi: X \rightarrow Y$ is the minimal resolution of Y, then
(i) the curves in $\pi^{-1}(f)$ consist of a tree of $\boldsymbol{P}^{1,}$ s with the following weighted dual graph:

where $a_{i j} \geqq 2, a_{i j}^{\prime} \geqq 2$ for all i, j and $t \geqq 0$,
(ii) if $\left[a_{11}, \cdots, a_{1 n_{1}}\right]=d_{1} / e_{1}$, then

$$
\left[a_{11}^{\prime}, \cdots, a_{1 n_{1}^{\prime}}^{\prime}\right]=d_{1} /\left(d_{1}-e_{1}\right),
$$

and for $i \geqq 2$, if $\left[a_{i 1}, \cdots, a_{i n_{i}}\right]=d_{i} / e_{i}$, then

$$
\left[a_{i 1}^{\prime}, \cdots, a_{i n_{i}^{\prime}-1}^{\prime}, a_{i n_{i}^{\prime}}^{\prime}-1\right]=d_{i} /\left(d_{i}-e_{i}\right),
$$

(iii) the multiplicity of f is equal to the product $\prod_{i=1}^{k} d_{i}$.

Definition 1.3. In the above case, the singular fibre f is said to be of type $\left\{\left(d_{1}, e_{1}\right), \cdots,\left(d_{k}, e_{k}\right), t\right\}$.

Proof. We may assume that there are no singular fibres other than f. Since $\Phi=p \circ \pi: X \rightarrow \boldsymbol{D}$ is a ruled fibration, by contracting (-1)-curves in its fibres, it factors through a \boldsymbol{P}^{1}-bundle $T \rightarrow \boldsymbol{D}$:

Let l be the fibre of $T \rightarrow \boldsymbol{D}$ over 0 . Then $\pi^{*} f=\varphi^{*} l$ and $\pi^{-1}(f)=\varphi^{-1}(l)$. We observe the process of blowing ups in $X \rightarrow T$. Following Fujita [F1], p. 520, a blowing up over l is called subdivisional (type D, for short) if it is performed at one of the points where two curves over l meet together, otherwise it is called sprouting (type S, for short).

Write $f=m F$ as in (1.1). Let \bar{F} be the strict transform of F by π. We see that \bar{F} is a (-1 -curve. Indeed, since $\pi^{-1}(f)$ is reducible, $\bar{F}^{2}<0$, also $K_{X} \bar{F} \leqq K_{Y} F=-2 / m<0$, hence \bar{F} is a (-1)-curve. Therefore, in every intermediate step of $X \rightarrow T$, there are no mutually disjoint (-1)-curves over l. By this reason, the first two blowing ups should be the following:
type S type D

After this step, there is only one (-1)-curve over l, and every blowing up must be performed on that (-1)-curve. We write the order of types of blowing ups over l in φ :

$$
S \underbrace{D \cdots D}_{r_{1}} \underbrace{S \cdots}_{t_{2}} S \underbrace{D \cdots D}_{r_{2}} \cdots \cdots \underbrace{S \cdots}_{t_{k}} S \underbrace{D \cdots D}_{r_{k}} \underbrace{S \cdots S} S
$$

where $r_{1} \geqq 1$ and $t \geqq 0$. After the first r_{1}-times type D blowing ups, one has the dual graph:

where $a_{1 j} \geqq 2, a_{1 j}^{\prime} \geqq 2$, and $n_{1}+n_{1}^{\prime}=1+r_{1}$. Next, after t_{2}-times type S blowing ups followed by r_{2}-times type D blowing ups, we arrive at the following dual graph :

where $a_{2 j} \geqq 2, a_{2 j}^{\prime} \geqq 2$ and $n_{2}+n_{2}^{\prime}=t_{2}+r_{2}$. Continuing the process of blowing ups in this way, we finally obtain the assertion (i).

By induction, the assertion (ii) follows from the following
Lemma 1.5. If positive integers $a_{1}, \cdots, a_{n}, a_{1}^{\prime}, \cdots, a_{n^{\prime}}^{\prime}$ satisfy the condition:

$$
\left[a_{1}, \cdots, a_{n}\right]^{-1}+\left[a_{1}^{\prime}, \cdots, a_{n^{\prime}}^{\prime}\right]^{-1}=1
$$

then the following equality holds:

$$
\left[a_{1}+1, a_{2}, \cdots, a_{n}\right]^{-1}+\left[2, a_{1}^{\prime}, \cdots, a_{n^{\prime}}^{\prime}\right]^{-1}=1
$$

To prove (iii), we name the curves as follows

Since $f=\pi_{*}\left(\pi^{*} f\right)=\pi_{*}\left(\varphi^{*} l\right)$, the multiplicity m is equal to the coefficient ${ }^{\rrbracket} \bar{F}$ in the divisor φ^{*} l. Write

$$
\varphi^{* l}=\sum m_{i j} E_{i j}+\Sigma m_{i j}^{\prime} E_{i j}^{\prime}+\Sigma m_{i} E_{i}+m \bar{F} .
$$

By checking step by step, we see the following relations:

$$
\left\{\begin{array}{l}
m_{1}=\cdots=m_{t}=m \\
m_{1 n_{1}}=m_{1 n_{1}^{\prime}}^{\prime}=1 \\
m_{i n_{i}}=m_{i n_{i}^{\prime}}^{\prime} \quad \text { for } \quad i=2, \cdots, k
\end{array}\right.
$$

Since $\left(\varphi^{*} l\right) E_{1 j}=0$ for all j, the sequence of integers $\left\{m_{1 j}\right\}$ with $m_{10}=m_{2 n_{2}^{\prime}}^{\prime}$ is a solution of the equations: $X_{j+1}=a_{1 j} X_{j}-X_{j-1}$ with $m_{1 n_{1}+1}=0, m_{1 n_{1}}=1$. As we have seen before, we get $m_{10}=d_{1}$. Thus $m_{2 n_{2}}=m_{2 n_{2}^{\prime}}^{\prime}=d_{1}$. Similarly, the equations: $\left(\varphi^{*} l\right) E_{2 j}=0$ imply that $\left\{m_{2 j}\right\}$ with $m_{20}=m_{3 n_{3}^{\prime}}^{\prime}$ is a solution of the equations: $X_{j+1}=a_{2 j} X_{j}-X_{j-1}$ with $m_{2 n_{2}+1}=0, m_{2 n_{2}}=d_{1}$. Hence $m_{20}=d_{1} d_{2}$, and it follows that $m_{3 n_{3}}=d_{1} d_{2}$. Repeating the calculation in this way, we can show that $m=$ $\prod_{i=1}^{k} d_{i}$.

Remark 1.6. In case $k=1$, the weighted dual graph is uniquely determined by the type. But in case $k \geqq 2$, this is not the case. For instance, the following is of type $\{(2,1),(2,1), 0\}$ for every $r \geqq 1$.

Remark 1.7. If $t=0, f$ contains two singularities of Y, and if $t \geqq 1$, then f contains one singularity of Y. Note that f contains only rational double points if and only if f is of type $\{(2,1), t\}$ with $t \geqq 0$.

§ 2. The invariant τ.

Let Y be a normal projective surface having a minimal ruled fibration $p: Y$ $\rightarrow B$ over a smooth curve B of genus g. We know that Y carries only rational singularities ([S3], Lemma 46). Let $\pi: X \rightarrow Y$ be the minimal resolution of Y. Let $\operatorname{Sing}(Y)=\left\{y_{1}, \cdots, y_{t}\right\}$ and $A=\Sigma A_{i}$ where each A_{i} denotes the exceptional set $\pi^{-1}\left(y_{i}\right)$. Let r_{i} be the determinant of the intersection matrix of all irreducible components of A_{i}, and let $r=1$.c.m. $\left(r_{i}\right)$.

Lemma 2.1. Let r be as above. Then
(i) $D D^{\prime} \in(1 / r) \boldsymbol{Z}$ for $D, D^{\prime} \in \operatorname{Div}(Y)$,
(ii) $r D$ is a Cartier divisor for every $D \in \operatorname{Div}(Y)$.

Proof. (i) follows directly from the definition of intersection numbers ([S2]). (ii) follows from Theorem (4.2) in [S2].

There exists an effective \boldsymbol{Q}-divisor Δ supported on A satisfying the relation: $\pi^{*} K_{Y}=K_{X}+\Delta$. Cf. [S2]. Decompose $\Delta=\Sigma \Delta_{i}$ as $\operatorname{Supp}\left(\Delta_{i}\right) \subset A_{i}$. For each singular point y_{i}, we define

$$
\tau\left(y_{i}\right)=\frac{1}{4}\left(\rho\left(A_{i}\right)+\Delta_{i}^{2}\right)
$$

where $\rho\left(A_{i}\right)$ denotes the number of irreducible components of A_{i}. Note that $\boldsymbol{\tau}\left(y_{i}\right) \in \boldsymbol{Q}$, which is possibly negative and that $\tau\left(y_{i}\right)$ depends only on the weighted dual graph of A_{i}. Define

$$
\tau=\tau(Y)=\Sigma \tau\left(y_{i}\right)
$$

where the summation is taken over all singularities. Since each y_{i} is a rational singularity, $4 \tau\left(y_{i}\right)$ is equal to the (generalized) Milnor number $\mu\left(y_{i}\right)$ defined in [S2]. The Noether formula (4.7) in [S2] gives

$$
\begin{equation*}
K_{Y}^{2}=8(1-g)-4 \tau . \tag{2.2}
\end{equation*}
$$

Lemma 2.3. $\tau \geqq 0$.
Proof. See [S4], Proposition 5, where it is shown that $K_{Y}^{2} \leqq 8(1-g)$. In Remark 2.10 below we give another simple proof.

Each singular fibre contains one or two singular points of Y. Cf. §1. For a singular fibre f, define

$$
\tau(f)=\sum_{y_{j} \in f} \tau\left(y_{i}\right) .
$$

Example 2.4. (i) If f is of type $\{(d, e), 0\}$, then $\tau(f)=1-1 / d$. To see this, consider the following action of $G=\boldsymbol{Z} / d \boldsymbol{Z}$ on $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$.

where ζ is a primitive d-th root of unity. The action has four fixed points. The induced ruled fibration on the quotient $Y=\boldsymbol{P}^{1} \times \boldsymbol{P}^{1} / G$ is minimal and has two singular fibres f_{1}, f_{2} of type $\{(d, e), 0\}$. It follows from (2.2) that $K_{Y}^{2}=$ $8-4\left(\tau\left(f_{1}\right)+\tau\left(f_{2}\right)\right)$. But

$$
K_{Y}^{2}=(1 / d) K_{P 1 \times P^{1}}^{2}=8 / d .
$$

So this implies that $\tau\left(f_{1}\right)=\tau\left(f_{2}\right)=1-1 / d$.
(ii) If f is of type $\{(d, 1), t\}$, then $\tau(f)=(d+t)(d-1) / d^{2}$.

Theorem 2.5. Let Y be a normal projective surface with a minimal ruled fibration. Let f be a singular fibre of the ruled fibration, and let m denote its multiplicity. Then

$$
\tau(f) \geqq 1-\frac{1}{m} .
$$

The equality holds if and only if f is of type $\{(m, e), 0\}$ for some e.
Proof. Since the question is local, it suffices to consider the case in which $p: Y \rightarrow \boldsymbol{P}^{1}$ has one singular fibre f of the given type and one singular fibre f^{\prime}
of type $\{(m, 1), 0\}$. Choose inhomogeneous coordinate z on \boldsymbol{P}^{1} so that f is over 0 and f^{\prime} is over ∞. Take an m-fold covering $\boldsymbol{P}^{1} \ni w \rightarrow z=w^{m} \in \boldsymbol{P}^{1}$. Let \tilde{Y} be the normalization of the fibre product $Y \times{ }_{P^{1}} \boldsymbol{P}^{1}$. Then \tilde{Y} has an induced ruled fibration (not necessarily minimal) without multiple fibres. We see that $K_{\tilde{Y}}^{2} \leqq 8$. Indeed, let $\tilde{Y} \rightarrow \tilde{Y}_{0}$ be successive contractions of exceptional curves of the first kind in fibres, so that \tilde{Y}_{0} has a minimal ruled fibration. Then $K_{\tilde{Y}}^{2}<K_{\tilde{Y}_{0}}^{2}$ unless $\tilde{Y}=\tilde{Y}_{0}$. But by Lemma 2.3, $K_{\tilde{Y}_{0}}^{2} \leqq 8$. Note that the cyclic group $G=$ $\boldsymbol{Z} / m \boldsymbol{Z}$ acts on \tilde{Y} and $Y=\tilde{Y} / G$. By construction G has only a finite number of points with nontrivial stabilizers, and so $K_{Y}^{2}=(1 / m) K_{\tilde{Y}}^{2}$. Since $\tau\left(f^{\prime}\right)=1-1 / m$, it follows that

$$
\frac{8}{m} \geqq K_{Y}^{2}=8-4\left(1-\frac{1}{m}\right)-4 \tau(f),
$$

and hence $\tau(f) \geqq 1-1 / m$ as desired. In case $\tau(f)=1-1 / m$, we have $K_{\tilde{Y}}^{2}=8$ in the above argument. We infer from this that \tilde{Y} is a geometrically ruled surface and that f has two cyclic quotient singularities. It follows easily that f is of type $\{(m, e), 0\}$ for some e. Conversely, if f is of type $\{(m, e), 0\}$, then the multiplicity of f is equal to m Theorem 1.2 and $\tau(f)=1-1 / m$ (Example 2.4).

Let f_{1}, \cdots, f_{k} be the set of singular fibres, and let m_{i} denote the multiplicity of f_{i} for each i. If f_{i} is over $x_{i} \in B$, then $f_{i}=p^{*}\left(x_{i}\right)=m_{i} F_{i}$. Of course

$$
\tau=\Sigma \tau\left(f_{i}\right)
$$

Corollary 2.6.

$$
\tau \geqq \Sigma\left(1-\frac{1}{m_{i}}\right)
$$

In particular, $\tau=0$ if and only if Y is smooth.
A divisor D on Y is said to be of degree n over B if $D f=n$ where f is a fibre. An irreducible curve is called an n-section ($n>0$) if it is of degree n over B. A section will mean a 1 -section.

Lemma 2.7. Let D be a divisor of degree 0 over B. Then there exists a \boldsymbol{Q}-divisor bon B such that

$$
D \sim p^{*} \text {. }
$$

In this case, b has the form:

$$
\mathfrak{b}=\delta_{0}+\Sigma\left(\frac{n_{i}}{m_{i}}\right) x_{i}
$$

where $D_{0} \in \operatorname{Div}(B)$ with $\mathcal{O}\left(\delta_{0}\right) \cong p_{*} \mathcal{O}(D)$ and $0 \leqq n_{i}<m_{i}$ for all i.
Proof. Consider a commutative diagram:

where T is a geometrically ruled surface over B. Namely, φ consists of successive contractions of (-1)-curves contained in fibres of Φ. Cf. (1.4). By definition ([S2]], $\pi^{*} D=\bar{D}+Z$ where \bar{D} is the strict transform of D and the Z is a \boldsymbol{Q}-divisor supported on A. Write $\bar{D}=\varphi^{*} D^{\prime}+G$ where D^{\prime} is a divisor on T of degree 0 over B and the G is a divisor supported on the exceptional set of φ. It is well known that there is a divisor \mathfrak{b}^{\prime} on B such that $D^{\prime} \sim q^{* D^{\prime}}$. Note that $q_{*} O\left(D^{\prime}\right) \cong O\left(\delta^{\prime}\right)$. Cf. [H2]. Thus $\pi^{*} D \sim \Phi^{*} \emptyset^{\prime}+G+Z$. It follows that $D \sim$ $p^{*} \dot{\delta}^{\prime}+\pi_{*} G$. Since $\operatorname{Supp}(G) \subset \pi^{-1}\left(\cup f_{i}\right)$, we have $\pi_{*} G=\sum n_{i}^{\prime} F_{i}$ for some $n_{i}^{\prime} \in \boldsymbol{Z}$. Write $n_{i}^{\prime} \equiv n_{i} \bmod m_{i}$ with $0 \leqq n_{i}<m_{i}$ for each i, and set $\delta_{0}=\mathrm{D}^{\prime}+\Sigma\left(\left(n_{i}^{\prime}-n_{i}\right) / m_{i}\right) x_{i}$ $\in \operatorname{Div}(B)$. Setting $\mathfrak{D}=\mathrm{b}^{0}+\Sigma\left(n_{i} / m_{i}\right) x_{i}$, we get the required linear equivalence: $D \sim p^{*}$. Clearly, $p_{*} O(D) \cong O\left(\delta_{0}\right)$.

Proposition 2.9. Let $p: Y \rightarrow B$ be a minimal ruled fibration on a normal surface Y over a curve B of genus g. Let D be a divisor on Y of degree n (>0) over B. Then there exists a \boldsymbol{Q}-divisor $\mathfrak{e}(D)$ on B satisfying:

$$
n K_{Y} \sim-2 D+p^{*}(n(\mathfrak{f}+\mathrm{e}(D)))
$$

where $\mathbb{F}^{\text {is a canonical divisor on } B \text {. In particular, we have }}$

$$
K_{Y} D=n\left(2 g-2+\tau-\frac{D^{2}}{n^{2}}\right)
$$

and

$$
\operatorname{deg} \mathfrak{e}(D)=\frac{D^{2}}{n^{2}}+\tau
$$

Proof. Since $n K_{Y}+2 D$ is of degree 0 over B, the existence of $\mathrm{e}(D)$ follows from Lemma 2.7. Since $\left(n K_{Y}+2 D\right)^{2}=0$, it follows that

$$
n K_{Y} D=-\frac{1}{4} n^{2} K_{Y}^{?}-D^{2}=n^{2}(\operatorname{deg}(\mathfrak{f})+\boldsymbol{\tau})-D^{2}
$$

(by (2.2)) .
Thanks to the definition of $\mathrm{e}(D)$ we have

$$
n K_{Y} D=-2 D^{2}+n^{2}(\operatorname{deg}(\mathfrak{f}+\mathfrak{e}(D)))
$$

Combining these together we obtain the remaining formulae.

Remark 2.10. We give a simple proof of the fact: (i) $\tau \geqq 0$, (ii) $\tau=0$ if and only if Y is smooth. Cf. Lemma 2.3 and Corollary 2.6. Take a section C on Y, then by Proposition 2.9, $\left(K_{Y}+C\right) C=2 g-2+\tau$. To see (i) it is sufficient to show that $\left(K_{Y}+C\right) C \geqq 2 g-2$. Let \bar{C} be the strict transform of C on the minimal resolution X of Y. We have seen in [S4], Lemma 1 that $\left(K_{Y}+C\right) C \geqq$ $\left(K_{X}+\bar{C}\right) \bar{C}$. This gives the required inequality, because \bar{C} is smooth and so $\left(K_{X}+\bar{C}\right) \bar{C}=2 g-2$. (ii) Suppose that $\tau=0$. Then $\left(K_{Y}+C\right) C=\left(K_{X}+\bar{C}\right) \bar{C}$, which implies that C does not meet $\operatorname{Sing}(Y)$ ([S4], Lemma 1). This is however possible only if Y is smooth, for otherwise there would be multiple fibres.

In the subsequent sections we use the following
Lemma 2.11. Let Y be a normal surface with a minimal ruled fibration over a curve B. Let D be a divisor on Y of nonnegative degree over B. Suppose that $D^{2}=0, K_{Y} D \leqq 0$. Then
(i) there exists an effective \boldsymbol{Q}-divisor D^{\prime} such that $D^{\prime} \equiv D$,
(ii) furthermore, in case $B=\boldsymbol{P}^{1}$, we have $\kappa(D, Y) \geqq 0$.

Proof. Let X, π, Φ be as in (2.8), and let r be as in Lemma 2.1. Applying the proof of Claim 6.5 in [S3] to $\mathcal{L}=\mathcal{O}\left(\pi^{*}(r D)\right)$, we see that there exists a degree zero divisor \mathfrak{a} on B such that $H^{0}\left(X, \mathcal{L} \otimes \mathcal{O}\left(\Phi^{*} \mathfrak{a}\right)\right) \neq 0$. Take $\Gamma \in\left|\mathcal{L} \otimes \mathcal{O}\left(\Phi^{*} \mathfrak{a}\right)\right|$, and let $D^{\prime}=(1 / r) \pi_{*} \Gamma$. Since $\operatorname{deg} \mathfrak{a}=0$, we have $D^{\prime} \equiv D$. If in addition $B=\boldsymbol{P}^{1}$, then $\mathfrak{a}=0$, and so $|r D| \neq \varnothing$.

§3. The invariants s_{n}.

Let Y, p, B have the same meaning as in $\S 2$. For a positive integer n, we define a rational number s_{n} by

$$
s_{n}=s_{n}(Y)=\min \left\{\frac{D^{2}}{n^{2}}\right\}
$$

where the minimum is taken over all effective divisors D of degree n over B. For simplicity write $s=s_{1}$, so s is equal to the minimum of the self-intersection numbers of all sections. A section b attaining the minimum s is called a base section (or a minimal section).

Lemma 3.1. The above minimum actually exists.
Proof. By Lemma 2. $1, D^{2} / n^{2} \in\left(1 / r n^{2}\right) \boldsymbol{Z}$. So it suffices to show that D^{2} / n^{2} is bounded below. This is clear if $D^{2} \geqq 0$ for all D. We therefore consider the case in which there exists an irreducible curve C_{0} with $C_{0}^{2}<0$. Let n_{0} be the degree of C_{0} over B. Let D be an arbitrary effective divisor of degree n over B. We can write $D=k C_{0}+D^{\prime}$ with $k \geqq 0$, where the D^{\prime} does not contain C_{0} as
its component. If n^{\prime} denotes the degree of D^{\prime} over B, then of course, $n^{\prime}=$ $n-k n_{0}$. Since $D^{\prime} C_{0} \geqq 0$ and $\left(n_{0} D^{\prime}-n^{\prime} C_{0}\right)^{2}=0$, we have $n_{0}^{2} D^{\prime 2} \geqq-n^{\prime 2} C_{0}^{2}$. Thus

$$
D^{2} \geqq k^{2} C_{0}^{2}+D^{\prime 2} \geqq\left(n_{0}^{2} k^{2}-n^{\prime 2}\right) \frac{C_{0}^{2}}{n_{0}^{2}}
$$

and hence

$$
\frac{D^{2}}{n^{2}} \geqq\left(1-\frac{2 n^{\prime}}{n}\right) \frac{C_{0}^{2}}{n_{0}^{2}} \geqq \frac{C_{0}^{2}}{n_{0}^{2}}
$$

Lemma 3.2. With the above notation, we have
(i) there exists at most one irreducible curve with negative self-intersection number,
(ii) if there is an n_{0}-section C_{0} with $C_{0}^{2} \leqq 0$, then $s_{n} \geqq s_{n_{0}}$ for all n and $s_{n}=s_{n_{0}}$ if $n_{0} \mid n$,
(iii) if $s \leqq 0$, then $s_{n}=s$ for all $n>0$,
(iv) if $s>0$, then $s_{n} \geqq-s$ for all $n \geqq 2$,
(v) if $s>0$, then $s_{n} \geqq-\tau$ for all $n \geqq 2$.

Proof. (i)-(iv) follow immediately from the proof of Lemma 3.1. We prove (v). If $s_{n} \geqq 0$ for all $n \geqq 2$, then (v) holds trivially. Suppose that $s_{n_{0}}<0$ for some $n_{0} \geqq 2$. Choose n_{0} minimal with this property. By the proof of Lemma 3.1, there is an n_{0}-section C_{0} with $C_{0}^{2}<0$, so that $s_{n_{0}}=C_{0}^{2} / n_{0}^{2}$. Apply the Hurwitz formula to the ramified covering map $\tilde{C}_{0} \rightarrow B$ where \tilde{C}_{0} is the normalization of C_{0}. Then we infer that $\left(K_{Y}+C_{0}\right) C_{0} \geqq n_{0}(2 g-2)$. By Proposition 2.9, we have

$$
\left(K_{Y}+C_{0}\right) C_{0}=n_{0}(2 g-2+\tau)+\left(1-\frac{1}{n_{0}}\right) C_{0}^{2} .
$$

It follows that

$$
s_{n_{0}}=\frac{C_{0}^{2}}{n_{0}^{2}} \geqq \frac{-\tau}{n_{0}-1} \geqq-\tau \quad \text { (because } n_{0} \geqq 2 \text {). }
$$

With the help of (ii) we conclude that $s_{n} \geqq s_{n_{0}} \geqq-\tau$ if $n \geqq n_{0}$. By the choice of n_{0}, of course $s_{n} \geqq 0$ if $n<n_{0}$.

Example 3.3. We give an example with $s>0, s_{2}<0$. On the rational ruled surface $\boldsymbol{F}_{1}=\boldsymbol{P}(\Theta \oplus O(-1))$ over \boldsymbol{P}^{1}, there is a smooth 2 -section $C \in|2 b+2 f|$ where the b is the base section. Let P be a point on C where $C \rightarrow \boldsymbol{P}^{1}$ ramifies. Blow up 7-times over P at the points where the strict transforms of C meet the (-1)-curves. Contract all curves over the fibre passing through P except the remaining last (-1)-curve. Then we get a minimal ruled fibration $Y \rightarrow \boldsymbol{P}^{1}$. We see that Y has a singular fibre of type $\{(2,1), 5\}$, so that $s=3 / 4, \tau=7 / 4$. If C_{0} denotes the strict transform of C on Y, then C_{0} is again a 2-section with $C_{0}^{2}=-3$, and so $s_{2}=-3 / 4$. In this example, $s=\tau-1$. See Theorem 3.5 below.

REmark 3.4. In case Y is smooth, if $s>0$, then $s_{n} \geqq 0$ for all $n>0$ (for instance by Lemma 3.2, (v)). However, in the positive characteristic case, this is not the case. See [H2], Exercise 2.15, where an example $(\operatorname{ch}(k)=3)$ with $s=1, s_{3}=-1$ can be found.

Theorem 3.5. Let Y be a normal projective surface with a minimal ruled fibration over a curve B of genus g. Then

$$
\text { (i) } s_{n} \leqq \tau+ \begin{cases}\frac{1}{n}\left[\frac{2 n g}{n+1}\right] & \text { (if } n \text { is odd) } \\ \frac{2}{n}\left[\frac{n g}{n+1}\right] & \text { (if } n \text { is even) },\end{cases}
$$

(ii) if Y is singular, then

$$
s \leqq g+\tau-1
$$

Proof. We first consider the smooth case. Let T be a geometrically ruled surface $\boldsymbol{P}(\mathcal{E})$ defined by a rank 2 vector bundle \mathcal{E} on B. By virtue of the observation in [H1], p. 51, there is a one to one correspondence between effective devisors D, having no fibre components, of degree n over B and invertible sheaves \mathcal{L} on B which is a subline bundle of the n-th symmetric power $S^{n} \mathcal{E}$. The correspondence is given by

$$
D \longrightarrow \mathcal{L}=p_{*}\left(\mathcal{O}_{T}(n) \otimes \mathcal{O}(-D)\right) \subset S^{n} \mathcal{E}
$$

Furthermore, by using the computation in [H1], p. 52, we obtain

$$
\begin{equation*}
\frac{D^{2}}{n^{2}}=\operatorname{deg} \mathcal{E}-\frac{2}{n} \operatorname{deg} \mathcal{L} . \tag{3.6}
\end{equation*}
$$

Choose D so that D^{2} / n^{2} attains the minimum $s_{n}(T)$. In this case, D contains no fibre components, and the corresponding \mathcal{L} is a maximal subline bundle of $S^{n} \mathcal{E}$. Note that $\operatorname{rank} S^{n} \mathcal{E}=n+1, \operatorname{deg} S^{n} \mathcal{E}=(1 / 2) n(n+1) \operatorname{deg} \mathcal{E}$. The Theorem in [MS] applied to $S^{n} \mathcal{E}$ yields the inequality :

$$
\frac{n+1}{2}(n \operatorname{deg} \mathcal{E}-2 \operatorname{deg} \mathcal{L}) \leqq n g
$$

Thus

$$
n \operatorname{deg} \mathcal{E}-2 \operatorname{deg} \mathcal{L} \leqq\left[\frac{2 n g}{n+1}\right]
$$

Also if n is even, we have

$$
\frac{1}{2}(n \operatorname{deg} \mathcal{E}-2 \operatorname{deg} \mathcal{L}) \leqq\left[\frac{n g}{n+1}\right]
$$

Substituting (3.6) to these inequalities, we get

$$
s_{n}(T)=D^{2} / n^{2} \leqq \begin{cases}\frac{1}{n}\left[\frac{2 n g}{n+1}\right] & \text { if } n \text { is odd } \tag{3.7}\\ \frac{2}{n}\left[\frac{n g}{n+1}\right] & \text { if } n \text { is even }\end{cases}
$$

Now we pass to the singular case. Let X, π, T, φ have the same meaning as in (2.8),

Claim 3.8.

$$
s_{n}(Y) \leqq s_{n}(T)+\tau
$$

Proof. Let D be an effective divisor on T of degree n over B such that $s_{n}(T)=D^{2} / n^{2}$. Let \bar{D} be the strict transform of D on X, and let D^{\prime} denote the image of \bar{D} on Y. Then

$$
\begin{aligned}
s_{n}(Y) \leqq \frac{D^{\prime 2}}{n^{2}} & =2 g-2+\tau-\frac{1}{n} K_{Y} D^{\prime} \\
& =2 g-2+\tau-\frac{1}{n}\left(K_{X}+\Delta\right) \bar{D} \\
& \leqq 2 g-2+\tau-\frac{1}{n} K_{X} \bar{D} \\
& \leqq \frac{D^{2}}{n^{2}}+\tau=s_{n}(T)+\tau .
\end{aligned}
$$

This claim together with (3.7) yields the assertion (i).
Finally we prove (ii). We can choose T as $s(T) \leqq g-1$ under the assumption that Y is singular. By (3.7), we have always $s(T) \leqq g$. Suppose that $s(T)$ $=g$. Since Y is singular, there must be a point P on T over which φ is not isomorphic. In case $s(T)=g$, Lemma 4.4 in [LN] (see also [M]) guarantees that there exists a base section passing through P. Let $T \longrightarrow T^{\prime}$ be the elementary transformation of T at P. It is easy to check that $X \rightarrow T^{\prime}$ is still a morphism, and that $s\left(T^{\prime}\right)=g-1$. Therefore, by replacing T with T^{\prime}, we can make $s(T) \leqq g-1$. Consequently, the assertion (ii) follows from Claim 3.8.

Corollary 3.9. When $g \leqq 1$, we have

$$
s_{n} \leqq \tau- \begin{cases}0 & \text { in case } g=1 \\ 1 & \text { in case } g=0\end{cases}
$$

for every n under the condition that Y is singular.
Proof. In the proof of (ii), if $g \leqq 1$, we can make as $s(T) \leqq 0$. It follows from Lemma 3.2, (iii) that $s_{n}(T)=s(T)$ for all $n>0$. So by the inequality (ii), $s_{n}(Y) \leqq \tau$ (if $g=1$), $\leqq \tau-1$ (if $g=0$).

Now we define the following invariant:

$$
s_{*}=\inf \left\{s_{n}\right\}
$$

where the infimum is taken over all positive integers n. The following properties of s_{*} are immediate from Lemma 3.2.

Lemma 3.10. (i) If there is an n_{0}-section C_{0} with $C_{0}^{2} \leqq 0$, then $s_{*}=s_{n_{0}}$. In particular, if $s \leqq 0$, then $s_{*}=s$,
(ii) if $s>0$, then $s_{*} \geqq-s$ and $s_{*} \geqq-\tau$,
(iii) if $s_{*}<0$, then there exists a unique irreducible curve C_{0} with $C_{0}^{2}<0$, and in this case, $s_{*}=s_{n_{0}}$ where $n_{0}=$ the degree of C_{0} over B.

Lemma 3.11. Let D be a divisor of degree $n(n>0)$ over B. Then D is nef if and only if $D^{2} / n^{2} \geqq-s_{*}$.

Proof. Clearly, $D F>0$ for a fibre component F. So D is nef if $D C \geqq 0$ for all irreducible curves C of positive degree over B. Let C be an effective divisor of degree $k(k>0)$ over B. Then

$$
D C=\frac{n k}{2}\left(\frac{D^{2}}{n^{2}}+\frac{C^{2}}{k^{2}}\right) .
$$

If $D^{2} / n^{2} \geqq-s_{*}$, then it follows that $D C \geqq 0$. Conversely, assume that D is nef. By the definition of s_{*}, for any $\varepsilon>0$, there exists an effective divisor C such that $s_{*} \leqq C^{2} / k^{2}<s_{*}+\varepsilon$ where $k=$ the degree of C over B. Since D is nef, $D C \geqq 0$, and so $D^{2} / n^{2} \geqq-C^{2} / k^{2}>-s_{*}-\varepsilon$. Letting $\varepsilon \rightarrow 0$, we find that $D^{2} / n^{2} \geqq-s_{*}$.

Proposition 3.12. The invariant s_{*} is a nonpositive rational number.
Proof. First we show that $s_{*} \leqq 0$. Assume to the contrary that $s_{*}>0$. We can find a divisor D of positive degree over B such that $0>D^{2} / n^{2}>-s_{*}$, where $n=$ the degree of D over B. To see this, take an ample divisor H on Y. Choose a rational number α as $H^{2}<2 \alpha h<H^{2}+s_{*} h^{2}$ where h is the degree of H over B. Let N be a positive integer such that $N \alpha$ is integral. Then the divisor $D=N(H-\alpha f)$ satisfies the above condition. By Lemma 3.11, this D is nef, and hence we must have $D^{2} \geqq 0$. This is a contradiction. The rationality of s_{*} is now clear from (iii) in Lemma 3, 10.

We say that Y is of finite type if $s_{*}=s_{n_{0}}$ for some n_{0}, and is of infinite type otherwise. Note that if $s_{*}<0$, then Y is of finite type. In case $s_{*}=0$, there occur both types.

Example 3.13. Let B be a curve of genus $\geqq 2$. It is known that there exists a rank 2 vector bundle \mathcal{E} on B such that all its symmetric powers $S^{n} \mathcal{E}$
are stable. Cf. [H1], Theorem 10.5. Let $T=\boldsymbol{P}(\mathcal{E})$. In this case, $s_{n}(T)>0$ for all n, and so T is of infinite type.

Lemma 3.14. If $-K_{Y}$ is pseudoeffective, then Y is of finite type.
Proof. We have only to consider the case: $s_{*}=0$. Take a divisor D of positive degree over B such that $D^{2}=0$. By Lemma 3.11, D is nef, and so $K_{Y} D \leqq 0$, because $-K_{Y}$ is pseudoeffective. By Lemma 2.11, there exists an effective \boldsymbol{Q}-divisor D^{\prime} such that $D^{\prime} \equiv D$, and hence $D^{\prime 2}=0$ in this situation, which implies that Y is of finite type.

A divisor D is numerically positive if $D C>0$ for all irreducible curves C on Y. Also D is numerically ample if D is numerically positive and $D^{2}>0$. In our case, since Y has only rational singularities, D is ample if and only if it is numerically ample (Nakai criterion).

Proposition 3.15. Let Y be a normal surface with a minimal ruled fibration. Let b be a base section, and f a fibre. Let $D \equiv n b+\alpha f$ be a divisor on Y. Then
(i) D is numerically positive if and only if $n>0, \alpha>-(n / 2)\left(s+s_{*}\right)$ (in case Y is of finite type), or $n>0, \alpha \geqq-n s / 2$ (in case Y is of infinite type, and so $s_{*}=0$).
(ii) D is ample (resp. nef) if and only if $n>0, \alpha>-(n / 2)\left(s+s_{*}\right)$ (resp. $n \geqq 0$, $\alpha \geqq-(n / 2)\left(s+s_{*}\right)$).
(iii) D is pseudoeffective if and only if $n \geqq 0, \alpha \geqq-(n / 2)\left(s-s_{*}\right)$.

Proof. For the smooth case, see [H2], p. 382. See also [L], [S1]. Of course $D f=n$. Also if C is an effective divisor of degree $k>0$ over B, then $D C=k\left(\alpha+(n / 2)\left(s+C^{2} / k^{2}\right)\right)$. Therefore, (i) follows from the definition of s_{*}. Also we see the criterion for the nefness. Since $D^{2}=2 n(\alpha+n s / 2)$ and $s_{*} \leqq 0$, in view of (i), we get the criterion for the ampleness. To see (iii), take a divisor $C=$ $k\left(b-(1 / 2)\left(s+s_{*}\right) f\right.$) for a suitable positive integer k. By (ii), C is nef. Since $D C=k\left(\alpha+(n / 2)\left(s-s_{*}\right)\right)$, the condition: $\alpha \geqq-(n / 2)\left(s-s_{*}\right)$ is necessary for the pseudo-effectiveness. The other implication is an easy consequence of (ii).

Remark 3.16. We claim that Y contains an exceptional curve of the first kind if and only if $g=0, s_{*}<0, \tau<2+s_{*}$. Indeed, we know that there is an irreducible curve C_{0} with $C_{0}^{2}<0$ if and only if $s_{*}<0$. By Proposition 2.9, $K_{Y} C_{0}$ $=n_{0}\left(2 g-2-s_{*}+\tau\right)$ where $n_{0}=$ the degree of C_{0} over B. So $K_{Y} C_{0}<0$ if and only if $2 g-2-s_{*}+\tau<0$. Since $s_{*}<0$, this is equivalent to the condition: $g=0, \tau<$ $2+s_{*}$. We give a series of examples. Consider \boldsymbol{F}_{1} with a base section b, and construct two singular fibres of types $\left\{\left(d_{1}, 1\right), 0\right\}$ and $\left\{\left(d_{2}, 1\right), 0\right\}$. Let Y be the resulting normal surface. One can make the configuration as follows:

Here \bar{b} is the strict transform of b. Let C_{0} be the image of \bar{b} on Y. Then

$$
K_{Y} C_{0}=-2 / d_{2}, \quad C_{0}^{2}=-\left(d_{2}-d_{1}\right) / d_{1} d_{2} .
$$

So if $d_{2}>d_{1}$, then C_{0} is an exceptional curve of the first kind.

§ 4. The anti-Kodaira dimension.

Let Y be a normal surface having a minimal ruled fibration $p: Y \rightarrow B$ over a curve B of genus g. We study the anti-Kodaira dimension $\kappa^{-1}(Y)$, which is defined to be $\kappa\left(-K_{Y}, Y\right)$. Cf. [S1], [S3]. Recall the numerical type of a divisor D on Y. We say that D is of type (a) if D is not pseudoeffective. In case D is pseudoeffective, let $D=P+N$ be the Zariski decomposition ([S2]) where P is a nef \boldsymbol{Q}-divisor. We have three types: (b) $P \equiv 0$, (c) $P^{2}=0, P \not \equiv 0$, (d) $P^{2}>0$.

We first consider the numerical type of the anticanonical divisor $-K_{Y}$. We fix a base section b on Y. In view of Proposition 2.9, it follows that

$$
-K_{Y} \equiv 2 b-(2 g-2+s+\tau) f
$$

By Proposition 3.15, we obtain the following criteria:

$$
\begin{cases}-K_{Y} \text { is pseudoeffective } & \Longleftrightarrow 2 g-2+s_{*}+\tau \leqq 0 \tag{4.1}\\ -K_{Y} \text { is nef } & \Longleftrightarrow 2 g-2-s_{*}+\tau \leqq 0\end{cases}
$$

Suppose now that $-K_{Y}$ is pseudoeffective, but not nef. This is the case in which $s_{*}<2 g-2+\tau \leqq-s_{*}$. In particular, $s_{*}<0$. So there exists an irreducible curve C_{0} with $C_{0}^{2}<0$. If n_{0} is the degree of C_{0} over B, then $s_{*}=C_{0}^{2} / n_{0}^{2}$. See Lemma 3.10. With the notation of Proposition 2.9, set $e_{0}=e\left(C_{0}\right)$. Note that $\operatorname{deg} \mathrm{e}_{0}=$ $s_{*}+\tau$. The Zariski decomposition: $-K_{Y}=P+N$ is given by

$$
\left\{\begin{array}{l}
N=\left(1-\frac{2 g-2+\tau}{s_{*}}\right) \frac{C_{0}}{n_{0}}, \\
P=-K_{Y}-N .
\end{array}\right.
$$

Furthermore, we have the linear equivalence:

$$
n_{0} P \sim-p^{*}\left(n_{0}\left(\ddagger+e_{0}\right)\right)+\left(1+\frac{2 g-2+\tau}{s_{*}}\right) C_{0} .
$$

Also,

$$
P^{2}=\frac{\left(2 g-2+s_{*}+\tau\right)^{2}}{-s_{*}} .
$$

Therefore, if $P^{2}=0$, then $2 g-2+s_{*}+\tau=0$, and hence

$$
\begin{equation*}
n_{0} P \sim-p^{*}\left(n_{0}\left(\mathfrak{f}+\mathfrak{e}_{0}\right)\right) . \tag{4.2}
\end{equation*}
$$

Suppose next that $-K_{Y}$ is nef. By (4.1), $2 g-2-s_{*}+\tau \leqq 0$, and so either $g=0$, $\tau-s_{*} \leqq 2$, or $g=1, \tau=0, s_{*}=0$. By (2.2), $K_{\hat{Y}}^{2}=0 \Leftrightarrow \tau=2(1-g)$. So $-K_{Y}$ is of type (c) in the following cases (i) $g=0, \tau=2, s_{*}=0$, (ii) $g=1, \tau=0, s_{*}=0$.

As a consequence, we obtain the following
Lemma 4.3. The numerical type of $-K_{Y}$ is given by the following table:

Type	$2 g-2+s_{*}+\tau$	s_{*}
(a)	>0	
(b)	0	<0
(c)	0	$0\left\{\begin{array}{l}g=0, \tau=2 \\ g=1, \tau=0\end{array}\right.$
(d)	<0	

We now consider the anti-Kodaira dimension $\kappa^{-1}(Y)$.
Type (a). In this case, we have automatically $\kappa^{-1}(Y)=-\infty$.
Type (b). Using (4.2), we see that $\kappa^{-1}(Y)=0$ if $\mathfrak{f}+\mathfrak{e}_{0}$ is a torsion element, i. e., there exists a positive integer m such that $m\left(f+e_{0}\right) \sim 0$, and that $\kappa^{-1}(Y)=$ $-\infty$ otherwise.

Type (c). For the case in which $g=1, \tau=0$, since Y is smooth, the previous results in [S1], [S3] imply that $\kappa^{-1}(Y)$ can take 0 and 1. For the case in which $g=0, \tau=2$, by Lemma 2.11, we see that $\kappa^{-1}(Y) \geqq 0$. Since $-K_{Y}$ is nef and $K_{\hat{Y}}^{3}=0$, we see that $\kappa^{-1}(Y) \neq 2$. See Example 4.5 below for examples with $\kappa^{-1}(Y)=0$ and 1.

Type (d). It is known that $\kappa^{-1}(Y)=2$.
Summarizing we obtain the following
Theorem 4.4. Let Y be a normal projective surface with a minimal ruled fibration over a curve of genus g. Then the classification of Y in terms of $\kappa^{-1}(Y)$ is given as follows:

$\kappa^{-1}(Y)$	Type	$2 g-2+s_{*}+\tau$	s_{*}	Structure
$-\infty$	$\left\{\begin{array}{c\|c\|c}(\mathrm{a}) & >0 & \\ (\mathrm{~b}) & 0 & <0\end{array}\right.$	$\mathfrak{f}+\mathrm{e}_{0}$ is not a torsion		
0	$\left\{\begin{array}{l}\text { (b) }\end{array}\right.$	0	<0	$\mathfrak{i}+\mathrm{e}_{0}$ is a torsion
(c)	0	0	$\left\{\begin{array}{l}g=0, \tau=2 \\ g=1, \\ g=0\end{array}\right.$	
1	(c)	0	0	$\begin{cases}g=0, \tau=2 \\ g=1, & \tau=0\end{cases}$
2	(d)	<0		

Example 4.5. Take a smooth cubic $C \subset \boldsymbol{P}^{2}$. Choose a point $P_{0} \in C$, which is not a flex. There are four distinct points P_{1}, \cdots, P_{4} such that the lines $\overline{P_{0} P_{i}}$ are tangent to C. Blow up P_{0}, so that the resulting surface is \boldsymbol{F}_{1}. In this case, every line passing through P_{0} corresponds to a fibre. Blow up over each point P_{i} in the following way. First blow up at P_{i} and then blow up at the point where the (-1)-curve meets the strict transform of C. Locally we have the following picture:

One of the (-2)-curves is the strict transform of the line $\overline{P_{0} P_{i}}$. By contracting the eight (-2)-curves, we get a normal surface Y with a minimal ruled fibration. There are four singular fibres of type $\{(2,1), 0\}$. The strict transform C_{0} of C on Y is a smooth elliptic curve. Note that C_{0} is a 2 -section with $C_{0}^{2}=0$. We have $g=0, \tau=2, s_{*}=0$. Let P_{∞} be a flex on C. We claim that

$$
\kappa^{-1}(Y)= \begin{cases}1 & \text { if }\left(P_{0}-P_{\infty}\right) \text { is a torsion element in } \operatorname{Pic}(C), \\ 0 & \text { otherwise } .\end{cases}
$$

Indeed, by construction we find that $K_{Y} \sim-C_{0}$. Clearly, C_{0} is isomorphic to C, and with this isomorphism the normal sheaf $\mathscr{N}_{C_{0}}=\mathcal{O}\left(C_{0}\right) \otimes \mathcal{O}_{C_{0}}$ corresponds to the sheaf $\mathcal{O}\left(3\left(P_{0}-P_{\infty}\right)\right)$. The assertion is then a consequence of Proposition 3.3 in [S3].

We give a criterion for the case in which Y admits another ruled fibration or an elliptic fibration. We begin with the following general result.

Lemma 4.6. Let D be a nef Cartier divisor on a normal surface Y. Suppose that $\kappa(D, Y)=1$. Then
(i) if $K_{Y} D<0$, then $|m D|$ for some positive integer m defines a ruled fibration on Y,
(ii) if $K_{Y} D=0$, then $|m D|$ for some positive integer m defines an elliptic fibration on Y.

Proof. We use a theorem of Zariski in the form in [F2], Theorem (4.1), which implies that $\mathcal{O}(m D)$ is generated by global sections for some $m>0$. It follows from this that the map defined by $|m D|$ provides a fibration onto a curve for some large m. Let f denote its general fibre. We find that $K_{Y} f<0$ or $=0$, according as $K_{Y} D<0$ or $=0$. Accordingly, f is a smooth rational curve or a smooth elliptic curve.

Proposition 4.7. Let $p: Y \rightarrow B$ be a minimal ruled fibration on a normal surface Y over a curve B of genus g. Then Y admits another ruled fibration if and only if $g=0, \tau<2$ and $s_{*}=0$. In this case, $\tau=2(1-1 / n)$ for some positive integer n.

Proof. Suppose that Y has another ruled fibration. Let l be its general fibre. Let f be a fibre of p. Since $l \cong P^{1}$, we must have $g=0$. If we define $n=f l$, then by Proposition 2.9, $K_{Y} l=n(\tau-2)$. Since $K_{Y} l=-2$, it follows that $\tau=2(1-1 / n)$. Since $l^{2}=0$, we infer that $s_{n}=0$ and $s_{*}=0$. Cf. Lemma 3.10, (i).

Conversely, assume that $g=0, \tau<2$ and $s_{*}=0$. Thanks to (4.1), we see that $-K_{Y}$ is nef. It follows from Lemma 3.14 that Y is of finite type. Since $s_{*}=0$, this means that there exists an n_{0}-section l_{0} with $l_{0}^{2}=0$ for some n_{0}. In particular, $K_{Y} l_{0}=n_{0}(\tau-2)<0$. The Riemann-Roch theorem implies that $\kappa\left(l_{0}, Y\right)=1$. So by Lemma 4.6, there exists a ruled fibration on Y such that l_{0} is a fibre.

Example 4.8. (i) In the example in Remark 3.16, if $d_{1}=d_{2}=d$, then we have the invariants: $g=0, \tau=2(1-1 / d), s=s_{*}=0$.
(ii) Starting from $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$, construct a singular fibre of type $\{(d, 1), d\}$. In this case, we have $g=0, \tau=2(1-1 / d)$ and $s=s_{*}=0$. Cf. Example 2.4, (ii).

Proposition 4.9. Let Y be a normal surface with a minimal ruled fibration over a curve B of genus g. Then Y admits an elliptic fibration if and only if $\kappa^{-1}(Y)=1$.

Proof. In view of Theorem 4.4, if $\kappa^{-1}(Y)=1$, then $-K_{Y}$ is nef and $K_{Y}^{2}=0$. We infer from Lemma 4.6 that Y has an elliptic fibration.

Conversely, assume that Y has an elliptic fibration. Let C be its general
fibre. Set $n=f C>0$. By Proposition 2.9, $K_{Y} C=n(2 g-2+\tau)$, because $C^{2}=0$. Since $K_{Y} C=0$, we find that $2 g-2+\tau=0$. There occur two cases (i) $g=1, \tau=0$, (ii) $g=0, \tau=2$. In either case, by Theorem 4.4, $-K_{Y}$ is of type (c) and $\kappa^{-1}(Y)$ $\geqq 0$. We therefore are able to find an effective divisor $D \in\left|-m K_{Y}\right|$ for some $m>0$. Since $D C=0, D$ is contained in fibres of the elliptic fibration. We infer from this that each connected component of D is proportional to a fibre of the elliptic fibration. It follows that $\kappa^{-1}(Y)=1$.

Let us observe when the anticanonical divisor $-K_{Y}$ is ample. Recall that in the smooth case, only $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ and \boldsymbol{F}_{1} have this property among geometrically ruled surfaces. We infer from Proposition 3.15 that $-K_{Y}$ is ample $\Leftrightarrow 2 g-2-s_{*}$ $+\boldsymbol{\tau}<0 \Leftrightarrow g=0, \tau<2+s_{*}$. There are two cases: (i) $s_{*}=0$, (ii) $s_{*}<0$. If $s_{*}=0$, we infer from Proposition 4.7 that Y admits another minimal ruled fibration and that $\tau=2(1-1 / n)$ for some positive integer n. If $s_{*}<0$, by Remark 3.16, Y contains an exceptional curve of the first kind. Summarizing we obtain the following :

Theorem 4.10. Let Y be a normal projective surface with a minimal ruled fibration. Then the anticanonical divisor $-K_{Y}$ is ample if and only if either
(i) Y admits two distinct minimal ruled fibrations, or
(ii) Y contains an exceptional curve of the first kind.

Concluding Remark 4.11. We refer to Fujita [F1] and Gurjar-Miyanishi [GM] for related topics on open surfaces.

References

[F1] T. Fujita, On the topology of non-complete algebraic surfaces, J. Fac. Sci. Univ. Tokyo, Sect. IA., 29 (1982), 503-566.
[F2] T. Fujita, Fractionally logarithmic canonical rings of algebraic surfaces, J. Fac. Sci. Univ. Tokyo, Sect. IA., 30 (1984), 685-695.
[GM] R.V. Gurjar and M. Miyanishi, Affine surfaces with $\bar{\kappa} \leqq 1$, preprint.
[H1] R. Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes Math., 156, Springer, 1970.
[H2] R. Hartshorne, Algebraic Geometry, Graduate Texts Math., 57, Springer, 1977.
[L] H. Lange, On stable and ample vector bundles of rank 2 on curves, Math. Ann., 238 (1978), 193-202.
[LN] H. Lange and M.S. Narasimhan, Maximal subbundles of rank two vector bundles on curves, Math. Ann., 266 (1983), 55-72.
[M] M. Maruyama, On classification of ruled surfaces, Lectures in Math., Kyoto Univ., 3, Kinokuniya, Tokyo, 1970.
[MS] S. Mukai and F. Sakai, Maximal subbundles of vector bundles on a curve, Manuscripta Math., 52 (1985), 251-256.
[N] M. Nagata, On self-intersection number of a section on a ruled surface, Nagoya Math. J., 37 (1970), 191-196.
[S1] F. Sakai, Anti-Kodaira dimension of ruled surfaces, Sci. Rep. Saitama Univ., Ser. A., 10 (1982), 1-7.
[S2] F. Sakai, Weil divisors on normal surfaces, Duke Math. J., 51 (1984), 877-887.
[S3] F. Sakai, The structure of normal surfaces, Duke Math. J., 52 (1985), 627-648.
[S4] F. Sakai, Ample Cartier divisors on normal surfaces, J. Reine Angew. Math., 366 (1986), 121-128.

Fumio Sakai
Department of Mathematics
Faculty of Science
Saitama University
Urawa 338
Japan

Added in Proof (Correction to the paper [S4]). As we have seen in this paper, a minimal ruled fibration on a normal surface may have multiple fibres. For this reason, in the proof of Theorem 1, type (a) in [S4], we insert the following : Let $f=m F$ be a fibre with multiplicity m. Since $\left(K_{Y}+H\right) f<0, H f \geqq 1$, we find that $K_{Y} F<-1, F^{2}=0$, which implies that $K_{X} \bar{F}=-2, \bar{F}^{2}=0$. It follows that $K_{Y} F \geqq-2$. On the other hand, $K_{Y} f=m\left(K_{Y} F\right)=-2$. So we must have $m=1$.

Accordingly, we correct the statement (ii) of Proposition 2 in [S4] as follows.
(ii) the singular fibre is obtained by contracting all (-2)-curves in the following configurations:
(ii-1) the same as in [S4],
(ii-2)

(ii-3)

